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Abstract

In this paper, we present a Tracking Nonlinear Model Predictive Control (NMPC) formulation for piece-wise constant reference
signals. In order to obtain a computationally efficient algorithm, we use quasi-Linear Parameter Varying (qLPV) embedding
to describe the nonlinear dynamics. Accordingly, we develop a recursive extrapolation algorithm, which estimates the future
values of the scheduling parameters along the prediction horizon with bounded estimation error. The proposed framework also
avoids feasibility losses due to large set-point variations, which are tracked thanks to an artificial feasible target variable, whose
distance to the real set-point is minimized through an additional offset cost. At each sampling period, an optimisation problem
is solved based on linear (scheduled) predictions; the average numerical toughness is comparable to a quadratic program.
Robust constraint satisfaction is achieved with zonotopes that propagate the uncertainty. These sets are computed with respect
to the one-step-ahead bounds of the qLPV scheduling sequence estimation error, offering reduced conservatism. Closed-loop
stability and recursive feasibility are provided with robust parameter-dependent terminal ingredients. A benchmark example
illustrates the performances of the proposed method, which is able to ensure reference tracking with reduced numerical demand
when compared to state-of-the-art techniques.

Key words: Tracking Model Predictive Control; Linear Parameter Varying Systems; Zonotopes.

1 Introduction

1.1 Context

Model Predictive Control (MPC) is indisputably well es-
tablished. Nevertheless, the application of robust Non-
linear MPC (NMPC) is not trivial and comes with in-
creased numerical burden, which may be an impediment
for real-time applications. The majority of stabilizing
NMPC schemes ensure regulation of the closed-loop dy-
namics to a fixed target [1]. Accordingly, asymptotic sta-
bility and constraints satisfaction are usually guaranteed
with terminal ingredients, which verify invariance condi-
tions in the neighborhood of the operation target. Nev-
ertheless, this design method is not valid for set-point
changes, since feasibility may be lost [6].

? This paper was not presented at any IFAC meeting. Corre-
sponding author M. M. Morato (marcelomnzm@gmail.com).

Therefore, there has been an increasing focus on NMPC
schemes for Tracking, considering time-varying set-
points. We highlight the following concrete Tracking
NMPC tools for piece-wise constant reference signals:
(i) the use of artificial reference signals, as proposed by
[8], which allows less conservative terminal constraints
and ensures feasibility is not lost; and (ii) the gener-
alisation of the prior for the case of periodic reference
signals with the use of terminal equality constraints or
online optimized terminal sets, as proposed by [7].

1.2 Motivations

In this paper, we also address the issue of tracking
possibly unreachable output target signals using state-
feedback NMPC, closely building upon these previous
papers. We address the following disadvantages of the
prior methods: (i) they require the online solution of
Nonlinear Programs (NPs), which are numerically ex-
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pensive and not viable for time-critical applications 1 ;
and (ii) no prediction model mismatches are considered,
which should be included in any real application.

We must mention that, in parallel to the theoretical es-
tablishment of NMPC, the Linear Parameter Varying
(LPV) toolkit has been brought to focus [17]. LPV mod-
els can be used to represent nonlinear dynamics with
the use of known, bounded scheduling parameters ρ [10].
Recent advances on NMPC algorithms have been pre-
sented by exploiting the quasi-LPV (qLPV) embedding,
thus enabling fast implementation, e.g.[11] and refer-
ences therein. The elegance of the qLPV approach is
that the ”full-blown” nonlinear predictions are replaced
by linear laws.

1.3 Contributions

With respect to this context, we develop a NMPC algo-
rithm for tracking, using nominal predictions obtained
through qLPV embedding. Up to our best knowledge,
qLPV-embedding NMPC has only been formalized for
regulation purposes [13,3].

Accordingly, as suggested in [7], the proposed solution
incorporates robustness qualities against model uncer-
tainties and additive load disturbances, using constraint
tightening under the framework of [15]. Based on the
one-step-ahead disturbance propagation, we enforce the
satisfaction of the performance requirements by binding
the prediction error within zonotope extensions [2].

The main novelties of this work are:

(1) A method for the recursive extrapolation of
scheduling parameters is developed (Sec. 3). The
extrapolation serves to compute the qLPV model
at each sampling instant, with bounded predic-
tion errors. Complementary, these bounds are used
to build the zonotopes that bind the uncertainty
propagation along the prediction horizon 2 .

(2) We also offer robust parameter-dependent terminal
ingredients, which ensure recursive feasibility and
stability (Sec. 4). A complementary optimisation
is proposed for the choice of the artifical reference
with relivied complexity.

(3) Finally, using a benchmark example, we demon-
strate that the numerical complexity of the pro-
posed online algorithm is, on average, comparable
to Quadratic Programs (QPs), being much faster
than the NPs from [8,7] (Sec. 5). This property is

1 We stress that the application results provided in [7] solve
the online NPs very fast, but relying on a solver-based solu-
tion (CaSaDi), which approximates the solution of the NPs.
2 The proposed method also considers bounded process dis-
turbances. The uncertainty propagation zonotopes offer a
direct extension for such case.

made viable due to the qLPV model realisation,
which enables linear predictions at each sampling
period.

Preliminary discussions and the overall problem setup
is presented in Sec. 2. General conclusions are drawn in
Sec. 6.

Remark 1 With respect to the Authors’ previous works,
we note that this paper enhances and generalises the
robust regulation algorithm from [12] for the case of
time-varying reference signals. The recursive extrapola-
tion procedure is a novel adaptation of the method from
[13], now with bounded residual.en

Notation. The index set N[a,b] represents {i ∈ N | a ≤
i ≤ b}, with 0 ≤ a ≤ b. The identity matrix of size j
is denoted as Ij ; Ij,{i} denotes the i-th row of Ij ; col{·}
denotes the vectorisation of the entries and diag{v} de-
notes the diagonal matrix generated with the line vec-
tor v. 1n×m stands for the n × m vector of unit en-
tries. The value of a given variable v(k) at time instant
k + i, computed based on the information available at
instant k, is denoted as v(k + i|k). K refers to the class
of positive and strictly increasing scalar functions that
pass through the origin. A C1 function f is such that
it is differentiable with continuous derivatives. In this
case, ∇T f : Rm → Rn×m denotes its Jacobian ma-
trix. Consider sets A,B ⊂ Rn, C ⊂ Rm and a matrix
R ∈ Rn×m. The Minkowski set addition is defined by
A⊕ B := {a+b | a ∈ A , b ∈ B}, while the Pontryagin
set difference is defined by A 	 B := {a | a⊕B ⊆ A}.
A linear mapping is RA = {y ∈ Rn : y = Ra, a ∈ A},
while the Cartesian product holds as A × C = {z ∈
Rn+m : z = (aT cT )T , a ∈ A, c ∈ C}.The unitary m-
dimensional box is denoted Bm∞ = {ξ ∈ Rm : ||ξ||∞ ≤
1}. The set of real compact intervals is given by I =
{[a, b], a, b ∈ R, a ≤ b}. An interval matrix J ∈ In×m
has mid(J) and rad(J) denoting its middle point and ra-
dius, respectively. ‖ · ‖ denotes the 2-norm.

2 Problem Statement

2.1 System Description

We consider the following qLPV-embedding of a nonlin-
ear system:

x(k + 1) = A(ρ(k))x(k) +B(ρ(k))u(k) + w(k)

y(k) = C(ρ(k))x(k) +D(ρ(k))u(k). (1)

where x ∈ Rnx represent the states, u ∈ Rnu the inputs,
and y ∈ Rny the outputs. We consider that the additive
disturbance w ∈ Rnx is bounded to a compact set with
the origin at its interior, in such a way that wk ∈ W ⊆
Rnx , ‖w‖ ≤ w.
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Remark 2 We note that any nonlinear system can be
embedded to a qLPV realisation, as long as (exact, lin-
ear, convex, convex-concave) differential inclusion is sat-
isfied. This is detailed in [18,11] and experimentally ex-
emplified in [4].

For set-operation simplicity, hard compact polyhedral
constraints on state and input (x(k), u(k)) ∈ Z = X ×
U are considered, which define admissible operation of
system given by:

X := {x ∈ Rnx : Hxx ≤ hx}
U := {u ∈ Rnu : Huu ≤ hu}. (2)

Outer box-type constraints 3 are implied: |xj | ≤
xj , ∀j ∈ N[1,nx] and |uj | ≤ uj , ∀j ∈ N[1,nu].
Y := {y ∈ Rny |Hyy ≤ hy} = h(Z) is a compact and
convex set which defines the possible outputs y mapped
by h(x, u) = A(fρ(x))x+B(fρ(x))u with (x, u) ∈ Z.

This qLPV model is scheduled by the state-dependent
time-varying parameter ρ(k) = fρ(x(k)) ∈ P ⊆ Rnρ ,
which is bounded and measured online (known). The
nonlinear scheduling map fρ(x) is algebraic, class C1 for
all x ∈ X , and set- and vector-wise applicable 4 .

