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Abstract. Signal predictions for galactic dark matter (DM) searches often rely on assumptions on
the DM phase-space distribution function (DF) in halos. This applies to both particle (e.g. p-wave
suppressed or Sommerfeld-enhanced annihilation, scattering off atoms, etc.) and macroscopic DM
candidates (e.g. microlensing of primordial black holes). As experiments and observations improve
in precision, better assessing theoretical uncertainties becomes pressing in the prospect of deriving
reliable constraints on DM candidates or trustworthy hints for detection. Most reliable predictions of
DFs in halos are based on solving the steady-state collisionless Boltzmann equation (e.g. Eddington-
like inversions, action-angle methods, etc.) consistently with observational constraints. One can do
so starting from maximal symmetries and a minimal set of degrees of freedom, and then increasing
complexity. Key issues are then whether adding complexity, which is computationally costy, improves
predictions, and if so where to stop. Clues can be obtained by making predictions for zoomed-in
hydrodynamical cosmological simulations in which one can access the true (coarse-grained) phase-space
information. Here, we test an axisymmetric extension of the Eddington inversion to predict the full
DM DF from its density profile and the total gravitational potential of the system. This permits to go
beyond spherical symmetry, and is a priori well suited for spiral galaxies. We show that axisymmetry
does not necessarily improve over spherical symmetry because the (observationally unconstrained)
angular momentum of the DM halo is not generically aligned with the baryonic one. Theoretical errors
are similar to those of the Eddington inversion though, at the 10-20% level for velocity-dependent
predictions related to particle DM searches in spiral galaxies. We extensively describe the approach
and comment on the results.
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1 Introduction

Many searches for dark matter (DM) candidates target processes or phenomena that depend on the
DM velocity distribution. This is, for instance, the case for thermally produced cold DM (CDM)
candidates [1–7], like weakly-interacting massive particle (WIMP) DM [8–11], either in searches based
on direct detection techniques [12–14] or related to the capture of WIMPs in astrophysical bodies [15–
18], or searches based on indirect detection techniques [19–21], which may also be sensitive to velocity-
dependent processes like p-wave-suppressed [22–26] or Sommerfeld-enhanced annihilation [24, 27, 28].
In the former situation, making predictions requires information on the local velocity distribution at
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the relevant position, while in the latter, one needs to access the velocity distribution function all over
the targeted DM halo. There are actually many other DM candidates’ signatures for which the velocity
distribution matters, for instance, to make detailed predictions of the microlensing event rate induced
by primordial-black-hole (PBH) DM [29–31]. All this generically demands for both theoretical and
observational ways to infer the velocity distribution of DM in haloes, for which uncertainties should
ideally be controlled.

Since there is no firmly established reliable tracer of the DM velocity distribution function in
virialised structures (though see some attempts in [32, 33]), one usually has to predict or constrain it by
relying on dynamical consistency, and therefore on solutions to the steady-state collisionless Boltzmann
equation applied to gravitational systems. This actually characterizes a minor part of a vast research
program dedicated to the understanding of galactic dynamics [34]. In this context, although many
past studies have often assumed Gaussian (Maxwellian) velocity distributions based on the isothermal
approximation [15, 35] (which provide rough order-of-magnitude estimates), it is well established that
predictions in this framework do not reliably compare with the phase-space content of DM structures
[34, 36, 37]. Maxwellian template functions can still be used to fit velocity distributions in cosmological
simulations of galaxies, with adjustable free parameters not grounded from first principles, but this
procedure cannot be considered as a physical prediction per se [38, 39]. However, the increasing
precision of experimental or observational data relevant to DM searches within the Milky Way or
in its neighborhood [40] presses for theoretical improvement. In particular, the advent of the Gaia
mission [41] and its impressive catalog of the Milky Way and its neighbors’ stars [42–44] provides us
with an unprecedented sample of stars as viewed in phase-space coordinates, which allows us to more
strongly constrain the Milky Way DM content and its overall gravitational potential (see e.g. [45–53]
for a series of works showing the growing impact of kinematic data). Yet, many theoretical inference
methods are based upon assumptions that are themselves not systematically tested, and that could
induce uncontrolled theoretical errors. The subject of this paper is precisely to estimate the theoretical
errors associated with some inference proposals.

A tractable self-consistent theoretical approach is based on the Eddington inversion method [34,
54–59], which allows one to translate a constrained DM density profile and a constrained overall
gravitational potential (comprising all components of the system, including baryons), into a prediction
for the DM phase-space distribution function (PSDF) at each point of the system. This method relies
on the assumption of maximal symmetry, i.e. spherical symmetry and an isotropic velocity field.
Although it does not apply to arbitrary combinations of DM and baryonic configurations (see [59] for a
detailed review), it was recently tested against cosmological simulations and shown to be surprisingly
reliable given the strong assumptions made [37]. Theoretical errors were estimated at the . 10-20%
level along most of the radial evolution of the positive or negative nth moments of the velocity and
relative velocity distributions, 〈v±n〉 and 〈v±nrel 〉. These moments are those relevant in the predictions of
velocity-dependent DM signals. This makes this approach rather powerful because poorly demanding
in terms of computational time, while reasonably precise.

The Eddington inversion can actually be extended to anisotropic velocity fields [50, 59–63], still
under the assumption of spherical symmetry. Other theoretically much finer approaches rely on action-
angle methods, which somewhat represents the state-of-the-art developments in the interpretation of
kinematic data [64–66]. Still, action-angle methods do not, for the moment, show a decisive improve-
ment over Eddington-like approaches. Moreover, distribution functions for the actions are difficult
to derive from first principle and are either rather empirical or based on some calibration procedures
[67, 68]. In this paper, we propose to test an extension of the Eddington inversion that allows not only
to account for an anisotropic velocity field, but also to deal with axisymmetric systems. Adding more
degrees of freedom and going beyond spherical symmetry may somewhat capture more information
when applied to axisymmetric systems like spiral galaxies, or systems potentially exhibiting significant
oblateness or prolateness. This improved method, based on an inversion similar to the Eddington
inversion, was originally proposed in [69]. It was then further developed and applied to DM searches
in [70]. More recently, it was used in a thorough analysis of the Milky Way’s kinematic data to get
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constraints on the DM halo and to make predictions for direct DM searches [53]. In this paper, we want
to test the reliability of this improved inversion itself with a study similar to the one performed in [37],
by comparing predictions for the velocity distribution derived from knowledge of the matter content
of cosmological simulations with the velocity distributions directly measured in the same simulations.
We will use zoom-in cosmological simulations of Milky Way analogs presented in Refs. [71] and [72].

The paper is organised as follows. In Sec. 2 we first introduce the inversion methods designed
for computing the equilibrium PSDFs of collisionless self-gravitating systems. In Sec. 3 we present the
deployed set of hydrodynamical simulations and provide the details regarding their analysis. Sec. 4
contains our main results concerning the accuracy of the inversion methods in predicting the velocity
distribution of DM. In Sec. 5 we asses the corresponding uncertainties in the predictions for the
astrophysical factors that enter direct and indirect DM searches. We conclude in Sec. 6.

2 Phase-space structure of DM haloes

The structure of DM haloes can be conveniently described in terms of the PSDF, f , which is propor-
tional to the number of single species particles, N , in a given volume of the six-dimensional position-
velocity space:

m · dN = f(r,v) d3r d3v (2.1)

where r and v denote the corresponding position and velocity vectors, whilem is the mass of individual
particle. In the past, crude estimates of f were often justified by poor observational constraints and
the lack of highly accurate experimental searches for signals associated with DM particles. Therefore,
the phase-space structure of DM haloes was often approximated by factorizing f(r,v) into the spatial
DM density distribution, ρ(r), and Maxwell-Boltzmann (MB) velocity distribution, PMB(v):

f(r,v) = ρ(r) · PMB(v) . (2.2)

While the above approximation usually leads to the correct order-of-magnitude estimates for the as-
trophysical factors that enter the interpretation of DM searches, such a simplifying assumption suffers
from a number of drawbacks. To begin with, it is not clear how to appropriately choose the veloc-
ity dispersion associated with the MB distribution and several different choices have been suggested
throughout the literature – for their comparison see, e.g., [37, 59]. Beside the ambiguity in the as-
sociated velocity dispersion, the MB velocity distribution predicts non-zero probability for particles
with velocities well beyond the typical escape velocity, vesc, of galaxies. To address this issue, a sharp
truncation of PMB(v) beyond vesc has often been used, however, this still leads to spurious results for
probes that are particularly sensitive to the high-velocity tail of the distribution. Finally, even if correct
velocity dispersion and escape velocity are chosen, the ansatz from Eq. (2.2) represents a stationary
solution of the Boltzmann equation only if the associated DM density profile is the one of the singular
isothermal sphere, i.e. ρ(r) ∝ r−2, and there is no additional contributions to the total gravitational
potential of the system. However, the presence of baryons together with various astronomical obser-
vations, as well as cosmological simulations, which provide strong evidence that the DM density slope
is shallower in the centres of galaxies and steeper in the outskirts, generically imply a deviation from
the simple Maxwellian velocity distribution.

The above-described shortcomings of models based on the MB velocity distribution, as well as the
availability of increasingly precise observations that can be used to constrain the dynamical structure
of galaxies, motivate us to go beyond the simplest approximations. In the following we will describe
two alternative models that are by construction equilibrium solutions to the Boltzmann equation, but
differ in the assumed level of symmetry. Firstly, we will take a closer look at the spherically symmetric
Eddington inversion and briefly mention its anisotropic generalizations. This will be followed by a
short review of the axisymmetric inversion method, that has been applied in the context of DM only
recently, but offers a more accurate approach for modelling the phase-space distribution of DM in disc
galaxies, which are characterised by their axisymmetric morphology.
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2.1 Eddington inversion

It has long been recognised that it is possible to obtain explicit solutions of the collisionless Boltzmann
equation for self-gravitating systems with maximal symmetry. More precisely, Eddington showed that
for a collection of collisionless particles with a given radial density profile, ρ(r), embedded in a spherical
gravitational potential, Ψ(r), 1 an unique spherically symmetric and isotropic PSDF can be computed
as follows [54]:

f(E) =
1√
8π2
·
∫ E

0

dΨ√
E −Ψ

· d
2ρ

dΨ2
. (2.3)

In the above expression, E ≡ Ψ(r) − v2/2 is the relative energy that fully parametrizes the class of
PSDFs describing such systems. While the Eddington inversion allows one to obtain a DM phase-
space distribution consistent with the presence of several galactic components that enter the total
gravitational potential, it is limited to spherically symmetric configurations. Furthermore, in its original
formulation it is restricted to ergodic, and hence isotropic, distribution functions. There exist several
generalizations to anisotropic systems, in which case the PSDF additionally depends on the magnitude
of angular momentum, |L|, i.e. f ≡ f(E , |L|). However, the existing extensions rely on relatively strong
assumptions regarding the velocity anisotropy profile – the latter is either assumed to be a constant [34],
have the Osipkov-Merritt form [60, 61] or a combination thereof [62, 63, 74]). Furthermore, the
anisotropy profile has to be specified a priori, but is in practice impossible to constrain from the
existing observations. An additional problem of such anisotropic generalizations of the Eddington
approach is the fact that they often lead to unphysical solutions, as was recently investigated in [59].
Therefore for the purpose of this work, we focus only on the original Eddington’s formulation of the
inversion method.

