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Abstract

Applying a stochastic gradient descent (SGD) method for minimizing an objective gives
rise to a discrete-time process of estimated parameter values. In order to better understand
the dynamics of the estimated values, many authors have considered continuous-time ap-
proximations of SGD. We refine existing results on the weak error of first-order ODE and
SDE approximations to SGD for non-infinitesimal learning rates. In particular, we ex-
plicitly compute the leading term in the error expansion of gradient flow and two of its
stochastic counterparts, with respect to a discretization parameter h. In the example of
linear regression, we demonstrate the general inferiority of the deterministic gradient flow
approximation in comparison to the stochastic ones. Further, we demonstrate that for
Gaussian features both SDE approximations are equally good. However, for leptokurtic
features we find that the SDE approximation with state-dependent diffusion coefficient
is of higher quality than the approximation with state-independent noise. Moreover, the
relationship reverses for platykurtic features.

Keywords: Stochastic gradient descent, gradient flow, stochastic differential equation,
weak approximation, learning rate schedules, Talay-Tubaro expansion

1 Introduction

Consider a d-dimensional discrete-time stochastic process χ = (χn)n∈N0 with dynamics

χh
n+1 = χh

n − h∇Rγ(n)(χ
h
n), n ∈ N0, (1)

where (Rr)r∈Γ is a family of differentiable functions from Rd to R, h is a positive real, and
(γ(n))n∈N0 is an i.i.d. sequence of Γ-valued random variables. We interpret (χh

n)n∈N0 as
the sequence of estimated parameters when applying a stochastic gradient descent (SGD)
method for minimizing the function R(x) = E[Rγ(0)(x)]. The function R itself can be
interpreted as empirical risk (that is training error) or population risk. We refer to h as the
learning rate and Rγ(n) as the risk due to the n-th sample of the data or mini batch. In the
following we simply call χ a SGD process.

To make the SGD process tractable with methods from mathematical analysis one fre-
quently approximates the SGD dynamics with an ODE, usually referred to as gradient flow
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(GF), given by
dX0

t = b(X0
t ) dt, X0

0 = χ0, (2)

where b = −∇R. One can show that (2) is then a first-order approximation of SGD in the
learning rate, that is for all T > 0 and nice test functions g we have

|Eg(χh
⌊T/h⌋)− Eg(X0

T )| ∈ O(h),

as h ↓ 0.
GF dynamics are deterministic and hence ignore the randomness in SGD. Therefore,

in recent years analytic approximations in terms stochastic differential equations (SDEs)
have become common. In particular, SDE approximations have been used to optimize
hyperparameters (see, for example, Mandt et al. (2015), Mandt et al. (2017), Li et al.
(2017), Malladi et al. (2022)), to analyze the long-term behavior of SGD processes (see,
for example, Cao and Guo (2020), Kunin et al. (2022), Wojtowytsch (2021)), to study the
impact of normalization schemes (see, for example, Li et al. (2020)), to analyze the runtime
until convergence (see, for example, Hu and Zhang (2020)), to study the transition between
stationary points (see, for example, Yang et al. (2020), Zhou et al. (2020), Xie et al. (2020),
Hu et al. (2017)), to study the implicit bias and regularization properties of SGD (Ali et al.
(2020), Pesme et al. (2021), Li et al. (2022)) and to study the effect of running SGD in
parallel (see, for example, An et al. (2019), Boffi and Slotine (2020)).

Following Ali et al. (2020) we refer to solutions of SDEs approximating SGD as stochastic
gradient flow (SGF). SGF dynamics are usually obtained by adding to the GF dynamics a
diffusion term, typically driven by a Brownian motion W , and take the form

dXh
t = b(Xh

t ) dt+
√
hσ(Xh

t ) dWt. (3)

Here, σ(x) ∈ Rd×d denotes a positive semi-definite matrix. Two choices for σ are common:
first, σ is constant, that is independent of the state (see for example Mandt et al. (2015));
second, σ(x)2 is equal to the covariance matrix of the sample gradient ∇Rγ(0)(x) (see
for example Li et al. (2017)). We refer to a solution of (3) with constant σ as constant
covariance stochastic gradient flow (CC-SGF), and a process with the second type of σ as
non-constant covariance stochastic gradient flow (NCC-SGF).

However, without an additional modification of the drift coefficient b in Equation (3) the
SGF dynamics are still merely a first-order approximation. In fact, by choosing any smooth
σ of linear growth with bounded derivatives in (3), one obtains a weak approximation of
order 1. Given that the order of approximation is not improved, does it make sense at all
to add a diffusion term to the gradient flow dynamics? And if it does, how can one quantify
the benefit?

To answer these questions, in this paper we expand the approximation errors of GF and
(N)CC-SGF in h and compare their leading error terms, that is the constants in front of
the linear term in the error expansion. It turns out that the leading error terms for GF,
CC-SGF and NCC-SGF are all different. We can thus confirm a conjecture proposed in
Feng et al. (2018) (Remark 2.3.).

We characterize the leading error terms as integrals of functions applied to GF, hence
our results bear similarities with the formulas of the leading weak error term when approx-
imating SDEs with an Euler or Milstein scheme (see Talay and Tubaro (1990)). Indeed,
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Theorems 1, 2 and 3 can be seen as describing the leading term in the Talay-Tubaro ex-
pansion of the weak error. We remark, however, that the error estimate in the second and
third theorem is given with respect to a family of SDEs, whereas the error considered in
Talay and Tubaro (1990) refers to a single SDE.

We show that for linear regression models, the leading error terms can be calculated in
closed form. A comparison then reveals that one can always reduce the leading term of the
GF approximation by introducing a diffusion term. Moreover, there is not a clear favorite
among the SDE approximations: the preferred approximation depends, surprisingly, on the
kurtosis of the features. Now, we provide a more detailed summary of our contributions.

Summary of contributions

� We show that gradient flow (GF), stochastic gradient flow with constant covariance
(CC-SGF) and stochastic gradient flow with non-constant covariance (NCC-SGF)
are first-order approximations of SGD and related algorithms, with respect to the
learning rate. In addition to previous works, we allow non-constant learning rates
schedules which lead to time-inhomogeneous approximations. Furthermore, we derive
an explicit expression for the leading error term in the error expansion with respect
to the learning rate.

� Using the leading error term expansion we show that in the example of linear regression
with Gaussian features and non-zero residuals, that is data noise, using population
risk as test function, the GF approximation is always inferior to both the SGF approx-
imations. Moreover, the SGF approximations have the same approximation quality,
which justifies usage of the simpler constant covariance SGF.

� Finally, in the non-Gaussian setting we show that the NCC-SGF is best, among the
three approximations, for leptokurtic features, while the CC-SGF approximation is
superior for platykurtic features. Moreover, in the case of kurtosis 2 the quality of
the CC-SGF approximation jumps from order 1 to order 2, for the specific population
risk test function.

Related Work The idea to use stochastic differential equations for approximating SGD
processes appears first in Mandt et al. (2015), Li et al. (2017) and Li et al. (2019). In
Mandt et al. (2015) the authors heuristically use CC-SGF for approximating and analyzing
the SGD process. Li et al. (2017) derive NCC-SGF and rigorously prove in Li et al. (2019)
that it is a first-order approximation of SGD. The approximation result is shown for constant
learning rates and hence only for families of SDEs that are time-homogeneous. In contrast,
our approximation results allow for time-dependent learning rates and give the leading error
term explicitly.

Further results for the NCC-SGF approximation include Lanconelli and Lauria (2022),
Chen et al. (2020) and Fontaine et al. (2021). In Lanconelli and Lauria (2022) the NCC-
SGF dynamics are justified with a general Markov chain convergence theorem. Theorem
3.5. in Chen et al. (2020) provides an estimate of the Wasserstein-1 distance between
SGD processes and NCC-SGF. The article Fontaine et al. (2021) also considers NCC-SGF
with time-dependent learning rates, assuming that the sequence of learning rates given by
γ(n + 1)−α for some γ ∈ (0,∞) and α ∈ [0, 1). (Fontaine et al., 2021, Proposition 25)
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provides an asymptotic estimate of the weak error as γ converges to zero. It is remarkable,
that the same article also contains a strong approximation result (see (Fontaine et al., 2021,
Theorem 1)) based on a coupling technique. In contrast to Fontaine et al. (2021), we provide
explicit formulas for the leading error terms and we do not make a specific assumption on
the learning rate schedule u.

Moreover, the literature comprises articles considering weak approximations of order 2
for SGD processess (for example Li et al. (2019), Feng et al. (2018), Feng et al. (2019) and
Gu and Guo (2021)).

Finally, we remark that our approximation results are asymptotic results, proving that
(S)GF and SGD converge to each other as the learning rate converges to zero. The results
do not provide any estimate of the actual error for fixed learning rates. That (S)GF may
not be a good approximation of SGD if the learning rate is not sufficiently small is pointed
out in Li et al. (2021).

2 General results on leading error terms

Let d ∈ N and T > 0. Given a subset D of Euclidean space, we write g ∈ G(D) if g has (at
most) polynomial growth, that is there exists a constant C > 0 and κ ∈ N0, such that

|g(x)| ≤ C(1 + |x|κ) (4)

for all x in the domain D of g. Typically, D = Rd or D = [0, T ] × Rd. The infimum of
all such C’s for a given κ will be denoted by ∥g∥Gκ

. We also sometimes write g ∈ Gκ(D)

if ∥g∥Gκ
< ∞, especially for κ = 1. We write g ∈ Gl(D) if g ∈ C l(D) and all its partial

derivatives up to order l are in G(D).
Now, let (Ω,FΩ,P) be a complete probability space, Γ be a measurable space and

(γ(n))n∈N0 be a sequence of i.i.d. Γ-valued random variables. We can view γ(n) as the
sample or mini-batch chosen in the n-th iteration of stochastic gradient descent (SGD).
Also let F = (Ft)t≥0 be a filtration on (Ω,FΩ,P) independent of γ satisfying the usual
conditions and W be an Rd-valued F-Brownian motion.

Let u : [0, T ] → [0, 1] be a function.
Assumption (A1) We have u ∈ C∞, such that u is constant or strictly decreasing.

The function u is a learning rate schedule and represents the change of the learning rate
over time. For all h ∈ (0, 1) we consider the sequence of learning rates (hunh)n∈N0 . The
parameter h ∈ (0, 1) acts as discretization parameter and can be interpreted as the maximal
learning rate if u is not constant.

Recall that γ maps into Γ. Let H : Γ × Rd → Rd. Now, given an initial value x ∈ Rd

define (generalized) stochastic gradient descent by

χh
n+1 = χh

n + hunhHγ(n)(χ
h
n), χ0 = x. (5)

Assumption (A2) The function H satisfies H ∈ G1(Rd) uniformly in r ∈ Γ, that is there
exists a constant C > 0, such that

|Hr(x)| ≤ C(1 + |x|),

for all r ∈ Γ and x ∈ Rd.
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The prototypical example to keep in mind is online SGD with replacament. Given a
sequence of differentiable error functions R1, . . . , RM : Rd → R, where M is the sample size
of our data set, we set Hγ(n)(x) := −∇Rγ(n)(x) and choose γ(n) to be uniformly distributed
on {1, . . . ,M}. Finally, set

H̄ := EHγ(0) : Rd → Rd,

and
Σ := E[(Hγ(0) − H̄)⊗2] : Rd → Rd×d.

Here z⊗2 = zz† ∈ Rd×d for any z ∈ Rd. By Assumption (A2) we have H̄ ∈ G1(Rd).
Since Σ is positive semi-definite and symmetric, a unique matrix square root

√
Σ exists.