Assumption 1 The nonlinear scheduling parameter
map fρ : X → P agrees to a local Lipschitz condition
around any arbitrary point x ∈ X , this is:

‖fρ(x)− fρ(x̂)‖∞ ≤ γρ‖(x− x̂)‖∞ , ∀x, x̂ ∈ X , (3)

where the smallest constant γρ that satisfies Eq. (3) is
known as the Lipschitz constant for fρ(·).

We consider P := {ρ ∈ Rnρ : ρ
j
≤ ρj ≤ ρj , j ∈

N[1,nρ]}. We stress that the future scheduling param-
eters ρ(k + j), ∀j ∈ N[1,∞] are unknown at time in-
stant k. Therefore, for the application of MPC, estimates
ρ̂(k + j|k) are used, as further detailed in Sec. 3.

Assumption 2 The scheduling variables ρ(k) exhibit
a bounded rate of variation. This is: δρ(k + 1) =
(ρ(k + 1)− ρ(k)) ∈ δP, with:

δP :=
{
δρj ∈ R : δρ

j
≤ δρj ≤ δρj ,∀j ∈ N[1,np]

}
. (4)

Remark 3 Bounds on scheduling parameters’ varia-
tions δP can be obtained based on their dependence on
the states ρ(k) = fρ(x(k)). Specifically, this can be done
by placing bounds 5 on δρ = fρ(A(fρ(x))x+B(fρ(x))u+

3 The bounds xj and uj can be found from Eq. (2) through
linear programming.
4 It follows that P ⊆ fρ(X ), as detailed in [3].
5 For such, the system must be ultimately bounded.

w)−fρ(x) for (x, u), (A(fρ(x))x+B(fρ(x))u+w, u) ∈ Z
and w ∈ W, either by interval arithmetics or optimisa-
tion.

2.2 Closed-Loop Paradigm

Through the sequel, we assume that the states x(k) are
measurable at each sampling instant. Therefore, in order
to limit the disturbance propagation, we consider the
following LPV state-feedback control law:

u(k) = v(k) +K(ρ(k))x(k), (5)

where the virtual input v(k) is used for the MPC synthe-
sis and the parameter-dependent feedback gain K(ρ(k))
is chosen in order to attenuate the propagation of distur-
bances. We assume that this gainK(ρ(k)) is structurally
known 6 . The closed-loop dynamics are thus given by:

x(k + 1) = (A(ρ) +B(ρ)K(ρ))x(k) +B(ρ)v(k) + w(k)

= Aπ(ρ)x(k) +B(ρ)v(k) + w(k) , (6)

and the process constraints (x(k), u(k)) ∈ Z can
be expressed in terms of state and virtual input by
(x(k), v(k)) ∈ Zπ, where:

Zπ :=

{
z ∈ Rn+nu :

(
Hx 0

HuK(ρ) Hu

)
z ≤

(
hx

hu

)}
. (7)

Given an initial condition x(k) ∈ Rnx , the closed-loop
trajectories for the following j steps through the qLPV
embedding are given by exploiting Eq. (6), which gives:

x(k + j) := φj(x(k),v[k+j−1],w[k+j−1], ρ[k+j−1]), (8)

being v[k+j−1], w[k+j−1], and ρ[k+j−1] the vectors of
future inputs, disturbances and scheduling parameters
from sample k to k + j − 1, respectively. Note that this
is a closed-loop model due to the stabilising feedback
K(ρ)x, with matrix Aπ(ρ) structurally known, being v
an external input (the MPC law).

Both the future disturbances (due to stochastic nature)
and future scheduling parameters (due to future state-
dependence) are unknown from the MPC viewpoint at
the sampling instant k. Therefore, we consider the fol-
lowing nominal prediction model:

x(k + j|k) = φj(x(k),v[k+j−1],0, ρ̂
k
[k+j−1]), (9)

where the future disturbances are presumably null
and the scheduling parameters estimates ρ̂k[k+j−1] =

6 Consider an affine gain K(ρ) =
∑nρ
i=1Kiρi. In this case,

Ki are assumed to be known.
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col( ˆrho(k|k), . . . , ˆrho(k + j − 1|k)) are provided by
the extrapolation algorithm from Sec. 3 at sam-
pling instant k. This model is equivalent to us-

ing: x(k + 1|k) = Aπ( ˆrho(k))x(k) + B(ρ)v(k|k),
x(k+ 1|k) = Aπ(ρ̂(k+ 1|k))x(k+ 1|k) +B(ρ)v(k+ 1|k),
and so forth, with estimates ρ̂ generated by the extrap-
olation algorithm detailed in Sec. 3.

2.3 Disturbance Propagation

Given a prediction horizon Np, we consider a group of
compact sets E(j), j ∈ N[0,Np−1] that bounds the differ-
ence between the scheduling parameter predictions made
in k and k+1. That is, we have ρ̂(k+j|k+1)−ρ̂(k+j|k) ∈
E(j), ∀j ∈ N[0,Np−1]

7 .

Due to the mismatch between nominal predictions in Eq.
(9) and real system trajectories in Eq. (8), we consider
one-step-ahead disturbance propagation sets S(j), j ∈
N[0,Np] [15] in order to guarantee recursive feasibility of
the MPC strategy.

Definition 1 One-step-ahead disturbance propagation
sets S(j), j ∈ N[0,Np] are compact sets that satisfy: (1)
S(0) contains W, and (2) For all xa, xb ∈ Rn, v ∈ Rnu ,
ρa, ρb ∈ P and j ∈ N[1,Np], with (xa, v) ∈ Zπ	(S(j−1)×
{0}), (xb − xa) ∈ S(j−1), and (ρb−ρa) ∈ E(j−1), it fol-
lows that (Aπ(ρb)xb +B(ρb)v)−(Aπ(ρa)xa +B(ρa)v) ∈
S(j).

Taking xa = x(k + 1|k) and xb = x(k + 1), we have, by
induction from Def. 1, that x(k+ j|k+1) ∈ x(k+ j|k)⊕
S(j − 1), ∀j ∈ N[1,Np+1] for any admissible sequence
of inputs v[k+j−1] and scheduling parameter predictions

ρ̂k[k+j−1] and ρ̂k+1
[k+j].

The sets S(j) thus bound the difference between the pre-
dictions made in k and k+ 1, and therefore can be used
to guarantee recursive feasibility and constraint satisfac-
tion of the MPC based on nominal predictions.

In order to compute zonotopic reachable sets Sz(j),∀j ∈
N[0,Np] that satisfy Def. 1, we develop Theorem 1, based
on Lemma 1.

Lemma 1 Consider a centered zonotope X = MBng∞ ⊆
Rm, an interval matrix J ∈ In×m, and a zonotope family
Z = JX = {Jx, J ∈ J, x ∈ X}. A zonotopic inclusion
is defined by:

�(Z) := mid(J)X ⊕ PBng∞ , (10)

7 BeingNp the prediction horizon, at time instant k, we only
need to predict ρ(k + j|k), j ∈ N[0,Np−1] in order to obtain
x(k + j|k) for j ∈ [1, Np]. We thus consider ρ̂(k + Np|k) =
ρ̂(k +Np − 1|k), ∀k ≥ 0.

where P is a diagonal matrix such that:

Pii =

ng∑
j=1

m∑
k=1

rad(J)ik|Mkj |, ∀i ∈ N[1,n] . (11)

It holds that Z ⊆ �(Z).

Proof 1 Refer to [14]. �

Theorem 1 Consider Z ⊆ Rnx+nu ,S0 ⊆ Rnx zono-
topes and A,∆A(j) ∈ Inx×nx ,∆B(j) ∈ Inx×nu inter-
val matrices satisfying W ⊆ S0, Zπ ⊆ Z, Aπ(ρ) ∈
A, Aπ(ρb(j)) − Aπ(ρa(j)) ∈ ∆A(j) and B(ρb(j)) −
B(ρa(j)) ∈ ∆B(j) for all ρ, ρa(j), ρb(j) ∈ P and j ∈
N[1,Np−1], with ρb(j)− ρa(j) ∈ E(j − 1). The zonotopes
Sz(j), j ∈ N[0,Np] defined recursively by Sz(0) = S0 and

Sz(j) = V(j)⊕ �(ASz(j − 1)), j ∈ N[1,Np], (12)

where V(j) is given by V(j) = �
((

∆A(j) ∆B(j)
)
Zπ
)

,

satisfy Def. 1.

Proof 2 The first condition is satisfied by design. Con-
sidering xa, xb ∈ Rnx , v ∈ Rnu , ρa, ρb ∈ Rnρ as given
by the second condition for some j ∈ N[1,Np], and ∆j =
(Aπ(ρb)xb +B(ρb)v)− (Aπ(ρa)xa +B(ρa)v), we have:

∆j = (Aπ(ρb)−Aπ(ρa))xa +Aπ(ρb)(xb − xa)

+ (B(ρb)−B(ρa))v

∈
(
∆A(j) ∆B(j)

)
Zπ ⊕ASz(j − 1)

⊆ V(j)⊕ �(ASz(j − 1)) = Sz(j).

