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Abstract

We propose fully explicit projective integration and telescopic projective integration
schemes for the multispecies Boltzmann and Bhatnagar-Gross-Krook (BGK) equations. The
methods employ a sequence of small forward-Euler steps, intercalated with large extrapo-
lation steps. The telescopic approach repeats said extrapolations as the basis for an even
larger step. This hierarchy renders the computational complexity of the method essentially
independent of the stiffness of the problem, which permits the efficient solution of equations
in the hyperbolic scaling with very small Knudsen numbers. We validate the schemes on
a range of scenarios, demonstrating its prowess in dealing with extreme mass ratios, fluid
instabilities, and other complex phenomena.
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Keywords — Multispecies gas; kinetic mixture; Boltzmann equation; BGK model; projective

integration; Sod Tube; Kelvin-Helmholtz; Richtmyer-Meshkov.

1 Introduction

Mixtures of rarefied gases are found in a wide variety of systems, ranging from the re-entry of
an interplanetary probe in the upper atmosphere [21] to microscale flows in pumps which use
no moving parts (viz. the Knudsen compressor, [35]). Such complex gases cannot be described
by classical fluid models, such as the compressible Euler or the Navier-Stokes systems, because
of their non-equilibrium behaviour, induced by their rarefaction. Kinetic models, such as the
seminal Boltzmann equation, are thus favoured to describe these systems because they are able
to reflect the non-equilibrium character of the gases, retaining information about the micro-
scopic many-particle dynamics while avoiding the sheer complexity of the microscopic approach.
Furthermore, actual gases are usually a mixture of different chemical species; for instance, the
chemistry of the upper atmosphere is made of up to 20 different species (mostly recombinations
of O2, CO2, H2, and CH4). The realistic simulations of such systems must involve multispecies
kinetic models.

Whereas the mathematical properties of the classical Boltzmann equation for a single species
gas are well known by now (crucially, its derivation from Newtonian dynamics was addressed
in [27]), many questions remain open for the multispecies case. The most recent theoretical
results on the topic come from the series of papers [9, 10]; they prove the existence, uniqueness,
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1 INTRODUCTION

positivity, and exponential trend to equilibrium for the full non-linear multispecies Boltzmann
equation in a perturbative, polynomially-weighted, and isotropic L1

vL
∞
x setting. The case of the

unperturbed setting remains mostly open.
At the numerical level, the most advanced deterministic methods use a Fourier approach to

evaluate the full collision operator: a fast spectral algorithm was recently introduced in [59] for
the multispecies case. Nevertheless, the method was not asymptotic preserving (AP), namely,
stable in the small relaxation parameter limit; the only recent paper on this subject can be found
in [7], where the Maxwell-Stephan limit for a multispecies gas is investigated numerically via a
moment method (which does not compute the full operator). In this work, we shall introduce a
new family of numerical integrators for full kinetic multispecies models that are able to deal with
a large range of values of the relaxation parameters uniformly on the numerical parameters.

Projective integration (PInt) is a robust and fully explicit method that allows for the time
integration of (two-scale) stiff systems with arbitrary order of accuracy in time. The method was
first proposed in [29] for stiff systems of ordinary differential equations with a clear gap in their
eigenvalue spectrum. In such problems, the fast modes, corresponding to the Jacobian eigenvalues
with large negative real parts, decay quickly; it is the slow modes, related to eigenvalues of
smaller magnitude, that are of practical interest. In this regime, PInt permits a stable yet
explicit integration by combining small and large steps. The integrator performs a few small
(inner) steps of an explicit method, using a step size δt , until the transients corresponding to
the fast modes have decayed; subsequently, the solution is projected (extrapolated) forward in
time over a large (outer) time step of size ∆t� δt.

PInt was analysed for kinetic equations with a diffusive scaling in [39]. An arbitrary order
version, based on Runge-Kutta methods, has been proposed recently in [37], where it was also
analysed for kinetic equations in the advection-diffusion limit. In [38], the scheme was used to
construct a explicit, flexible, arbitrary order method for general non-linear hyperbolic conser-
vation laws, based on their relaxation to a kinetic equation. Alternative approaches to obtain
higher-order PInt schemes have been proposed in [40, 50]. These methods align with recent
research efforts on numerical methods for multiscale simulation [25, 28].

For problems exhibiting more than two time scales, telescopic projective integration (TPInt)
was proposed in [30]. In these methods, the projective idea is applied recursively. Starting
from an inner integrator at the fastest time scale, a PInt method is constructed with a time
step that corresponds to the second-fastest scale. This PInt method is then considered as the
inner integrator of yet another PInt method at a coarser level. By repeating as required, TPInt
methods construct a hierarchy of projective levels, each using the previous one as its inner step.
This idea was explored for linear kinetic equations in [47]. These methods turn out to have
a computational cost that is essentially independent of the stiffness of the collision operator.
This property was used with great success in the series of papers [45, 46] to develop PInt and
TPInt methods for the full non-linear Bhatnagar-Gross-Krook (BGK) and Boltzmann equations
of single-species rarefied gas dynamics.

PInt methods are not asymptotic preserving (AP) methods as such, because the schemes
cannot be evaluated explicitly at ε = 0 to obtain a classical numerical scheme for the limiting
equation. Nevertheless, PInt and TPInt methods share important features with AP methods.
In particular, their computational cost does (in many cases) not depend on the stiffness of the
problem. To be precise, it was shown in [47] for linear kinetic equations that the number of inner
time steps at each level of the telescopic hierarchy is independent of the small-scale parameter
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ε, as is the step size of the outermost integrator. The only parameter in the method which may
depend on ε is the number of levels in the telescopic hierarchy. For systems in which the spectrum
of the collision operator falls apart into a set of clearly separate clusters (each corresponding to
a specific time scale), the number of levels equals the number of spectral clusters. In this regime,
the computational cost is completely independent from ε. When the collision operator comprises
a continuum of time scales, the number of TPInt levels increases logarithmically with ε.

The linearisation of the multispecies Boltzmann operator around its equilibria has very similar
properties to the classical single species Boltzmann operator, as shown in [20, 10]. Among others,
its spectrum is well separated, with slow modes close to the origin, fast modes at a distance of
order ε−1 left of the imaginary axis, and an essential part even farther away from the axis [24, 49];
this information was the basis for the development of the TPInt method in [46]. The spectral
gap estimates in the multispecies setting are also very similar to the single species case. In this
paper, we will exploit this structure to develop a TPInt method for the multispecies Boltzmann
equation.

The rest of the work is organised as follows. In Section 2 we recall the elements of kinetic
theory before presenting the models under consideration: the multispecies Boltzmann and BGK
equations. Section 3 develops the numerical schemes which we shall use to study these models,
with emphasis on the novelty of this paper: the use of projective integration and telescopic
projective integration to construct uniformly accurate schemes for the multispecies BGK model.
In Section 4 we compute the approximate spectrum of the numerical scheme and discuss the
strategy for the choice of the parameters of the numerical methods. Finally, Section 5 presents
a variety of numerical experiments, both in 1 + 1 and 2 + 2 dimensions of the phase space,
which demonstrate how the schemes can handle extreme mass ratios, fluid instabilities, and
other complex phenomena.

2 On Kinetic Equations and Multiple Species Models

The cornerstone of kinetic theory is the Boltzmann equation, which describes the evolution in
time of the distribution of the particles of a rarefied gas. Each particle is subject to ballistic
motion, travelling in a straight line at a given velocity, which may only change when it collides
with another particle. These collisions are assumed to take place instantaneously and to conserve
momentum and kinetic energy. Moreover, the gas is assumed to be dilute enough so that collisions
between three or more particles can be neglected.