Assumption (A3) The functions H̄ and
√
Σ are Lipschitz continuous and in C∞, such

that all their partial derivatives are bounded.

Gradient flow

Consider the ordinary differential equation

dX0
t = utH̄(X0

t ) dt. (6)

We will refer to equation (6) as (generalized) gradient flow, or GF for short.
Let

H := {h ∈ (0, 1) : T/h ∈ N} (7)

be the set of acceptable learning rates and g ∈ G∞(Rd). For all (t, x) ∈ [0, T ]×Rd we define

vt(x) = g(X0,t
T (x)), (8)

whereX0,t(x) denotes the solution of (6) on [t, T ] with initial conditionXt
t (x) = x. We write

vgt if we want to emphasize the dependence of v on g. One can show that v ∈ C∞([0, T ]×Rd).
Moreover, the partial derivatives of v with respect to time and space have polynomial growth
in the space variable, uniformly in time. Hence, v ∈ G∞([0, T ] × Rd) in the sense that for
every k ∈ N0 and multi-index1 α ⊆ {1, . . . , d} there exist constants C ∈ (0,∞) and κ ∈ N0

such that
|∂kt ∂αvt(x)| ≤ C(1 + |x|κ), (9)

for all t ∈ [0, T ] and x ∈ Rd. Then, we define the function2

φt(x) =
1

2
u2t tr[∇2vt(x)H̄(x)⊗2] + ut∂t∇vt(x)†H̄(x) +

1

2
∂2t vt(x), (10)

with (t, x) ∈ [0, T ] × Rd. Whenever we want to stress the dependence of φ on g we write
φg.

Theorem 1 Assume (A1), (A2) and (A3). Denote by X the solution of (6) with initial
condition X0 = x. Then for all g ∈ G∞(Rd),

Eg(χh
T/h)− g(X0

T ) = h

∫ T

0
φg
t (X

0
t ) +

1

2
u2t tr[∇2vgt (X

0
t )Σ(X

0
t )] dt+O(h2), (11)

for all h ∈ H, that is all discretization parameters h such that T
h is an integer.

1. See the appendix before Theorem 22 for a definition of (unordered) multi-indices.
2. Here, ∇ denotes the gradient and ∇2 the Hessian matrix with respect to x.
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The parts of assumption (A3) concerning
√
Σ are superfluous for the proof of this theorem.

First-order stochastic gradient flow with non-constant covariance

For all h ∈ H∪{0} we consider the following family of stochastic differential equations, first
introduced by Li et al. (2017),

dXh
t = utH̄(Xh

t ) dt+ ut

√
hΣ(Xh

t ) dWt. (12)

We refer to a process solving (12) as (generalized, first-order) stochastic gradient flow with
non-constant covariance or NCC-SGF for short (in accordance with the terminology in Ali
et al. (2020)). Notice that, as h ↓ 0, the diffusion term in (12) vanishes and hence (12)
becomes the ODE (6).

Theorem 2 Assume (A1), (A2) and (A3). For all h ∈ H denote by Xh the solution of
(12) with initial condition Xh

0 = x. Then for all g ∈ G∞(Rd) and h ∈ H,

Eg(χh
T/h)− Eg(Xh

T ) = h

∫ T

0
φg
t (X

0
t ) dt+O(h2), (13)

where φ is defined in (10).

Note that the process X0 is the same as gradient flow defined in (6).

First-order stochastic gradient flow with constant covariance

Finally, we consider an approximation to SGD with constant diffusion coefficient. Here, we
have to make a choice on how to approximate Σ by a constant. Frequently one is interested
in the behavior of SGD around a stationary point. Hence, let θ∗ ∈ Rd with H̄(θ∗) = 0.
Then for every h ∈ H ∪ {0} we consider the SDE

dXCC,h
t = utH̄(XCC,h

t ) dt+ ut
√
hΣ(θ∗) dWt. (14)

We refer to this approximation as (generalized, first-order) stochastic gradient flow with
constant covariance or CC-SGF for short (again, in accordance with the terminology in Ali
et al. (2020)), with the small caveat that each stationary point θ∗ yields a different CC-
SGF. In the case u = 1 this is essentially the continuous-time approximation introduced by
Mandt et al. (2015).

Notice again that as h→ 0 the diffusion term in (14) vanishes and hence (14) becomes
the ODE (6).

Theorem 3 Assume (A1), (A2) and (A3). For all h ∈ H denote by XCC,h the solution of

(14) with initial condition XCC,h
0 = x. Then for all g ∈ G∞(Rd) and h ∈ H,

Eg(χh
T/h)− Eg(XCC,h

t ) =h

∫ T

0
φg
t (X

0
t ) +

1

2
u2t tr[∇2vgt (X

0
t )(Σ(X

0
t )− Σ(θ∗))] dt

+O(h2), (15)

where v is defined in (8) and φ in (10).
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3 A comparison of continuous-time approximations to SGD for linear
regression

In this section we compare gradient flow and the two stochastic gradient flow approximations
(NCC and CC) in the setting of linear regression.

Firstly, we provide a theoretical comparison using Theorems 1, 2 and 3. In the multi-
dimensional setting with Gaussian features we observe that GF is always a poorer approx-
imation than SGF in the presence of noisy data, that is non-zero residuals. Somewhat
surprisingly, the quality of approximation for NCC-SGF and CC-SGF turn out to be the
same. Afterwards we take a look at non-Gaussian features in dimension 1. We observe
that in this case NCC-SGF is a better approximation to SGD for leptokurtic features. In
contrast, for platykurtic features CC-SGF is better.

Secondly, we substantiate these theoretical findings using a numerical example.
In a fairly general, parametric, statistical learning setting we are given an unknown

measure ν, called population, on a measurable space Z, a set of parameters Θ ⊆ Rd and a
family of risk functions (Rz(θ))θ∈Θ,z∈Z . The general goal of statistical learning is then to
minimize over Θ the population risk, that is the mean risk of the data under the measure ν

R(θ) := Ez∼ν [Rz(θ)].

Accordingly, we focus on comparing the weak error of the continuous-time approximations
of SGD for the population risk function R associated with a linear regression task.

In terms of our interpretation and in our examples we focus on this “population setting”,
where we are essentially performing SGD without replacement for an infinite sequence of
i.i.d. data. Note, however, that by choosing ν to be an empirical measure, we recover the
setting of SGD with replacement for a finite set of data. In this case ν represents a sample
rather than the population and R should instead be interpreted as empirical risk, more
commonly known as the training error.

Notation In the remainder of the section we use the following notation. Write

d×k = d× · · · × d︸ ︷︷ ︸
k times

.

Given k, l ∈ N0 as well as tensors A ∈ Rd×(k+l)
and B ∈ Rd×l

, we define ⟨A,B⟩ ∈ Rd×k
by

summing over the common indices, that is

⟨A,B⟩i1,...,ik :=
∑

j1,...,jl

Ai1,...,ik,j1,...,jlBj1,...,jl .

In particular, given vectors u, v ∈ Rd and matrices A,B ∈ Rd×d we have

⟨u, v⟩ = u†v, ⟨u, v⟩2 = ⟨u⊗2, v⊗2⟩ and ⟨A,B⟩ = tr(A†B) ∈ R

The quantity ⟨A,B⟩ is also known as the Frobenius inner product of A and B. Note that
for matrices A,B,C ∈ Rd×d, we have

⟨A,BC⟩ = tr(A†BC) = ⟨B†A,C⟩ = tr(CA†B) = ⟨AC†, B⟩.
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Further, given tensors B ∈ Rd×l
and C ∈ Rd×k

we define their outer product B⊗C ∈ Rd×(l+k)

by

(B ⊗ C)i1,...,il,j1,...,jk = Bi1,...,ilCj1,...,jk ,

and we set B⊗2 := B ⊗B. In particular, u⊗2 = uu† for any u ∈ Rd.

3.1 The statistical learning setting

Suppose we are given an Rd-valued random variable x and an R-valued random variable ε
defined on a probability space (Ω,F ,P), such that x and ε are independent, Eε = 0, σ2ε :=
Eε2 <∞ and x has finite joint fourth moments

E|xixjxkxl| <∞, i, j, k, l ∈ {1, . . . , d}.

Let θ∗ ∈ Rd. We define the R-valued random variable y by

y = ⟨θ∗,x⟩+ ε.

Denote the distribution of (x,y) by ν. We call ν the population. We consider data drawn
from ν, which follows a linear model. The population is considered unknown to us.

Let ℓ be the square loss, given by ℓ(y, y′) = 1
2(y− y

′)2. The goal is to fit the data drawn
from ν using a linear predictor θ 7→ ⟨θ, x⟩. Thus, for any data point (x, y) ∈ Rd × R we
consider the squared risk

Rx,y(θ) = ℓ(⟨θ, x⟩, y) = 1

2
(⟨θ, x⟩ − y)2.

We define the population risk by

R(θ) := E[Rx,y(θ)].

We stress that the bold letters x,y denote random variables, while x, y represent realiza-
tions. The minimum of R, that is the best possible fit, is given by the population parameter
θ∗. We can determine an estimate of θ∗ using stochastic gradient descent

χh
n+1 = χh

n − h∇θRxn,yn(χ
h
n) = χh

n − h(⟨χh
n,xn⟩ − yn)xn, (16)

where (xn,yn)n∈N0 is an i.i.d. sequence with (x0,y0) ∼ ν. For simplicity we only consider
constant learning rates in this section. We calculate

R(θ) =
1

2
E[(⟨θ − θ∗,x⟩ − ε)2]

=
1

2
⟨κ, (θ − θ∗)⊗2⟩+ σ2ε

2
,

∇R(θ) =κ(θ − θ∗),

∇2R(θ) =κ,

where κ := Covx is the covariance matrix of x.

8
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We define the covariance matrix of the gradient noise by

Σ(θ) := Cov[∇θRx,y(θ)].

Then,

Σ(θ) =E[(⟨θ,x⟩ − y)2x⊗2]− (κ(θ − θ∗))⊗2

=E[(⟨θ − θ∗,x⟩ − ε)2x⊗2]− κ(θ − θ∗)⊗2κ†

=E[⟨θ − θ∗,x⟩2x⊗2]− 2E[ε⟨θ − θ∗,x⟩x⊗2]

+ E[ε2x⊗2]− κ(θ − θ∗)⊗2κ†

=⟨µ4x, (θ − θ∗)⊗2⟩ − κ(θ − θ∗)⊗2κ† + σ2εκ

=⟨µ4x − κ⊗2, (θ − θ∗)⊗2⟩+ σ2εκ

where µ4x ∈ Rd×d×d×d with
(µ4x)i,j,k,l = E[xixjxkxl].

3.2 Theoretical comparison for Gaussian features

In this section we compare GF with its stochastic counterparts by deriving the leading error
terms for the population risk of GF, NCC-SGF and CC-SGF explicitly.

We assume that the features are centered Gaussian, that is x ∼ N (0, κ).

Let τ be permutation of l elements and B ∈ Rd×l
an l-tensor. Then we write Bτ ∈ Rd×l

for
(Bτ )i1,...,il = Bτ(i1),...τ(il).

For example if B is matrix, then B† = B(12). Here we use the cycle notation for permu-
tations. By Isserli’s theorem (see for example Bose (2021)), the joint fourth moments of a
centered Gaussian satisfy

µ4x = κ⊗2 + κ⊗2
(23) + κ⊗2

(13).

Given matrices U,A ∈ Rd×d we have

⟨U⊗2
(23), A⟩i,j =

∑
k,l

Ui,kUj,lAk,l

=UAU †,

⟨U⊗2
(13), A⟩i,j =

∑
k,l

Uk,jUi,lAk,l

=UA†U.