2.2 Axisymmetric inversion method

By assuming that the system under consideration is axisymmetric, the corresponding PSDF can be
written as a function of two integrals of motion, namely f = f(E , Lz), where E is the aforementioned
relative energy and Lz is the specific angular momentum around the axis of symmetry, i.e. Lz ≡ Rvφ,
where {R,φ, z} denote to the standard set of cylindrical coordinates. In this case, a generalization of
the Eddington inversion formula can be obtained, allowing one to compute f(E , Lz) for an arbitrary
axisymmetric density-potential pair. In particular, we will adopt the numerical approach developed
by Hunter & Qian [69, 75], that relies on theoretical foundations previously laid out by Lynden-
Bell [76]. Until recently, the method was applied only to stellar systems, while it was for the first time
systematically studied in the context of DM in [70]. We refer the reader to the above references for
the proof of the method and detailed discussions regarding its numerical implementation. 2 In the
remainder of this section, we will provide a short review of the method.

Under the assumptions stated above, the PSDF can be decomposed in two parts, f+ that is even
in Lz and f− that is odd:

f(E , Lz) = f+(E , |Lz|) + f−(E , Lz) , (2.4)

The even part contains all the information regarding the density distribution, while the odd part
describes the rotational properties of the considered system. Hunter & Qian [69, 75] showed that the
Lz-even part of PSDF can be computed by providing an analytic continuation of the density-potential

1Throughout this work Ψ(r) denotes the relative gravitational potential that is defined as Ψ(r) ≡ −Φ(r) + Φ0, where
Φ(r) is the standard gravitational potential and Φ0 a constant such that Ψ(r) vanishes at the boundary of the system.
In the following we focus on isolated systems for which Φ0 = 0. On the other hand, for truncated objects Eq. (2.3), as
well as Eq. (2.5) and Eq. (2.7), contain additional boundary term – for more detailed discussion see, e.g., [59, 73].

2In this work we evaluate the axisymmetric PSDF using our numerical implementation, which is publicly available at
https://github.com/mpetac/AIM
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pair in the complex plane and evaluating the following contour integral:

f+(E , |Lz|) =
1

4π2i
√

2

∮
C(E)

dξ√
ξ − E

d2ρ(R2,Ψ)

dΨ2

∣∣∣∣Ψ=ξ

R2=
L2
z

2(ξ−E)

. (2.5)

In the above expression C(E) refers to a path which tightly wraps around the real axis between the
value of the potential at spatial infinity and a value corresponding to a circular orbit with relative en-
ergy E . Additionally, ρ is considered as a function of the radial coordinate and the total gravitational
potential, which is in principle always possible for monotonic Ψ(R2, z2). However, in the great ma-
jority of practical situations one cannot express the density profile as an explicit function of the total
gravitational potential and one is forced to perform the derivative implicitly, using the z-coordinate:

d2ρ(R2,Ψ)

dΨ2
=

d2ρ(R2, z2)

d(z2)2

(
dΨ(R2, z2)

dz2

)−2

− dρ(R2, z2)

dz2

d2Ψ(R2, z2)

d(z2)2

(
dΨ(R2, z2)

dz2

)−3

, (2.6)

and evaluate it at z2 such that Ψ(R2, z2) = ξ. Values of z2 fulfilling the latter equality typically
need to be found via numerical minimization routines. The Lz-odd part of PSDF can be computed
analogously, using the following expression:

f−(E , Lz) =
sign(Lz)

8π2i

∮
C(E)

dξ
ξ − E

d2 (ρv̄φ)

dΨ2

∣∣∣∣Ψ=ξ

R2=
L2
z

2(ξ−E)

. (2.7)

It is important to note that, in order to evaluate f− one needs to specify also the rotation profile,
v̄φ(R2, z2), which is in the case of DM haloes essentially unconstrained by the observations 3. However,
as will be discussed in Sec. 4.1, numerical simulations show that v̄φ is typically much smaller than the
velocity dispersion in the azimuthal direction and hence f− provides only a subdominant contribution
to f . For this reason, as well as possible issues with obtaining physical solutions, we will in the following
consider only the v̄φ(R2, z2) = 0 case.

3 Simulations

Within the past decades, we have witnessed rapid improvements in the capabilities of simulating
the formation and evolution of galaxies. While the initial studies were exclusively focused on the
gravitational dynamic of collisionless DM particles, subsequent works began including baryonic physics
with ever-increasing accuracy. This gave rise to the so-called hydrodynamical simulations, which treat
gas as a fluid, while the corresponding sub-grid physics is handled by a number of prescriptions that
are carefully calibrated against various observational constraints.

Today, sophisticated algorithms coupled with modern computational capabilities allow us to sim-
ulate galaxies with unprecedented realism and address questions which were until recently inaccessible
to existing methods. These improvements are of great importance also for studies of the DM phase-
space distribution within spiral galaxies, which we address in this work. In order to adequately resolve
the full six-dimensional distribution of DM in the position-velocity space, one needs to track millions
of individual particles that self-consistently evolve in the presence of baryons. Despite the aforemen-
tioned improvements, a satisfying resolution can only be reached by performing dedicated simulations
focused on a single object, commonly referred to as zoom-in simulations. The aim of this work is
to carry out a detailed comparison of the DM phase-space distribution as predicted by the inversion

3There have been several studies that find correlations between the spin parameter and the environment, as well
as merger history, of individual DM haloes [77–81]. However, such information can be used only to provide indirect
constraint on v̄φ, since the spin parameter is related merely to the total angular momentum of the halo.
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methods, described in the previous section, with the results of the high-resolution zoom-in simulations.
In particular, we first extract the quantities that can be, at least in principle, inferred from astronomi-
cal observations and, subsequently, obtain the corresponding phase-space distribution of DM using the
Eddington and axisymmetric inversion methods. Finally, the predicted DM phase-space distributions
can be compared with the ones directly extracted from the simulated objects. This allows us to assess
the systematic uncertainties induced by the assumptions upon which the inversion methods are built,
namely the hypothesis of dynamical equilibrium and the symmetries of the system.

In the following, we first give a brief description of the deployed set of hydrodynamical simulations.
Subsequently, we provide a detailed discussion regarding our approach of extracting the baryonic
gravitational potentials and the DM density profiles of the simulated objects, as they represent the
crucial ingredients for reconstructing the corresponding PSDFs via the inversion methods.

3.1 Simulation setup

We perform the outlined comparison of the inversion methods with the simulations on three distinct
hydrodynamical runs (the same as used in [37]), which tracked the formation and evolution of individual
spiral galaxies. All three runs were performed using the Eulerian hydrodynamical adaptive mesh code
RAMSES [82], while their initial conditions were randomly generated using the MUSIC package [83]
for a similar set of fiducial cosmological parameters. Furthermore, all three simulations used the same
prescriptions for the sub-grid baryonic physics, though with one of the run with improved spatial
resolution, hence a slightly different tuning of the subgrid control parameters [37].

Our main benchmark simulation is dubbed “Mochima” and has been originally introduced in [72],
where it served as the control run for comparing different implementations of baryonic physics. It
possesses slightly higher resolution than the other two runs, which we refer to as “Halo B” and “Halo
C”, that have been presented and thoroughly studied in [71]. As previously mentioned, all three simu-
lations rely on identical baryonic prescriptions. For gas they use the conventional cooling, ultraviolet
background and self-shielding recipes, while the star formation is modelled using the Schmidt law with
adapted density threshold and efficiency. The supernova (SN) feedback is implemented according to
the “delayed cooling” prescription, which relies on non-thermal injection of energy ∼ 10 Myr after the
birth of star particles, generated with a Chabrier initial mass function, with the energy of 1051 erg per
SN event. Further details regarding the implementation of baryonic physics in Mochima and Halo B
& C can be found in [72] and [71], respectively.

Within the Mochima simulation, the galaxy lies at the centre of 36 Mpc cosmological box with an
approximate resolution (estimated by the minimal cell size) of lsm ∼ 35 pc. The masses of individual
DM and star particles are MDM = 1.95 · 105M� and M? = 1.57 · 104M�, respectively. On the other
hand, Halo B and Halo C both implement a 20 Mpc cosmological box with approximate resolution
of lsm ≈ 150 pc, while the masses of individual DM and star particles are MDM = 2.31 · 105M�
and M? = 2.87 · 104M�, respectively. Apart from the resolution, the galactic DM halo found in the
Mochima simulation notably differs from the ones in Halo B and Halo C by having a steep central
cusp, while the other two runs exhibit cores. This is presumably due to a weaker SN feedback [37],
which is a consequence of tuning the free parameters of the delayed cooling prescription to the values
appropriate for the higher resolution of the Mochima simulation [72, 84]. On the other hand, all
three runs exhibit a contraction of the DM halo around the disc scale length in comparison with the
corresponding DM-only simulations. Apart from the above properties, all three hydrodynamical runs
resulted in DM haloes that are to a good approximation spherically symmetric and close to dynamical
equilibrium – for quantitative analysis see [72]. Finally, it is worth noting that in the case of Halo
B there is a significant, O(1 kpc), displacement between the centres of baryons and the gravitational
potential [71, 72].

3.2 Parametric fits of the galactic components

The predictive power of inversion methods crucially depends on accurate measurements of the relevant
input quantities. As explained in Sec. 2, these consist of the total gravitational potential of the system,
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Ψ, and density distribution of DM, ρ, but possibly also other physical quantities, such as DM’s velocity
anisotropy in the case of anisotropic generalizations of Eddington approach or DM’s rotational profile
in the case of axisymmetric inversion method. In practice, accurate determinations of ρ and Ψ are
limited by observational uncertainties, however, since the main purpose of this work is to assess the
systematic uncertainties that arise due to the modelling assumptions of the inversion methods, we
neglect the observational errors and fit the gravitational potential and DM density profile directly to
the particle grids produced by the simulations. From the observational perspective, the situation is
even worse for the orbital anisotropy and rotational profile of the DM halo – these can not be observed
through the existing probes and hence represent irreducible sources of systematic uncertainties. While
we have chosen not to study anisotropic generalizations of the Eddington approach due to the several
associated issues mentioned in Sec. 2.1, we have explicitly checked that rotational profiles of the DM
haloes provide a negligible correction with respect to the non-rotating case. Therefore, we restrain
from performing an extensive study of the systematics which arise from unobservable anisotropy and
rotational profiles.

In the following we specify the assumed parametric forms for the physical quantities that enter
Eddington and axisymmetric inversion methods, as well as describe how they were extracted from the
simulations. For the purpose of this work, we decompose the total gravitational potential into baryonic
and DM component. As the latter is in one-to-one correspondence with the DM density distribution,
we first turn our attention to the gravitational potential sourced by the baryons only, and subsequently
address the DM density distribution.