Therefore, the sets S(j) satisfy Def. 1. �

Remark 4 In the case of qLPV systems with Aπ(ρ)
and B(ρ) affine 8 on ρ, it follows that Aπ(ρb(j)) −
Aπ(ρa(j)) = Aπ(ρb(j) − ρa(j)) and B(ρb(j)) −
B(ρa(j)) = B(ρb(j)− ρa(j)), with Aπ(·) and B(·) being
linear mappings. Then, the interval matrices ∆A(j) and
∆B(j) can be computed directly from E(j). In the case of
non-affine models, interval arithmetic or optimisation
can be used to obtain the interval matrices ∆A(j) and
∆B(j) from P and E(j).

Remark 5 Due to the zonotope inclusion and Minkowsky
sum, the number of generators of the zonotopes S(j)
increases for each iteration. Methods for complexity re-
duction can be used to restrict the number of generators
of each S(j) to a predefined value [16].

8 In this case, K must be parameter-independent such that
Aπ(ρ) = A(ρ) +B(ρ)K becomes affine.
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Remark 6 We stress that the qLPV model in Eq. (6)
requires a linear nominal prediction model, as in Eq. (9),
which changes at each sampling instant k, since it is
based on an estimation of the future scheduling parame-
ters. Therefore, the propagation of disturbances along the
horizon is crucial, but may yield conservative sets S(j)
due to the changes in ρ̂k[k+j−1]. Nonlinear predictions can

result in less conservative sets S(j), but also result in a
higher online computational burden.

Remark 7 A trivial choice for ρ̂k[k+j−1] would be

ρ̂k[k+j−1] = (ρ(k), . . . , ρ(k)), amounting to a frozen esti-

mation of the scheduling parameters. This would result
in E(j) = δP, simplifying calculations. Nonetheless,
the application of extrapolation algorithms, as the one
described in Sec. 3, allow for less variation between
ρ̂k[k+j−1] and ρ̂k+1

[k+j] and thus smaller sets E(j), reducing

the conservatism of the disturbance propagation.

2.4 Admissible Equilibrium Points

In this paper, we consider a state-feedback MPC strategy
in order to steer the system states to a steady-state con-
dition xr which implies in an output reference tracking
goal yr. Therefore, we use the MPC algorithm to min-
imize the variations of (x, u) from the desired set-point
targets (xr , ur), which implies in the output target yr.

Following the lines of [8], we consider that there exists
a linear (parameter varying) combination of the states
x and inputs u that ensures y(k) → yr. Through the
sequel, we assume that for all yr ∈ Y there exists a pair
zr = (xTr , u

T
r )T which satisfies[

(I−A(fρ(zr))) −B(fρ(zr))

C(fρ(zr)) D(fρ(zr))

]
zr =

[
0nx

yr

]
. (13)

We consider the set of admissible steady-state outputs
Ya ⊂ Y as the set of outputs generated by feasible
states and inputs that satisfy the equilibrium condi-
tion, i.e., Eq. (13) is satisfied for some zr ∈ Z, with
fρ(zr) ∈ P. More specifically, we have Ya := {y ∈
Y | y = [C(fρ(zr))D(fρ(zr))]zr, zr ∈ Z 	 Zξ, zr =
[A(fρ(zr))B(fρ(zr))]zr}, with Zξ being a auxiliary non-
empty set with the origin in its interior, included so that
the frontier of Z is excluded (Z 	 Zξ ⊂ Z).

We assume that Eq. (13) implies in an unique cor-
respondence between the steady-state output goal
yr and the pair zr. Thus, there exist locally Lip-
schitz continuous functions gx : Y → Rnx and
gu : Y → Rnu such that xr = gx(yr) and ur = gu(yr)
for all yr ∈ Ya. Complementary, we assume that
there exists a continuous functions gρ : Y → Rnρ
that maps the equilibrium scheduling parameter

ρr = gρ(yr). Note that gρ(yr) := fρ(gx(yr), gu(yr)) and
gv(yr) = gu(yr) − K(gρ(yr))gx(yr). For such unique
correspondence to exist, the left hand-side matrix in
Eq. (13) must be non-singular for all zr ∈ Z [8], which
means there must be no redundant inputs or outputs
as well as no integrator nodes in the qLPV dynamics in
Eq. (1).

2.5 Tracking NMPC Design

Consider admissible time-varying piecewise constant
output references yr ∈ Ya. Then, the nonlinear process
must be controlled in such way that the state trajec-
tories are suitably steered to xr, with a steady-state
control input ur, despite disturbances and the discrep-
ancy between the qLPV prediction model (9) and the
real system trajectories (8). We consider a prediction
horizon of Np steps.

As discussed in the prequel, we apply a robust NMPC
scheme, for which contracted constraints are used. Con-
sidering an initial constraint set Zπ(0) = Zπ, the fol-
lowing sets for j ∈ N[1,Np] are iteratively taken as:

Zπ(j + 1) =Zπ(j)	 (S(j)× {0}) . (14)

Therefore, at each sampling instant k, we measure the
state x(k), compute the scheduling parameter ρ(k), es-
timate the scheduling sequence ρ̂k[k+Np−1], and solve the

following optimisation problem, which embeds the per-
formance objectives of the system, as well as the opera-
tional constraints:

min
v[k,k+Np−1]

Np−1∑
j=0

`(x(k + j|k)− xr, u(k + j|k)− ur))

+V (x(k +Np|k)− xr) , (15)

s.t. :


x(k + j + 1|k) = Aπ(ρ̂(k + j|k))x(k + j|k)

+B(ρ̂(k + j|k))v(k + j|k), j ∈ N[0,Np−1],

(x(k + j|k), v(k + j|k)) ∈ Zπ(j), j ∈ N[0,Np−1],

x(k +Np|k) ∈ Xf ,

.

where `(·, ·) is a quadratic stage cost, V (·) is a terminal
cost, xr = gx(yr), ur = gu(yr) and Xf is a terminal
robust invariant set (more discussions on this matter are
presented in Sec. 4). Note that u(k + j|k) is implictly
defined through Eq. (5). From the optimal solution of
this problem v?[k,k+Np−1], we apply the first entry v?(k|k)

to the process according to Eq. (5).
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3 A Recursive Extrapolation Algorithm

In order to estimate the scheduling sequence ρ̂[k+Np−1],
we use a rather simple extrapolation mechanism. The
proposed method is an adaption of the framework in [13],
now using a first-order Taylor expansion of the schedul-
ing proxy fρ(x(k)) around the state deviation instead
of the Least-Squares rule. The main novelty is that the
generated residual is bounded.

We denote δx(k + j) = x(k + j + 1) − x(k + j)
as the incremental state deviation. This variable is
bounded 9 to a compact and convex box-type set
δX :=

{
δx ∈ Rnx : |δxj | ≤ δxj ,∀j ∈ N[1,nx]

}
.

The method is as follows: consider that the static
scheduling map fρ(x) can be approximated by:

fρ(x) = fρ(x)|x̆ +
∂fρ(x)

∂x

∣∣∣∣
x̆

(x− x̆) + ξρ , (16)

being x̆ the expansion point and ξρ a residual noise which
inherits the discrepancy between the real static map and
its approximate.

The map fρ(x) is class C1 in x, and we assume that
∂fρ(x)
∂x

∣∣∣
x̆

is ultimately bounded for all x̆ ∈ X . Thus, from

Eq. (16), we write:

fρ(x(k + j)) = fρ(x(k + j − 1)) + ξρ(k + j − 1) (17)

+
∂fρ

∂x(k + j)

∣∣∣∣
x(k+j−1)︸ ︷︷ ︸

f∂ρ (k+j−1)

δx(k + j − 1) .

Expanding Eq. (17) along the horizon gives:

ρ(k + 1) = ρ(k) + f∂ρ (k)δx(k) + ξρ(k) ,

...

ρ(k +Np − 1) = ρ(k +Np − 2) + ξρ(k +Np − 2)

+ f∂ρ (k +Np − 2)δx(k +Np − 2) .

It is a fact that ρ(k) and δx(k) are known variables at
each instant k, whereas f∂ρ (k) can be numerically evalu-

ated. In practice, f∂ρ (k+j) is unknown for j ∈ N[1,N−2].
Then, in order to construct the estimation mechanism,
we consider that f∂ρ (k+j) = f∂ρ ,∀ j ∈ N[1,N−2], where

f∂ρ denotes the partial derivative evaluated at instant k.