Therefore, we can simplify the variance of the gradient noise to

Σ(θ) = 2κ(θ − θ∗)⊗2κ+ σ2εκ.

Hence, the three continuous-time approximations (6), (12) and (14) take the form

dX0
t =− κ(X0

t − θ∗) dt

dXh
t =− κ(Xh

t − θ∗) dt+
√
h
√
2κ(θ − θ∗)⊗2κ+ σ2εκ dWt

dXCC,h
t =− κ(XCC,h

t − θ∗) dt+
√
hσ2εκ dWt. (17)
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Note that the process with constant covariance dynamics (17) is an Ornstein-Uhlenbeck
process. By applying the results from Section 2 to the population risk we obtain the
following.

Proposition 4 Suppose χh
0 = Xh

0 = XCC,h
0 = θ ∈ Rd for all h ∈ (0, 1). Then, we have

ER(χh
T/h)− ER(X0

T ) =
h

2
T ⟨κ3e−2Tκ, (θ − θ∗)⊗2⟩+ h

2
σ2ε⟨κ2,

∫ T

0
e−2(T−t)κ dt⟩

+O(h2) (18)

ER(χh
T/h)− ER(Xh

T ) =− h

2
T ⟨κ3e−2Tκ, (θ − θ∗)⊗2⟩+O(h2)

ER(χh
T/h)− ER(XCC,h

T ) =
h

2
T ⟨κ3e−2Tκ, (θ − θ∗)⊗2⟩+O(h2),

as h ↓ 0, with T/h an integer.

Remark 5 Note that if κ is positive definite, then the term with the integral in (18) can
be simplified as follows:

1

2
σ2ε⟨κ2,

∫ T

0
e−2(T−t) dt⟩ = 1

4
σ2ε⟨κ2, (1d×d − e−2κT )κ−1⟩ = 1

4
σ2ε⟨κ, 1d×d − e−2κT ⟩.

Proof of Proposition 4 Set vt(θ) := R(X0,t
T (θ)). Then by Theorem 1, 2 and 3 we have,

for T > 0,

ER(χh
T/h)− ER(X0

T ) =h

∫ T

0
φGF
t (X0

t ) dt+O(h2),

ER(χh
T/h)− ER(Xh

T ) =h

∫ T

0
φt(X

0
t ) dt+O(h2),

ER(χh
T/h)− ER(XCC,h

T ) =h

∫ T

0
φCC
t (X0

t ) dt+O(h2),

as H ∋ h ↓ 0, where

φ =
1

2
⟨∇2v, (∇R)⊗2⟩ − ⟨∂t∇v,∇R⟩+ 1

2
∂2t v,

φGF =φ+
1

2
⟨∇2v,Σ⟩,

φCC =φ+
1

2
⟨∇2v,Σ− Σ(θ∗)⟩.

Starting gradient flow in θ at t, we have

X0,t
T (θ) = e−(T−t)κ(θ − θ∗) + θ∗.

10
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Write at = e−κ(T−t). Note that the matrices κ, ebκ and ecκ commute with each other for all
b, c ∈ R. Then,

vt(θ) =
1

2
⟨κ, (X0,t

T (θ)− θ∗)⊗2⟩+ σ2ε
2

=
1

2
⟨κ, (e−(T−t)κ(θ − θ∗))⊗2⟩+ σ2ε

2

=
1

2
⟨κ, e−(T−t)κ(θ − θ∗)⊗2e−(T−t)κ⟩+ σ2ε

2
,

and hence

∇vt(θ) =κa2t (θ − θ∗)

∇2vt(θ) =κa
2
t

⟨∇2vt(θ), (∇R(θ))⊗2⟩ =⟨κ3a2t , (θ − θ∗)⊗2⟩
⟨∇2vt(θ),Σ(θ)− Σ(θ∗)⟩ =2⟨κ3a2t , (θ − θ∗)⊗2⟩

⟨∇2vt(θ),Σ(θ)⟩ =2⟨κ3a2t , (θ − θ∗)⊗2⟩+ σ2ε⟨κ2, a2t ⟩
∂t∇vt(θ) =2κ2at(θ − θ∗)

−⟨∂t∇vt(θ),∇R(θ)⟩ =− 2⟨κ3a2t , (θ − θ∗)⊗2⟩
∂tvt(θ) =⟨κ2a2t , (θ − θ∗)⊗2⟩
∂2t vt(θ) =2⟨κ3a2t , (θ − θ∗)⊗2⟩.

Further,
(X0

t (θ)− θ∗)⊗2 = e−tκ(θ − θ∗)⊗2e−tκ

and ate
κt = e−κT . Thus,

φt(X
0
t (θ)) =− 1

2
⟨κ3a2t , (X0

t (θ)− θ∗)⊗2⟩

=− 1

2
⟨κ3e−2Tκ, (θ − θ∗)⊗2⟩

φCC
t (X0

t (θ)) =− 1

2
⟨κ3e−2Tκ, (θ − θ∗)⊗2⟩+ ⟨κ3a2t , (X0

t (θ)− θ∗)⊗2⟩

=
1

2
⟨κ3e−2Tκ, (θ − θ∗)⊗2⟩

φGF
t (X0

t (θ)) =
1

2
⟨κ3e−2Tκ, (θ − θ∗)⊗2⟩+ 1

2
σ2ε⟨κ2, a2t ⟩.

In conclusion,∫ T

0
φt(X

0
t (θ)) dt =− 1

2
T ⟨κ3e−2Tκ, (θ − θ∗)⊗2⟩∫ T

0
φCC
t (X0

t (θ)) dt =
1

2
T ⟨κ3e−2Tκ, (θ − θ∗)⊗2⟩∫ T

0
φGF
t (X0

t (θ)) dt =
1

2
T ⟨κ3e−2Tκ, (θ − θ∗)⊗2⟩+ 1

2
σ2ε⟨κ2,

∫ T

0
a2t dt⟩.

11
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Using Proposition 4, we can compare the error terms as follows.

|ER(χh
T/h)− ER(XCC,h

T )| − |ER(χh
T/h)− ER(Xh

T )|

=0 +O(h2), H ∋ h ↓ 0.

Hence, there is no difference in the leading error term between the constant and non-constant
covariance SGF approximations to (16). This justifies using the simpler CC approximation
for linear regression models with Gaussian features. Moreover, we have

|ER(χh
T/h)− ER(X0

T )| − |ER(χh
T/h)− ER(Xh

T )|

=
h

2
σ2ε⟨κ2,

∫ T

0
a2t dt⟩+O(h2), H ∋ h ↓ 0.

The same holds if we replace Xh by XCC,h. We see that the gradient flow approximation
is always worse than the approximation by a SGF due to neglecting the presence of the
residuals ε.

These findings are also empirically corroborated in the subsequent section for d = 1 (see
Figure 1, lower left panel, below).

3.3 Theoretical comparison for non-Gaussian features

In this section we demonstrate that the conclusion of NCC-SGF and CC-SGF being equally
good hinges on the assumption of Gaussian features.

Consider once more (16), for simplicity with d = 1. This time we assume merely that
Ex4 <∞ and κ > 0, but not that x is Gaussian. Note that

E[(∂θℓ(θx,y))2] =E[x4(θ − θ∗)2 − 2ε(θ − θ∗)x3 + x2ε2]

=κ2Kurt(x)(θ − θ∗)2 + κσ2ε ,

where Kurt(x) := E[x4]/κ2 is the kurtosis of x (cf. section 5.1 in the appendix for more
information about kurtosis). Hence,

Σ(θ) = Var[∂θℓ(θx,y)] =κ
2(Kurtx− 1)(θ − θ∗)2 + κσ2ε ,

and so the continuous-time approximations to SGD take the form

dX0
t =− κ(X0

t − θ∗) dt,

dXh
t =− κ(Xh

t − θ∗) dt+
√
h
√
κ2(Kurtx− 1)(θ − θ∗)2 + κσ2ε dWt (19)

dXCC,h
t =− κ(XCC,h

t − θ∗) dt+
√
hκσ2ε dWt. (20)

In analogy to Proposition 4 we can prove the following leading error expansions.

12



A comparison of continuous-time approximations to stochastic gradient descent

Proposition 6 Suppose χh
0 = Xh

0 = XCC,h
0 = θ ∈ Rd for all h ∈ (0, 1). Then, we have

ER(χh
T/h)− ER(X0

T ) =
h

2
T (Kurtx− 2)κ3(θ − θ∗)2e−2κT

+
1

4
σ2εκ(1− e−2κT ) +O(h2)

ER(χh
T/h)− ER(Xh

T ) =− h

2
Tκ3(θ − θ∗)2e−2κT +O(h2),

ER(χh
T/h)− ER(XCC,h

T ) =
h

2
T (Kurtx− 2)κ3(θ − θ∗)2e−2κT +O(h2),

as h ↓ 0, with T/h an integer.

Proof The proof is analogous to the one of Proposition 4. Note that

φ =
1

2
v′′t (R′)2 − ∂tv

′
tR′ +

1

2
∂2t vt,

φCC =φ+
1

2
v′′t (Σ− Σ(θ∗))

φGF =φCC +
1

2
v′′t Σ(θ

∗).

The function φ remains the same as in the Gaussian case, while on the other hand φCC and
φGF differ, since

v′′t (θ)(Σ(θ)− Σ(θ∗)) = κ3(Kurtx− 1)(θ − θ∗)2a2t

Thus,

φt(X
0
t (θ)) =− 1

2
κ3(θ − θ∗)2e−2κT

φCC
t (X0

t (θ)) =
1

2
κ3(θ − θ∗)2e−2κT (Kurtx− 2)

φGF
t (X0

t (θ)) =φ
CC
t (X0

t (θ)) +
1

2
σ2εκ

2a2t

and finally ∫ T

0
φt(X

0
t (θ)) dt =− 1

2
Tκ3(θ − θ∗)2e−2κT

∫ T

0
φCC
t (X0

t (θ)) dt =
1

2
T (Kurtx− 2)κ3(θ − θ∗)2e−2κT

∫ T

0
φGF
t (X0

t (θ)) dt =

∫ T

0
φCC
t (X0

t (θ)) dt+
1

4
σ2εκ(1− e−2κT ).

Applying Proposition 6 to the NCC and CC-SGF approximations yields

|ER(χh
T/h)− ER(XCC,h

T )| − |ER(χh
T/h)− ER(Xh

T )|

=
h

2
κ3(θ − θ∗)Te−2κT (|Kurtx− 2| − 1) +O(h2). (21)

13
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The theoretical result implies the following. For mesokurtic x, that is Kurtx = 3, the
first summand in (21) vanishes, so there is essentially no difference in the approximation
quality between NCC- and CC-SGF. The same is true for the extremal platykurtic case
Kurtx = 1 for the simple reason that in this case the dynamics (19) and (20) coincide,
hence Xh = XCC,h.

For leptokurtic features, that is if Kurtx > 3, the first summand in (21) is positive and
hence NCC is better than CC.

Among platykurtic distributions with 1 < Kurtx < 3 we see, surprisingly, that the first
summand in (21) is negative and hence the CC-SGF approximation is better.

We believe the difference between the platykurtic and leptokurtic settings may be ex-
plained as follows.

To do so, we consider yet another continuous-time approximation to SGD, which we
call second-order stochastic gradient flow, or SGF2 for short. The corresponding family of
stochastic differential equations is given by

dX2,h
t = −R′(X2,h

t )− h

2
R′′(X2,h

t )R′(X2,h
t ) dt+

√
hΣ(X2,h

t ) dWt, (22)

with X2,h
0 = χ0. Then the following holds: for every T > 0 there exists a C > 0, such that

for all g ∈ G∞(R) we have (cf. Li et al. (2019))

|Eg(χh
⌊T/h⌋)− Eg(X2,h

T )| ≤ Ch2 (23)

In other words, the first-order error term is 0. In this sense SGF2 is the best approximation
we have seen so far. To achieve this improvement we have to make the drift coefficient more
complicated compared to the NCC-SGF approximation. However, the SGF2 approximation
has the same diffusion coefficient Σ as the NCC-SGF approximation, revealing that the
diffusion part in the NCC-SGF approximation does not contribute to the leading error
term.