The distribution of particles, fε(t,x,v), is a non-negative function which describes for every
time t the likelihood of finding a particle at a given position dx, with a given velocity dv. In
this work, fε is understood in the number sense, meaning it is not a probability measure. To be
precise1,

˜
fε(t,x,v) dx dv = N for all times t ≥ 0, where N is the number of particles in the

gas. All particles are assumed identical, each with mass m > 0.
1All the integrals in the text are taken over the full position domain, the full velocity domain, or the entire

domain of Equation (2.1), unless otherwise stated:
ˆ

dx ≡
ˆ
Ω

dx,

ˆ
dv ≡

ˆ
RDv

dv,

¨
dxdv ≡

¨
Ω×RDv

dxdv.
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2 ON KINETIC EQUATIONS AND MULTIPLE SPECIES MODELS

The distribution fε evolves according to the kinetic equation
∂tf

ε + v · ∇xf
ε =

1

ε
Q[fε], x ∈ Ω ⊆ RDx , v ∈ RDv , t > 0,

fε(0,x,v) = f0(x,v),
(2.1)

posed with appropriate boundary conditions. This equation couples a transport operator, which
models the displacement of particles, with a collision operator Q, which describes the changes
in momentum due to collisions. In this work, Dx = Dv = 1 or 2.

The frequency of collisions is governed by the Knudsen number ε, a measure of the average
distance that a particle can travel before colliding with another one. The value of ε distinguishes
the kinetic regime, where collisions are rare, from the hydrodynamic regime, where collisions
dominate the dynamics; the former corresponds to larger values of ε, and the latter, to smaller
values.

The seminal Boltzmann collision operator Q is a quadratic operator local in (t,x). The time
and position act only as parameters in Q and therefore will be omitted in its description. It is
given, for Dv ≥ 2, by

Q[f ](v) =

¨
RDv×SDv−1

B(|v − v∗|, cos θ) (f ′f ′∗ − ff∗) dv∗ dσ, (2.2)

where we have used the shorthand f = f(v), f∗ = f(v∗), f
′

= f(v′), f
′

∗ = f(v
′

∗). The velocities
of the colliding pairs, (v,v∗) and (v′,v′∗), can be parametrized as

v′ =
v + v∗

2
+
|v − v∗|

2
σ, v′∗ =

v + v∗

2
− |v − v∗|

2
σ.

The collision kernel B is a non-negative function which, by physical arguments of invariance,
may only depend on |v − v∗| and cos θ = ĝ · σ (where ĝ = (v − v∗)/|v − v∗|). It characterises
the details of the binary interactions, and has the form

B(|v − v∗|, cos θ) = |v − v∗|Φ(|v − v∗|, cos θ). (2.3)

The scattering cross-section Φ, in the case of inverse kth power forces between particles, can be
written as

Φ(|v − v∗|, cos θ) = bα(cos θ) |v − v∗|α−1,

with α = (k − 5)/(k − 1). The special situation k = 5 gives the so-called Maxwell pseudo-
molecules model with B(|v − v∗|, cos θ) = b0(cos θ). For the Maxwell case the collision kernel is
independent of the relative velocity. For numerical purposes, a widely used model is the variable
hard sphere (VHS) model introduced by Bird [5]. The model corresponds to bα(cos θ) = Cα,
where Cα is a positive constant, and hence Φ(|v−v∗|, cos θ) = Cα|v−v∗|α−1. For further details
on the physical background and derivation of the Boltzmann equation, we refer to [16, 57]

Equation (2.1) is rich with structural properties. In terms of conservation, its weak form
reveals that any conserved quantity of the dynamics corresponds to an associated collision in-
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2 ON KINETIC EQUATIONS AND MULTIPLE SPECIES MODELS

variant of Q: a function ϕ(v) such that
ˆ
Q[f ](v)ϕ(v) dv = 0

for any function f(v). For the Boltzmann operator, the space of collision invariants is given
by span{1,v, |v|2} [15]. In consequence, the mass, momentum, and kinetic energy of the distri-
bution, respectively

˜
mfε(t,x,v) dx dv,

˜
mvfε(t,x,v) dx dv, and

˜
m
2 |v|2fε(t,x,v) dx dv,

are conserved.
In terms of dynamics, the relaxation properties of Eq. (2.1) are well-understood. The cele-

brated H-theorem characterises the dissipation of the Boltzmann entropy,

H =

ˆ
fε(v) log(fε(v)) dv.

At the local level, the theorem states

S =

ˆ
Q[fε](v) log(fε(v)) dv ≤ 0, (2.4)

where ∂H
∂t +∇x ·J = S

ε and J =
´
vfε(v) log(fε(v)) dv, see, for instance, [14, 16]. Furthermore,

the equality in (2.4) is only achieved for states in the kernel of Q. Such equilibrium states are
always Maxwellian distributions:

fε =Mn,v̄,T (t,x,v) := n(t,x)
( m

2πT

)Dv/2

exp

(
−m(v̄ − v)2

2T

)
for particles of mass m. The number density n, the mass density ρ, the average velocity v̄, the
temperature T , and the pressure P are (local) moments computed from the distribution which
depend only on time and position; they are given by

n =

ˆ
fε dv, ρ = mn, ρv̄ =

ˆ
mvfε dv,

Dv

2
nT =

ˆ
m

2
|v̄ − v|2fε dv, (2.5)

where ρ = mn and P = nT . Note, in particular, that the Maxwellian Mn,v̄,T has moments
n, v̄, T .

2.1 The Bhatnagar-Gross-Krook (BGK) Model

The collision operator (2.2) has a complicated structure from both the analytical and the numer-
ical perspectives. Because of this, many works have proposed simpler operators which attempt
to capture some or all of the structural properties of Q. A ubiquitous simplification is the model
of Bhatnagar-Gross-Krook [4]; since the overall effect of the Boltzmann operator is to drive
fε towards the corresponding Maxwellian, they propose a reduced operator which makes the
relaxation explicit:

QBGK[fε] = ν(M[fε]− fε), (2.6)
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whereM[fε] is the Maxwellian whose moments n, v̄, T are the ones of fε, and where ν(t,x) is a
positive collision rate to be determined. This simplification can be derived from Q by assuming
that the distribution fε is already close to equilibrium. The BGK equation is thus defined as
the evolution law (2.1) together with the operator (2.6).

Despite its apparent simplicity, the BGK model captures many structural aspects of the
Boltzmann collision operator. BecauseM[fε] and fε share the first three moments, the invariants
of Q are also invariants of QBGK whenever the collision rate does not depend on v. Therefore, the
new dynamics conserve the mass, momentum, and kinetic energy of fε as well. The dynamical
structure of Q is also preserved by the BGK model because the H-theorem still holds:

S =

ˆ
QBGK[fε](v) log(fε(v)) dv ≤ 0,

see, for instance, [54]. Once again, the equality is only achieved by the equilibrium states, which
are the Maxwellians by construction.

2.2 The Multispecies Boltzmann Equation

A limitation of the Boltzmann equation (2.1) is the assumption that all gas particles are identical.
However, it is possible to extend this equation to the case of a mixture of gases by the physical
arguments used in the single species case [8]. As stated in the introduction, the derivation of the
multispecies Boltzmann equation is mostly formal, unlike that of the single species case, which
has been clearly established in a variety of works such as [27].

We will consider a mixture of P species, each described by a distribution2 fp(t,x,v), a
time-dependent non-negative function as before. Each distribution is understood in the number
sense:

¨
fp(t,x,v) dx dv = Np

for all times t ≥ 0, where Np is the number of particles in the pth species. All particles of that
species are assumed identical, each with mass mp.

The distributions fp evolve according to the so-called multispecies Boltzmann equation, given
by 

∂tfp + v · ∇xfp =
1

ε
Qp[f ], x ∈ Ω ⊆ RDx , v ∈ RDv , t > 0,

Qp[f ] =

P∑
q=1

Qp, q[fp, fq],

fp(0,x,v) = fp, 0(x,v),

(2.7)

posed with appropriate boundary conditions. The changes of momentum of the pth species are
now governed by a sum of collision operators, one for each species in the gas. These multispecies
collision operators Qp, q are similar to the classical Boltzmann operator (2.2); namely, they are

2The ε notation is dropped in the interest of simplicity. Henceforth, f stands for fε.
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given by

Qp, q[fp, fq] =

¨
RDv×SDv−1

Bp, q(|v− v∗|, cos θ) [fp (v′) fq (v′∗)− fp(v) fq(v∗)] dv∗ dσ, (2.8)

where inter-species collisions are given by

v′ =
1

mp +mq
(mpv +mqv∗ +mq|v − v∗|σ) ,

v′∗ =
1

mp +mq
(mpv +mqv∗ −mp|v − v∗|σ) .