9 Bounds can be found from Eqs. (1)-(2) through interval
arithmetic.

By doing so, and disregarding the residual terms, it is im-
plied that ρ̂(k+j|k) = ρ̂(k+j−1|k−1)+f∂ρ δx(k+j−1|k).
This is: the estimate for the future scheduling variable
ρ̂(k+j|k) can be written as the sum of the estimate from
the previous sample ρ̂(k+j−1|k−1) with a adjustment
term f∂ρ δx(k + j − 1|k). Accordingly, we can write the
vector-wise extrapolation in a recursive fashion:

ρ̂k[k+Np−1] = (ρ̂k−1
[k+Np−1])

† + f∂ρ (δx[k+Np−2])
† , (18)

where the (·)† operator indicates a correction of the vec-
tors with the known terms 10 . If sought, a forgetting fac-
tor can be added to (ρ̂k−1

[k+Np−1])
†, multiplying the orig-

inal vector by an exponentially decaying term, such as
Ie−k/kmax . Such forgetting factor can be used to attenu-
ate the amount of mistaken information passed from the
scheduling sequence estimate ρ̂k−1

[k+Np−1] to the following

ρ̂k[k+Np−1]. We note that (δx[k+Np−1])
† can be computed

thanks to the nominal prediction model of Eq. (9), using

ρ̂k−1
[k+Np−1] and v[k+Np−1] as the solution of the previous

MPC iteration.

We stress that the recursive extrapolation law in Eq. (18)
does not ensure that the scheduling sequence estimates
abide to the scheduling parameter set P. Thus, each new
extrapolation vector ρ̂k[k+Np−1] is “clipped” with respect

to the bounds on ρ and δρ.

Lemma 2 Assume that input-to-state stability is en-
sured, despite the biased prediction model. Then, the re-
cursive extrapolation algorithm in Eq. (18) converges.
This is, after a finite amount of steps kc it holds that
limk→kc ρ̂

k
[k+Np−1] → ρkc[k+Np−1].

Proof 3 The convergence property can be demonstrated
with the aid of the residual term ξρ(k + j), which should
turn null. We demonstrate that this is true for j = 1;
the same holds for the following steps due to equiva-
lency. Considering that limk→∞ x(k + 1) = x(k), take
ξρ(k) = fρ(x(k + 1)) − fρ(x(k)) − f∂ρ δx(k). Due to
the stabilisation implied by the MPC, it directly fol-
lows that limk→∞ fρ(x(k + 1)) = limk→∞ fρ(x(k))
and limk→∞ δx(k) = 0. Then, limk→∞ ξρ(k) =
− limk→∞ f∂ρ δx(k) → 0. This concludes the proof. �

Lemma 3 The estimation error (residual) is ultimately
bounded to a convex set E ⊂ P. It follows that ‖ξρ‖∞ =(
γρ + f∂ρ

)
δx.

10 Note that at, instant k, the scheduling variable ρ(k) and

the state deviation δx(k) are known. Thus, (ρ̂k−1
[k+Np−1])

†

stands for ρ̂k−1
[k+Np−1] with the term ρ̂(k|k − 1) replaced by

ρ(k), whereas (δx[k+Np−1])
† stands for δx[k+Np−1] with the

term δx(k|k − 1) replaced by δx(k).
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Proof 4 The residual term from Eq. (17) is:

ξρ(k + j + 1) = fρ(x(k + j + 1))− fρ(x(k + j)) (19)

− f∂ρ δx(k + j) .

Using a triangular inequality, we have:

‖ξρ(k + j + 1)‖∞ ≤ ‖fρ(x(k + j + 1))− fρ(x(k + j))‖∞
+ ‖f∂ρ δx(k + j)‖∞ . (20)

As of Assumption 1, we have:

‖ξρ(k + j + 1)‖∞ ≤ γρ‖δx(k + j)‖∞ + ‖f∂ρ δx(k + j)‖∞ .

Since f∂ρ is ultimately bounded, i.e. ‖f∂ρ ‖∞ ≤ f∂ρ , it

follows that: ‖ξρ‖∞ =
(
γρ + f∂ρ

)
δx. Since ‖ξρ‖∞ < ρ,

E ⊂ P. This concludes the proof. �

Remark 8 We note that even if fρ(·) is not locally Lip-
schitz, different bounds for ‖ξρ‖∞ can still be computed,
since ξρ converges to zero as of Lemma 2. The computa-
tion of these bounds in not the focus of this paper.

4 Robust NMPC for Tracking

In this Section, we detail the proposed robust NMPC
scheme for Tracking. The proposed strategy holds sim-
ilarities to the tracking NMPCs from [8,7], but the
method is conceived with regard to nominal predictions
obtained through the qLPV model in Eq. (1). The use
of these nominal predictions makes our method faster
than the prior, since the resulting numerical toughness
is much closer to that of a QP. As done in [15], we use
constraint tightening, terminal cost and terminal con-
straints to ensure recursive feasibility and input-to-state
stability properties.

Firstly, we make reference to Remark 9 from [7]: the
NMPC propositions in previous references [8,7] provides
exponential closed-loop stability and recursive feasibil-
ity guarantees in the case of no model mismatch. Nev-
ertheless, this is rarely the case in any practical appli-
cation. When considering the qLPV predictions based
on an estimated scheduling sequence, as we do in this
paper, model mismatches inherently emerge. Therefore,
in order to ensure robust recursive feasibility and stabil-
ity (despite bounded disturbances and prediction mis-
matches), the MPC problem should be adjusted using
constraint tightening techniques [15]. This is what we
perform in this paper with the use of the zonotopes de-
tailed in Sec. 2.3. Through the sequel, we assume that
robust constraint satisfaction is guaranteed thanks to
the constraint tightening and the corresponding distur-
bance propagation zonotopes. Thence, we progress by
detailing the proposed MPC setting for the case of pos-
sibly unreachable output reference signals.

In order to potentially increase the closed-loop domain
of attraction and avoid loss of feasibility due to set-point
changes, we benefit from the artificial referencing mech-
anism from [8]. Instead of tracking the time-varying out-
put set-point yr we consider an additional decision vari-
able ya. The tracking convergence is then ensured with
the inclusion of an offset cost VO(ya − yr), which penal-
izes the deviation between the artificial output reference
ya and the real set-point yr.

The terminal set in (5) is adjusted to the tracking case,
instead of the origin, considering the equilibria defined
by any triad (xr, ur, yr) which verifies (13). Thus, we
consider a terminal Tracking Robust Positive Invariant
Set (TRPI set):

Definition 2 (Parameter-dependent TRPI Set)
Consider a set Γ(ρ) ⊆ Rnx+ny and a terminal con-
trol law ut = κt(x, yr). Γ(ρ) is a TRPI set for sys-
tem (1) if, for all (x, yr) ∈ Γ(ρ) and w ∈ S(Np),
(A(ρ)x+B(ρ)κt(x, yr)) + w, yr) ∈ Γ(ρ).

Remark 9 The TRPI sets differ from the Tracking Pos-
itive Invariant (TPI) sets from [8] due to the robustness
properties. The synthesis of TPI sets implicitly considers
that the real system trajectories and the nominal predic-
tions are identical.

The previous definition implies that once a given
state x and output reference yr are found inside the
parameter-dependent set Γ(ρ), the terminal control law
κt : Rnx+ny → Rnu ensures that any subsequent state,
with the same output reference, is also inside this set,
regardless of the bounded load disturbance w ∈ W.

Thus, based on the current state measurement x(k), the
estimated scheduling sequence ρ̂k[k+Np−1], and the cur-

rent output set-point yr, the NMPC optimisation (15)
is re-stated as follows, being gx(·) and gu(·) the non-
linear maps that convert steady-state output references
into state and input targets that satisfy Eq. (13), respec-
tively:

min
v̂,ya

Np−1∑
j=0

`(x(k + j|k)− xa, (v(k + j|k) + (21)

K(ρ̂(k + j|k))x(k + j|k))− ua)

+V (x(k +Np|k)− xa) + VO(ya − yr) ,

s.t. :



x(k + j + 1|k) = Aπ(ρ̂(k + j|k))x(k + j|k)

+B(ρ̂(k + j|k))v(k + j|k), j ∈ N[0,Np−1],

(x(k + j|k), v(k + j|k)) ∈ Zπ(j), j ∈ N[0,Np−1],

xa = gx(ya), ua = gu(ya)

(x(k +Np|k), ya) ∈ Γ(ρ(k +Np − 1))

.

In this problem, Zπ(j) represent the tightened con-
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straints, as previously detailed, and Γ the terminal set.
The set of states x(k) ∈ Xa(Np) such that this problem
has a feasible solution is called the domain of attraction
of the proposed controller 11 . We proceed by further
detailing the MPC costs `(·, ·), V (·), and the terminal
TRPI set Γ(·).

Assumption 3 (1) The stage cost function is positive
definite and uniformly continuous such that:

`(x, u)≥ α`(‖x‖)
|`(x1, u1)− `(x2, u2)| ≤ λx(‖x1 − x2‖) (22)

+ λu(‖u1 − u2‖),

where α`, λx and λu are K-functions.
(2) The set of admissible artificial references Yt =
{ya ∈ Rny : (gx(ya), ya) ∈ Γ(gρ(ya))} is a convex
subset of Ya(Np) = {ya ∈ Rny : (gx(ya), gv(ya)) ∈
Zπ(Np)}.