For large Kurtx, Σ is large and so using an incorrect diffusion coefficient results in a
large error. Hence, NCC-SGF is better then CC-SGF in this case.

On the other hand note that the leading error term for CC-SGF is the integral∫ T
0 φCC

t (X0
t ) dt, where

φCC =
1

2
v′′t (Σ− Σ(θ∗)) +

1

2
v′′t (R′)2 − ∂tv

′
tR′ +

1

2
∂2t vt. (24)

The functions v and R do not depend on the gradient noise, that is Σ. By varying Kurtx
we can change the magnitude of the first summand on the RHS of (24) without affecting
the other three summands, which only depend on the drift coefficient. Now, both the drift
and the diffusion coefficient contribute to the leading error term. It is possible for both
contributions to cancel each other out due to having opposite signs. As it turns out this
happens exactly for platykurtic features. In contrast to this, in the NCC-SGF approximation
only the drift coefficient contributes to the leading error term. Hence, there is no possibility
for a similar cancellation.

Which SGF approximation is better in what case is summarized in Figure 2 below (cf.
subsection 3.4). Moreover, we remark that for Kurtx = 2 the first-order error of the CC

14
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approximation vanishes entirely. We discuss this surprising phenomenon in a numerical
example in the next subsection.

Let us now end this discussion by comparing gradient flow with its stochastic versions.
Comparing GF and CC-SGF, we get

|ER(χh
T/h)− ER(X0

T )| − |ER(χh
T/h)− ER(XCC,h

T )|

=
h

4
σ2ε(1− e−2κT ) +O(h2), H ∋ h ↓ 0.

We see that the gradient flow approximation is always worse due to neglect of the noise
term ε. Moreover, the gap widens by increasing T .

Finally, the comparison of GF and NCC-SGF yields

|ER(χh
T/h)− ER(X0

T )| − |ER(χh
T/h)− ER(Xh

T )|

=
h

2
κ3(θ − θ∗)Te−2κT (|Kurtx− 2| − 1) +

h

4
σ2ε(1− e−2κT ) +O(h2),

as H ∋ h ↓ 0. Here, the situation is more complicated. For Kurtx ≈ 2 and σ2ε ≈ 0 it is
indeed possible that GF is better. However, for non-negligible noise terms ε or leptokurtic
features NCC-SGF is clearly better.

In the next subsection will investigate and compare the weak error terms in a numerical
example.

3.4 A numerical example

In this subsection we present results from a numerical experiment confirming the theoretical
results presented in the previous subsections.

3.4.1 Experimental setup

We consider using SGD for fitting the particular one-dimensional linear model

y = −x+ ε

with x, ε independent, centered and of variance 1, where ε is Gaussian. We compare the
weak errors of the population risk R for different continuous-time approximations of SGD,
where Kurtx = 1, 2, 3, 9. To realize these kurtosises we consider, in the following order,

x+
1

2
∼ Bin

(
1,

1

2

)
, x+

5 +
√
5

10
∼ Bin

(
1,

5 +
√
5

10

)
x ∼ N (0, 1), x+ 1 ∼ Exp(1).

We use a Monte Carlo approximation to estimate ER(χh
T/h), that is

ER(χh
T/h) ≈

1

M

M∑
i=1

ER(χ̂i,h
T/h)

15
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Figure 1: The weak error’s dependence on the learning rate for several continuous-time
approximations to SGD, for different kurtosis of the features.

where χ̂1, . . . , χ̂M are independent copies of χ. For the experiments we have chosenM large
enough (between 108 and 109) so that the variance of the Monte Carlo estimator is negligible
compared to the weak error. Moreover, we determine ER(Y h

T ) for Y = X0, Xh, XCC,h, X2,h

using explicit formula, which can be derived in this example. We set T = 0.5 and consider
the learning rates h = 0.5, 0.1, 0.05, 0.01, 0.005, 0.001. Notice that T/h is an integer in each
case. Plotted is the dependence of the weak error

|ER(χh
T/h)− ER(Y h

T )|

with respect to h.

3.4.2 Results

Figure 1 depicts the weak error’s dependence on the learning rate for Kurtx = 1, 2, 3, 9.

Aside from minor deviations stemming from the Monte Carlo estimation, the empirical
results in Figure 1 confirm the theoretical results in the last subsection. In particular, we
observe:

(i) For a given learning rate GF has always the highest weak error, irrespective of the
kurtosis. Thus, GF is always the worst approximation.
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(ii) For Kurtx = 9 (leptokurtic) NCC- is better than CC-SGF (see Figure 1, lower right
panel)

(iii) NCC- and CC-SGF are equally good for Kurtx ∈ {1, 3} (see Figure 1, left panels)

(iv) For Kurtx = 2 the CC-SGF approximation is of second order3 and in particular better
than NCC-SGF (see Figure 1, upper right panel)

(v) The SGF2 approximation is always best, irrespective of the kurtosis.

We remark that the theoretical rates of convergence are difficult to observe without using
a high number of Monte Carlo samples. Moreover, for x Bernoulli distributed (Kurtx ∈
{1, 2}) and h ≤ 0.001, it is computationally difficult to get an accurate estimation of the
weak error for SGF2 and for CC-SGF in the case Kurtx = 2. If we ignore the left-most
point, then the rates are approximately 2, as predicted.

Why SGF2 and SGF can coincide The coincidence of SGF2 and CC-SGF in Figure 1
for kurtosis 2 may surprise. It can be explained as follows in this example. Equations (14)
and (22) become

dXCC,h
t =− κ(XCC,h

t + 1) dt+
√
hκ dWt, XCC,h

0 = 0,

dX2,h
t =− κ

(
1 +

h

2

)
(Xh,2

t + 1) dt

+
√
h

√
κ2(Kurtx− 1)(Xh,2

t + 1)2 + κ dWt, X2,h
0 = 0.

One can then show by direct computation that

E[(XCC,h
t + 1)2] =e−2κt +

h

2
(1− e−2κt)

E[(X2,h
t + 1)2] =

(h+ ξh)e
ξhκt − h

ξh
,

where ξh = hκ(Kurtx− 2)− 2. Moreover, using a Taylor expansion in h, we get

E[(X2,h
t + 1)2] = e−2κt +

h

2
(1− e−2κt + 2κ2(Kurtx− 2)te−2κt) +O(h2), h ↓ 0.

Note that the term 2κ2(Kurtx − 2)te−2κt) vanishes exactly when Kurtx = 2, and in this
case

E[(XCC,h
t + 1)2]− E[(X2,h

t + 1)2] = O(h2), h ↓ 0,

that is (after multiplying with 1
2κ) we see that ER(XCC,h) − ER(X2,h) is on the order of

h2.

3. More precisely, the approximation is of order 2 for the chosen test function R. This is a weaker property
than (23).
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The difference between NCC and CC visualized In a second experiment we have
analyzed how the difference of the weak errors

∆E := |ER(χh
T/h)− ER(Xh

T )| − |ER(χh
T/h)− ER(XCC,h

T )|

of the two SGF approximations depends on the kurtosis of the features. To this end we
consider

x+ p ∼ Bin(1, p), p ∈ [1/2, 1]

and fix the learning rate to h = 0.005. Note that

Kurtx = K ⇔ p =
K + 3 +

√
K2 + 2K − 3

2(K + 3)
.

Figure 2 depicts ∆E for various values of Kurtx. We observe once more that for platykurtic
features the CC approximation is better than the NCC approximation and that for leptokur-
tic features it is the other way around. Furthermore, both approximations are equally good
for kurtosis 1 and 3. Finally, the CC approximation is best for kurtosis 2.

4 Proof of Theorems 1, 2 and 3

In this section we give proofs of our general results on leading error terms. However, before
doing that we need to establish a few preliminaries.

4.1 Preliminaries

Let I be a set and X = (Xi
t)i∈I,t≥0 be an I-indexed family of continuous-time stochastic

processes. Given p ∈ [1,∞) we define

∥X∥p,t = sup
i∈I

(
E
∫ t

0
|Xi

s|p ds
)1/p

, ∥X∗∥p,t = sup
i∈I

(
E sup

s∈[0,t]
|Xi

s|p
)1/p

.

Although usually X will be Rd-valued and then | · | refers to the Euclidean norm, these
definitions naturally extend to Rd1×···×dr -valued processes as well. Similarly, given an I-
indexed family of discrete-time stochastic processes X we define

∥X∗∥p,n = sup
i∈I

(
E max

n′∈{0,...,n}
|Xi

n′ |p
)1/p

.

Given an I-indexed family of random variables Y = (Y i)i∈I we also let

∥Y ∥p := sup
i∈I

(E|Y i|p)1/p.

Recall the definition of χ in (5), as well as Assumptions (A1) and (A2). We shall prove
growth results concerning stochastic gradient descent. Denote the SGD iterations starting
at time n with initial value x ∈ Rd and maximal learning rate h ∈ (0, 1) by χh,n

n (x). Given
a discrete process Y indexed by h ∈ (0, 1), for example Y = χ, we write

18
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Figure 2: The empirical difference in errors ∆E := |ER(χh
T/h) − ER(Xh

T )| − |ER(χh
T/h) −

ER(XCC,h
T )| as a function of kurtosis, for Bernoulli features with success proba-

bility p ∈ [1/2, 1].
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∆Y h,k
n (x) := Y h,k

n+1(x)− Y h,k
n (x), (25)

for all h ∈ (0, 1), k, n ∈ N0 with k ≤ n and initial values x ∈ Rd. We let ∆Y h
n := ∆Y h,0

n .

Observe that ∆Y h,n
n (x) = Y h,n

n+1(x)− x.

In order to simplify notation, in this section we often omit the initial condition from χ
or the solution X of a given SDE and formulate statements for the mapping from the set
of initial conditions Rd to the collection of random variables (χn)n or (Xt)t.

Lemma 7 The following estimates hold true:

(i) For every T > 0 and p ≥ 1 there exists a constant C > 0, such that

sup
h∈(0,1)

∥∥∥χh(x)∗
∥∥∥
p,⌊T

h ⌋
≤ C(1 + |x|),

for x ∈ Rd.

(ii) There exists a constant C > 0, such that∥∥∥∆χh,n
n (x)

∥∥∥
p
≤ hC(1 + |x|),

for all h ∈ (0, 1), n ∈ N and x ∈ Rd.

Proof

(i) Let p ∈ N. For every h ∈ (0, 1) and n ∈ N0,∥∥∥(χh)∗
∥∥∥
p,n

=

(
E max

n′∈{−1,...,n−1}
|χh

n′+1|p
)1/p

.