3.2.1 Baryonic gravitational potential

The distribution of baryons within galaxies can be modelled in a number of different ways, which
do not necessarily lead to equivalent results. For example, stellar and gas components are often
treated separately since they can be constrained by different sets of observations. Moreover, the
stars can be further subdivided in distinct classes, depending on their spatial distribution, kinematical
properties and/or spectra. For each of these constituents special observationally-motivated density
distributions have been suggested throughout the literature, e.g. truncated triaxial distributions for
the bulge and various double exponential distributions for different disc components (for comprehensive
overview see, e.g., [34]), whose gravitational potentials typically have to be computed through numerical
quadrature. However, for the purpose of obtaining the phase-space distribution of DM through the
inversion methods, one is interested only in the overall baryonic gravitational potential. Therefore,
we in this work resort to a simpler approach, where the total baryonic potential is approximated by
a combination of two analytic functions – these greatly reduce the computational cost of performing
the inversions and have a well-defined continuation in the complex plane, which is required by the
axisymmetric method. In particular, to accommodate the central bulge we adopt a spherical Hernquist
potential [85]:

ΨH(R, z) =
GMH√

R2 + z2 + aH

, (3.1)

while the disc is approximated by a single Miyamoto-Nagai [86] (MN) component:

ΨMN(R, z) =
GMMN√

R2 +
(
aMN +

√
z2 + b2MN

)2
. (3.2)

Even though the above model is much simpler than separately inferring the density distributions
of multiple disc components, we in the following demonstrate that it performs very well in fitting
the over all baryonic gravitational potential. For the purpose of Eddington inversion, however, the
above axisymmetric ansatz needs to be converted to a spherically symmetric approximation, Ψsph(r).
We achieve this by demanding that the corresponding rotation curve, which is typically the most
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constraining observation regarding the galactic potential, remains unchanged:
∂Ψsph(r)

∂r
≡
(
∂ΨH(R, z)

∂R
+
∂ΨMN(R, z)

∂R

)∣∣∣∣
R=r
z=0

. (3.3)

The first step in our analysis is to match the aforementioned sum of Hernquist and MN potentials
to the baryonic gravitational potential inferred from the simulations. The latter is computed as a sum
of Keplerian potentials of the individual baryonic particles: 4

Ψsim(r) = G
∑

k∈ stars,gas

mk

|r − rk|
, (3.4)

where G is the gravitational constant, while mk and rk are the mass and position vector of the kth gas
cell or stellar particle. However, the above expression does not automatically lead to an axisymmetric
potential, which is required by the adopted parametrization. Therefore, Ψsim(r) has to be averaged
over the azimuthal angle, φ, to obtain the average axisymmetric potential Ψ̄sim(R, z), while for the
purpose of fitting we also compute the corresponding standard deviation σΨ̄(R, z). In particular, they
are obtained by evaluating Ψsim(r) in Nφ = 100 points, corresponding to a randomly chosen values of
φ at a given pair (R, z) of coordinates:

Ψ̄sim(R, z) =
1

Nφ

Nφ∑
i=1

Ψsim(r(R, z, φi)) ,

σ2
Ψ̄(R, z) =

1

Nφ − 1

Nφ∑
i=1

(
Ψsim(r(R, z, φi))− Ψ̄sim(R, z)

)2
. (3.5)

The fitting of the parametric functions is performed over a grid of 400 points, denoted as PΨ,
where R and z are logarithmically spaced in the interval R, z ∈ [0.1 kpc, 20 kpc], while we explicitly
checked that varying these choices does not substantially change our results. We proceed by minimizing
the following χ2 test statistics with respect to the free parameters θ ≡ {MH, aH,MMN, aMN, bMN}:

χ2(θ) =
∑
i∈PΨ

(
ΨH(Ri, zi |MH, aH) + ΨMN(Ri, zi |MMN, aMN, bMN)− Ψ̄sim(Ri, zi)

σΨ̄(Ri,zi)

)2

. (3.6)

The resulting best-fit parameters, θmin, for the baryonic gravitational potentials of the three simulated
objects studied in this work are reported in Tab. 1. We assess the goodness of the fits by computing
the corresponding reduced chi-squared, χ2

red ≡ χ2(θmin)/(N − P ), where (N − P ) is the difference
between the number of points used in the fit and the number free parameters. For all the studied
objects it amounts to χ2

red � 1, which indicates excellent agreement between our parametrization and
the values extracted from the simulations. This can also be appreciated from the relative difference
between our best-fit models and the azimuthally averaged baryonic gravitational potential, which is
shown left-hand panel in Fig. 1 for Mochima, while the corresponding plots for Halo B and Halo C can
be found in Fig. 14 of Appendix C. From the figures it can be observed that our ansatz for the baryonic
potential leads to relative differences of less than 10% over the entire considered R-z range in all three
simulated objects. In the case of the spherical gravitational potential, the residuals are notably larger
at z & 2 kpc and the relative difference can exceed 20%, as can be seen from the corresponding plot
in the right-hand side panel of Fig. 1. While this could be improved by performing an independent fit
for the spherical model, the approach of approximating it through Eq. (3.3) ensures that the galactic
gravitational potential is consistent with the associated rotation curve, which typically provides the
strongest observational constraint on a galactic mass model. Furthermore, as we show in Appendix A
by comparing our results with those of [37], where the baryonic gravitational potential was derived
directly from the enclosed baryonic mass, these different choices can induce at most a few percent
difference in the inferred moments of the DM velocity distribution.

4We explicitly checked that the method is numerically stable, namely that the result does not change upon removing
the particle with the smallest |r − rk|.
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Simulation MH [M�] aH [kpc] MMN [M�] aMN [kpc] bMN [kpc]
Mochima 1.9 · 1010 0.61 5.7 · 1010 15 0
Halo B 2.1 · 109 0.41 1.3 · 1011 4.4 1.3
Halo C 4.6 · 1010 3.4 8.3 · 1010 3.1 0.55

Table 1. The best-fit parameters for the baryonic gravitational potential obtained for the three simulated
objects studied in this work.

Figure 1. Relative difference between our best-fit and the azimuthally-averaged baryonic gravitational potential
for the Mochima simulation. In the left-hand side panel we show the results for the axisymmetric parametriza-
tion, while the corresponding spherical solution (obtained according to Eq. (3.3)) is shown in the right-hand
side panel.

3.2.2 DM density profile

The other key quantity for obtaining the phase-space distribution of DM through the inversion methods
is the DM density profile, which at the same time also determines the DM’s contribution to the total
gravitational potential. Throughout the literature, there exist several different parametric density
profiles that have been motivated either by numerical simulations or observations. The amount of
resolved substructure in high-resolution simulations makes it inconceivable to fully capture the DM
distribution of individual objects, however, it is still possible to obtain reasonably good approximations
using simple parametric forms. In this work, we limit ourselves to the commonly used cuspy Navarro-
Frank-White (NFW) [87] and cored Burkert (BUR) [88] density profiles:

ρNFW(r) =
ρs

r/rs (1 + r/rs)
2 , (3.7)

ρBUR(r) =
ρs

(1 + r/rs) (1 + r2/r2
s)
, (3.8)

which depend only on two free parameters, namely the characteristic density, ρs, and radius, rs. The
choice of these two profiles is additionally motivated by the fact that they allow for closed analytical
expressions for the corresponding gravitational potentials, which greatly reduces the computational cost
of performing the phase-space inversions. As we will show at the end of this section, the NFW profile
turns out to be a reasonable approximation for the DM halo found within the Mochima simulation,
while Halo B and Halo C exhibit cores that are significantly better fit by the Burkert profile. We have
explicitly checked that allowing for spheroidal shape of the halo (i.e. substituting r →

√
R2 + z2/q2 in

the above formulas, with q controlling the flattening of the density profile) does not lead to significant
improvements in the fits – for Mochima and Halo C we find q ∼ 1, while Halo B prefers somewhat
flattened halo, however, this is primarily due to a smearing effect related to a significant displacement
between the centres of DM and baryons [71]. To further improve the fits, one could, for example,
consider the Zhao parameterization [89], where the DM density slopes at different parts of the profile are
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Simulation Profile log10

(
ρs [M�/pc3]

)
rs [kpc]

Mochima NFW 7.26 11.5
Halo B Burkert 7.82 5.67
Halo C Burkert 7.81 5.94

Table 2. The appropriate (NFW or Burkert) density profiles and their corresponding best-fit values of the
parameters for the three objects studied in this work.

allowed to vary freely. These generalized profiles were actually used in tests of the Eddington inversion
on the same simulations in [37]. While such a parametrization leads to noticeable improvements in
the goodness of the fit, especially in the case of Mochima due to particularly steep central cusp,
obtaining the corresponding PSDF is much more computationally demanding since the associated
gravitational potential needs to be evaluated numerically. Furthermore, we found that Zhao’s family
of density profiles can often lead to non-physical solutions within the scope of axisymmetric inversion
method. On the other hand, allowing for more flexible parametrization does not significantly affect
the resulting moments of the DM velocity distribution, which are of primary interest for DM searches
– see Appendix A for the comparison of our results with those of [37].

To obtain the best-fit parameters of the NFW and Burkert density profiles we rely on the corre-
sponding expressions for the enclosed DM mass:

MNFW(r) = 4πρsr
3
s

[
log

(
1 +

r

rs

)
− r

r + rs

]
, (3.9)

MBUR(r) = πρsr
3
s

[
log

((
1 +

r

rs

)2

·
(

1 +
r2

r2
s

))
− 2 arctan

(
r

rs

)]
. (3.10)

The reason for fitting the enclosed DM mass, instead of the DM density profiles directly, is the fact
that extractingM(r) from the simulations is much more numerically stable. In particular, inferring the
DM density distribution is highly susceptible to computational artefacts related to the finite resolution,
while the DM mass enclosed within radius r can be reliably computed by simply summing over the
mass of individual DM particles that are located within a sphere of the same radius, S(r):

Msim(r) =
∑
i∈S(r)

Mi . (3.11)

After computingMsim(r) in Nr = 100 evenly distributed radial points in the range r ∈ [1 kpc, 100 kpc],
the following loss function is minimised with respect to the free parameters, θ = {ρs, rs}:

L(θ) =

Nr∑
i=1

(
MNFW/BUR(ri|θ)

Msim(ri)
− 1

)2

. (3.12)

As already mentioned above, the DM halo found in Mochima simulation exhibits a central cusp and
is, therefore, better fit by an NFW density profile. The latter performs well at r & 5 kpc, where
the relative difference in the enclosed DM mass does not exceed 10%. On the other hand, in the
inner few kpc the fit leads to an increasing deficit of DM, which implies that the simulated halo has
a significantly steeper central cusp. This can be clearly seen in Fig. 2, where we show the true and
best-fit NFW mass profiles, as well as their relative difference. For comparison we also include the
DM mass profile corresponding to the Zhao parametrization obtained in [37], which performs notably
better with residuals at the percent level at all radii. In case of Halo B and Halo C, for which the
analogous plots can be found in Fig. 15 of Appendix C, the cored Burket profile provides a decent
match, with relative errors of less than 10% over most of the considered radial range. We report the
best-fit parameters for all three simulations in Tab. 2.
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Figure 2. Upper panel shows the mass profile extracted from Mochima simulation and the corresponding NFW
and gNFW fits, while the lower panel shows their relative difference, as a function of radius.