(2.9)

Note that in the intra-species collision case p = q, (2.8) corresponds to the classical Boltzmann
operator (2.2). We shall also assume for the sake of simplicity that the inter-species collision
kernel Bp, q is independent on p and q, and equal to the variable hard spheres kernel (2.3).

The conservation properties of the Boltzmann equation persist in the multispecies case at
the level of the mixture. The mass of each species,

˜
mpfp(t,x,v) dx dv, is conserved because

1 remains an invariant of each operator:
ˆ
Qp, q[f, g](v) dv = 0

for any functions f(v) and g(v). However, the functions v and |v|2 are only invariants in the
sense that

ˆ
vQp, q[f, g](v) dv = −

ˆ
vQq, p[g, f ](v) dv (2.10)

and
ˆ
|v|2Qp, q[f, g](v) dv = −

ˆ
|v|2Qq, p[g, f ](v) dv. (2.11)

As such, it is only the total momentum and the total kinetic energy of the gas, respectively

P∑
p=1

¨
mpvfp(t,x,v) dx dv, and

P∑
p=1

¨
mp

2
|v|2fp(t,x,v) dx dv,

that are conserved.
The H-theorem also applies to the multispecies case, for the total Boltzmann entropy and

total dissipation:

H =

P∑
p=1

ˆ
fp(v) log(fp(v)) dv, S =

P∑
p=1

ˆ
Qp[fp](v) log(fp(v)) dv ≤ 0,
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see [17]. The equilibrium distributions are all Maxwellians with common average velocity, v̄eq,
and temperature, Teq:

fp =Mn,v̄eq,Teq(t,x,v) = np(t,x)

(
mp

2πTeq

)Dv/2

exp

(
−mp(v̄eq − v)2

2Teq

)
. (2.12)

Note np and the rest of individual moments are defined just as in Eq. (2.5):

np =

ˆ
fp dv, ρpv̄p =

ˆ
mpvfp dv,

Dv

2
npTp =

ˆ
mp

2
(v̄p − v)2fp dv,

where ρp = mpnp and Pp = npTp. The total moments for the mixture are given by n =
∑
np,

ρ =
∑
ρp, ρv̄ =

∑
ρpv̄p, P =

∑Pp, and
Dv

2
nT =

P∑
p=1

ˆ
mp

2
(v̄ − v)2fp dv.

2.3 A Multispecies BGK Model

Although the multispecies Boltzmann equation described in Section 2.2 shares many features
with the single species Boltzmann equation, the fact that conservations are only global in space
and all species, e.g. (2.11), makes its simplification to a relaxation operator such as the BGK
model (2.6) much harder. Many different approaches exists to derive such a multispecies BGK
operator, but very few are satisfactory in regards to the macroscopic properties of the resulting
relaxation operator. The interested reader can find more details about these various approaches
in the recent papers [3, 11].

This work will follow along the lines of [31]. The formulation of the multispecies BGK operator
requires the definition of the mixture Maxwellians:

Mp, q[fp, fq](t,x,v) = np(t,x)

(
mp

2πTp, q

)Dv/2

exp

(
−mp(v̄p, q − v)2

2Tp, q

)
, (2.13)

where v̄p, q and Tp, q are mixture moments to be determined. It is assumed that the interaction
of the pth and the qth species drives fp towards Mp, q, as well as fq towards Mq, p; thus we
require v̄p, q = v̄q, p, Tp, q = Tq, p. Assuming the distributions are close to equilibrium permits
the simplification of Qp, q to obtain

QBGK
p, q [fp, fq] = νp, q(Mp, q[fp, fq]− fp), (2.14)

where νp, q are positive collision rates to be determined. The multispecies BGK model is thus
defined as the evolution law (2.7) together with the operator (2.14).

In order to recover the structural properties of the Boltzmann equation, the mixture moments
have to be chosen appropriately. Considering the interaction of the pth species with itself, we
deduce v̄p, p = v̄p and Tp, p = Tp. To define v̄p, q, it is enough to impose the conservation of
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momentum in the form of Eq. (2.10). This readily yields

v̄p, q =
ρpνp, qv̄p + ρqνq, pv̄q
ρpνp, q + ρqνq, p

. (2.15)

This expression is reminiscent to the microscopic parametrisation of the postcollisional velocities
as a function of the precollisional ones (2.9). Similarly, requiring Eq. (2.11) as an expression of
conservation of kinetic energy produces

Tp, q =
npνp, qTp + nqνq, pTq
npνp, q + nqνq, p

+
ρpνp, q(v̄

2
p − v̄2

p, q) + ρqνq, p(v̄
2
q − v̄2

q, p)

Dv(npνp, q + nqνq, p)
. (2.16)

This expression guarantees Tp, q ≥ 0, see [31, Appendix 9]. These choices ensure, by construction,
the conservation of total momentum and total kinetic energy of the gas.

This model also captures the dissipative structure of the multispecies Boltzmann equations.
It is shown in [31] that the collision operator (2.14) verifies the H-theorem:

S =

P∑
p=1

ˆ
QBGK
p [fp](v) log(fp(v)) dv ≤ 0.

2.4 Hydrodynamic Limits

We will briefly present here the zeroth order hydrodynamic limit of the multispecies BGK model
(2.14), following along the lines of the recent paper [6]. Taking the limit ε → 0 in that kinetic
equation will formally project the distributions fp towards the equilibrium distributions (2.12)
whose moments solve a system of conservation laws. This system is obtained by multiplying the
kinetic multispecies equation (2.7) by the powers of v, integrating in velocity, and summing the
equations on the individual moments in order to have only Dv equations for the total momentum.

Under the Maxwellian closure, we obtain the following system of Dv + P + 1 conservation
law, the so-called multispecies Euler limit of (2.7):

∂tnp +∇x · (npv̄) = 0, p ∈ {1, · · · , P},

∂t (ρ v̄) +∇x · (ρ v̄ ⊗ v̄) +∇x (nT ) = 0,

∂t

(
1

2
ρ |v̄|2 +

Dv

2
nT

)
+∇x ·

[(
1

2
ρ |v̄|2 +

Dv + 2

2
nT

)
v̄

]
= 0.

(2.17)

The interested reader can consult [6] for the terms corresponding to the next order in the expan-
sion, the multispecies Navier-Stokes limit of (2.7).

3 Numerical Schemes

This section is devoted to the development of efficient numerical methods for the multispecies
BGK model, given by Eqs. (2.7) and (2.14). The numerical simulation of the model is hindered
by the presence of two radically different scales. The transport term classically imposes a CFL
condition on the mesh size: ∆t ∼ O(∆x) is needed for stability. However, in the regimes
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3 NUMERICAL SCHEMES

where ε � 1, the collision term dominates the dynamics, further restricting the time step to
∆t ∼ O(ε−1). This requirement is particularly pernicious in view of the large cost per step (due
to the computation of non-local terms), and it would render a naïve scheme inefficient. The
development of schemes for kinetic and hyperbolic equations which can handle multiple scales
without such penalties (sometimes called asymptotic-preserving schemes) is a very active area of
research, see the recent reviews [34, 23, 32].

In order to construct an efficient numerical scheme for Equation (2.7), we resort to projec-
tive and telescopic projective integration. First introduced in [29], projective integration pro-
vides an efficient framework for the numerical solution of differential equations with two distinct
timescales, characterised by two separate clusters of eigenvalues. Telescopic projective integra-
tion was introduced by [30] in order to extend the method to problems with many scales, or
without a clear spectral separation. These methods are not asymptotic preserving in the classi-
cal sense [33] because they cannot be evaluated at ε = 0 to recover a scheme for the asymptotic
equation; nevertheless, they are able to solve stiff problems efficiently, and have been success-
fully adapted to some kinetic equations: radiative transfer [39], the linearised BGK equation
with multiple relaxation times [47], and both the full BGK model and the Boltzmann equation
[45, 46]. Higher-order approaches have also been developed [37, 38].

In the remainder of this section we describe the numerical method. First we introduce the
phase space discretisation, using a discrete velocity method for the collision operator, coupled
with a finite-volume scheme for the transport. Then we present the projective and telescopic
schemes.