If we let χ−1 = 0, then

|χh
n+1|p ≤|χh

n + hunhHγ(n)(χ
h
n)|p

≤|χh
n|p +

p∑
i=1

(
p

i

)
|χh

n|p−i(hunh)
i|Hγ(n)(χ

h
n)|i

Now, for i ∈ {1, . . . p}, h ∈ (0, 1) and n ∈ N0,∥∥∥(|χh|p−i|Hγ(0)(χ
h)|i)∗

∥∥∥
1,n

≤
∥∥∥(|χh|p−i ∥H∥iG1

(1 + |χh|)i)∗
∥∥∥
1,n

≤ 1

2
ci
∥∥∥(|χh|p−i + |χh|i+p−i)∗

∥∥∥
1,n

≤ ci(1 +
∥∥∥(χh)∗

∥∥∥p
p,n

)

20



A comparison of continuous-time approximations to stochastic gradient descent

with c := 2 ∥H∥G1
and using the inequalities yp + yq ≤ 2(1 + yq) for 0 < p ≤ q and

y ≥ 0. Therefore,∥∥∥(χh)∗
∥∥∥p
p,n+1

≤E max
n′∈{−1,...,n}

|χh
n′ |p

+ E max
n′∈{−1,...,n}

p∑
i=1

(
p

i

)
(hun′h)

i|χh
n′ |p−i|Hh

γ(n′)(χ
h
n′)|i

≤
∥∥∥(χh)∗

∥∥∥p
p,n

+

p∑
i=1

(
p

i

)∥∥∥((hun′h)
i|χh

n′ |p−i|Hh
γ(n′)(χ

h
n′)|i)∗

∥∥∥
1,n

≤
∥∥∥(χh)∗

∥∥∥p
p,n

+ Ch(1 +
∥∥∥(χh)∗

∥∥∥p
p,n

)

=(1 + Ch)
∥∥∥(χh)∗

∥∥∥p
p,n

+ Ch,

where C :=
∑p

i=1

(
p
i

)
ci. By induction over n,

∥∥∥(χh)∗
∥∥∥p
p,n

≤ (1 + Ch)n
∥∥∥(χh)∗

∥∥∥p
p,0

+ Ch

(
n−1∑
i=0

(1 + Ch)i

)
,

for all h ∈ (0, 1) and n ∈ N. Consequently,

∥∥∥χh(x)∗
∥∥∥p
p,⌊T

h ⌋
≤ (1 + Ch)⌊

T
h ⌋|x|p + Ch

⌊T
h ⌋∑

i=0

(1 + Ch)i

≤ (1 + Ch)
T
h |x|p + Ch

T

h
(1 + Ch)

T
h

= (CT + |x|p)elog(1+Ch)T
h

≤ (CT + |x|p)eCT ,

for all h ∈ (0, T ) and x ∈ Rd, since log(1 + y) ≤ y for all y > −1. Now, the inclusion
follows for p ∈ N. For arbitrary p ≥ 1 we have ∥Y ∗∥p ≤ ∥Y ∗∥⌈p⌉ and thus the result is
proven.

(ii) We have ∥∥∥∆χh,n
n (x)

∥∥∥
p
= ∥hunhH(x)∥p ≤ h ∥H∥G1

(1 + |x|),

for all x ∈ Rd and h ∈ (0, 1).

We shall now consider moments and growth conditions for solutions of (families of) stochas-
tic differential equations that will act as approximations to SGD. Let l ∈ N0. We write
f ∈ Lipl if f ∈ C l([0, T ]× Rd) and there exists a C > 0 such that

|∂αft(x)− ∂αft(y)| ≤ C|x− y|,
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for all t ≥ 0 and multi-indices α with size #α ≤ l. Also set Lip := Lip0. Given an index
set I, these conditions extend to I-indexed families of functions (fi)i∈I in a uniform sense.

Further, we extend the use of the notation G to families of functions. More precisely,
given a family of functions

f : I × Rd → R, (i, x) 7→ fi(x),

we write f ∈ G(Rd) whenever there exists a constant C > 0 and κ ∈ N such that

|fi(x)| ≤ C(1 + |x|κ), (26)

for all x ∈ Rd and i ∈ I. Again, we define ∥g∥Gκ
as the infimum of all C’s in (26).

Notice that the index set may comprise the time interval [0, T ]. Usually, we have I = H
or or I = H× [0, T ] or I = (0, 1).

Similarly we extend the use of the notations Gl to families of functions. In particular,
for an I-indexed family of functions f : I × [0, T ] × Rd → R we write f ∈ G∞([0, T ]× Rd)
if each fi is infinitely continuously differentiable in time and space, and all derivatives have
at most polynomial growth, uniformly in i ∈ I. Finally, all the definitions extend naturally
to other ranges such as Rd or Rd×d.

We shall consider stochastic differential equations with (families of) coefficients

b : I × [0, T ]× Rd → Rd, σ : I × [0, T ]× Rd → Rd×d.

Proposition 8 Let l ∈ N, p ≥ 1 and b, σ ∈ G1(Rd)∩Lipl, such that b is Rd-valued and σ is
Rd×d-valued. Let X be the unique solution to the family of stochastic differential equations

dXi,s
t (x) = bit(X

i,s
t (x)) dt+ σit(X

i,s
t (x)) dWt, Xi,s

s (x) = x.

and g : I × Rd → R ∈ Gl(Rd). Define

vi,st (x) := Egi(Xi,s
t (x)).

Then v ∈ Gl(Rd).

Note that the polynomial growth of v and its partial derivatives up to order l is considered
uniformly in i ∈ I and s, t ∈ [0, T ].
Proof Let α be a multi-index. By induction one can show E∂αg(X) = ∂αEg(X) using
Theorem 22 in the Appendix. By the higher chain rule,

|∂αvi,st | =E|∂αgi(Xi,s
t )| ≤

#α∑
j=1

∥∥∇jgi(X)∗
∥∥
2

∑
B∈Sα

j

N(α,B)
∏
β∈B

∥∂βX∗∥2#B,

where Sα
i is the set of all partitions of α into i multi-set multi-indices (each partition

being a multi-set as well), N(α,B) ∈ N, #B is the size of the partition and the product∏
β∈B respects the multiplicities of β ∈ B. From g ∈ Gl(Rd) and Theorem 22 we conclude

∂αv ∈ G(Rd).
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Remark 9 Assume now we are given an SDE with separable coefficients, specifically

dXt = utB(Xt) dt+ utS(Xt) dWt,

where B,S ∈ Lip∩G∞. Further, suppose Assumption (A1) holds. Given g ∈ G∞(Rd) we
want to show that v defined by

vi,ht := Egi(Xh,t
T )

satisfies v ∈ G∞([0, T ]× Rd).

To this end let U : Imu→ R be, such that

U =

{
u̇ ◦ u−1, u strictly monotone

0, u constant

Then U is continuous, bounded and

dut = U(ut) dt.

Consider the system

dZt = b(Zt) dt+Σ(Zt) dWt,

with

Zt =

(
Xt

ut

)
, b

(
x
y

)
=

(
yB(x)
U(y)

)
,Σ

(
x
y

)
=

(
yS(x)

0

)
.

Then b,Σ ∈ G(Rd). If the coefficients of an autonomous SDE

dZt = b(Zt) dt+Σ(Zt) dWt

are in G∞ and g ∈ G∞(Rd), then clearly also LZg ∈ G∞([0, T ] × Rd), where LZ is the
infinitesimal generator of Z. By Proposition 8 then ELZg(Z) ∈ G∞([0, T ] × Rd). If g ∈
G∞(Rd), then vi,ht := Egi(Xh,t

T ) satisfies the Feynman-Kac equation4

∂tvt + LXvt = 0, vT = g,

where Lh
X is the infinitesimal generator of Xh. In particular,

∂tEg(Xt
T ) = ∂tEg(Zt

T ) = ∂tEg(Z0
T−t) = LZ(Eg(Z0

T−t)) ∈ G([0, T ]× Rd),

with the understanding that g(x, y) := g(x). Inductively,

∂α∂
k
t Eg(Xt

T ) = ∂αL
k
ZE(g(Z0

T−t)) ∈ G([0, T ]× Rd).

All in all we have v ∈ G∞([0, T ] × Rd), that is v is smooth in time and space, and all its
derivatives have polynomial growth (uniformly in time).

4. See for example Graham and Talay (2013), Theorem 7.14 and Remark 7.6.
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Next we shall consider families of stochastic differential equations

dXh
t = bht (X

h
t ) dt+

√
hσht (X

h
t ) dWt,

indexed by a discretization parameter h ∈ (0, 1). Given the family of solutions X of an h-
indexed family of stochastic differential equations we define the family of discrete processes

X̃h
n(x) := Xh

nh(x), (27)

with h ∈ (0, 1), x ∈ Rd and n ∈ {0, . . . , ⌊T/h⌋}. Then,

∆X̃h,n
n (x) = Xh

nh(x)− x.

Lemma 10 Let

b : (0, 1)× [0, T ]× Rd → Rd, σ : [0, T ]× Rd → Rd×d ∈ G1(Rd) ∩ Lip

and X be the unique solution to stochastic differential equation

dXh
t = bht (X

h
t ) dt+

√
hσt(X

h
t ) dWt.

Then for all p ≥ 2 there exists a C ∈ G(Rd), such that∥∥∥∆X̃h,n
n

∥∥∥
p
≤ hC,

for all h ∈ (0, 1) and n ∈ {0, . . . , ⌊T/h⌋}.

Proof We have∥∥∥∆X̃h,n
n

∥∥∥
p
≤

∥∥∥∥∥
∫ (n+1)h

nh
bhs (Xs)ds

∥∥∥∥∥
p

+
√
h

∥∥∥∥∥
∫ (n+1)h

nh
σ(Xh

s ) dWs

∥∥∥∥∥
p

.

On the one hand∥∥∥∥∥
∫ (n+1)h

nh
bht (X

h
t )dt

∥∥∥∥∥
p

≤h1−
1
p

(∫ (n+1)h

nh
E|bht (Xt)|p dt

)1/p

≤h

(
E sup

t,h
|bht (Xt)|p

)1/p

=h∥b(X)∗∥p,

and x 7→ ∥b(X(x))∗∥p ∈ G(Rd) by Theorem 21 and since b ∈ G1(Rd). On the other hand,

√
h

∥∥∥∥∥
∫ (n+1)h

nh
σt(X

h
t ) dWt

∥∥∥∥∥
p

≤
√
p(p− 1)

2
h
1− 1

p

∥∥∥σ(Xh)
∥∥∥
p

≤c1h∥σ(X)∗∥p,

where we have used Itô’s isometry and Jensen’s inequality.
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Lemma 11 Let b, σ ∈ G1([0,∞) × Rd) ∩ G∞([0,∞) × Rd), such that b are Rd-valued and
σ is Rd×d-valued. Let h ∈ (0, 1), s ≥ 0 and consider the stochastic differential equation

dXh
t = bt(X

h
t ) dt+

√
hσt(X

h
t ) dWt, Xs = x,

with t ∈ [s, s+ h]. Then there exists a function C ∈ G(Rd), such that

E[∆Xh
s ] = hb0s + h2C, E[(∆Xh

s )
⊗2] = h2C, (28)

for all h ∈ (0, 1), where ∆Xh
s := Xh

s+h −Xh
s .

Proof For any multi-index α define

mα(z) := (z − x)α =
d∏

j=1

(zj − xj)
α(j).

Then for any other multi-index β,

∂βmα(z) =
d∏

j=1

β(j)∏
k=1

(α(j)− k + 1)(z − x)α−β, z ∈ Rd,

where it is understood that yα−β = 0 if α(j) < β(j) for any j ∈ {1, . . . , d}. Further,
(∆Xh

s )
α = mα(X

h
s+h). Write

AX = ∂t + b†∇g + h

2
tr[σ†σ∇2g],

and A2
X = AX ◦ AX . Observe that AXg already depends on time even if g does not. An

Itô-Taylor expansion implies (cf. Theorem 23)

E(∆Xh
s )

α = hAXmα(s, x) +

∫ s+h

s

∫ t

s
EA2

Xmα(u,Xu) du dt.

We have

AX(mj)(s, x) =bs(x)j .