4 Comparison of the predictions of inversion methods with the simulations

In the following we explore the level of agreement between the predictions of the inversion methods and
the actual phase-space distribution of DM within the simulations. Since the inversion methods relie on
the DM density profile as an input, all the relevant predictions are fully encoded within the position-
dependent velocity distribution of DM. Throughout this section, we will take a closer look at the latter,
as well as various related quantities, such as the DM velocity moments and orbital anisotropy. In doing
so, our main goal is to highlight the key differences that arise between the Eddington and axisymmetric
inversion and assess the associated systematic uncertainties by comparing the resulting predictions to
the values extracted directly from the simulations. In the discussion of our results, we will primarily
focus on the Mochima simulation, which offers the highest resolution among the available runs, while
we will also briefly comment on our findings for Halo B and Halo C, for which the corresponding plots
can be found in Appendix C.

Before entering a detailed comparison of the predictions of the inversion methods with the sim-
ulations, we briefly summarize the results obtained in our fits of baryonic gravitational potentials and
DM density profiles. The DM halo found in the Mochima simulation has a cuspy density profile with
a best-fit NFW scale radius of rs = 11.5 kpc. On the other hand, Halo B and Halo C favour a Burkert
DM density profile with a core radius of ∼ 6 kpc. Further differences can be observed in the ob-
tained fits of the baryonic gravitational potentials. Mochima and Halo C feature a relatively massive
bulge, which is, however, in the case of the latter not as dense due to the unusually large scale length,
aH = 3.4 kpc. We find the least pronounced disc component in the case of Mochima, as it has the
lowest mass, MMN = 5.7 ·1010 M�, and particularly large scale length, aMN = 15 kpc. Halo C possesses
slightly more massive disc, but with a considerably smaller disc scale length, which is shorter than the
one of the accompanying bulge component, i.e. aMN = 3.1 kpc . aH. On the other hand, for Halo B
we find the least massive bulge and the most massive disc component, with MMN = 1.3 · 1011 M� and
aMN = 4.4 kpc. Even though the disc in Halo B features somewhat larger scale height, bMN = 1.3 kpc,
we non-the-less expect that the axisymmetric inversion will bring the most significant improvements
over the Eddington method for this simulation due to the most pronounced disc component.

4.1 Velocity distributions

The most direct comparison between the predictions of the inversion methods and the simulations
can be performed by examining the probability distribution for DM velocity at different positions
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within the DM halo. Due to the symmetry assumptions, the Eddington approach leads to identical
velocity distribution over the entire spherical shell associated with some galactocentric radius r, while
the axisymmetric inversion method distinguishes among different positions along the meridional (R̂-
ẑ) plane. Furthermore, the original Eddington’s formulation, where the phase-space distribution can
be expressed as a function of only the relative energy, necessarily results in an isotropic velocity
distribution, whereas the two-integral method leads to distinct predictions for the velocity distributions
along the azimuthal direction and the meridional plane – i.e., f(E , Lz) explicitly depends on vφ through
Lz, while E depends only on the velocity magnitude. On the other hand, the simulations are not
restricted by any symmetry assumptions and, in principle, further distinct components of the velocity
distribution as well as their dependence on the three-dimensional position vector could be studied.
However, in order to perform a direct comparison with the predictions of the inversion methods, as
well as maintain sufficient number of particles to adequately sample the velocity distributions, we in
this work restrict our attention to the probability density functions for the velocity magnitude, P (v),
(also referred to as the speed distribution), meridional velocity, PM(vM) and azimuthal velocity, Pφ(vφ).
All of these were extracted from the simulations by binning the velocities of particles that fall within
a torus, centred at a given pair of {R, z} coordinates, with radius δ(R, z) = δmin + ε ·

√
R2 + z2. For

each simulation δmin and ε were chosen such that each torus contained at least 1000 particles, while
we explicitly checked that varying these hyper-parameters does not significantly affect our results.

In the following we first perform a qualitative comparison of the predictions under different
symmetry assumptions by inspecting the aforementioned velocity distributions at several galactocentric
distances. This is followed by a quantitative comparison based on relative entropy measure and the
moments of velocity distribution, as well as the resulting orbital anisotropy, over the entire DM halo.

4.1.1 Direct comparison

In the following we present the comparison of velocity distributions predicted by the axisymmetric
and Eddington inversion methods with the ones extracted from Mochima simulation at three different
radial distances along the galactic plane. As can be observed from the corresponding plots – shown
in Figures 3, 4 and 5, for speed, meridional and azimuthal velocity distribution, respectively – the
inversion methods provide fairly good approximations to the true velocity distributions. However,
some further comments are in place to emphasize the key differences between the Eddington and
axisymmetric inversion methods. To begin with, it should be noted that the axisymmetric approach
in the presence of flattened gravitational potential (which in our case arises due to the baryonic disc,
but could also be sourced by a flattened DM halo) results in kinematically warmer particles along the
meridional plane, while the velocity dispersion along the azimuthal direction is decreased. This leads
to shifts in the peaks of the speed distributions, shown in Fig. 3, to slightly larger velocities, which
indeed provides a better match with the speed distributions observed in the simulation. The indicated
trend is most evident in the plot corresponding to R = 3 kpc, where the contribution of baryonic disc
to the total gravitational potential is the most significant, while it slowly diminishes with increasing
R. On the other hand, it is quite surprising to see that the predictions for the meridional velocity
distribution, shown in Fig. 4, do not show the same improvement. While the most probable meridional
velocity in the simulation seems to be in better agreement with the predictions of Eddington inversion,
one can observe a significant excess of power in the true PM(vM) at larger velocities. The axisymmetric
inversion method generally shows the correct trend, i.e. slightly increased probability density for high
vM, the match in the actual shape of the high-velocity tails of the distributions is rather poor. Further
unexpected discrepancies are observed in the azimuthal velocity distribution, Pφ(vφ), shown in Fig. 5.
As can be seen from the plots, the performance of the inversion methods strongly depends on the
radial distance. At R = 3 kpc both of the methods predict Pφ(vφ) reasonably well, at R = 9 kpc the
Eddington prediction performs better due to the aforementioned larger spread in the azimuthal velocity
distribution, while at R = 26 kpc the axisymmetric inversion method provides the best match due its
significantly more peaked distribution. As a final remark, the plots of Pφ(vφ) also clearly show that
accounting for the halo rotation provides only a small correction to the predicted velocity distribution.
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While non-vanishing v̄φ is present within the simulation, leading to slightly asymmetric Pφ(vφ) with
respect to v̄φ = 0, it is evident that correctly predicting the width of the distribution remains the
primary challenge of the inversion methods.

Figure 3. Comparison of the speed distribution extracted from the Mochima simulation with the corresponding
predictions of the axisymmetric and Eddington inversion methods at three different radial distances along the
galactic plane.

Figure 4. Comparison of the meridional velocity distribution extracted from the Mochima simulation with
the corresponding predictions of the axisymmetric and Eddington inversion methods at three different radial
distances along the galactic plane.

In the case of Halo B and Halo C, for which the analogous plots can be found in Figures 16 and 17
of Appendix C, we find larger discrepancies between the predictions of inversion methods and the true
velocity distributions, as well as bigger differences between the spherical and axisymmetric models
themselves. This can be most clearly seen at R = 3 kpc, where the speed and meridional velocity
distributions of Halo B are much better approximated by the axisymmetric inversion, while in the case
of Halo C the Eddington method performs better. At larger radii, where the differences between the two
methods become smaller, we observe similar trends as in the case of Mochima simulation, namely the
axisymmetric inversion generally leads to slightly more accurate predictions for the speed distribution,
while the Eddington approach performs better in predicting the meridional velocity distribution. On
the other hand, the azimuthal velocity distribution tends to be better approximated by the Eddington
prediction at small R and axisymmetric inversion method at large R in both simulations .

Since the Eddington inversion is only a subclass of solutions allowed by the more general ax-
isymmetric method, one would naively expect that the latter should always provide a more accurate
description of the studied system. However, as it is evident from the above results, this is not always
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Figure 5. Comparison of the azimuthal velocity distribution extracted from the Mochima simulation with
the corresponding predictions of the axisymmetric and Eddington inversion methods at three different radial
distances along the galactic plane.

the case. The apparent inconsistency can be resolved by noting that the simulated objects are only
approximately axisymmetric and that the net angular momentum of the DM halo is not necessarily
normal to the galactic plane. Such departures from the assumptions of the axisymmetric model can
lead to less accurate predictions for the components of the velocity distribution, or in certain cases even
the speed distribution, than the simpler spherically symmetric approach. Upon more careful inspection
of Halo C, we indeed find a 53◦ misalignment between the angular momentum of the DM halo and the
normal vector of the disc plane, which explains the poor accuracy of the axisymmetric method when
contrasted with the predictions of the Eddinton inversion. On the other hand, in the case of Mochima
and Halo B the misalignment is less significant, ∼ 20◦, and, hence, the axisymmetric method manages
to provide more accurate results for the speed distribution, but not for the meridional and azimuthal
components. However, as we demonstrate in Appendix B, when the angular momentum of the DM
halo is chosen as the principal axis of the system, the axisymmetric inversion leads to equally or more
accurate predictions than the Eddington inversion even for the individual components of the velocity
distribution. Nevertheless, we for the remainder of this work adapt the coordinate system in which
the z-axis is perpendicular to the baryonic disc, since in practice the orientation of halo’s angular
momentum is not accessible through the existing observations.