3.1 Phase Space Discretisation

Velocity The discretisation of Equation (2.7) can be conducted in a number of ways; see [23]
for a survey. Here we shall employ a discrete velocity approach as in [51, 12, 48], where the
velocity space is approximated by a finite grid. The choice of grid is non-trivial, and it can affect
the entropic properties of the numerical scheme [1]; for simplicity, we choose a Cartesian grid.

The velocity space, RDv , is first restricted to a bounded domain (−Lv, Lv)Dv . Each dimension
is discretised into 2Nv + 1 points, separated by a distance ∆v = 2Lv/(2Nv + 1); the jth point
is given by vj = j∆v, where j ∈ Nv := {−Nv, · · · , Nv}. The discretised velocity space becomes
V = {vj = (vj1 , · · · , vjDv

)}, where j = (j1, · · · , jDv) ∈ NDv
v is a multi-index. Equation (2.7)

thus becomes a system of transport equations:
∂tfp, j + vj · ∇xfp, j =

1

ε
Qp, j [fp], x ∈ Ω ⊆ RDx , j ∈ NDv

v , t > 0,

Qp, j [fp] =

P∑
q=1

Qp, q, j [fp, fq],
(3.1)

where fp, j approximates fp(vj), and Qp, q, j [fp, fq] approximates Qp, q[fp, fq](vj). The initial
datum fp, j(0,x) is prescribed by evaluating the continuous datum, fp, 0, at vj . Note that the
evolution of fp, j depends on Qp, j , which itself depends on the entire distribution of every species,
coupling all the equations in the system.

10



3 NUMERICAL SCHEMES

The evaluation of the collision operator will require the approximation of the moments of the
distribution based on the discretised velocity grid. The semi-discrete individual moments are3

nhp =
∑

fp, j∆v, ρhp v̄
h
p =

∑
mpvjfp, j∆v,

Dv

2
nhpT

h
p =

∑ mp

2
(v̄hp − vj)2fp, j∆v,

(3.2)

where ∆v = ∆vDv , and ρhp = mpn
h
p as before. The approximate mixture moments are computed

as in Eqs. (2.15) and (2.16). The collision operator is, therefore,

QBGK
p, q, j [fp, fq] = νp, q(Mp, q, j [fp, fq]− fp, j), (3.3)

whereMp, q, j [fp, fq] =Mp, q[fp, fq](vj), andMp, q[fp, fq] is the Maxwellian (2.13) generated by
the approximate moments.

Space The spatial discretisation of Equation (3.1) will be guided by the treatment of the
transport term alone. Linear transport terms such as vj · ∇xfp, j can be discretised in a number
of ways, including semi-Lagrangian methods [19, 18, 22] and finite-volume methods [41, 55, 42].
Here we shall prescribe a first-order finite-volume scheme, but this can be replaced with a higher-
resolution method (a WENO scheme [43], for instance) independently of the choices for the
discretisations of velocity and time.

The spatial domain, Ω, is assumed to be rectangular, of the form (0, Lx,1)× · · · × (0, Lx,Dx).
Each dimension d is discretised into Nx,d volumes of size ∆xd = Lx,d/Nx,d: every one, a cell
Ci = (xi−1/2, xi+1/2) with centre xi, where xi = i∆x, for i ∈ Nx := {1, · · · , Nx}. The discretised
spatial domain becomes X = {Ci = Ci1 × · · · × CiDx

}, where i = (i1, · · · , iDx) ∈ NDx
x is a

multi-index. Equation (3.1) thus becomes a system of equations:
∂tfp, i, j + Φp, i, j [fp] =

1

ε
Qp, i, j [fp], i ∈ NDx

x , j ∈ NDv
v , t > 0,

Qp, i, j [fp] =

P∑
q=1

Qp, q, i, j [fp, fq],
(3.4)

where fp, i, j is a finite-volume approximation of fp, j , fp, i, j(t) ' 1
|Ci|
´
Ci
fp, j(t,x) dx, with

equality for the initial datum.
The term Φp, i, j , expresses the net flux across the boundary of Ci. In the one-dimensional

setting, Dx = 1, it is written in conservation form as

Φp, i, j [fp] =
Fp, i+1/2, j − Fp, i−1/2, j

∆x
,

where

Fp, i+1/2, j = fp, i, j(vj)
+ + fp, i+1, j(vj)

−

3As with the integrals, the sums in this text are taken over the full velocity domain, unless otherwise stated:∑
∆v ≡

∑
j∈NDv

v

∆v.

11
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is the upwind flux discretisation. The generalisation to higher dimensions is immediate, see [42],
but the notation quickly becomes cumbersome.

The discretisation in space replaces the collision operator (3.3) with

QBGK
p, q, i, j [fp, fq] = νp, q(Mp, q, i, j [fp, fq]− fp, i, j),

where Mp, q, i, j [fp, fq] is simply the Maxwellian computed from the discretisations of fp, fq in
velocity and space. The moments given in (3.2) are easily discretised; for example,

np(t,x) =
∑

fp, j(t,x)∆v becomes np, i(t) =
∑

fp, i, j(t)∆v.

3.2 Projective Integration

Following the phase space discretisation, the multispecies BGK equation leads to the semi-
discrete system (3.4). This can be summarised as

∂tfp, i, j = Dε[fp, i, j ], (3.5)

where p, i, and j are, respectively, the species, spatial, and velocity indices, and where Dε is an
operator which comprises both discrete transport and collisions:

Dε[fp, i, j ] := −Φp, i, j [fp] +
1

ε
Qp, i, j [fp].

Projective integration essentially consists of two stages: an inner step, where an elementary
time-stepping method (the inner integrator) is used to solve (3.5) over a short interval; and a
projective step, where the previous information is used to approximate the time derivative of f
and extrapolate forward (through the outer integrator) over a large time interval.

We define step sizes ∆t0 and ∆t1, respectively for the inner and outer levels. The solution
fp, i, j(t) is approximated by fn, kp, i, j at the time t = n∆t1 + k∆t0. The evolution is computed as
follows:

Inner Integrator The inner step is computed through the forward Euler method with step
size ∆t0:

fn, k+1 = FE∆t0 [fn, k] := fn, k + ∆t0Dε[fn, k], (3.6)

where we have ommitted the p, i, and j indices for simplicity. The inner step size will be chosen
as ∆t0 ∼ O(ε−1) to ensure the stability of (3.6), just as it would be in a classical scheme.

While higher-order inner integrators could easily be constructed, it is shown in [47] that
forward Euler is the choice which gives the projective scheme the best stability properties. If
high-order accuracy is desired, this can be achieved at the outer level.

Outer Integrator The outer step computes the update fn+1, 0 from fn, 0, which can be simply
be understood as the steps fn+1 and fn of a time discretisation t = n∆t1. The outer step size
will be chosen as ∆t1 ∼ O(∆x).

12



3 NUMERICAL SCHEMES

In order to compute the update, the method first computes a sequence of K+1 inner updates
from fn, 0, using the inner integrator. The last two updates, fn,K and fn,K+1, are used to project
the solution forward:

fn+1 = PFE∆t1 [fn] := fn,K+1 + (∆t1 − (K + 1)∆t0)
fn,K+1 − fn,K

∆t0
; (3.7)

the relative size of the extrapolation is M = ∆t1
∆t0
− (K + 1).

Since the extrapolation is performed with a first-order approximation of the derivative, this
is known as the projective forward Euler method. Higher order methods can be constructed by
using more points to approximate the time derivative, in the vein of Runge-Kutta methods, as
discussed in [29].

A schematic summary of the method can be found in Algorithm 1. The exact choice of K,
∆t0, and ∆t1 will be discussed in Section 4.

Algorithm 1: Projective Integration
Data: N , K, ∆t1, ∆t0
f0 ← f(0) ;
for 0 ≤ n ≤ N − 1 do

fn, 0 ← fn ;
for 0 ≤ k ≤ K do

fn, k+1 ← FE∆t0 [fn, k] ;
end
fn+1 ← PFE∆t1 [fn] ;

end

Efficiency of the Method As discussed in [30], the efficiency of projective integration can
be measured by comparing the number of inner steps required to integrate over a time interval
directly to that required by the projective method. Assuming a homogeneous cost per step and
negligible overhead arising from the projection step (which is reasonable as the projective step
does not involve the computation of moments of f), projective integration reduces the overall
computational cost of a simulation by a factor of

S =
∆t1(∆t0)

−1

K + 1
=
M +K + 1

K + 1
.