Moreover, by Lemma 24, A2
Xmj ∈ G([0, T ]× Rd), so Theorem 21 implies∥∥(A2

Xmj(s,Xs))
∥∥
1
≤ C(1 + ∥|Xs|κ∥1) ≤ C(1 + |x|κ),

for some constant C > 0. Hence,

E[∆Xh
s ] =hbs + h2C,

for some C ∈ G(Rd). Now, let us consider a multi-index α = {j1, j2}. Then,

AX(mα)(s, x) =
h

2
(σ†σ)s(xj1xj2),

with σ ∈ G. Again using Lemma 24 we can estimate the remainder term to arrive at

E[(∆Xh
s )

⊗2] = h2C,

for some C ∈ G(Rd), for all h ∈ (0, 1).
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4.2 Proof of the gradient flow approximation

We shall give a proof of Theorem 1. Fix g ∈ G∞(Rd) and define once more vt(x) :=
g(X0,t

T (x)), where X is the solution to the gradient flow equation (6),

dX0
t = utH̄(X0

t ) dt.

We then have v ∈ G∞([0, T ] × Rd) by Proposition 8 and Remark 9 and since we have
H̄ ∈ G∞(Rd) by Assumption (A3). Further, v satisfies the Feynman-Kac equation

∂tvt(x) +∇vt(x)†utH̄(x) = 0, vT (x) = g(x). (29)

From now on let χh and X denote the solutions of (5) and (6), respectively, with the same
fixed initial condition χ0 ∈ Rd.

Recall the definition of φ in (10) and the statement of Theorem 1. We define

φGF
t (x) = φt(x) +

1

2
u2t tr[∇2vt(x)Σ(x)],

for all x ∈ Rd and t ∈ [0, T ].

Lemma 12 Let ξ : H → R be the function such that for all h ∈ H

Eg(χh
T/h)− g(X0

T ) = h2

T
h
−1∑

k=0

EφGF
kh (χh

k) + h2ξ(h).

Then ξ is bounded.

Proof By Taylor’s theorem,

vt+h(x+ δ)− vt(x) =h∂tvt(x) +∇vt(x)†δ +
h2

2
∂2t vt(x)

+ h∂t∇vt(x)†δ +
1

2
tr[∇2vt(x)δ

⊗2]

+ rh(δ),

where

rh(δ) :=

3∑
k=0

∑
#β=3−k

1

β!k!
∂kt ∂βvt+θh(x+ θδ)hkδβ

for some θ ∈ (0, 1), all h ∈ (0, 1) and δ ∈ Rd. By choosing t = kh, δ = ∆χh
k and applying

expectation we get

Ev(k+1)h(χ
h
k+1)− Evkh(χh

k) = hAh
1 + h2(Ah

2 +Ah
3 +Ah

4) + Erh(∆χh
k),

where

Ah
1 := E[∂tvkh(χh

k) + h−1∇vkh(χh
k)

†∆χh
k ],

Ah
2 :=

1

2
u2khE tr[∇2vkh(χ

h
k)((H̄(χh

k) + (Hγ(0) − H̄)(χh
k))

⊗2)],

=
1

2
u2khE tr[∇2vkh(χ

h
k)(H̄

⊗2 +Σ)(χh
k)]

Ah
3 := ukhE[∂t∇vkh(χh

k)
†H̄(χh

k)],

Ah
4 :=

1

2
E[∂2t vkh(χh

k)].
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Using the Feynman-Kac equation (29) we can simplify

Ah
1 =E[E(∂tvkh(χh

k) +∇vkh(χh
k)

†ukhH̄(χh
k)|χh

k)] = 0.

We want to show that the remainder satisfies Erh(∆χh
n) = O(h3). For k ∈ {0, . . . , 3} and

#β = 3− k,
E[hk(∆χh

n)
β] = hkh3−k(ukh)

3−kEH̄(χh
n)

β = O(h3),

since u ≤ 1 and

E[|H̄(χh
n)|β]1/#β ≤ sup

h∈(0,1)

∥∥∥H̄(χh)∗
∥∥∥
#β,⌊T

h ⌋

≤
∥∥H̄∥∥

G1

(
1 + sup

h∈(0,1)

∥∥∥(χh)∗
∥∥∥
#β,⌊T

h ⌋

)
≤c(1 + |χ0|),

by Lemma 7. Since ∂kt ∂
2−k
α v ∈ G([0, T ] × Rd) for all k ∈ {0, 1, 2}, we have Erh(∆χh

n) =
O(h3). Therefore,

Eg(χh
T/h)− g(X0

T ) =EvT (χh
T/h)− Ev0(χ0)

=

T
h
−1∑

k=0

Ev(k+1)h(χ
h
k+1)− Evkh(χh

k)

=h2

T
h
−1∑

k=0

EφGF
kh (χh

k) +O(h2),

for all h ∈ H.

The bound on the function ξ in Lemma 12 only depends on the growth of g and its deriva-
tives, as well as H̄, Σ and T . We use this fact in the next step, where we apply Lemma 12
to the family of functions (φGF

nh )h∈H,n≤T/h.
For all h ∈ H and n ∈ {0, . . . , T/h}, let ξn(h) ∈ R be, such that

EφGF
nh (χ

h
n)− φGF

nh (X
h
nh) = h2

n−1∑
k=0

Eψnh,kh(χ
h
k) + h2ξn(h) (30)

with

ψs,t(x) :=
1

2
u2t tr[∇2zs,t(x)(H̄

⊗2 +Σ)(x)] + ut∂t∇zs,t(x)H̄(x)

+
1

2
∂2t zs,t(x),

zs,t :=φ
GF
s (X0,t

s ).

Now choose a constant B ∈ [0,∞) such that for all n and h we have

|ξn(h)| ≤ B. (31)

Using this estimate we can bound the differences of the form EφGF
nh (χ

h
n)− φGF

nh (Xnh).
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Lemma 13 There exists a constant C > 0 such that

T
h
−1∑

n=0

|EφGF
nh (χ

h
n)− φGF

nh (X
0
nh)| ≤ C

for all h ∈ H.

Proof By (30) and (31)

T
h
−1∑

n=0

|EφGF
nh (χ

h
n)− φGF

nh (X
0
nh)| ≤h2

T
h
−1∑

n=0

n−1∑
k=0

E|ψnh,kh(χ
h
k)|+Bh

≤C
(
1 + max

n,k
E|ψnh,kh(χ

h
k)|
)
,

for some C > 0 and all h ∈ (0, 1).
Because ∂kt ∂

2−k
α v ∈ G([0, T ] × Rd) for all k ∈ {0, 1, 2}, g ∈ G(Rd), u is bounded and

H̄,Σ ∈ G(Rd), we have φGF ∈ G([0, T ]× Rd). With Lemma 7,

max
n,k

E|ψnh,kh(χ
h
n)| ≤

∥∥φGF
∥∥
Gκ

(
1 + sup

h∈(0,1)

∥∥∥(χh)∗
∥∥∥κ
1

)
≤C(1 + |χ0|κ),

for some C > 0, κ ∈ N and all h ∈ (0, 1).

Proof of Theorem 1 Let g ∈ G∞(Rd) and h ∈ H. Then Lemma 12 implies

Eg(χh
T/h)− g(X0

T ) = h

T
h
−1∑

n=0

hEφGF
nh (χ

h
n) +O(h2),

We can then write the leading error term as follows.

T
h
−1∑

n=0

hEφGF
nh (χ

h
n) =

∫ T

0
φGF
t (X0

t ) dt+ h

T
h
−1∑

n=0

EφGF
nh (χ

h
n)− φGF

nh (X
0
nh)

+

T
h
−1∑

n=0

hφGF
nh (X

0
nh)−

∫ T

0
φGF
t (X0

t ) dt,

Using Lemma 13, we then have

h

T
h
−1∑

n=0

|EφGF
nh (χ

h
n)− φGF

nh (X
0
nh)| ≤hC.
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Further, approximating the integral
∫
φGF by a left Riemann sum yields∣∣∣∣∣∣

T
h
−1∑

n=0

hφGF
nh (X

0
nh)−

∫ T

0
φGF
t (X0

t ) dt

∣∣∣∣∣∣ ≤hC ′.

Hence,

Eg(χh
T/h)− g(X0

T ) = h

∫ T

0
φGF
t (X0

t ) dt+O(h2),

for all h ∈ H.

4.3 Proof of the stochastic gradient flow approximations

The first part of the proofs of Theorems 2 and 3 are somewhat analogous to the ODE case.
We focus on proving Theorem 2 while omitting the proof of 3 since it is completely analogous.
One notable difference to the GF case comes from the newly acquired dependence of the
solution X of (12) on h ∈ H. This carries over to v and by extension to the function

φh
t (x) :=

1

2
u2t tr[∇2vht (x)H̄

⊗2(x)] + ut∂t∇vht (x)H̄(x) +
1

2
∂2t v

h
t (x).

Note the absence of the Σ term compared to the ODE case. By using arguments as in
Section 4.2, we arrive at an approximation of the form

Eg(χh
T/h)− Eg(Xh

T ) = h

∫ T

0
Eφh

t (X
h
t ) dt+O(h2). (32)

We then need to improve the estimate to

Eg(χh
T/h)− Eg(Xh

T ) = h

∫ T

0
φ0
t (X

0
t ) dt+O(h2).

This requires an additional estimation of the difference φh
t (X

h
t )− φ0

t (X
0
t ). Let us be more

specific now. Let g ∈ G∞(Rd) and define, for all h ∈ [0, 1), t ∈ [0, T ] and x ∈ Rd,

vht (x) := Eg(Xh,t
T (x)),

where Xh,t(x) denotes the solution of (12) on [t, T ] with initial condition Xh,t
t (x) = x.

Then v ∈ G∞([0, T ]×Rd), as defined in (26) with I = H, and it satisfies the Feynman-Kac
equation

∂tvt(x) +∇y†t (x)utH̄(x) +
1

2
hu2t tr[∇2vt(x)Σ(x)] = 0, vT (x) = g(x). (33)

Given a family (fht )h∈(0,1),t≥0 of continuous-time stochastic processes (or merely functions)
we define for every h ∈ (0, 1) the discrete-time process

f̃hn := fhnh, n ∈ N.

From now on let χh and Xh denote the solutions of (5) and (12), respectively, with the
same fixed initial condition χ0 ∈ Rd and h ∈ H. Then we have the following.
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Lemma 14 We have

Eg(χh
T/h)− Eg(Xh

T ) = h2
n−1∑
k=0

EΦh
k(χ

h
k) +O(h2),

for all h ∈ H, where Φh := φ̃h.

Proof Follow the proof of Lemma 12. A Taylor expansion of v yields

Eṽhk+1(χ
h
k+1)− Eṽhk (χh

k) = hAh
1 + h2(Ah

2 +Ah
3 +Ah

4) + Erh(∆χh
k),

as before, except with

Ah
1 :=E[∂tṽhk (χh

k) + h−1∇ṽhk (χh
k)

†∆χh
k +

1

2
hu2kh tr[∇2ṽhk (χ

h
k)Σ(χ

h
k)]]

=0

by (33) and to compensate for the additional term

Ah
2 :=

1

2
u2khE tr[∇2ṽhk (χ

h
k)H̄

⊗2(χh
k)].

Again, we could have stated Lemma 14 with g depending on h and t, so the following holds.

Lemma 15 With the conditions as in Lemma 14, there exists a constant C > 0 with

T
h
−1∑

n=0

|EΦh
n(χ

h
n)− EΦh

n(X̃
h
n)| ≤ C

for all H ∋ h ↓ 0.

Our initial approximation follows just as in the ODE case, so we shall omit the proof of the
following lemma.