4.1.2 Similarity in terms of the relative entropy

The above discussion highlights the key qualitative differences between the velocity distributions ex-
tracted from the simulations and the corresponding predictions of the two inversion methods. By
simple visual inspection it is possible to appreciate the improvements in the predictions for the speed
distribution introduced by the axisymmetric approach, whereas the situation is much less clear for
PM(vM) and Pφ(vφ). Moreover, one would ideally like to assess the match between the predictions
and the simulations over the entire radial range, instead of inspecting it only at several hand-picked
values of R. For these reasons, we resort to the relative entropy, also known as Kullback-Leibler di-
vergence DKL [90], which is commonly used as a metric for quantifying the similarity between two
probability distributions. Given an observed discrete (i.e. binned) probability distribution P and the
corresponding theoretical prediction Q, the value of DKL can be computed as follows:

DKL(P |Q) ≡
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
(4.1)

where X spans the common probability space – according to the standard convention, we set the terms
for which P (x) = 0 to zero, while we limit X to a range of values whereQ(x) 6= 0. As can be appreciated
from Eq. (4.1), the relative entropy vanishes if the two probability distributions are exactly equal, i.e.
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DKL(P |Q = P ) = 0, while it takes increasing positive values with increasing difference between the
compared probability distribution. 5

In Fig. 6 we show the obtained values of DKL for the speed distribution, as well as its meridional
and azimuthal components, as a function of radial distance R along the galactic plane of the Mochima
simulation. The plots confirm our qualitative observations based on the visual inspection of the velocity
distributions. In particular, the speed distribution predicted by the axisymmetric inversion method
is notably closer to the one extracted from the simulation over most of the considered radial range.
On the other hand, the meridional velocity distribution seems to be more accurately approximated
by the Eddington inversion, however, at several values of R the predictions of the two methods come
very close and occasionally the axisymmetric method leads to an even better match. This agrees with
our qualitative observations from the previous section, where we noted that the Eddington approach
tends to predict more accurately the most probable velocity, while the axisymmetric method better
accounts for the abundance of high-velocity particles. Regarding the azimuthal velocity distribution,
the relative entropy shows that the two methods perform roughly the same up to R ∼ 5 kpc, where
the Eddington prediction becomes more accurate. This remains true up to R ∼ 15 kpc, beyond which
the axisymmetric inversion leads to a better agreement with the simulation. Additionally, from Fig. 6
we can see a clear trend that the predictions of inversion methods are the most accurate around
R ∼ 25 kpc, with slowly degrading performance towards the center and large fluctuations at greater
R. The latter is caused by the presence of numerous DM substructures in the outskirts of the halo,
while the increasing differences in the inner parts might be implying that a more elaborate modelling
is required to fully capture the intricate interplay between DM and baryons. Finally, we note that the
predictions of the axisymmetric method can be substantially improved by choosing the principal axis
of the system to be aligned with the angular momentum of the DM halo – for comparison see Fig. 13
of Appendix B.

Figure 6. Relative entropy between the true velocity distributions and the predictions of axiymmetric and
Eddington inversion methods as a function of the radial distance along the galactic plane.

The analogous results for the relative entropy profiles of Halo B and Halo C, shown in Figures 18
and 19 of Appendix C, again conform with our qualitative findings from the previous section. Most
notably, the axisymmetric method performs significantly better than the Eddington inversion in the
central part of Halo B, which was expected due to the particularly massive baryonic disc. The opposite

5Strictly speaking, the latter is true only if the domains of P and Q overlap. However, in the context of comparing
the predicted velocity distributions with the simulations, this is always the case. A mismatch in the domains can only
arise if the velocity distributions have different escape velocities. However, since the latter are determined by the fits of
DM density profile and the baryonic gravitational potential or possible truncation of the object (and not the inversion
methods per se), they are not particularly important for assessing the accuracy of the predictions of inversion methods,
especially since the dominant contribution towards DKL arises from the bulk of the distribution.
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is true in the inner few kpc of Halo C, where due to the aforementioned misalignment between the
galacitc disc and the angular momentum of the DM halo the Eddington inversion provides more
accurate results. At R & 5 kpc the predictions for the speed distributions in Halo B and Halo C
improve for both inversion methods, although they are still somewhat less accurate than what we
found in the case of Mochima simulation. At intermediate distances the meridional and azimuthal
velocity distributions tend to be more accurately predicted by the Eddington inversion, which is again
related to the departures from the assumed axial symmetry. At large distances the predictions of the
two models become very similar, however, their agreement with the velocity distributions observed
in the simulations degrades, which is linked to the presence of significant DM substructures in the
outskirts of the halo.

4.2 Velocity moments

The above comparison of the predicted vs. “measured” velocity distributions allows us to test the
predictive power of the inversion methods at the most fundamental level. However, for practical
purposes one is often interested only in the moments of the speed distribution that typically enter
the interpretation of results of DM searches. Furthermore, the velocity moments can also provide us
with additional insights regarding the accuracy of the inversion methods’ predictions, since positive
and negative moments are particularly sensitive to the high and low velocity tails of the distribution,
respectively, which were not of great importance for the discussion in the previous section.

Motivated by the above considerations, we show in the left-hand side panel of Fig. 7 the first two
negative and positive moments of the speed distributions along the galactic plane for the Mochima sim-
ulation. In the right-hand side panel of the same figure we show the corresponding relative differences
between the two inversion methods and the simulation for easier assessment of the (dis)agreement.
The first thing to notice is the fact that both inversion methods lead to velocity moments that provide
rather good match to the ones extracted from the simulation. The relative error in the first and second
moments is smaller than 7% and 15%, respectively, at all R, with the exception of 〈v−2〉 which can differ
up to 40%. In general, for negative moments the inversion methods have a bias towards larger values
at R . 20 kpc and smaller values at R & 30 kpc. On the contrary, positive moments are somewhat
under predicted at R . 30kpc, while they on average agree with the simulation beyond that radius.
However, it should be noted that at large radii the moments extracted from the simulation strongly
fluctuate, which is most likely related to the presence of DM substructures. The other important
observation is that the axisymmetric method tends to provide more accurate predictions only in the
range of 2 kpc . R . 10 kpc. At first glance this is perhaps surprising, given the fact that according
to the relative entropy metric the axisymmetric method performs better over the entire radial range.
However, it should be noted that velocity moments are particularly sensitive to the tails of the velocity
distribution, while for DKL the position of the peak is significantly more important. Similarly, due to
the sensitivity to different tails of the speed distribution, the positive and negative moments exhibit
different behaviours. In particular, the improvement provided by the axisymmetric method is much
more significant for positive moments, as could be expected from our discussion of the shape of the
speed distribution in the previous section.

Analogous results regarding the moments of speed distribution for Halo B and Halo C are shown
in Figures 20 and 21 of Appendix C. From there it can be immediately observed that the predictions
for these two simulations are less accurate and larger errors arise in the inner few kpc within the
scope of Eddington method for Halo B and axisymmetric method for Halo C. These trends could have
again been anticipated from our observations at the level of velocity distributions. At R & 5 kpc the
relative errors become much smaller and both of the inversion methods predict the velocity moments
with accuracy better than 20%, up to the values of R where fluctuations due to DM substructure
become significant. The general trends are similar to those of the Mochima simulation, namely the
negative (positive) moments are over (under) predicted in the inner parts of the haloes and vice-versa
in the outskirts. On the other hand, the improvement of the axisymmetric method over the Eddington
inversion is less clear, as it depends on the particular halo and velocity moment that is being considered.

– 16 –



Figure 7. Values of the first two positive and negative moments of the speed distribution as a function of the
radial distance along the galactic plane for the Mochima simulation. The left-hand side panels shows the values
extracted directly from the simulation as well as the corresponding predictions of the inversion methods, while
the right-hand side panels show the relative differences between the predictions and the true values.

4.3 Velocity anisotropy

Finally, we turn our attention to the orbital anisotropy of the DM haloes. While this quantity is not
directly observable and can lead to notable effects only in the scope of direct detection experiments,
it is still interesting from the theoretical point of view. As briefly mentioned in Sec. 2.1, there exist
anisotropic generalizations of the Eddington inversion method, in which orbital anisotropy has to be
specified beforehand. However, as thoroughly investigated in [59], such models often lead to non-
physical solutions and, hence, we chose not to include them in our analysis. On the other hand, in
the context of axisymmetric inversion method, the orbital anisotropy is a prediction of the model and
is primarily determined by the total gravitational potential and DM density distribution – while in
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principle the orbital anisotropy is also sensitive to the unobservable rotational velocity of the DM
halo, it turns out that for realistic rotation velocities its contribution is negligible. To benchmark the
agreement between the predictions of the inversion methods and the simulations, we address in the
following the velocity anisotropy along the galactic plane, which can be defined as: 6

βR̂(R) ≡ 1

2
−

σ2
φ(R, z)

2σ2
M(R, z)

∣∣∣∣∣
z=0

(4.2)

where σφ(R, z) and σM(R, z) are the velocity dispersions along the azimuthal direction and meridional
plane, respectively. This choice is motivated by the fact that the orbital anisotropy of axisymmetric
model is maximal along the galactic plane, while it vanishes along the z-axis. As a side note, by
recalling that the rotational properties of the halo are fully encoded in the Lz-odd part of the PSDF,
defined in Eq. (2.7), it is easy to verify that the contribution of halo rotation to βR̂ enters only through
σ2
φ = 〈v2

φ〉 − 〈vφ〉2 and, hence, is suppressed by v̄2
φ/〈v2

φ〉.
In Fig. 8 we show the orbital anisotropy along the disc plane for the two inversion methods, as well

as βR̂(R) extracted from Mochima simulation. While in the Eddington case βR̂(R) = 0 by construction,
the axisymmetric method agrees reasonably well with the simulation in the inner ∼ 10 kpc, where it
predicts increasing positive values of βR̂. However, in the outskirts the predicted anisotropy diminishes
much faster than what is observed in the simulation. Since the baryonic disc becomes sub-dominant
beyond its scale length, the axisymmetric model slowly approaches the spherically symmetric, and
hence isotropic, configuration. On the other hand, within the simulation βR̂ keeps on growing up to
∼ 100 kpc, and only after that begins to decline. This implies that our models are not able to fully
capture the dynamical properties of the DM halo. In the case of the axisymmetric method it would
be possible to accommodate this trend by enforcing an oblate DM halo (i.e. by setting q > 1 in the
spheroidal generalization of the NFW density profile, mentioned in Sec. 3.2.2). However, during the
fitting procedure we have found no evidence for oblateness of the halo and hence we interpret this as
a hint that a more general approach, such as action-angle modelling, could be required to faithfully
reproduce the observed velocity anisotropy.

Figure 8. Velocity anisotropy along the galactic plane as a function of the radial distance obtained from the
Mochima simulation and the corresponding predictions of the inversion methods.

In comparison with the Mochima simulation, the matching between the measured and predicted
βR̂(R) is notably worse for Halo B and Halo C, as can be seen from the corresponding plots shown
in Fig. 22 of Appendix C. While the predictions of the axisymmetric inversion method are similar to

6Note the difference in the definition with the respect the standard definition of velocity anisotropy, β(r) ≡ 1 −
σT(r)/(2σr(r)) where σT(r) and σr(r) are the tangential and radial velocity dispersions, which was conceived in the
context of the spherically symmetric models. The two definitions coincide only within the galactic plane.
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the case of Mochima, i.e. βR̂(R) rises in the inner part, peaks around the disc’s scale length and then
slowly falls towards zero, the orbital anisotropies obtained from the simulations show different trends.
In the case of Halo B, βR̂(R) is much lower than predicted by the axisymmetric model for R . 20 kpc,
while it sharply rises beyond that radius, peaks near 100 kpc and than rapidly declines. For Halo C the
orbital anisotropy grows more gradually, which is in somewhat better agreement with the prediction
of the axisymmetric method, but it does not seem to decrease significantly even beyond its peak at
R ∼ 100 kpc.