3.3 Telescopic Integration

The stability properties of projective integration are well-understood: the method is suited for
problems with exactly two timescales which are spectrally separate. There are, however, many
multi-scale problems of interest whose spectra lack the sufficient structure: for instance, the
linearised and the full BGK models, as soon as the collision rate ν depends on space or on the
distribution f [47, 46, 36]. This is also the case for the multi-species BGK model (2.7, 2.14), as
will be shown in Section 4.

Telescopic integration extends the projective method to include such problems. The method
nests several levels: an innermost level, consisting, as before, of an elementary integrator; and
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3 NUMERICAL SCHEMES

a number of outer levels, each performing a projection step based on the iterations of the level
below it. We briefly discuss an approach with two projective levels, which will prove sufficient
for our needs, though the method can easily be extended.

We define step sizes ∆t0, ∆t1, and ∆t2, respectively for the inner, middle, and outer levels.
The solution fp, i, j(t) is approximated by fn, k, lp, i, j at the time t = n∆t2 + k∆t1 + l∆t0. The
evolution is computed as follows:

The step of the outer integrator is given by

fn+1 = PFE∆t2 [fn] := fn,K1+1 + (∆t2 − (K1 + 1)∆t1)
fn,K1+1 − fn,K1

∆t1
;

the relative size of the extrapolation is M1 = ∆t2
∆t1
− (K1 + 1). In order to evaluate the update,

K1 + 1 steps of the middle integrator have to be performed, to find fn,K1 and fn,K1+1 from fn.
Each of those steps is given by

fn, k+1 = PFE∆t1 [fn, k] := fn, k,K0+1 + (∆t1 − (K0 + 1)∆t0)
fn, k,K0+1 − fn, k,K0

∆t0
,

extrapolations of size M0 = ∆t1
∆t0
− (K0 + 1). For each step to be performed, K0 + 1 steps of the

inner integrator have to be computed, to find fn, k,K0 and fn, k,K0+1 from fn, k. These inner
steps are, once again, given by the forward Euler method

fn, k, l+1 = FE∆t0 [fn, k, l] := fn, k, l + ∆t0Dε[fn, k, l],

and can be computed directly. Since the outermost extrapolation is once again performed with a
first-order approximation of the derivative, this is known as the (two-level) telescopic projective
forward Euler method.

A schematic summary of the method is presented in Algorithm 1. Once again, the choice of
parameters K0, K1, ∆t0, ∆t1, and ∆t2 will be discussed in Section 4.

Algorithm 2: Telescopic Integration (two levels)
Data: N , K0, K1, ∆t2, ∆t1, ∆t0
f0 ← f(0) ;
for 0 ≤ n ≤ N − 1 do

fn, 0 ← fn ;
for 0 ≤ k ≤ K0 do

fn, k, 0 ← fn, k ;
for 0 ≤ l ≤ K1 do

fn, k, l+1 ← FE∆t0 [fn, k, l] ;
end
fn, k+1 ← PFE∆t1 [fn, k] ;

end
fn+1 ← PFE∆t2 [fn] ;

end
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4 SPECTRA & STABILITY

Efficiency of the Method The efficiency of telescopic projective integration can be measured
as in the previous section. The nth level reduces the computational cost of a simulation by a
factor of Sn, and the overall efficiency factor is S:

Sn =
∆tn+1(∆tn)

−1

Kn + 1
=
Mn +Kn + 1

Kn + 1
, S =

N∏
n=1

Sn. (3.8)

4 Spectra & Stability

The purpose of this section is to discuss the choice of integration parameters, ∆ti and Ki. We
shall recall the stability analysis of [29, 30], and illustrate it in the context of kinetic equations,
and the multispecies BGK model in particular.

The suitability of projective integration as a numerical method for kinetic equations with
very small Knudsen numbers can be understood intuitively by considering their hydrodynamic
asymptotics. As referenced in Section 2.4, Equations (2.1) and (2.7) can be studied in the limit
ε→ 0, and their limiting behaviour can be characterised by systems of equations for the evolution
of their moments. In the space of solutions, as the collision operator drives the state towards
local equilibrium, trajectories rapidly arrive at a hypersurface comprised only of Maxwellian
distributions, see Fig. 1 for a diagram. Once on this surface, the only possible evolution is
within, which corresponds to the evolution of the distribution’s moments as governed by the
corresponding macroscopic system. For small values of ε, the arrival to and the evolution within
the Maxwellian surface occur in very different time scales.

As discussed in Section 3, resolving both of these time scales with a typical scheme proves
very costly, since a typical integrator will require steps of size ∆t ∼ O(ε−1) for stability. However,
the two-scale nature of the problem can be exploited to escape this restriction: the integrator is
permitted large steps (whose size are limited only by a hyperbolic CFL-like condition), as long
as they alternate with smaller steps which ensure the return to the equilibrium hypersurface, as
sketched in Fig. 2.

This intuitive portrayal can be formalised by performing error stability analysis on the projec-
tive integration and telescopic integration methods. An asymptotic stability result is presented
in [29]: for large M , the stability region for the projective Euler method approaches two disjoint
disks on the ∆t0λ complex plane; D

(
−1,M−1/K

)
and D

(
−M−1,M−1

)
, where by D(c, r) we

Figure 1: Trajectories in solution space for systems with Knudsen number in the hydrodynamic
regime.

15



4 SPECTRA & STABILITY

Figure 2: Sketch of projective integration: the method performs steps of size O(1), but introduces
intermediate steps of size O(ε) to ensure the overall stability of the numerical solution.

Figure 3: Asymptotic stability region for the projective forward Euler integrator.

Figure 4: Asymptotic stability region for the telescopic projective forward Euler integrator.
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4 SPECTRA & STABILITY

Figure 5: Approximate spectra for mixture Sod Tube problem of Section 5.1: various mass ratios.
Top: fast modes, O(ε) (split across two regions). Bottom left: middle modes. Bottom right:
slow modes, O(1).
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4 SPECTRA & STABILITY

mean the disk centred at the complex number c with radius r (see Fig. 3). The two-disk sta-
bility region is perfectly suited for a two-cluster spectrum, which often lies behind the fast-slow
dynamics described above. Once the spectrum is known, the parameters ∆t0, K, and M can be
chosen so that the scaled eigenmodes, ∆t0λ, lie within the two stable disks: the fast modes will
be contained in the left disk, and the slow modes, in the right disk. As a curiosity, note that
the right disk corresponds to the stability region of a standard forward Euler method with step
∆t0M ; this is indeed the step size of the projection (3.7).

In more complex settings, a two-disk stability region might not suffice. For instance, the
BGK model with a density-dependent collision frequency, the full Boltzmann equation, and the
multispecies BGK model which we consider in this work all lead to more complicated spec-
tra. Fortunately, telescopic projective methods also lead to richer stability regions, and can be
used for our purposes. In the same vein as [29], we find that the two-level telescopic projec-
tive Euler method comprises three disks when M0 and M1 are large: D

(
−1,M

−1/K0

0 M
−1/K1

1

)
,

D
(
−M−1

0 ,M−1
0 M

−1/K1

1

)
, and D

(
−M−1

0 M−1
1 ,M−1

0 M−1
1

)
(see Fig. 4). As before, the param-

eters ∆t0, K0, K1, M0, and M1 have to be chosen so that the scaled eigenmodes lie within
the stability region. This three-disk configuration is featured in the spectra of the numerical
experiments discussed in Sections 5.2 to 5.4.

4.1 Estimating Spectra

The parameter choice strategy presented above relies entirely on accurate spectral information for
the problems in question. However, finding the spectrum of kinetic equations, or even establishing
partial information (such as bounds, number of clusters, or spectral gaps) is a difficult problem.
For the single species Boltzmann equation, we refer to the classic paper of [24], or to its L1

extension [49]. The multispecies theory is sparse, though we highlight the recent works [10, 20].
Our approach in this work will be to estimate the spectra of the problems numerically. We will

consider the semi-discrete problem (3.5), evaluate the Jacobian of the operator Dε through finite
differencing, and compute the eigenvalues of the resulting matrix as an approximate spectrum for
the problem. This approach proves extremely successful, as it permits finding optimal integration
parameters for all of the numerical experiments of Section 5. Furthermore, exploiting the mild
dependence of the spectra in the dimension of the problem [24], we are able to use the spectra of
one-dimensional problems in order to find suitable parameters for problems in higher dimensions.