(3) The offset cost function is positive definite, uni-
formly continuous and convex, thus assuring that
the minimizer yoa = argminya∈Yt VO(ya − yr) is
unique, being VO(·) a weighted quadratic term. Fur-
thermore, for any yr ∈ Rny and ya ∈ Yt, we have
VO(ya− yr)−VO(yoa− yr) ≥ αO(‖ya − yoa‖), where
αO is a K-function 12 .

Assumption 4 (1) The terminal control law satisfies
κt(xa, ya) = ua for all admissible equilibrium points
(xa, ua, ya) 13 .

(2) The terminal set Γ is an admissible TRPI set. That
is, we have Γ as a subset of Λ(Np) = {(x, y) ∈
Rnx×Yt : (x, κt(x, y)) ∈ Z(Np)} 14 satisfying Def.
2 for the control law u = κt(x, y) and disturbances
w ∈ S(Np).

(3) The terminal cost function V (x − xa) is a Lya-
punov function for the unconstrained qLPV system
(1) such that for all (x, ya) ∈ Γ(ρ) there exist con-
stants b > 0 and σ > 1 such that V (x−xa) ≤ b|x−
xa|σ. Thus, we have: V (A(ρ)(x−xa) +B(ρ)κt(x−
xa, y))−V (x−xa) ≤ `(x−xa, κt(x, y)x−ua), where
xa = gx(ya) and ua = gu(ya).

Notice that the previous assumptions presented are sim-
ilar to the ones in [15] and [8], which develop control
strategies for robust regulation and nominal tracking re-
spectively, but herein extended to the robust case, with a

11 Notice that due to the freedom provided by the artificial
reference ya, the feasibility property becomes independent
of yr [8].
12 Notice that if the target output is admissible (yr ∈ Yt), the
minimiser is yoa = yr and the previous inequality is reduced
to VO(y) ≥ αO(‖y‖).
13 An evident explicit alternative for this terminal law is
κt(x, ya) = Kt(fρ(x))(x− gx(ya)) + gu(ya).
14 Note that Z(Np) is the set of points (x, u) such that u =
v +K(fρ(x))x with (x, v) ∈ Zπ(Np).

qLPV prediction model. Accordingly, we provide a com-
putationally elegant solution that can be used to com-
pute parameter-dependent qLPV terminal ingredients,
through the solution of some LMIs. The following The-
orems provide recursive feasibility and exponential sta-
bility guarantees for the qLPV system in Eq. (1) subject
to the MPC control law from Eq. (5). For the sake of pre-
sentation clarity, the proofs are provided in Appendix A.

Consider parameter-dependent TRPI set Γ(ρ) :=
Xf (ρ) × Yt, being Xf :=

{
x |xTP (ρ)x ≤ 1

}
an el-

lipsoidal terminal set. Furthermore, consider the sub-
level terminal cost V (x) = xTP (ρ)x and the terminal
qLPV feedback kt(x, y) = Kt(ρ)(x − gx(y)) + gu(y).
Note that the terminal scheduling parameter ρ is, by
definition, ρ = fρ(x). Since we seek x → gx(y), it is
implicitly implied that the terminal scheduling param-
eter is ρ = gρ(y). The NMPC optimisation can thus
be implemented with the following terminal constraint:
(x(k + Np|k), ya) ∈ Γ(ya) := Γ(fρ(ya)), where ya is a
free optimisation variable tuned through the offset cost
VO to track the actual set-point yr.

In order to detach this nonlinear dependency, we syn-
thesise ρ-dependent terminal ingredients, based on a
positive-definite matrix P (ρ). Likewise, we use a set
Xf (ρ) which is robust positively invariant regarding the
closed-loop dynamics (Eq (6)), in such way that Γ(ρ) is
a TRPI set.

Consider the tracking system e(k + j|k) = x(k + j|k)−
gx(y), with gx(y) (piece-wise) constant and x(k + j|k)
being the nominal qLPV predictions from Eq. (9). We
denote w†(k + j) := w(k + j) + ∆j as the resulting
(bounded) uncertainties (load disturbance summed to
the model-process mismatch due to the differences be-
tween ρ̂(k+ j|k) and ρ(k+ j)). Considering the nominal
law u(k) = kt(x, y), it follows that:

e(k + j + 1|k) =Aπ(ρ̂(k + j))e(k + j|k) + θ(k + j) ,(23)

θ(k + j) = (A(ρ̂(k + j))− Inx)gx(y) (24)

+B(ρ̂(k + j))gu(y) + w†(k + j) ∈ Θ.

Accordingly, the following Theorems ensure that the er-
ror dynamics in Eq. (23) converge to the origin (i.e.
tracking is ensured).

Theorem 2 from [9]
Consider Assumptions 3 and 4 hold. Suppose the there
exists a terminal control law u = Kt(ρ)(x − gx(y)) +
gu(y). Consider that the MPC is given by Eq. (21), with
a terminal state set given by Xf (ρ) and a terminal cost
V (x, ρ). Then, input-to-state stability is ensured if the
following conditions hold ∀ρ ∈ P:
(C1) The origin e = 0 lies in the interior of Xf (ρ);
(C2) Any consecutive error to e, in closed-loop given by
e+ = Aπ(ρ)e+ θ lies within Xf (ρ);
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(C3) The discrete Lyapunov equation is verified within
this invariant set, this is, ∀x ∈ Xf (ρ), ∀ ρ ∈ P, and
∀ δρ ∈ δP: V (e+, ρ+ δρ) − V (e, ρ) ≤ −`(x, kt(x, y) −
gu(y)).
(C4) The image of the terminal feedback lies within the
admissible control domain: Kt(ρ)(x− gx(y)) + gu(y) ∈
U , ∀ρ ∈ P.
(C5) The terminal set Xf (ρ) is a subset of X .

Assuming that the initial solution of the MPC problem
v?[0,Np−1] is feasible, then, the MPC is recursively feasible,

steering e = (x− gx(y)) to the origin.

Theorem 3 Tracking Robust Positive Invariant Set
Assume that there exists an ellipsoidal terminal set
Xf (ρ). Xf is a robust positively invariant set iff, for any
e ∈ Xf and ρ ∈ P, i.e. eTP (ρ)e ≤ 1, it follows that
(e+)TP (ρ + δρ)e+ ≤ 1, i.e. the successor state e+ is
also inside Xf , which implies in:

(Aπ(ρ)e+ θ)TP (ρ+ δρ)(Aπ(ρ)e+ θ)≤ 1 . (25)

Then, Γ(ρ) is a TRPI for system (1) as follows:

Γ := {(x, y) ∈ Rnx×ny | (x− gx(y)) ∈ Xf (ρ), (26)

h(x,Kt(ρ)(x− gx(y) + gu(y)) ∈ Yt} .

Theorem 4 Terminal Ingredients
Conditions (C1)-(C5) of Theorem 2 and the inequal-
ity of Theorem 3 are satisfied if there exist a symmet-
ric parameter-dependent positive definite matrix P (ρ) :
Rnp → Rnx×nx , a parameter-dependent rectangular ma-
trix W (ρ) : Rnp → Rnu×nx , and a scalar λ ∈ ]0, 1] such
that Y (ρ) = (P (ρ))−1 > 0, W (ρ) = Kt(ρ)Y (ρ)
such that LMIs (27)-(28) and the BMI (29) hold for
ρ+ = ρ + δρ for all ρ ∈ P and δρ ∈ δP, and θ and w†

given as the vertices of Θ and S(Np), respectively, under
the minimization of log det{Y (ρ)}.

Remark 10 The BMI in Theorem 4 can be solved
through simple bisection search over the optimization
plane since 0 < λ ≤ 1, by construction, as argues [19].

Remark 11 Theorem 4 provides infinite-dimensional
inequalities, which must hold ∀ ρ ∈ P and ∀ δρ ∈ δP.
In practice, the solution can be found by enforcing the
inequalities over a sufficiently dense grid of points (ρ, δρ)
along the P × δP plane. Then, the solution can be veri-
fied over a denser grid. The parameter-dependency of P
may be dropped if the system is quadratically stabilizable,
but this may result in quite conservative performances.

Proposition 1 (Recursive Feasibility) Let there ex-
ist a solution Y (ρ) to Theorem 4. Then, given any x ∈
Xa(Np), yr ∈ Rny and u = κ(x, yr), we have x+ =
A(fρ(x))x + B(fρ(x))u + w ∈ Xa(Np), ∀w ∈ W. Con-
sider an optimal sequence v̂? = (v?0 , v

?
1 , . . . , v

?
Np−1) and

an optimal artificial target y?a(x, yr) = y?a. Then v̂c =
(v?1 , . . . , v

?
Np−1, κt(x(k+Np|k), y?a)−ua) and yca = y?a de-

fine feasible (candidate) solution of the MPC problem in
Eq. (21) for any yr ∈ Rny and w ∈ W. This means that
the NMPC optimisation in (21) is recursively feasible.