5 Implications for DM searches

One of the key motivations for developing accurate phase-space models for the distribution of DM
within galaxies comes from numerous experimental searches for hypothetical particle candidates. In
the past, efforts have been primarily focused on WIMPs [6–11], which can be efficiently searched for
through probes that rely on vast quantities of DM within the Milky Way or other nearby galaxies. Such
endeavours can be broadly categorised as direct and indirect searches, where the former aim to detect
nuclear recoils due to the scattering of the Galactic DM with target atoms in highly sensitive laboratory
experiments, while the latter focus on detecting emissions associated with DM annihilations (or decays)
in nearby regions with high DM densities, such as the centres of the Milky Way or its satellite galaxies.
Due to the absence of tangible signals, significant efforts have been put into diversifying the search
strategies to probe a broader range of theoretically motivated DM candidates – to mention some, these
include axion-like particles, non-thermally produced massive particles (e.g., super-WIMPs or FIMPs),
various extensions of the Higgs sector or even primordial black holes (for a comprehensive review see,
e.g., [91, 92]). Despite the staggering diversity of theoretical models, many of them can be strongly
constrained by the existing direct and indirect detection experiments or other astrophysical probes,
which likewise require accurate knowledge of the DM distribution within galaxies.

In the following we will explore the systematic uncertainties which arise in direct and indirect DM
searches as a consequence of the modelling assumptions regarding the DM phase-space distribution.
In particular, we focus on the so-called astrophysical factors that enter the interpretation of direct
detection experiments, as well as the velocity boost factors that are needed for accurately predicting
the velocity-dependent annihilation rates in indirect searches.

5.1 Direct detection

Direct detection (DD) experiments provide a unique probe for investigating possible interactions be-
tween dark and ordinary matter at low energies. By using large exposures of selected target materials
they are capable of setting strong limits on the scattering rate of atomic nuclei of the Galactic DM
particles. Due to their high sensitivities, it is crucial to have accurate predictions for the expected DM
signals, but also robust methods of rejecting various backgrounds, which both require accurate models
for the distribution of DM within the Milky Way. This will become even more important for the
next-generation detectors, as they are excepted to become sensitive to new types of backgrounds, such
as solar and atmospheric neutrinos, as well as observational signatures, e.g. directional distribution
of the events. In order to correctly interpret their results, accurate models for the DM signatures –
e.g., the energy spectrum, yearly variations or spatial distribution of the expected events, which all
crucially depend on the local velocity distribution of DM – will become paramount.

For a DM candidate with a given differential DM-nucleus cross-section, dσ/dEr, the expected
differential recoil rate per target nucleus can be computed as [12–14]:

dR
dEr

=
ρ�

mAmχ
·
∫
|v|>vmin

d3v PLAB(v) · v · dσ
dEr

(5.1)

with vmin =

√
mAEr
2µ2

Aχ

, µAχ =
mAmχ

mA +mχ
,
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where Er is the nuclear recoil energy, mA/χ the target nucleus/DM mass, ρ� the local DM density
and PLAB(v) the local velocity distribution of DM particles in the detector’s (LAB) frame. To perform
the mapping from Galactic rest frame to the LAB frame one needs to correctly account for the local
circular velocity, Sun’s peculiar motion an Earth’s circular velocity around the Sun. However, since in
the simulations there is no clear analogue of the solar system, we simplify the mapping by accounting
only for the dominant contribution which comes from the local circular velocity, vcirc(R�), assuming
that the detector is located at solar galactocentric distance R� = 8.1 kpc. 7 In this case, the LAB
velocity distribution can be related to the DM speed distribution, P (v), as follows:

PLAB(v) =

∫
d3v′ P (v′) · δ

(
v − |v′ − vcirc|

)
. (5.2)

On the other hand, in simulations we first select all DM particles that lie within a torus centred at
(R, z) = (R�, 0) with radius δ = 0.5 kpc, which provides us with a sample of more than 5000 particles.
Subsequently, we subtract vcirc from the individual particle velocities and obtain PLAB(v) by binning
them according to their velocity magnitudes.

For spin-independent (SI) interactions obeying isospin symmetry, which correspond to coherent
DM scattering with all the nucleons in the target atoms, the differential cross-section can be expressed
as:

dσ
dEr

=
mAσ

SI
n

2µ2
Aχv

2
A2F 2(Er) , (5.3)

where σSI
n is the SI DM-nucleon cross-section at zero momentum transfer, A the mass number of the

target nucleus and F (Er) a nuclear form factor. As can been seen from the above expression, the
SI differential cross-section introduces an additional factor of v−2 within the integral of Eq. (5.1),
which also appears in the case of spin-dependent (SD) interactions, however, this is not always true
for more general scattering operators. Nonetheless, on can factorize Eq. (5.1) into a term determined
by the specific particle physics model under consideration and an astrophysical factor, which is the
convolution of the process’s velocity dependence with the DM’s velocity distribution. For SI and SD
case the relevant integral takes the following form:

g(vmin) ≡
∫
|v|>vmin

d3v
PLAB(v)

v
. (5.4)

However, it is often desired to go beyond the simplest scattering operators, since there are many other
ways in which DM can couple to the nucleons. In order to address the wide range of possibilities, a fully
general set of non-relativistic effective scattering operators has been assembled – for their systematic
treatment see [93–96]. For many phenomenologically interesting models the leading order contribution
to the differential cross-section can be velocity independent, hence, it is useful to additionally define:

h(vmin) ≡
∫
|v|>vmin

d3v PLAB(v) · v . (5.5)

It turns out that the above functions, g(vmin) and h(vmin), cover the velocity dependencies of all possible
non-relativistic effective scattering operators expanded up to the quadratic order in momentum transfer
and relative velocity. Therefore, their accurate determination is of great importance for correctly
interpreting the direct detection constraints on DM-nucleus interactions.

In Fig. 9 we present the comparison of the inversion methods’ predictions and the correspond-
ing true values of g(vmin) and h(vmin) obtained directly from the Mochima simulation. For g(vmin),

7The chosen value of R� is to a large degree arbitrary since the stellar discs in simulations significantly differ in many
respects from the one of the Milky Way. Therefore, no particular importance should be given to the absolute values of the
astrophysical factors obtained in this work, but rather to the relative differences between the two theoretical predictions
and the values extracted directly from the simulations.
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displayed in the left-hand side plot, the predictions of axisymmetric method notably differ from the
Eddington prediction at low vmin, which is a consequence of its significantly lower azimuthal velocity
dispersion. Since the LAB is approximately moving with the local circular velocity in the azimuthal
direction, one expects significantly less scatterings with vmin . 100 km/s within the axisymmetric
model. On the other hand, above vmin ∼ 100 km/s the trend is reversed (i.e. g(vmin) associated with
axisymmetric model becomes larger), while for vmin & 300 km/s the two models become virtually in-
distinguishable. By comparing the predictions of the inversion methods with the values extracted from
the simulation one can immediately notice that the aforementioned trends of axisymmetric model are
too extreme and g(vmin) is better approximated by the Eddington inversion. This is a consequence
of the fact that the axisymmetric method tends to under-predict the velocity dispersion along the
azimuthal direction at intermediate galactocentric distances, as previously noted in Sec. 4.1. However,
this discrepancy is rather small and does not amount to relative errors grater than a few per cent. On
the other hand, at vmin & 300 km/s, where the inversion methods lead to nearly identical predictions,
the relative differences with respect to the simulation can become significantly larger, reaching up to
50%. The later is most likely sourced by non-equilibrium features, such as DM substructures or debris
flow, which also manifest themselves as a additional peaks in the velocity distributions at large v (see,
e.g., the middle panel of Fig. 3). In the case of h(vmin) the differences between the axisymmetric
and Eddington inversion are reversed – at small vmin the axisymmetric method leads to larger values
of h(vmin), while the opposite is true at intermediate values of vmin. Since this astrophysical factor
is more sensitive to the high-velocity tail of the PLAB(v), the axisymmetric method leads to slightly
more accurate prediction at low vmin, however, the relative difference with respect to the Eddington
inversion is below the per cent level. At large vmin the inversion methods again result in very similar
values for h(vmin), while the relative difference with respect to the simulation grows up to ∼ 50% due
to the same reason as in the case of g(vmin).
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Figure 9. Comparison of direct detection astrophysical factors extracted directly from the Mochima simulation
with the corresponding predictions of the inversion methods. The lower pannels show the relative differences
between predictions and the true values.

Similar trends can be observed in the case of Halo B and Halo C simulations, for which the
analogous plots of astrophysical factors can be found in Fig. 23 and Fig. 24 of Appendix C. In both
objects g(vmin) is more accurately predicted the Eddington inversion, while the axisymmetric method
can lead to even larger relative errors than those observed in the case of Mochima. Furthermore,
we generally find a better agreement between the predictions of the Eddington inversion and the
simulations also for h(vmin). Both of this findings are most likely related to the fact that the Eddington
approach tends to predict the individual components of velocity distribution more accurately around
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R�, as can be seen from Fig. 18 and Fig. 19. Similarly as in the case of Mochima, the relative errors in
the predictions of the inversion methods are relatively small (below 15%) at low vmin, but can exceed
50% at large vmin.

The above results highlight several issues that hinder our ability to accurately determine the astro-
physical factors which enter the interpretation of DD experiments. While the axisymmetric inversion
method is generally expected to perform better in describing the DM velocity distribution in galaxies
with massive baryonic discs, this is not necessary the case. In particular, the complex dynamics of
galaxy formation can lead to significant deviations from the assumed axial symmetry, which in turn
causes the axisymmetric method to be less accurate than the simpler Eddington inversion. Further
errors in the predictions can also be sourced by the unaccounted rotation of the DM halo. On the
other hand, our results show that both methods lead to relative errors smaller than 15% at low vmin,
however, they can become significantly larger with increasing vmin. The latter is most likely related to
the presence of numerous non-equilibrium structures which can not be accounted for within a frame-
work based on dynamical equilibrium. As a consequence, this can source appreciable uncertainties in
the scattering rate of light DM candidates or the high-energy part of the recoil energy spectrum.

5.2 Indirect detection

If DM particles can annihilate in SM states, which is generically true for thermal relic candidates,
the associated emissions could be detected through various messengers, ranging from γ-rays, neutri-
nos to cosmic rays. Currently the dominant limits on most annihilation channels come from γ-ray
observations of the galactic center [97–100] and dwarf satellite galaxies [101–108], however, important
complementary bounds can be obtained from Cherenkov and neutrino telescopes – for a review on the
topic see, e.g., [109–111].

The expected flux due to pair annihilation of DM into SM particles, for a given DM halo with a
PSDF f(x,v) integrated over angular acceptance ∆Ω, is given by:

dΦ

dE
=

1

8π

〈σannv〉0
m2
χ

dN
dE

∫
∆Ω

dΩ

∫
l.o.s.

d`
∫

d3v1f(x,v1)

∫
d3v2 f(x,v2)S(|vrel|) , (5.6)

where the DM particle, χ, is assumed to be its own antiparticle (otherwise an extra factor of 1/2 is
needed), mχ is its mass and dN/dE the energy spectrum of the emitted radiation. The above formula
is applicable to the general case in which the pair annihilation cross-section 〈σannv〉 has a non-trivial
dependence on the modulus of the relative velocity vrel = |v1−v2|, with v1 and v2 being the velocities of
two annihilating particles, namely 〈σannv〉 is factorised into the velocity independent term 〈σannv〉0 and
a dimensionless factor fully comprising its dependence on relative velocity, 〈σannv〉 = 〈σannv〉0 ·S(vrel).