We present in Fig. 5 the spectra used in the mixture Sod Tube problem of Section 5.1 for
mass ratios ranging from m1/m2 = 25 to m1/m2 = 100. The slow modes and middle modes,
shown in the bottom right and bottom left plots respectively, are seen not to vary significantly
across the different ratios, and therefore have similar stability properties.

However, this is not the case for the fastest modes. The fast cluster is shown across two plot
panels in Fig. 5: the top left panel comprises the majority of fast modes, which vary slightly; the
top right panel shows the rightmost fast modes, which vary greatly as the mass ratio increases.
Across the different ratios, the width of the fast cluster grows by an order of magnitude. This
spreading of the fast cluster, and the associated reduction in the gap, is consistent with the
results in [10].

In practice, the widening of the cluster leads to different stability requirements: in the
corresponding numerical test, the parameters used in the m1/m2 = 1 case also work for the
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m1/m2 = 100 case, with the exception of K1; the step number of the second level is increased
from 6 to 14. This logarithmic scaling of the computational cost with the stiffness of the problem
has been reported in [45] in the single-species setting.

5 Numerical Experiments

In this section, we apply our schemes to various physical scenarios in order to showcase the
robustness and versatility of the methods. We will consider one example with Dx = Dv = 1,
the mixture Sod Tube, and three examples with Dx = Dv = 2: a shock-bubble interaction, a
Kelvin-Helmholtz instability, and a Richtmyer-Meshkov instability. The examples demonstrate
the ability of the schemes to deal with complex scenarios, as well as their superior efficiency.

5.1 Mixture Sod Tube & Extreme Mass Ratios (1D / 1D)

Figure 6: Mixture Sod Tube problem: numerical solutions with decreasing Knudsen number and
unit mass ratio. The solutions approach the correct ε→ 0 limit.

Our first experiment is a generalisation of the Sod Tube problem [53]. The Sod Tube is a
generic Riemann problem for the Euler system (2.17) (with a single species). A discontinuous
initial datum is prescribed, which immediately develops a range of hyperbolic phenomena: a rar-
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5 NUMERICAL EXPERIMENTS

Figure 7: Mixture Sod Tube problem: extreme mass ratios. Left: higher mass ratios yield slower
hydrodynamic convergence. Right: high mass ratios require larger velocity domains (−Lv, Lv)
in order to capture the correct behaviour.
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efaction wave, a shock wave, and a contact discontinuity. Nevertheless, the solution is analytically
tractable, yielding an ideal test case for numerical schemes.

We shall employ here a setting twice removed from the classical Sod Tube. Firstly, we en-
tertain an analogue of the Riemann problem which involves two initially separate gases, whose
solution can be constructed in the same fashion as that of the classical problem; see the ap-
pendix for the derivation. Secondly, rather than solving a multifluid Euler system, we solve
the corresponding problem for the multispecies BGK model, and compare its moments to the
aforementioned analytic solution, exploiting the limiting behaviour discussed in Section 2.4.

We will consider two gases in a one-dimensional domain Ω = (0, 1). The mass ratio m2/m1

and Knudsen number will vary through the examples. The initial configuration will emulate a Rie-
mann problem with left state (ρL, vL,PL) = (1, 0, 1) and right state (ρR, vR,PR) = (2−3, 0, 2−5),
where the left state is entirely comprised of the first gas, and the right state of the second. To
that end, we prescribe their initial distributions as Maxwellians with moments{

ρ1 = (1− δ)ρL, ρ2 = δρL, v̄1 = v̄2 = vL, P1 = P2 = PL, if x ≤ 0.5;

ρ1 = δρR, ρ2 = (1− δ)ρR, v̄1 = v̄2 = vR, P1 = P2 = PR, if x > 0.5.
(5.1)

Ideally, we would set δ = 0, but this leads to an ill-defined temperature, so we let δ = 10−5. This
pattern will also be used in later experiments whenever a density is zero. We henceforth refer to
this problem as the mixture Sod Tube problem.

To begin, we verify the behaviour of this problem in the hydrodynamic limit. We will compute
numerically the solution with datum Eq. (5.1) with mass ratio m2/m1 = 1, for three different
values of the Knudsen number: ε = 10−1, 10−2, and 10−6. The larger values of epsilon do not
pose significant stiffness, so a direct integration method can be used; for ε = 10−6, we resort to
a telescopic two-level method.

The solution is computed over the time interval t ∈ (0, 0.15). The domain Ω is discretised
with ∆x = 2−10, and the velocity space is set as (−20, 20), with ∆v = 2−4. For the direct
method employed on the larger values of ε, we let ∆t = 1.53× 10−5. In the telescopic method,
we choose ∆t0 = 5× 10−7, ∆t1 = 2× 10−6, and ∆t2 = 6.1× 10−5, and step numbers K0 = 1

and K1 = 6. We impose no-flux boundary conditions.
Figure 6 shows the numerical solutions superimposed on the analytical limiting solution

(computed through the procedure detailed in the appendix). As the Knudsen number decreases,
the moments of the solution approach the correct hydrodynamic limit.

It is of great interest to attempt the numerical solution of problems with extremely large
mass ratios. Indeed, a simple mixture of Ar and He exhibits a mass ratio of 10, which can be a
problem for some numerical methods, as noted in [59]. Their method can deal with mass ratios
up to 35; however, ratios twice as large can easily be found in other scenarios, such as mixtures
of H2 and Xe.

We will demonstrate the behaviour of our scheme in the context of a hydrodynamic limit under
an extreme mass ratio. Conveniently, the asymptotic behaviour of the mixture Sod Tube problem
remains unchanged if we assume that the gases have different molecular masses; therefore, it
remains a suitable validation case.

We solve the problem for mass ratios m2/m1 = 5, 30, and 100, in the hydrodynamic regime
and compare the solutions. We let ε = 10−6. The spatial discretisation is done as before. The
velocity space is set as (−60, 60), with ∆v = 2−4; such large domain is unnecessary for the
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Physical Phase space discretisation Time discretisation

m1 1 ∆x 2.5× 10−2 K0 1
m2 5 ∆y 2.5× 10−2 (= ∆x) K1 6
ε 10−5 ∆v 2.5× 10−1 ∆t0 5× 10−6 (= ε/2)

∆t1 2× 10−5 (= 2ε)
∆t2 1.25× 10−3 (= ∆x/20)

Table 1: Parameters for the shock-bubble interaction test of Section 5.2, see Figs. 8 to 10

smaller mass ratios, but will be required for m2/m1 = 100. We again choose ∆t0 = 5× 10−7,
∆t1 = 2× 10−6, and ∆t2 = 6.1× 10−5, though this time we set K0 = 1 and K1 = 14; again,
the large step number is only required for the larger mass ratios. In order to justify our velocity
discretisation, we will also solve the m2/m1 = 100 case with varying velocity spaces (−Lv, Lv),
for Lv = 40, 60, and 80, keeping the rest of the parameters fixed.

In all cases we deal with the large velocity supports directly. The recent work [11] has used
a rescaling velocity approach reminiscent of [26] to overcome the same issue, but their strategy
remains limited to mass ratios up to 20.

Figure 7 shows the numerical solutions, again superimposed on the limiting solution. The
effects of the extreme mass ratios can be seen at point of contact discontinuity (the boundary
between the two gases), magnified in the figure. The left column shows the solutions with various
mass ratios; the overall hydrodynamic limit is captured well. However, the interfacial effects are
more pronounced as the mass ratio increases, and will require a smaller Knudsen number before
they become imperceptible. The right column shows the effect of the choice of velocity domain in
the solution: Lv = 40 leads to widespread error, whereas Lv = 60 recovers the correct behaviour,
and is in fact indistinguishable from Lv = 80.

5.2 Shock-Bubble Interaction (2D / 2D)

We investigate the interaction between a travelling shock and a smooth stationary bubble. This
is a multispecies adaptation of a one-species test case proposed in [56]; the original test has been
used to validate numerical schemes for the BGK model [13], including projective integration [46].