Proposition 2 (Error ISS) Let there exist a solution
Y (ρ) to Theorem 4. Then, the qLPV system (1) in closed
loop with the MPC input (5) has uniformly exponentially
input-to-state stable error dynamics (as of Eq. (23)).
That is, for any feasible initial condition x0 and constant
set-point yr ∈ Rny , with w(k) ∈ W, it is implied that:

‖x(k)− xa(k)‖ ≤ β(‖x(0)‖ , k) + γ(w), (30)

where β and γ are respectively a KL-function and a K-
function and w is such that ‖w(k)‖ ≤ w, ∀k.

Remark 12 Note that for an admissible equilibrium
state xa the virtual control sequence v̂ = (va, . . . , va),
where ua = va + Kxa, with artificial reference ya
is admissible, since it maintains the system at xa.
Therefore, the set of admissible equilibrium states
Xs(Zπ(Np),Yt) = {x ∈ Rnx : ∃ua ∈ Rnu , (xa, ua) ∈
Zs(Zπ(Np)), h(xa, ua) ∈ Yt} is a subset of Xa(Np) and
feasibility is not lost through set-point changes.

Remark 13 The feasible candidate (v̂c, yca) can be used
as a starting point for (21) in order to reduce computa-
tional load.

Remark 14 In general, the functions gx(·) and gu(·) are
not explicitly known. Therefore, rather than considering
the constraints xa = gx(ya) and ua = gu(ya), we can
include xa and ua as additional decision variables and
enforce the analogous constraints xa = A(fρ(xa))xa +
B(fρ(xa))ua, ya = C(fρ(xa))xa +D(fρ(xa))ua.

4.1 Artificial Reference Choice

The addition of the artificial reference ya ∈ Yt pre-
vents feasibility loss due to changes in set-point or non-
admissible targets. However, it significantly increases the
computational cost of the MPC optimization problem by
introducing the new decision variable ya and associated
nonlinear constraints xa = gx(ya) and ua = gu(ya).

In the sequel, a method for avoiding such additional com-
putational burden is presented. First, consider the op-
timal admissible target yoa = argminya∈Yt VO(ya − yr)
and a feasible candidate artificial target 15 yca. Let yαa be
a convex combination of yca and yoa, i.e. yαa = (1−α)yca+
αyoa, for an α ∈ [0, 1]. Note that, from the convexity of

15 From the Recursive Feasibility property (Theorem 1), the
previous artificial reference y∗a(xk−1, yr) can be used as the
candidate yca.
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

Y (ρ) (A(ρ)Y (ρ) +B(ρ)W (ρ))T Y (ρ) WT (ρ) 0 (A(ρ)Y (ρ) +B(ρ)W (ρ))T 0 0

(A(ρ)Y (ρ) +B(ρ)W (ρ)) Y (ρ+) 0 0 θ Y (ρ+) 0 0

Y (ρ) 0 Q−1 0 0 0 Inx 0

W (ρ) 0 0 R−1 0 0 0 Inx
0 θT 0 0 0 θT 0 0

(A(ρ)Y (ρ) +B(ρ)W (ρ)) Y (ρ+) 0 0 θ Y (ρ+) 0 0

0 0 Inx 0 0 0 Inx 0

0 0 0 Inx 0 0 0 Inx


≥ 0 , (27)

(a)

 (ui − Inu,{i}ur)2 Inu,{i}W (ρ)

(Inu,{i}W (ρ))T Y (ρ)

 ≥ 0 , ∀i ∈ N[1,nu] , (b)

 (xi − Inx,{j}xr)2 Inx,{j}Y (ρ)

(Inx,{j}Y (ρ))T Y (ρ)

 ≥ 0 , ∀j ∈ N[1,nx] , (28)


λY (ρ) (A(ρ)Y (ρ) +B(ρ)W (ρ))T 0 (A(ρ)Y (ρ) +B(ρ)W (ρ))T

(A(ρ)Y (ρ) +B(ρ)W (ρ)) Y (ρ+) θ Y (ρ+)

0 θT (1− λ) θT

(A(ρ)Y (ρ) +B(ρ)W (ρ)) Y (ρ+) θ Y (ρ+)

 > 0 . (29)

Yt, yαa ∈ Yt. Thus, consider the following auxiliary opti-
mization problem:

max
v̂,α

α (31)

s.t. :



x(k + j + 1|k) = Aπ(ρ̂(k + j|k))x(k + j|k)

+B(ρ̂(k + j|k))v(k + j|k), j ∈ N[0,Np−1],

(x(k + j|k), v(k + j|k)) ∈ Zπ(j), j ∈ N[0,Np−1],

α ∈ [0, 1]

(xk+Np|k, y
α
a ) ∈ Γ(yαa )

,

Based on the solution α∗ of (31), we can then solve
the simpler optimization problem (15), with yr = (1 −
α∗)yca + α∗yoa, to obtain the optimal control sequence
v?[k,k+Np−1]. This two-step optimization is analogous to

(21) with an arbitrarily large offset cost VO(·) (priori-
tizing the proximity of the artificial target from the op-
timum yoa) and the added restriction that ya must be
inside the line segment [yca, y

o
a].

Remark 15 Note that if, for some time instant k, the
solution of (31) is α∗ = 1, we will have, assuming a
constant reference, yca = yoa for the future instants. The
auxiliary problem (31) thus becomes irrelevant until there
is a change on yr.

Remark 16 Since α is a real scalar in [0, 1], an alter-
native to the optimisation in Eq. (31) is to perform a bi-

section 16 mechanism with αck ∈ [0, 1]. By doing so, we
test the feasibility of (15) for a given αck. If the problem
is feasible, we apply the correspondent control law; oth-
erwise, we take α = 0 (which is by definition feasible).
A viable choice of candidates αck, in order to ensure the
convergence of ya to yoa, can be of αck = 1 if αck−1 was

feasible and αck = 1
2α

c
k−1 if not (bisection). This reduces

the computational complexity to a maximum of two op-
timization problems given by (15), without the undesired
nonlinearities.

5 Results

5.1 Application and qLPV Embedding

In this Section, we use a numeric 17 benchmark from the
literature to demonstrate the properties and effective-
ness of our method. We adapt the cascaded tank process
from [5], considering the interconnection of two tanks,
with an open hole at the bottom of the first tank, which
leaks fluid to the second. The latter has a pump at its
end, regulated by a local proportional controller. The

16 In order to preserve the ISS property, this bisection search
should also ensure that the terminal offset cost decays with
the new artificial target, this is: V (x(k + 1|k)− gx(yαa )) −
V (x(k|k)− gx(yca)) ≤ −‖x(k|k)− gx(yca)‖Q.
17 All the results presented in the sequel were obtained in a
2.4 GHz, 8 GB RAM Macintosh computer.
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resulting nonlinear level dynamics are:

dh1(t)

dt
=−

a
√

2gh1(t)

A1
+

γ

A1
u(t) ,

dh2(t)

dt
=
a
√

2gh1(t)

A2
− k

A2
h2(t) .

Each hi(t) represents the water level at the i-th tank;
u(t) represents the tension applied for the main pump,
for which the corresponding flow is γu(t). We are mainly
interested with the dynamics of y(t) = h1(t). The tank
cross sections Ai are of 1 cm2, while the outlet hole cross
section a is of 0.05 cm2. The pump parameter γ is of
1.4 cm3/Vs. The proportional coefficient k is of 1.1. The
process constraints are: hj ∈ [1, 10] cm,∀j ∈ N[1,2] (level,
process variable); u ∈ [0, 5] V (pump flow, control input).
This nonlinear model is Euler-discretized with Ts = 250
ms, and qLPV-embedded to Eq. (1) with:

A(ρ) =

[
(1− Tsa

√
2g

A1
ρ) 0

Tsa
√

2g
A2

ρ (1− Tsk
A2

)

]
, B(ρ) =

[
Tsγ
A1

0

]
,

ρ= fρ(x) = (x1)−0.5 ∈ [0.3, 1] cm−0.5 .

In order to compute the bounds on δρ, one can use either
constrained optimisation or interval arithmetic methods
as described in Remark 3. The obtained bounds are de-
fined through δρ :=

{
δρ ∈ R1 : −0.034 ≤ δρ ≤ 0.0052

}
.

The process is subject to bounded additive uncertain-
ties ‖w(k)‖∞ ≤ 0.05 cm. In the sequel, we compare
the proposed robust qLPV NMPC with the NMPC for
Tracking algorithm from [8].

5.2 Terminal Ingredients

Consider the convex output tracking set Yt := [1 , 10]
cm. The output steady-state condition from Eq. (13)

implicitly defines gx(yr) =
[
yr

a
√

2gyr
k

]T
and gu(yr) =

a
√

2gyr
γ . We use a prediction horizon of Np = 4 steps

and the quadratic stage cost `(x, u) = ‖x‖2Q+‖u‖2R with
Q = Inx and R = 1.