By isolating the astrophysical contribution in Eq. (5.6), one can define:

J ≡
∫

∆Ω
dΩ

∫
l.o.s.

d`
∫

d3v1fDM(x,v1)

∫
d3v2 fDM(x,v2)S(vrel)

=

∫
∆Ω

dΩ

∫
l.o.s.

d` ρ2(x) 〈S(vrel)〉(x) . (5.7)

This definition is in analogy to what is usually denoted in the literature as “J-factor”, which is typi-
cally limited to the standard lore of s-wave annihilations, in which 〈σannv〉 is velocity independent. In
the latter case, the velocity boost factor can be omitted, i.e. 〈S(vrel)〉 = 1, and the J-factor simply
depends on the DM density distribution along the line of sight, making the predictions of inversion
methods irrelevant. However, there exist several well-motivated DM models in which s-wave annihi-
lations are forbidden or severely suppressed, and hence p-wave becomes the dominant contribution
to the annihilation cross-section [112–115], leading to S(vrel) ∝ v2

rel. Alternatively, non-perturbative
effects due to long-range interactions in the non-relativistic limit, commonly known as Sommerfeld
enhancement, can introduce an additional velocity dependence, which can be in certain limiting cases
well approximated by inverse powers of vrel [116–119]. More precisely, under the assumption of the
Yukawa coupling one finds S(vrel) ∝ v−1

rel in the Coulomb regime (i.e. for vanishing mediator mass)
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and as S(vrel) ∝ v−2
rel in the resonant regime, which occurs for particular values of the associated

particle physics parameters. This motivates us to consider four different power-law scalings, namely
S(vrel) ∝ vnrel for n ∈ [−2,−1, 1, 2], corresponding to all possible combinations of the aforementioned
velocity dependences.

In Fig. 10 we present our results for the four moments of the relative velocity as a function of the
radial distance along the galactic plane for the Mochima simulation. In the left-hand side panel we show
the values of 〈vnrel〉 extracted from the simulation, as well as the predictions of the axisymmetric and
Eddington inversion methods, while in the right-hand side panel we show the corresponding relative
differences between the predictions and the simulation. Not surprisingly, the accuracy of the predictions
for 〈vnrel〉 is fairly similar to the one obtained for 〈vn〉, presented in Sec. 4.2. The relative differences
between the simulation and inversion methods are also in this case smaller than 7% (15%) for first
(second) moments over the entire radial range, with the exception of 〈v−2

rel 〉 at R & 30 kpc. In the inner
∼ 30 kpc the inversion methods again systematically over predict the negative and under predict the
positive moments, while at R & 30 kpc we observe a smaller, O(10%), offset towards lower values only
in the case of 〈v−2

rel 〉. The axisymmetric method tends to lead to more accurate predictions in the range
2 kpc . R . 10kpc. While at larger radii the difference between the two methods gradually diminishes,
the innermost part of the galaxy again shows systematic under (over) prediction of negative (positive)
velocity moments due to the miss-modelling of the central DM density slope.

Similar conclusions can be made for the moments of relative velocity distribution in Halo B
and Halo C, for which the analogous plots are shown in Figures 25 and 26 of Appendix C. The key
differences with respect to Mochima are the aforementioned discrepancies in the central parts of the
haloes. In the case of Halo B, which has a significant mismatch between the centre of DM halo and
barycentre, the axisymmetric method leads to significantly more accurate results than the Eddington
inversion, while the opposite is true in the case of Halo C. Apart from the central mismatch of one
of the methods, the typical relative errors amount to less than 10% over most of the radial range.
Furthermore, we find that the negative (positive) moments tend to be over (under) predicted by the
inversion methods, which agrees with our observations based on the Mochima simulation.

In conclusion, both inversion methods tend to provide fairly accurate estimates for the first two
positive and negative moments of the relative velocity distribution. While the axisymmetric method
performs notably better in Mochima and Halo B simulations, this is not necessarily true for all the
objects, as seen in the case of Halo C. However, since the typical relative errors do not exceed ∼ 20%,
apart from possible larger deviations in the case of 〈v−2

rel 〉, we expect that the main uncertainty in
the indirect searches will continue to be sourced by the poorly determined DM density profiles of the
observed galaxies. In particular, it turns out to be very difficult to properly constrain the central slope
of the DM density profile which, however, crucially determines the strength of the expected annihilation
signal, but can also noticeably affect the predictions of the inversion methods, as demonstrated on the
example of single-particle velocity moments in the Appendix A.
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Figure 10. Values of the first two positive and negative moments of the relative speed distribution as a function
of the radial distance along the galactic plane for the Mochima simulation. The left-hand side panels shows the
values extracted directly from the simulation as well as the corresponding predictions of the inversion methods,
while the right-hand side panels show the relative differences between the predictions and the true values.

6 Summary and conclusions

In this work, we have compared the accuracy of Eddington and axisymmetric inversion methods in
predicting the DM phase-space distribution within galaxies. The two methods most notably differ in
the assumed level of symmetry, with the Eddington formulation being limited to spherically symmetric
objects, which represent merely a subclass of systems allowed by the more general axisymmetric ap-
proach. The comparison was performed on high-resolution hydrodynamical simulations, which make
it possible to adequately sample the DM distribution throughout the DM halo. Since the DM density
profile serves as an input quantity for the inversions, we focused our attention on the velocity distribu-
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tions, which fully characterize the corresponding predictions for the phase-space distribution. In the
following, we summarize the main results of this work.

Fits of the baryonic gravitational potential and the DM density distribution We began
our analysis by fitting simple parametric functions for the key input quantities of the inversion methods
to the simulations. For the baryonic gravitational potential, we adopted a minimalistic model that
was composed of a Hernquist bulge and a single Miyamoto-Nagai disc, which nonetheless resulted
in good fits with typical relative errors below 10%. On the other hand, regarding the DM density
distribution, several comments are in place. Most importantly, to avoid the need of computing the
corresponding gravitational potential numerically and circumvent possible non-physical solutions of
the axisymmetric method, we decided to adopt the two-parameter NFW and Burkert density profiles.
The latter provided a good fit to the enclosed DM mass in the case of Halo B and Halo C, leading to
residuals at the level of 10%. Conversely, the NFW profile turned out to be a better choice for the
Mochima simulation, however, resulted in residuals below 10% only beyond the inner 5 kpc due to
a particularly steep central cusp. This could be improved by allowing for more general DM density
profile, e.g. the Zhao parametrization. However, as demonstrated in Appendix A, this has only a few
per cent impact on the resulting moments of DM velocity distribution and becomes negligible beyond
the inner ∼ 2 kpc. Finally, it has to be noted that the high-resolution simulations contain significant
amount of resolved DM substructures, which can not be captured by the standard parametric functions
used for approximating the DM density distribution.

Velocity distribution After obtaining satisfying fits for the DM density profile and the baryonic
potential gravitational, we were able to compute the corresponding PSDFs and compare their predic-
tions with the simulations. Firstly, we provided a qualitative comparison by inspecting the probability
density functions for velocity magnitude, meridional velocity and azimuthal velocity at distinctive ra-
dial distances along the galactic plane. For two out of three analysed objects, our results show that the
axisymmetric method can lead to more accurate predictions for the speed distribution, particularly in
the inner part of the galaxy, where the baryonic disc has a strong impact on the dynamics. The im-
provements manifest themselves as more accurate predictions for the peak as well as the general shape
of the speed distribution. On the other hand, for Halo C the Eddington inversion method performed
better, especially in the innermost few kpc. As the main reason for the failure of the axisymmetric
approach, we identify the misalignment between the angular momentum of DM halo and the principal
axis defined by the baryonic disc. Due to the same reason, the axisymmetric method does not always
perform better in predicting the individual (meridional and azimuthal) components of the velocity
distribution, which can be, however, mitigated by choosing a principal axis parallel to the halo’s net
angular momentum. Secondly, to quantify the match between the predicted velocity distributions with
the ones inferred from the simulations over the entire radial range, we adopted the relative entropy
metric. This confirmed our qualitative findings, clearly showing that the axisymmetric method leads
to more accurate predictions for the speed distribution in two of the analysed simulations at all radii
(with exception of few local fluctuations), while Eddington inversion performed notably better in the
central part of Halo C. For the meridional and azimuthal velocity distributions, we observed significant
variations in the accuracy within different simulations, which mainly stem from the aforementioned
misalignment between the symmetry axes of DM and baryons. If the principal axis of the system
was chosen perpendicular to the galactic disc, the predictions of the Eddington inversion often outper-
formed those of the axisymmetric method. On the other hand, if the principal axis was aligned with
the angular momentum vector of the DM halo, the axisymmetric method generally leads to slightly
more accurate predictions. As a final note, in the outskirts of all the analysed DM haloes we observed
gradual degradation of the performance for both of the inversion methods due to an increasing amount
of DM substructures and/or tidal debris.

Moments of velocity distribution Subsequently, we turned our attention to the first two positive
and negative moments of the speed distributions, which are (unlike the relative entropy) particularly
sensitive to the tails of the distribution. For the velocity moments, we find notably better agreement
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between the predictions of the axisymmetric method and the Mochima simulation at 2 kpc . R .
10 kpc, where the impact of the baryonic disc is significant. However, it is important to note that in
this radial range both inversion methods generically over predict the negative and underpredict the
positive velocity moments by O(10%), which was observed in all the studied objects. At larger R
the differences between inversion methods diminish, while the velocity moments extracted from the
simulations become significantly noisier due to the presence of numerous DM substructures, which
drastically worsens the agreement with the predictions. In the innermost part of the DM halo of
Mochima simulation, our predictions tend to degrade due to the aforementioned mismatch in the DM
density slope. On the other hand, in the case of Halo B (Halo C) we find very good agreement between
the predictions of the axisymmetric (Eddington) method with the true velocity moments down to the
very centre – the better performance of Eddington inversion within Halo C is mostly driven by a large,
i.e. 53◦, misalignment of the DM halo’s angular momentum with respect to the galactic disc, while
in Halo B the axisymmetric method performs significantly better due to the presence of a prominent
baryonic disc. In conclusion, both inversion methods (with the aforementioned exceptions in central
parts of Halo B and Halo C) lead to fairly accurate predictions for the velocity moments over the
majority of the explored radial range, with typical relative errors well below 20%.