We will consider a mixture of two gases with mass ratio m2/m1 = 5 in a rectangular domain
Ω = (−1.5, 3) × (−1.5, 1.5). The Knudsen number is chosen in the hydrodynamic regime, ε =

10−5. The initial configuration of the first (lighter) gas is a normal shock wave of Mach number
Ma = 2 propagating in the positive x-direction. Its initial distribution, f1(0,x,v), is chosen as
the Maxwellian corresponding to the following Riemann datum:{

ρ1 = 2, v̄1,x = 1.414, v̄1,y = 0, T1 = 2.5, if x ≤ −1;

ρ1 = 1, v̄1,x = 0, v̄1,y = 0, T1 = 1, if x > −1.
(5.2)

The second (heavier) gas is initially stationary: a Maxwellian with density

ρ2(0,x) = exp
{
−16|x− x0|2

}
. (5.3)
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Figure 8: Shock-bubble interaction: evolution of the first (lighter) species. Left: datum. Mid-
dle: shock interacts with bubble. Right: pressure waves arise as a result of the shock-bubble
interaction. Simulation parameters can be found in Table 1.
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Figure 9: Shock-bubble interaction: evolution of the densities. Left: shock interacts with bubble.
Right: bubble is dragged and deformed by the stream. Simulation parameters can be found in
Table 1.

24



5 NUMERICAL EXPERIMENTS

Figure 10: Shock-bubble interaction: detail of the bubble (second species). Left: the bubble has
been compressed by the shock. Right: the bubble is displaced by the stream and deforms into
a “C shape”. Simulation parameters can be found in Table 1.

The temperatures of both gases around the bubble are chosen equal to each other and in such a
way that there is unit total pressure:

T1(0,x) = T2(0,x) = (n1(0,x) + n2(0,x))
−1
, (5.4)

which is consistent with the right state in Eq. (5.2).
Numerically, the domain Ω is discretised with ∆x = ∆y = 2.5× 10−2 (180× 120 cells). The

velocity space is set as (−12, 12)2, with ∆v = 2.5× 10−1 (962 cells). In total, the phase space is
discretised with 199,065,600 cells. We impose outflow boundary conditions.

The solution corresponding to Eqs. (5.2) to (5.4) is computed over the time t ∈ (0, 1.5). We
employ the telescopic two-level method, with step sizes ∆t0 = 5× 10−6, ∆t1 = 2× 10−5, and
∆t2 = 1.25× 10−3, and step numbers K0 = 1 and K1 = 6. The inner steps follow the pattern
4∆t0 = 2ε = ∆t1. The outermost step is restricted by the stability of the transport scheme,
rather than the projective integration. The use of telescopic projective integration decreases the
computational cost by a factor of S ' 18, as defined in Eq. (3.8). This factor, considering the
fine and high-dimensional mesh employed here, is extremely beneficial, reducing the simulation
time from a matter of days to a matter of hours!

Figure 8 shows the evolution of the first (lighter) gas at several times. The shock travels to
meet the bubble; when they meet, the central (y ' 0) portion of the shock is slowed down. As
the shock traverses the bubble, two pressure waves are formed: one travelling upstream, appears
as a reflection from the initial shock-bubble interaction; the second, travelling downstream, arises
as the shock surrounds the obstacle and both “arms” meet behind the bubble.

Figure 9 compares the densities of either gas, and Fig. 10 presents a detailed view of the
bubble. The bubble is compressed by the shock when it first arrives. As the shock passes, the
bubble is displaced downstream and deforms into a “C shape”.

A summary of the simulation parameters can be found in Table 1.
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5 NUMERICAL EXPERIMENTS

Physical Phase space discretisation Time discretisation

m1 1 ∆x 7.8125× 10−3 (= 2−7) K0 2
m2 5 ∆y 7.8125× 10−3 (= ∆x) K1 4
ε 10−5 ∆v 5× 10−1 ∆t0 5× 10−6 (= ε/2)

∆t1 2× 10−5 (= 2ε)
∆t2 3.906 25× 10−4 (= ∆x/20)

Table 2: Parameters for the Kelvin-Helmholtz instability test of Section 5.3.

5.3 Kelvin-Helmholtz Instability (2D / 2D)

We turn our attention to the Kelvin-Helmholtz instability. This is a well-known phenomenon
where vortices arise at the interface of two fluids with different density moving at different speeds.
This test was also used to validate projective integration for the single-species BGK model in
[46], with an initial configuration drawn from [44]. Here we shall present a two-species analogue.

We consider two gases with mass ratio m2/m1 = 5 in a square domain Ω = (−0.5, 0.5)2,
periodic along the x-direction. The Knudsen number is chosen in the hydrodynamic regime,
ε = 10−5; higher values do not yield sufficiently defined vortices. The gases are initially separate:
the first (lighter) gas occupies the y ≥ 0 region, with density ρ1 = 1 and horizontal velocity
v̄1,x = 0.5; the second (heavier) gas occupies the y < 0 region, with density ρ2 = 2 and horizontal
velocity v̄2,x = −0.5. Their temperatures are chosen to ensure there is equal unit pressure across
the boundary: T1 = n−1

1 , T2 = n−1
2 . Both gases are given a small vertical velocity to induce

vorticity: v̄1,y = v̄2,y = 10−2 sin(4πx). The initial distribution of the gases are the Maxwellians
corresponding to these moments.

Numerically, the domain Ω is discretised with ∆x = ∆y = 7.8125× 10−3 (1282 cells). The
velocity space is set as (−8, 8)2, with ∆v = 5× 10−1 (322 cells). In total, the phase space is
discretised with 16,777,216 cells. We impose outflow boundary conditions along the non-periodic
boundaries.

The solution is computed over the time t ∈ (0, 3). We employ the telescopic two-level method,
with step sizes ∆t0 = 5× 10−6, ∆t1 = 2× 10−5, and ∆t2 = 3.906 25× 10−4, and inner steps
K0 = 2 and K1 = 4. Again the inner steps follow the pattern 4∆t0 = 2ε = ∆t1, and the
outermost step is restricted by the hyperbolic CFL condition. The use of telescopic projective
integration decreases the computational cost by a factor of S ' 5, as defined in Eq. (3.8).

Figure 11 shows the evolution of the densities of each gas as well as the total pressure.
The small initial vertical perturbation results in the undulation of the interface. The relative
difference in horizontal velocity rapidly causes the formation of clearly defined vortices. As the
shear stress, the vortices are smeared horizontally.

Figure 12 studies the vortex structure at the time corresponding to the middle column of
Fig. 11, where vorticity is at a peak. The figure displays the modulus of the total velocity v̄; the
streamlines are superimposed.

A summary of the simulation parameters can be found in Table 2.
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5 NUMERICAL EXPERIMENTS

Figure 11: Kelvin-Helmholtz instability: evolution in time. Left: undulations appear on the gas
interface. Middle: clear vortices have developed. Right: vortices begin to smear and merge.
Simulation parameters can be found in Table 2.

Physical Phase space discretisation Time discretisation

m1 1 ∆x 2.5× 10−4 K0 1
m2 5 ∆y 2.5× 10−4 (= ∆x) K1 6
ε 10−6 ∆v 2.5× 10−1 ∆t0 5× 10−7 (= ε/2)

∆t1 2× 10−6 (= 2ε)
∆t2 6.25× 10−5 (= ∆x/4)

Table 3: Parameters for the Richtmyer-Meshkov instability test of Section 5.4.
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5 NUMERICAL EXPERIMENTS

Figure 12: Kelvin-Helmholtz instability: modulus of the total velocity v̄ and stream lines at
peak vorticity. Left: whole domain. Right: detail of a vortex. Simulation parameters can be
found in Table 2.

5.4 Richtmyer-Meshkov Instability (2D / 2D)

To conclude this section, we study the Richtmyer-Meshkov instability. This is a phenomenon
which takes place when the perturbed interface between a thin and a dense gas is momentarily
accelerated by a passing shock. The misalignment of the pressure gradient (due to the shock)
and the density gradient induces vorticity, which leads to the formation of a mushroom-like
interface4. A more detailed physical background, as well as experimental images, can be found
in [2]. This instability has been used to validate a lattice-Boltzmann method in [52].