In order to synthesise the terminal ingredients via The-
orem 4, we partition the output set Yt into ten par-
titions, thus finding one parameter-dependent RPI set
Γ(ρ, yr), for which yr parametrises the partitions, i.e.
yr ∈ [1, 2] or (2, 3] or (3, 4], and so on up to (9, 10]. For
the NMPC algorithm, we use terminal ingredients syn-
thesised through the procedure from [8, Appendix B].

Figure 1 shows the parameter-dependent TRPI sets (for
frozen values of ρ ∈ P) used for the proposed algorithm
and the quadratic TPI sets used for the NMPC algo-
rithm [8]. All sets are translated to from the error co-
ordinates (x − xr) to the state coordinates x, centered

0 1 2 3 4 5 6 7 8 9 10 11

x
1
 (cm)

1

2

3

4

5

6

7

8

x
2
 (

c
m

)

Parameter-dependent TRPI Set 

(Proposed qLPV NMPC for Tracking)

Quadratic TPI Set 

(NMPC for Tracking - Limón et al., 2018 [13])

Fig. 1. Synthesised TRPI set partitions Γ(ρ) and the
quadratic TPI set partitions.

Fig. 2. Scheduling Sequence Estimates ρ̂k[k+Np−1] at different

samples k and estimation error ξρ (and bounds).

at the different state targets xr of each partition. As we
can see, Theo. 4 generates sufficiently a large terminal
region, meaning that any reference point yr ∈ Yt can be
tracked.

5.3 Scheduling Sequence Estimation

Before presenting the actual control results, we pro-
vide the scheduling sequence extrapolation estimates
obtained with the recursive method presented in Sec.
3. As detailed in Lemma 2, convergence is indeed ver-
ified. The obtained bounds for the estimation error
are ‖ξρ‖∞ ≤ 0.015 cm−0.5, as shown in Fig. 2. The
extrapolation mechanism offers very precise estimates
ρ̂k[k+Np−1], which means that the nominal qLPV predic-

tions obtained through Eq. (9) are very close to the real
system trajectories of Eq. (8) and thus the disturbance
propagation along the horizon is reduced.

5.4 Disturbance Propagation

Now, we show the disturbance propagation reachable
sets S(j),∀j ∈ N[0,Np] for the proposed algorithm,
considering the zonotope disturbance propagation
paradigm. Note that S(0) stands for the load distur-
bance set W; the following zonotopes comprise the
propagation of the load disturbances and the model-
process mismatches along the horizon. Thse sets are
computed according to Theorem 1. In Fig. 3, we show
the collection of sets S(j) over the x1 × x2 plane (Def.
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Fig. 3. Zonotopic sets S(j).

1). We recall that the vertices of S(Np) were used to
construct the terminal ingredients through Theorem 4.

5.5 Simulation Scenarios

We consider two different simulation scenarios. Since the
NMPC algorithm from [8] is not robust by design, we
first consider and compare the obtained tracking per-
formances of both algorithms, without the presence of
load disturbances (i.e. with w nil). Then, we consider
the disturbance rejection robust performances solely of
the proposed robust algorithm.

5.6 Nominal Tracking Performances

Considering a step-like piece-wise constant output tar-
get signal which passes through yr = 9, 5, 4 and 2 cm, the
obtained tracking performances with both algorithms
are shown in Fig. 4: sub-figure (a) presents the resulting
state, input and output trajectories, while sub-figure (b)
shows the state phase plane and the terminal sets. Com-
plementary, Fig. 5 provides the values for the artificial
reference tuning variable α for the proposed mechanism.

As we can see, the obtained tracking performances with
both methods are offset-free steady-state output points.
The proposed method ensures slightly faster conver-
gence than the original NMPC for Tracking scheme
from [8].

The main advantage resides in its simpler implemen-
tation, of QP-alike numerical burden, enable through
the qLPV embedding. With the qLPV model, nonlinear
mapping do not have to be solved internally by the opti-
misation procedure. The proposed qLPV NMPC mech-
anism requires only the operation of: one linear recur-
sive law (Eq. (18)) and one QP problem (Eq. (21)). In
the moments of reference changes, one bisection search
(Remark 16) is also required, which increases the num-
ber of QPs to at most 5 iterations. In contrast, the orig-
inal NMPC for Tracking requires the solution of an NP-
hard optimisation problem per sampling instant, which
is numerical-wise much harder.

In order to better compare the two tracking controllers,
we assess the obtained performance results with perfor-
mance indexes, presented in Table 1. We discuss them:

• Firstly, we note that there is an overall performance
enhancement: there is a small decrease on the inte-
gral of absolute output tracking error (IAE) w.r.t.
[8], of roughly 12 %.

• Complementary, we stress that the generated con-
trol input is smoother with the proposed method:
we obtain 43 % reduced total variance (TV) of the
control signal.

• Furthermore, the average computational time
needed to solve the control problem (tc) is over
44 % smaller with the proposed qLPV method.
This is very significant, since this is a small sys-
tem (nx = 2). The complexity of the NP solution
from [8] grows exponentially with (Np×nx), which
can a serious issue with time-critical systems. The
proposed method has QP-alike burden, thus tc
grows linearly with (Np × nx), which means it is
readily-conceived for embedded applications.

• Finally, note that the model-process discrepancies
(differences between Eqs. (8) and (9)) are very well-
handled with the zonotopic constraint-tightening
approach, since the generated sets S(j) are small
(Fig. 3). This corroborates previous discussions in
the literature indicating this option as a promising
alternative, see e.g. [7]. We also stress that the ter-
minal ingredients conceived with the proposed The-
orem generate sufficiently large terminal sets, able
to guarantee recursive feasibility for a rather larger
output set.

5.7 Robust Tracking Performances

In order to illustrate the robustness properties of the
proposed algorithm, we provide a second simulation sce-
nario 18 . Consider three uniformly random disturbance
sequences with unitary seeds, multiplied by decaying ex-
ponential terms, as illustrated in Fig. 6.

In Fig. 7, we show the state and output behaviours w.r.t.
a step-like output target goal yr. Clearly, robust stability
is ensured: as the load disturbance sequences dissipate,
the error trajectories (x − xr) converge to the origin;
moreover, while w(k) is non-null, the states stabilize at
constant steady-states regimes, as close as possible to
xr. The average tracking error when disturbances are
present is of 5.68 %, which is arguably small.

18 We opt not to test the method from [8] against load dis-
turbances since it is not a robust algorithm, which would in
turn result in an unfair comparison.
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Table 1
Performance Comparison.

Method IAE :=
∑
k ‖yr(k)− y(k)‖ TV :=

∑
k ‖u(k + 1)− u(k)‖ tc

NMPC for Tracking [8] 108.23 35.93 90.53 ms

Proposed qLPV NMPC for Tracking 95.31 20.44 50.55 ms
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Fig. 4. Nominal Performances: Proposed qLPV NMPC vs.
NMPC for Tracking [8].
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6 Conclusion

In this paper, we provided a novel Tracking NMPC
algorithm through qLPV embedding. The method is
based on the recursive estimation of the future qLPV
scheduling trajectories, made available through a simple
Taylor expansion. The propagation of the model-process
prediction mismatches along the NMPC horizon are
bounded with zonotopes. Furthermore, we provide an
LMI-solvable remedy for the case of bounded additive
disturbances, which computes a robust LPV feedback
gain and parameter-dependent terminal ingredients.
The derived tracking robust positive invariant set en-
sures recursive feasibility of the optimisation proce-
dure as well as input-to-state stability of the process.
We compare our method against the nominal track-
ing NMPC framework from [8], considering a cascaded
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Fig. 6. Disturbance Scenario.
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Fig. 7. Robust Performances: States and Output.

tanks benchmark system. We find very similar tracking
performances with much smaller computational stress
with the proposed scheme, which benefits from the lin-
ear predictions of the qLPV realisation. The method is
ready for embedded applications (the online stress is
similar to that of a QP) and offers robustness towards
bounded load disturbances with reduced conservatism.
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A Proofs of Theorems and Propostions

A.1 Proof of Theorem 2

This proof is standard and basically gathers the sufficient
conditions from Assumptions 3 and 4. Refer to [9]. �

A.2 Proof of Theorem 3

It is trivial to verify Eq. (25) by using x(k), x(k + 1) ∈
Xf ,∀k ∈ N and y = h(x,Kt(ρ)(x−gx(y))+gu(y)) ∈ Yt.
�

A.3 Proof of Theorem 4

We begin by showing the positive invariance of the ellip-
soid. Applying the S-procedure, with λ > 0 to (25) and(
1− eTP (ρ)e ≥ 1

)
, we get:

1− (Aπ(ρ)e+ θ)TP (ρ+)(Aπ(ρ)e+ θ)

−λ
(
1− eTP (ρ)e

)
> 0 ,

which can be rewritten as:

(
eTP (ρ) Inx

)[N11 N12

N21 N22

]
︸ ︷︷ ︸

N

(
P (ρ)e

Inx

)
> 0 , (A.1)

with N > 0 and:

N11 = λY (ρ)−ATπ (ρ)Y T (ρ)P (ρ+)Aπ(ρ)Y (ρ) , (A.2)

N12 =−ATπ (ρ)Y T (ρ)P (ρ+)θ , (A.3)

N21 =−θTP (ρ+)Aπ(ρ)Y (ρ) , (A.4)

N22 = (1− λ)− θTP (ρ+)θ . (A.5)

Applying a Schur complement over P (ρ+δ) for eachNij
leads to (29). This ensures Theorem 3.