Velocity anisotropy Another interesting comparison, which is made possible by the high-resolution
simulations, can be performed by examining the orbital anisotropy of DM. While in the case of Ed-
dington inversion the resulting phase-space distribution is isotropic by construction (or the anisotropy
profile has to be specified beforehand in its anisotropic generalizations), the axisymmetric method
provides us with a prediction for the orbital anisotropy from a given density-potential pair. By com-
paring the anisotropy along the galactic plane, we found that the axisymmetric method correctly
predicts radially biased orbits (i.e. βR̂ > 0), however, quantitative agreement becomes poor at large
galactocentric distances. In particular, the axisymmetric method leads to an orbital anisotropy profile
which peaks around the disc scale length, while in simulations we find gradually increasing βR̂(R) up
to R ∼ 100 kpc. The magnitude of the anisotropy approximately agrees with the prediction for the
Mochima simulation at R . 10 kpc, while at larger radii the true values are substantially above the
predicted ones. The agreement is even worse for Halo B and Halo C, where the axisymmetric inversion
method overshoots the true values in the inner parts of the haloes and under predicts the anisotropy
in the outskirts.

Implications for direct and indirect searches As a final comparison, we have contrasted the pre-
dictions of inversion methods to the true values of astrophysical factors that are needed for interpreting
the results of direct and indirect DM searches. In the context of direct detection, our results show that
both inversion methods perform reasonably well, with the typical relative errors in the astrophysical
factors below 15% for vmin . 300 km/s. The axisymmetric method often performs worse than the Ed-
dington inversion due to the aforementioned difficulties in predicting individual components of velocity
distributions. On the other hand, at large vmin the differences between the predictions of the two in-
version methods become smaller than the typical relative errors with respect to the true values, as the
latter can surge up to 50%. The reason for this is most likely the presence of non-equilibrium structures
within the DM halo, which can not be captured by the models based on dynamical equilibrium. In the
context of indirect searches, we find that both inversion methods provide relatively robust predictions
for the moments of the relative velocity distribution that enter the predictions for velocity-dependent
DM annihilations. Similarly to the single-particle velocity moments, the typical relative errors are
below 20% over most of the studied radial range. While the axisymmetric method performs better in
the case of Mochima and Halo B simulations, the opposite in true for Halo C. Finally, we note that
the differences between inversion methods, as well as residuals with respect to the simulations, are
relatively small compared to the typical uncertainties associated with the observational determinations
of the DM density profiles.

In conclusion, the inversion methods provide us with an indispensable tool for reconstructing
the phase-space distribution of the galactic DM. Both, the Eddington inversion and its axisymmet-
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ric generalization, allow us to accurately predict the DM velocity distribution over a broad range of
galactocentric distances, as well as the corresponding astrophysical factors that needed for the inter-
pretation of various DM searches. The axisymmetric approach generally leads to more accurate results,
especially in the central parts of galaxies with massive baryonic discs. On the other hand, it is subject
to additional systematic errors due to the assumptions related to the principal axis of the system as
well as rotational properties of the DM halo. While the latter is most cases negligible, substantial
misalignment between the principal axis of DM halo and the baryonic disc can spoil the predictions
of the axisymmetric method and more accurate results are obtained through the simpler Eddington
inversion. A further source of inaccuracy, common to both of the inversion methods, is the assumption
that all of the galactic DM is smoothly distributed and has reached dynamical equilibrium. This is in
stark contrast with the results of simulations, which predict a large amount of DM substructure that
becomes increasingly prominent with the distance from the galactic centre. Nonetheless, the inversion
methods manage to predict the moments of DM velocity distribution, which are of prime interest for
DM searches, with typical relative errors well below 20%.

An interesting question, which we leave open for future work, is how the inversion methods
compare to more general approaches of constructing DM distribution functions, such as action-angle
modelling, where the restraining symmetry assumptions can be further relaxed. This could, for exam-
ple, allow for misaligned principal axes of different galactic components, enable the use of more realistic
triaxial description of the central bulge/bar regions of the galaxies or accommodate the large radial
anisotropies of the DM particles in the outskirts of the halos, as predicted by the simulations. On the
other hand, we expect that more flexible models could give rise to further systematic errors due to the
additional degrees of freedom that can not be constrained through the existing observations. Beyond
the scope of equilibrium models, there is also a pressing need for improvements in stochastic mod-
elling of possible local and/or global non-equilibrium DM components, which can substantially affect
the interpretation of DM searches. The development of such corrections for the equilibrium models
most likely requires further theoretical work as well as novel insights provided by the high-resolution
simulations of galaxy formation and evolution.
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Appendix A Dependence of the DM velocity moments on the assumptions re-
garding the DM density profile

In our work we have adopted a simplifying assumption that the DM density profiles of simulated
objects can be adequately approximated either by NFW [87] or Burkert [88] density profile. On the
other hand, Lacroix et al. [37] performed the analysis of the same simulations using a more flexible
Zhao parametrization [89]. Even though the latter provides a somewhat better fit to the actual DM
distribution found within the simulations, it does not have a significant impact on the moments of the
velocity distribution of DM, which are of the prime interest for DM search. In Fig. 11 we show the
comparison of DM velocity moments obtained in this work with those of Lacroix et al. for the Mochima
simulation. As can be seen from the plots, the more flexible parametrization provides better agreement
with the true velocity moments in the very central parts of the halo, since it correctly accounts for
the particularly steep central cusp – Lacroix et al. report that their best fit value for the central DM
density slope is γ = 1.718, while the NFW parametrization implicitly assumes γ = 1. On the other,
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it is surprising to see that our results become more accurate at R & 2 kpc. This is perhaps related to
the fact that the two analyses also differ in the parametrization of the baryonic gravitational potential.
At even larger galactocentric distances, i.e. R & 10 kpc, the predictions of the Eddington inversion
method in both works become nearly identical.

Figure 11. Same as in Fig. 7, but additionally showing the results of Lacroix et al. [37], who performed the
Eddington inversion using a more accurate fit of the DM density distribution by adopting the Zhao profile as
well as a more flexible approach of approximating the baryonic gravitational potential.

Appendix B Systematic uncertainties associated with the choice of principal axis

To address the issue of misalignment between the principal axes of DM and baryons we repeat the
analysis of Mochima simulation under the assumption that the z-axis coincides with the net angular
momentum of the DM halo. The latter differs by 21◦ from the normal vector defined by the galactic
plane, which was used as the principal axis in the main text. This naturally leads to slightly different
best-fit parameters for the baryonic gravitational potential, while the parameters of the DM density
profile remain essentially unchanged since the halo is nearly spherical. On the other hand, the ve-
locity distributions extracted from the simulations are noticeably different, particularly in the case of
meridional and azimuthal components as their definitions clearly depend on the choice of the coordi-
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nate system. In Fig. 12 we show the corresponding speed distribution, as well as the meridional and
azimuthal velocity distributions, at three distinctive galactocentric radii. The solid lines correspond to
the principal axis aligned with the angular momentum vector of the DM halo, while the dashed lines
show the results obtained when z-axis was chosen perpendicular to the galactic disc. As can be seen
from the plots, at R = 3 kpc this leads to a better agreement of the axisymmetric method’s predictions
with the true values of the meridional and azimuthal velocity distribution, while the speed distribution
is less affected by the change of principal axis. As a further comparison, we show in Fig. 13 the corre-
sponding values of DKL, as defined by Eq. (4.1). The axisymmetric method can be seen to outperform
the Eddington inversion over most of the radial range, with the exception of few local fluctuations. In
comparison with the case where the principal axis was chosen perpendicular to the galactic plane, the
improvement is particularly significant for the meridional and azimuthal velocity distributions, while
some improvement can also be seen in predictions for the speed distribution at small R.
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Simulation (ẑ disc)
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Simulation (ẑ disc)
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Simulation (ẑ disc)
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Axi. inversion (ẑ disc)
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Figure 12. Speed distribution (top row), meridional velocity distribution (middle row) and azimuthal velocity
distribution (bottom row) for Mochima simulation. The results are shown for the two different choices of z-axis
alignment, i.e. parallel to the DM angular momentum (LDM) and perpendicular to the baryonic disc.
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Figure 13. Relative entropy between the true velocity distributions and the predictions of axiymmetric and
Eddington inversion methods as a function of the radial distance for Mochima simulation. The results are
shown for the two different choices of z-axis alignment, i.e. parallel to the DM angular momentum (LDM) and
perpendicular to the baryonic disc.

Appendix C Results for Halo B and Halo C

C.1 Baryonic gravitational potential

Figure 14. Relative difference between our best-fit and the azimuthally-averaged baryonic gravitational po-
tential for Halo B (left-hand side panel) and Halo C (right-hand side panel) simulations.
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C.2 Mass profiles

Figure 15. The best-fit DM mass profiles for Halo B (left-hand side panel) and Halo C (right-hand side panel)
simulations, obtained under the assumption of Burkert parametrization.

– 31 –



C.3 Velocity distributions
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Figure 16. Speed distribution (top row), meridional velocity distribution (middle row) and azimuthal velocity
distribution (bottom row) for Halo B simulation at three distinctive galactocentric distances along the disc.
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Figure 17. Speed distribution (top row), meridional velocity distribution (middle row) and azimuthal velocity
distribution (bottom row) for Halo C simulation at three distinctive galactocentric distances along the disc.
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Figure 18. Same as in Fig. 6, but for Halo B simulation.
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Figure 19. Same as in Fig. 6, but for Halo C simulation.
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C.4 Velocity moments

100 101 102
0.0000

0.0001

0.0002

0.0003

〈 v−2
〉  [(

km
 / 

s)
−

2
]

Simulation
Axi. inversion
Edd. inversion

100 101 102

0.0

0.5

1.0

〈 v−2
〉  / 
〈 v−2

〉 si
m

 - 
1

Axi. inversion
Edd. inversion

100 101 102

0.004

0.006

0.008

0.010

0.012

〈 v−1
〉  [(

km
 / 

s)
−

1
]

Simulation
Axi. inversion
Edd. inversion

100 101 102

0.1

0.0

0.1

0.2

0.3

〈 v−1
〉  / 
〈 v−1

〉 si
m

 - 
1

Axi. inversion
Edd. inversion

100 101 102

100

150

200

250

300

350

〈 v1〉
 [k

m
 / 

s]

Simulation
Axi. inversion
Edd. inversion

100 101 102

0.15

0.10

0.05

0.00

0.05

〈 v1〉
 / 
〈 v1〉

si
m

 - 
1

Axi. inversion
Edd. inversion

100 101 102

R [kpc]

20000

40000

60000

80000

100000

120000

140000

〈 v2〉
 [k

m
2
 / 

s2
]

Simulation
Axi. inversion
Edd. inversion

100 101 102

R [kpc]

0.2

0.1

0.0

〈 v2〉
 / 
〈 v2〉

si
m

 - 
1

Axi. inversion
Edd. inversion

Figure 20. Same as in Fig. 7, but for Halo B simulation.
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Figure 21. Same as in Fig. 7, but for Halo C simulation.

– 36 –



C.5 Velocity anisotropy
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Figure 22. Same as in Fig. 8, but for Halo B simulation in the left-hand side panel and Halo C simulation in
the right-hand side panel.
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Figure 23. Same as in Fig. 9, but for Halo B simulation.
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Figure 24. Same as in Fig. 9, but for Halo C simulation.
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Figure 25. Same as in Fig. 10, but for Halo B simulation.
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Figure 26. Same as in Fig. 10, but for Halo C simulation.
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