Lemma 16 For all g ∈ G∞(Rd) and h ∈ H,

Eg(χh
T/h)− Eg(Xh

T ) = h

∫ T

0
Eφh

t (X
h
t ) dt+O(h2), (34)

where

φh
t (x) =

1

2
u2t tr[∇2vht (x)H̄

⊗2(x)] + ut∂t∇vht (x)H̄(x) +
1

2
∂2t v

h
t (x).

Next we shall improve (34) in order to arrive at the equality in Theorem 2. An additional
step compared to the ODE approximation is then deriving an estimate of |Eφh

t (X
h
t ) −

φh
0(X

0
t )| to get rid of the dependence of the integral

∫ T
0 |Eφh

t (X
h
t )| dt on h ∈ (0, 1). First,

consider estimating the difference vh − v0 and its derivatives up to order 2.
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A comparison of continuous-time approximations to stochastic gradient descent

Lemma 17 Let vht (x) = Eg(Xh,t
T (x)). Define the H-indexed family

δht (x) :=
vht (x)− v0t (x)

h
.

Then δh ∈ G2([0, T ]× Rd), uniformly in h.

Proof For every s ∈ [0, T ] and h ∈ H, such that s
h ∈ N0 we have

|vhs − v0s | ≤

T−s
h

−1∑
n=0

|Ev0s+(n+1)h(X
h,s
s+(n+1)h)− Ev0s+nh(X

h,s
s+nh)|,

where this is meant as an inequality of functions on Rd, the set of possible initial values.
To shorten notation, throughout this proof we omit the initial value in Xh,s(x).

Set Ah
t := v0t+h(X

h,s
t+h)−v

0
t (X

h,s
t ). Since v0 ∈ G∞([0, T ]×Rd), applying Taylor’s theorem

to it implies

Ah
t =∂tv

0
t (X

h,s
t )h+∇v0t (X

h,s
t )†∆Xh,s

t +
1

2
tr[∇2v0t (X

h,s
t )(∆Xh,s

t )⊗2]

+ h2rht (∆X
h,s
t )

with some remainder term r : H×[0, T ]×Rd → R ∈ G([0, T ]×Rd) and ∆Xh,s
t := Xh,s

t+h−X
h,s
t .

By the Feynman-Kac formula (33),

EAh
t =E[∇v0t (X

h,s
t )(∆Xh,s

t − hutH̄(Xh,s
t ))]

+
1

2
E tr[∇2v0t (X

h,s
t )((∆Xh,s

t )⊗2 − h2u2tΣ(X
h,s
t ))] + h2Erht (∆X

h,s
t ).

With an Itô-Taylor expansion (cf. Lemma 11) we see that there exists a C ∈ G(Rd) with∥∥∥∆Xh,s
t − hutH̄(Xh,s

t )
∥∥∥
2
≤Ch2,∥∥∥(∆Xh,s

t )⊗2 − h2u2tΣ(X
h,s
t )
∥∥∥
2
≤Ch2,

for all h ∈ (0, 1) and s, t ∈ [0, T ] with s ≤ t. Since ∇v0 and ∇2v0 have polynomial growth,
uniformly in space and time, there exists a C ∈ G(Rd) with

|EAh
t | ≤

∥∥∥∇v0t (Xh,s
t )
∥∥∥
2

∥∥∥∆Xh,s
t − hutH̄(Xh,s

t )
∥∥∥
2

+
1

2

∥∥∥∇2v0t (X
h,s
t )
∥∥∥
2

∥∥∥(∆Xh,s
t )⊗2 − h2u2tΣ(X

h,s
t )
∥∥∥
2
+ h2|Erht (∆X

h,s
t )|

≤Ch2, h ∈ H,

by Theorem 21 and using the Cauchy-Schwarz inequality. We conclude

|vhs − v0s | ≤
T

h
Ch2 ≤ TCh,
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for some C ∈ G(Rd), all h ∈ H and s ∈ [0, T ] such that s
h ∈ N0. For general t ∈ [0, T ] with

nh ≤ t < (n+ 1)h a Taylor approximation yields

|vht − vhnh| ≤ (t− nh)|∂tvht |+ h2r

for some remainder r ∈ G([0, T ] × Rd). Since ∂tv ∈ G([0, T ] × Rd) and (t − nh) ≤ h we
conclude the existence of a C ∈ G(Rd) with

|vht − vhnh| ≤ Ch,

for all h ∈ H. A similar argument applies to the difference v0t − v0nh. Hence,

|vht − v0t | ≤ |vht − vhnh|+ |vhnh − v0nh|+ |v0nh − v0t | ≤ Ch,

for some C ∈ G(Rd), all h ∈ H and t ∈ [0, T ]. This shows that δh ∈ G([0, T ]×Rd), uniformly
in h.

Now, we want to show that the partial derivatives of δ up to order 2 have the same
property. Fix j ∈ {1, . . . , d} and define

wh
t (x, y) = E[∇g(Xh,t

T (x))†∂jX
h,t
T (x, y)].

Note that wh(x, 1) = ∂jv
h(x). Furthermore, by differentiating the SDE (12) governing

X with respect to its initial condition (cf. 22), we see that the partial derivative Yr :=

∂jX
h,t
r (x, y) satisfies

dYr = ur∇H̄(Xh,t
r (x))Yr dr + ur

√
h∇
√
Σ(Xh,t

r (x))Yr dWr,

with initial condition Yt = y, where

(∇
√
Σ(x)y)i,j =

d∑
k=1

∂i

√
Σ(x)j,kyk,

for all x, y ∈ Rd and i, j ∈ {1, . . . , d}. The Feynman-Kac equation applies to the system

(Xh,t
r , ∂jX

h,t
r ) giving us

0 =∂tw
h
t (x, y) + ut∇xw

h
t (x, y)H̄(x) +∇yw

h
t (x, y)y∂jH̄(x)

+
1

2
hu2t tr[∇2

x,yw
h
t (x, y)S(x, y)],

with S given by the block matrix

S(x, y) :=

(
Σ(x)

√
Σ(x)(∇

√
Σ(x)y)†

∇
√

Σ(x)y
√
Σ(x)

†
(∇
√
Σ(x)y)(∇

√
Σ(x)y)†

)
.

Similarly to the above argument, using Taylor’s theorem we can show

x 7→1

h
(Ew0

t+(n+1)h(X
h
t+(n+1)h(x), ∂jX

h
t+(n+1)h(x, 1)) (35)

− Ew0
t+nh(X

h
t+nh(x), ∂jX

h
t+nh(x, 1))) ∈ G(Rd) (36)
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and conclude, using a telescoping sum,

1

h
(∂jv

h
t − ∂jv

0
t ) ∈ G(Rd).

By differentiating the process X once more, an analogous argument works for any second
space-derivative to prove

1

h
|∂i,jvht − ∂i,jv

0
t | ∈ G(Rd),

with i, j ∈ {1, . . . , d}. Then use the Feynman-Kac equation for v to conclude

1

h
|∂tvht − ∂tv

0
t | ∈ G(Rd).

We can then do essentially the same for ∂j∂ty with j ∈ {1, . . . , d} and ∂2t y.

Consider the linear operator

F : G2([0, T ]× Rd) → G([0, T ]× Rd)

given by

Ftf(x) :=
1

2
u2t tr(∇2ft(x)H̄

⊗2(x)) + ut∂t∇ft(x)H̄(x) +
1

2
∂2t ft(x).

Implicitly, we have already seen it in action. In particular, φh
t (x) = Ftv

h(x) for all t ∈ [0, T ]
and x ∈ Rd. In the next lemma we consider spaces of the form

Gl
κ([0, T ]× Rd) = {f ∈ C l([0, T ]× Rd) :

∥∥∥∂kt ∂αf∥∥∥
Gκ

<∞, k ≤ l, |α| ≤ l − k}.

This is a Banach space when equipped with the norm

∥f∥Gl
κ
:=

l∑
k=0

∑
|α|≤l−k

∥∥∥∂kt ∂αf∥∥∥
Gκ

.

This works regardless of whether we consider functions f : [0, T ] × Rd → R or families of
functions, such as f : H × [0, T ] × Rd → R with polynomial growth uniformly in H and
[0, T ]. Of course, by construction

Gl([0, T ]× Rd) =
⋃

κ∈N0

Gl
κ([0, T ]× Rd).

Lemma 18 Let κ ∈ N0. The function

F : G2
κ([0, T ]× Rd) → Gκ+2([0, T ]× Rd)

with

Ftf(x) =
1

2
u2t tr[∇2ft(x)H̄

⊗2(x)] + ut∂t∇ft(x)†H̄(x) +
1

2
∂2t ft(x).

is a continuous linear operator. The statement applies for spaces of families of functions as
well (cf. (26)). Moreover, if f ∈ G2

κ([0, T ] × Rd) with ft ∈ G∞
κ (Rd), uniformly in t, then

Fft ∈ G∞
κ+2(Rd), uniformly in t.
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Proof The linearity of F is trivial. Now, given f ∈ G2
κ([0, T ]× Rd) we have

∥Ff∥Gκ+2
≤9

2
∥u∥2∞

d∑
i,j

∥∂i,jf∥Gκ

∥∥H̄i

∥∥
G1

∥∥H̄j

∥∥
G1

+ 3 ∥u∥∞
d∑

i=1

∥∂t∂if∥Gκ

∥∥H̄i

∥∥
G1

+
1

2

∥∥∂2t f∥∥Gκ

From this we can see that ∥Ff∥Gκ+2 < ∞, so F is well-defined. Furthermore, the bound

on ∥Ff∥Gκ+2
is a scalar multiple of the norm on G2

κ([0, T ]×Rd) proving the continuity. To
show the last sentence note that ∥∂αFf∥Gκ+2

is bounded by a linear combination of the

Gκ-norms of f, ∂tf, ∂
2
t f and their derivatives, as well as

∥∥H̄∥∥
G1

and the ∞-norms of the

derivatives of H̄.

Corollary 19 There exists a function C ∈ G(Rd), such that

|φh
t (x)− φ0

t (x)| ≤ hC(x),

for all t ∈ [0, T ], x ∈ Rd and h ∈ H. Consequently,

|Eφh
t (X

h
t )− Eφ0

t (X
h
t )| ∈ O(h) (37)

for all t ∈ [0, T ] and h ∈ H.

Proof With δ defined as in Lemma 17 we have

φh − φ0 = hFδh.

Now apply Lemma 17 and the fact that F maps into G([0, T ]× Rd). With this, inequality
(37) follows from Theorem 21 in the Appendix.

Lemma 20 We have

|Eφ0
t (X

h
t )− φ0

t (X
0
t )| ∈ O(h) (38)

for all t ∈ [0, T ] and h ∈ H.

Proof If we replace χh
k by X̃h

k in Lemma 12 and its extension in (30), then we can proceed
with the proof in the same way to show

Eφ0
nh(X̃

h
n)− φ0

nh(X
0
nh) = h2

n−1∑
k=0

EΨh
n,k(X̃

h
k ) +O(h2) (39)

where

Ψh
n,k(x) := Fkh(Eφ0

nh(X
h,·
nh))(x).
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Here Xh,·
nh is a random field with variable initial value x ∈ Rd.

Here, we use the Itô-Taylor approximation in Lemma 11 to calculate E(∆X̃h
n |X̃h

n) and

E((∆X̃h
n)

⊗2|X̃h
n), and estimate

∥∥∥X̃h
∥∥∥
#β

using Theorem 21.