We shall consider two gases with mass ratio m2/m1 = 5 in a rectangular domain Ω =

(−0.5, 0.5) × (0, 0.5). The Knudsen number is here chosen as ε = 10−6 in order to correctly
resolve the instability. The gases are initially separate: the first (lighter) gas occupies the
x ≤ b(y) region, with a perturbed boundary given by x = −10−2 sin(20πy), whereas the second
(heavier) gas lies in the rest of the domain. The initial configuration of the first gas is a normal
shock wave of Mach number Ma = 1.21 (inspired by [52]) propagating in the positive x-direction.
Its initial distribution is chosen according to the following Riemann datum:{

ρ1 = 1.268, v̄1,x = 0.256, v̄1,y = 0, p1 = 0.809, if x ≤ s0;

ρ1 = 1, v̄1,x = 0, v̄1,y = 0, p1 = 0.5, if x > s0;

s0, the initial position of the shock, is a negative constant. The second gas is initially stationary,
with density ρ2 = 5, and pressure p2 = 0.5 to ensure the boundary is initially not forced.
The initial distribution of the gases are the Maxwellians corresponding to these moments. For
convenience, in order to avoid the interface leaving the domain, all the horizontal velocities are
decreased by 7× 10−2.

4This instability is not to be confused with the related Rayleigh-Taylor instability, which arises on a perturbed
interface when the dense gas is accelerated continuously by the thin gas, rather than by a shock. More details as
well as experimental images can be found in [58]
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5 NUMERICAL EXPERIMENTS

Figure 13: Richtmyer-Meshkov instability: density of the second species and modulus of the
total momentum. Left: after the initial shock interaction, vortices arise. Right: the interface
is deformed into a mushroom-like shape. Simulation parameters can be found in Table 3.
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Figure 14: Richtmyer-Meshkov instability: modulus of the total velocity v̄ and stream lines at
the final time. Left: whole domain. Right: detail of the lower vortex. Simulation parameters
can be found in Table 3.

Figure 15: Richtmyer-Meshkov instability: detail of the gas interface (density of the second
species). Left: vortices appear. Right: mushroom-like interface is formed. Simulation parame-
ters can be found in Table 3.
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Numerically, the domain Ω is discretised with ∆x = ∆y = 2.5× 10−4 (400× 200 cells). The
velocity space is set as (−4, 4)2, with ∆v = 2.5× 10−1 (322 cells). In total, the phase space is
discretised with 81,920,000 cells. We impose outflow boundary conditions.

The solution is computed over the time t ∈ (−0.02, 1.0). We choose the negative initial
time and let s0 = 2.42× 10−2 so that the shock crosses the x = 0 line exactly at t = 0. We
employ the telescopic two-level method, with step sizes ∆t0 = 5× 10−7, ∆t1 = 2× 10−6, and
∆t2 = 6.25× 10−5, and inner steps K0 = 1 and K1 = 6. Once more, the inner steps follow the
pattern 4∆t0 = 2ε = ∆t1 and the outermost step is restricted by the hyperbolic CFL condition.
The use of telescopic projective integration decreases the computational cost by a factor of S ' 9,
as defined in Eq. (3.8).

Figure 13 shows the density of the heavier gas and the modulus of the total momentum of the
system at two different times. The gas interface is seen deforming as it develops a mushroom-
like shape. Vortices are visible on either side of the perturbation, and much of the system’s
momentum is found at the interface.

Figure 14 studies the vortices at the final simulation time. The figure shows the modulus of
the total velocity with streamlines, detailing the high speed along the lateral gas interface, and
offering a magnified view of the lower vortex.

Figure 15 offers a detailed view of the gas interface. The density of the heavier gas has been
recoloured to omit the extrema, highlighting only the density gradient. The vortex formation
and the deformation of the interface are particularly clear here.

A summary of the simulation parameters can be found in Table 3.

Appendix: Solving the Sod Tube Problem

We recall, for the sake of a complete exposition, the solution to the classical Sod Tube problem
and its generalisation to the two fluid setting, as can be found in the literature of hyperbolic
problems [42]. In the usual setting, the initial Riemann datum is given by the left (ρL, vL, PL)
and right (ρR, vR, PR) states:{

ρ = ρL, v = vL, P = PL, if x ≤ 0;

ρ = ρR, v = vR, P = PR, if x > 0.

x

t

Rarefaction

Co
nt

ac
t d

isc
.

Shock
wave

ρL, vL, PL

ρC,L, vC , PC ρC,R, vC , PC

ρR, vR, PR

Figure 16: Structure of the solution to the Sod Tube problem
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As the datum evolves, typically we observe two non-linear waves enveloping a new central region;
see Fig. 16 for a diagram. This region comprises two states, separated by a contact discontinuity.
Both have equal speed and pressure, vC , PC , but different densities, ρC,L, and ρC,R. We will
assume here PL ≥ PC ≥ PR, meaning the leftmost wave is a rarefaction, and the rightmost wave
is a shock.

The solution strategy involves first finding values vC , PC which are consistent with the
rarefaction/shock wave structure on either side. Given a guess for PC , the value of vC can be
computed from the left state using the Riemann invariants (quantities which are constant across
the rarefaction). The precise relation is

vrare(PC) = vL + 2cL

[
1−

(PC
PL

) γ−1
2γ

]
(γ − 1)

−1
,

where cL is the speed of sound on the left state, computed via c =
√
γP/ρ, and where γ is

the adiabatic exponent ; for an ideal monatomic gas, it is given by γ = 1 + 2/D, where D is the
dimension. Similarly, the value of vC can be computed from the right state using the Rankine-
Hugoniot conditions, which relate the quantities on either side of the shock. In this case, the
expression is

vshock(PC) = vR + 2cR

(
1− PCPR

)[
2γ

(
γ − 1 +

PC(γ + 1)

PR

)]− 1
2

.

A suitable value of PC can thus be found by solving vrare(PC) = vshock(PC). This determines the
value of vC also. Having established these, the densities on either side of the contact discontinuity
are found as

ρC,L = ρL

(PC
PL

) 1
γ

, ρC,R = ρR

(PC
PR

+
γ − 1

γ + 1

)(PC(γ − 1)

PR(γ + 1)
+ 1

)−1

.

A detailed derivation of these relations can be found in [55], for instance.
We now proceed to establish the spatial structure of the solution. The rarefaction, contact

discontinuity, and shock wave all radiate from the initial point of discontinuity. The head and
the tail of the rarefaction radiate at speeds vL − cL and vC − cC respectively. The contact
discontinuity travels at speed vC . Lastly, the shock propagates at speed s =

ρRvR−ρC,RvC
ρR−ρC,R . These

four speeds and their associated trajectories partition space into five intervals. The solution is
constant inside each interval, except inside the rarefaction wave, where it takes the form:

vrare(ξ) = [(γ − 1)vL + 2(cl + ξ)](γ + 1)
−1
, crare(ξ) = vrare(ξ)− ξ,

ρrare(ξ) =
[
ργLc

2
rare(ξ)(γPL)

−1
] 1
γ−1

, Prare(ξ) = ργrare(ξ)PLρ−γL ,
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where ξ = x/t. In summary, at time t and position x, the solution takes the form

ρ = ρL, v = vL, P = PL, if ξ ≤ vL − cL;

ρ = ρrare(ξ), v = vrare(ξ), P = Prare(ξ), if vL − cL ≤ ξ ≤ vC − cC ;

ρ = ρC,L, v = vC , P = PC , if vC − cC ≤ ξ ≤ vC ;

ρ = ρC,R, v = vC , P = PC , if vC ≤ ξ ≤ s;
ρ = ρR, v = vR, P = PR, if s ≤ ξ.

A two fluid Sod Tube problem can be constructed by considering two initially separate fluids,
in contact at the point x = 0; the left fluid with state (ρL, vL, PL), and the right fluid with state
(ρR, vR, PR). This datum generates a solution profile which is identical to the one described
above, and the two fluids simply remain unmixed, separated by the contact discontinuity [42].
This is true even if the fluids have different adiabatic exponents, in which case the solution is
calculated by using γL and γR respectively left and right of the contact discontinuity.
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