Complementary, we proceed by demonstrating that the
resulting P (ρ) satisfies all five conditions of Theorem 2.
(C1) trivially holds due to the ellipsoidal form of Xf .
(C2) is verified due to the fact that Xf is a sub-level set
of the terminal cost V (·). Therefore, if condition (C3) is
verified, (C2) is consequently ensured.

The discrete Ricatti condition (C3) is verified through
the solution of LMI (27). Since Q−1 > 0, R−1 > 0 and
Y (ρ+ δρ) > 0, we apply two consecutive Schur, comple-
ments, which leads to:

(
eTP (ρ) Inx

)[M11 M12

M21 M22

]
︸ ︷︷ ︸

M

(
P (ρ)e

Inx

)
≥ 0 , (A.6)
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with M ≥ 0 and:

M11 = Y (ρ)− Y T (ρ)QY (ρ)−WT (ρ)RW (ρ) (A.7)

− Y T (ρ)ATπ (ρ)P (ρ+)Aπ(ρ)Y (ρ) ,

M12 =−Y (ρ)ATπ (ρ)P (ρ+)θ , (A.8)

M21 =−θTP (ρ+)Aπ(ρ)Y (ρ) , (A.9)

M22 =−θTP (ρ+)θ . (A.10)

Using e = eP (ρ)Y (ρ) and W (ρ) = Kt(ρ)Y (ρ) leads to:

(Aπ(ρ)e+ θ)TP (ρ+)(Aπ(ρ)e+ θ)− eTP (ρ)e (A.11)

+eTQe+ eTKT (ρ)RKt(ρ)e≤ 0 .

This inequality is a sufficient condition for (C3) with
V (·) as a sub-level of Xf .

The fourth and fifth conditions (C4-C5) are veri-
fied by the direct application of the Schur comple-
ment to Eq. (28a) and Eq. (28b), respectively, using
W (ρ) = Kt(ρ)Y (ρ). They lead, respectively, to:

(
ui − Inu,{i}ur

)2 ≥ (A.12)(
Inu,{i}Kt(ρ)

)
Y (ρ)P (ρ)Y (ρ)

(
Inu,{i}Kt(ρ)

)T
.

Since the maximum normed Fe of an e that belongs to
some ellipsoid eTPe ≤ 1 is given by

√
F (P−1)FT , it

holds that the first inequality implies that the projection
Inu,{i}Kt(ρ)e (i.e. i-th control signal) is upper-bounded,
in norm, by ui − Inu,{i}ur, which satisfies (C4). Analo-
gously, LMI (28b) ensures that the projection Inx,{j}x
(i.e. j-th state) is norm-bounded by xj−Inx,{j}xr, which
satisfies condition (C5). This concludes the proof. �

A.4 Proof of Proposition 1 (Recursive Feasibility)

Let Assumptions 3-4 hold. Consider there exists a so-
lution Y (ρ) to Theorem 4. Then, from conditions (C1),
(C2), (C4), and (C5) from Theorem 2, we can infer that
the generated control signal provides recursively feasi-
ble solutions to the NMPC optimisation in (21). Take
κ(x, yr) = Kt(ρ)(x − gx(yr)) + gu(yr) with ρ = fρ(x)
(implied implicitly through the qLPV prediction model).
Then, the if the initial condition x(0) generates a feasi-
ble v̂, all future iterations of the optimisation will also
be feasible: the generated control law control is admissi-
ble (condition (C4)) and all state variables x ∈ Xf gen-
erate successor state variables x+ which are also inside
Xf (condition (C2)), which contains the origin (condi-
tion (C1), terminal condition for (x−xr) = (x−gx(yr))
and is a sub-set of X (condition (C5), which ensures that
x, x+ are admissible). This concludes the proof. �

A.5 Proof of Propostion 2 (Error ISS)

Let there be a terminal stage cost V (·) such that As-
sumption 3 holds. Let Assumption 4 also hold and The-
orem 1 be verified. Note that since `(x− xa, u− ua) is a
quadratic stage cost ‖x− xa‖2Q + ‖u− ua‖2R, α`, γx and

γu indeed exists. Consider there exists a solution Y (ρ) to
Theorem 4. Then, the closed-loop is stable due to (C3)
of Theorem 2, which conversely ensures that

δV (k) = V (x(k)− xa(k))

− V (x(k − 1)− xa(k − 1))

≤−‖x(k)− xa(k)‖Q + γV (w) .

Assume that limk→+∞ ya(k) → yoa. Analogously, use
limk→+∞ xa(k) → xoa := gx(yoa). Then, thanks to the
error dynamics in Eq. (23), we obtain:

‖x(k)− xa(k)‖Q ≤ β(‖(x(0)− xa(0))‖, k) + γ(w) .

Since Q > 0 (and positive definite) and xa(0) = 0 (by
design), we have ‖x(k)−xa(k)‖Q ≥ ‖x(k)−xa(k)‖ and
thus error-ISS is established.

Now we consider the convergence of VO(ya(k)−yr) such
that the limit limk→+∞ ya(k)→ yoa holds. Let us define
ŷa = (1− α)ya(k) + αyoa, where α ∈ [0, 1] is the optimal
solution from Eq. (31). From the convexity of VO(·), we
obtain:

VO(ŷa − yr)≤ (1− α)VO(ya(k)− yr) + αVO(yoa − yr) .

We can use the Lipschitz continuity of the map xr :=
gx(yr) in order to obtain ‖xa(k)−x̂a‖ ≤ Lx‖ya(k)− ŷa‖,
where Lx > 0 is the Lipschitz constant of gx(·). Consider
(ya(k)− ŷa) = α(ya(k)− yoa).

Since the closed-loop is stable, it follows that the total
MPC cost dissipates over time, which implies in:

VO(ya(k)− yr)− VO(ŷa − yr)≤ V (xa(k)− x̂a) + γVo(w)

≤ a1‖xa(k)− x̂a‖σ + γVo(w)≤ a1(Lx‖ya(k)− ŷa‖)σ

+γVo(w) ≤ a1L
σ
xα

σ‖ya(k)− yoa‖σ + γVo(w) .

Then, from the convexity of VO(·), we have:

VO(ŷa − yr)≤ (1− α)VO(ya(k)− yr) + αVO(yoa − yr) ,

Thus, since 1
α > 1, we obtain:

VO(ya(k)− yr) ≤ a1L
σ
xα

σ−1‖ya(k)− yoa‖σ + γVo(w)

+

(
1− α
α

)
VO(ya(k)− yr) + VO(yoa − yr) .
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Finally, since limk→+∞
(

1−α
α

)
VO(ya(k) − yr) →

γy(w), we obtain VO(ya(k) − yr) − VO(yoa − yr) ≤
a1L

σ
xα

σ−1‖ya(k)−yoa‖σ +γn(w), with σ > 1 and a1 > 0
as a constant scalars. Taking the limit at both sides of
this inequality leads to:

VO

((
lim

k→+∞
ya(k)

)
− yr

)
≤ VO(yoa − yr) + γn(w) .

Note that VO(·) is a weighted quadratic cost by defini-
tion, thus |‖ya‖ − ‖yr‖| ≤ ‖ya − yr‖T ≤ VO(ya − yr).
Thus: ∣∣∣∣‖ lim

k→+∞
ya(k)‖ − ‖yr‖

∣∣∣∣≤ ‖yoa − yr‖T + γn(w) ,

−(‖yoa − yr‖T + γn(w)) + ‖yr‖ ≤ lim
k→+∞

ya(k)

≤ ‖yoa − yr‖T + γn(w) + ‖yr‖︸ ︷︷ ︸
µ(yoa,yr,w)

.

Note that, in nominal conditions (reachable reference
yr ∈ Y and null disturbances), we obtain γVo(w) = 0
and yoa = yr, and thus limk→+∞ VO(ya(k) − yr) → 0,
which means the steady-state target is reached. In the
case the reference isn’t reachable and there are distur-
bances, we can only infer that limk→+∞ ya(k) exists
within (−µ(yoa, yr, w),+µ(yoa, yr, w)). Nevertheless, it is
implied that limk→+∞ VO(ya(k)−yr) is bounded, which
means it converges and error-ISS holds. This concludes
the proof. �
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