Having established (39) next we consider the family

wh,r
s (x) := Eφ0

r(X
h,s
r (x)),

which satisfies w ∈ G∞([0, T ]×Rd), uniformly in h, r and s, by a straightforward extension
of Remark 9. Therefore, Lemma 18 implies

|Ψh
n,k(x)| = |(Fkhv

h,nh)(x)| ≤ C(1 + |x|κ),

for some C > 0 and κ ∈ N. This proves (38) for t = nh.
Now consider an arbitrary t ∈ [0, T ] with nh ≤ t < (n + 1)h. Then Taylor’s theorem,

the Cauchy-Schwarz inequality and the fact that (t− nh) ≤ h, imply

|Eφ0
t (X

h
t )− Eφ0

nh(X
h
nh)| ≤h|E∂tφ0

nh(X
h
nh)|+

∥∥∥∇φ0
nh(X

h
nh)
∥∥∥
2

∥∥∥∆X̃h
n

∥∥∥
2

+O(h2),

with some remainder r ∈ G([0, T ]× Rd). So,

|Eφ0
t (X

h
t )− Eφ0

nh(X
h
nh)| ∈ O(h)

for all h ∈ H by Lemma 10, Theorem 21 and since ∇φ0 ∈ G([0, T ] × Rd) by the last
statement of Lemma 18. Similarly,

|φ0
t (X

0
t )− φ0

nh(X
0
nh)| ∈ O(h),

for all h ∈ H. Hence,

|Eφ0
t (X

h
t )− φ0

t (X
0
t )| ≤|Eφ0

t (X
h
t )− Eφ0

nh(X̃
h
n)|

+ |Eφ0
nh(X̃

h
n)− φ0

nh(X
0
nh)|

+ |φ0
t (X

0
t )− φ0

nh(X
0
nh)|

∈O(h)

for all t ∈ [0, T ] and h ∈ H.

Proof of Theorem 2 Combining inequalities (37) and (38) gives us

|Eφh
t (X

h
t )− φ0

t (X
0
t )| ≤|Eφh

t (X
h
t )− Eφ0

t (X
h
t )|+ |Eφ0

t (X
h
t )− φ0

t (X
0
t )|

∈O(h)

for all h ∈ H. We conclude with the help of (34),

Eg(χh
T/h)− Eg(Xh

T ) = h

∫ T

0
φ0
t (X

0
t ) dt+O(h2).
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5 Appendix

In the appendix we provide some background on kurtosis and results from stochastic anal-
ysis.

5.1 A remark on Kurtosis

The kurtosis of distribution is its standardized fourth central moment, that is given a
random variable Z with EZ4 <∞ it is defined by

KurtZ =
E[(Z − E[Z])4]

(VarZ)2
.

Note that KurtZ ≥ 1 by Jensen’s inequality. Further, it is invariant under affine transfor-
mations, that is

Kurt(aZ + b) = Kurt(Z).

This property is of great importance in regards to machine learning, because this means
that the typical pre-processing steps of centering and dividing by the standard deviation do
not affect the kurtosis of the features (or labels). In other words, the presence of Kurtx in
the expression for Σ(θ) cannot be explained away by a standardization of x.

For convenience, here is a list of common distributions and their kurtosises.

Dist. Exp(λ) Poi(λ) χ2
n N (µ, σ2) U [a, b]

Kurt. 9 3 + 1
λ 3 + 12

n 3 9
5

Further, if p ∈ [0, 1] and Z ∼ Bin(1, p), then

KurtZ =
3p2 − 3p+ 1

p(1− p)

which has minimum 1 at 1
2 . That is, a symmetric Bernoulli attains the smallest possible

Kurtosis of 1. Moreover, we have KurtZ = 2 if and only, if p = 5±
√
5

10 . The case of kurtosis
2 will be special for the Ornstein-Uhlenbeck approximation of SGD, as we will see later.

If KurtZ = 3, then we say Z (or its distribution) is mesokurtic. If KurtZ > 3, then Z
is called platykurtic and we call Z leptokurtic for KurtZ < 3. We will see that these terms
also delineate the settings for the error expansions in the following subsection.

Finally, we remark that the common interpretation of kurtosis as heaviness of the tails of
a distribution is somewhat misleading. Let us suppose the distribution of Z is unimodal, for
simplicity. Then according to Balanda and MacGillivray (1988) kurtosis is “vaguely [...] the
location- and scale-free movement of probability mass from the shoulders of a distribution
into its center and tails [...]”, that is higher kurtosis implies both higher peakedness as well
as heavier tails. The term shoulders refers roughly to the area between the tails and the
center. For multimodal distributions, the interpretation of kurtosis is a lot more involved or
perhaps not even well understood. We will restrict our attention to unimodal distributions
only (which includes all previous examples).
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5.2 Results from stochastic analysis

Here we collect some known results from stochastic analysis that are needed for the proofs of
our main theorems. We adapt the presentation to our setting in order to make the present
article more self-contained.

Theorem 21 Let b, σ ∈ G1(Rd)∩Lip, such that b is Rd-valued and σ is Rd×d-valued. Then,
for every p ≥ 2, T > 0 and random field φ : Ω × [0, T ] × Rd → Rd with ∥φ∗∥p,T < ∞, the
stochastic differential equation

dXt = bt(Xt) dt+ σt(Xt) dWt, X0 = φ

admits a unique5 solution X on [0, T ], such that the family of solutions X = (Xt)t≥0 satisfies
∥X∗∥p,T <∞ and

∥X∗∥p,T ≤ (1 + ∥φ∗∥p,T ).

The same bound holds if we consider I-indexed families b, σ, φ and X for some index set I.

Proof This essentially a standard result, cf. Kunita (2004) Theorem 3.1 and 3.2 for ex-
ample. The extension to an index set I and from an initial value x ∈ Rd to a process φ is
discussed in Li et al. (2019) Theorem 18 and 19.

A (unordered) multi-index α ⊆ {1, . . . , d} is a multi-subset of {1, . . . , d}, that is a
function α : {1, . . . , d} → N0. The size #α of α is given by

#α :=

d∑
j=1

α(j).

Every subset A ⊆ {1, . . . , d} becomes a multi-set by identifying it with its indicator function.
Given multi-indices α and β we write α ≤ β if α(j) ≤ β(j) for all j ∈ {1, . . . , d} and in
that case the multi-index β − α is well defined by component-wise. Further, write j ∈ α if
{j} ≤ α and set α− j := α− {j} in that case.

If a function f : Rd → R is l-times continuously differentiable, then by Schwarz’s theorem
the partial derivative with respect to a multi-index α with #α ≤ l is well-defined recursively
by

∂αf = ∂j∂α−jf, ∂∅f = f.

where j is any j ∈ {1, . . . , d} with j ∈ α. Given x ∈ Rd and multi-index α we define

xα :=
d∏

j=1

x
α(j)
j .

Theorem 22 Let l ∈ N, p ≥ 1 and b, σ ∈ G1(Rd) ∩ Lipl, such that b is Rd-valued and σ is
Rd×d-valued. Let x ∈ Rd, s ∈ [0, T ] and X be the unique solution to the family of stochastic
differential equations

dXt = bt(Xt) dt+ σt(Xt) dWt, Xs = x.

5. Of course, here we imply uniqueness up to indistinguishability.
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Then X is l-times continuously differentiable w.r.t. x at any (t, x) ∈ [s, T ] × Rd, a.s. and
for every multi-index α with 0 < #α ≤ l, ∂αX satisfies the stochastic differential equation

∂αXt = ψα +

∫ t

s
∇bu(Xu)∂αXu du+

∫ t

s
∇σu(Xu)∂αXu dWu,

where ∥ψ∗
α∥p ∈ G(Rd) for all p ≥ 2. Moreover,

E(∂αXt) = ∂αE(Xt),

for all t ≥ 0. Again, the results extend readily to I-indexed coefficients and processes for
some index set I.

Proof For the proof cf. Kunita (2004) Theorem 3.4. More specifically, for every l ∈ N,
assuming the result holds for all l′ < l define

Y := (X, ∂1X, . . . ∂dX, ∂1,1X, . . . , ∂1,dX, ∂2,1X, . . . , ∂d,...,dX)†,

where the last partial derivative is of the order l − 1. Then Y satisfies the stochastic
differential equation

Y =


x
e1
...
0

+


0
ψ1
...

ψd,...,d

+

∫ t

s


bu(Xu)

∇bu(Xu)∂1Xu
...

∇l−1bu(Xu)∂d,...,dXu

 du

+

∫ t

s


σu(Xu)

∇σu(Xu)∂1Xu
...

∇l−1σu(Xu)∂d,...,dXu

 dWu,

where the processes ψ1, . . . , ψd,...,d consists of additional integrals
∫ t
s du and

∫ t
s dWu of the

remaining terms induced by repeated application of the chain rule. The terms within
∫ t
s du

and
∫ t
s dWu respectively are seen to be functions of u and the state Y , satisfying the con-

ditions of Kunita (2004) Theorem 3.4. By applying it again to the SDE governing Y the
result follows via induction on l.

Given a set A the Kleene closure is the set of all A-tuples of arbitrary length, that is

A∗ :=
⋃
n≥0

An,

where A0 = {()}. We let |(a1, . . . , an)| = n and |()| = 0 be the length of such a tuple.
We care about the set of (ordered) multi-indices {0, . . . , d}∗, where Rd is the state

space of W . As the same implies now (1, 2) ̸= (2, 1) , unlike the (unordered) multi-indices
considered before. Given a multi-index α ∈ {0, . . . , d}∗ of length l = |α| > 0 we define the
left- and right deletions

α− = (α1, . . . , αl−1),
−α = (α2, . . . , αl) ∈ {0, . . . , d}l−1.
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Let H() be the set of all continuous stochastic processes and define

H(0) = {X ∈ H() :

∫ t

0
|Xs| ds <∞, a.s., t ≥ 0},

H(1) = {X ∈ H() :

∫ t

0
|Xs|2 ds <∞, a.s., t ≥ 0}.

Also for convenience set H(j) := H(1) for all j ∈ {1, . . . , d}.
We let W 0

t = t, t ≥ 0. Given a progressively measurable stochastic process X : Ω ×
[0,∞) → Rd and α ∈ {0, . . . d}∗ with l = |α| we define the multiple Itô integral∫ t

s
X dWα =

{
X, |α| = 0,∫ t
s

∫ u
s X dWα−

dWαl , |α| > 0,

as long as X ∈ Hα, where the latter is the case exactly when∫ ·

s
X dWα− =

(∫ t

s
X dWα−

)
t≥0

∈ H(αl).

Further, given f ∈ C1,2([0,∞)× Rd) define

AXf := L0f :=
∂f

∂t
+∇f †b+ 1

2
tr(∇2fσσ†),

Ljf :=σ†j,·∇f =

d∑
k=1

σk,j∂xk
f, j ∈ {1, . . . , d}.

For any α ∈ {0, . . . , d}∗ set
α(0) := #{j : αj = 0}.

Given f ∈ Cα(0),2(|α|−α(0))([0,∞)× Rd) we define the Itô coefficient function

Lαf :=

{
f, |α| = 0,

Lα1(L−αf), |α| > 0.

Theorem 23 Let b, σ ∈ G1(Rd) ∩ Lip, such that b is Rd-valued and σ is Rd×d-valued,
0 ≤ s ≤ t ≤ T, x ∈ Rd and let X be the unique solution to the stochastic differential
equation

dXt = bt(Xt) dt+ σt(Xt) dWt, X0 = x.

on [s, T ]. Then given f ∈ Cα(0),2(|α|−α(0))([0,∞)× Rd) we have

f(T,XT ) =
∑
|α|≤l

∫ T

s
Lαf(s,Xs) dW

α +
∑

|β|=l+1

∫ T

s
Lαf(·, X·) dW

α.

Further, applying expectation yields

Ef(T,XT ) =

l∑
i=0

(T − s)i

i!
Ai

Xf(s,Xs)

+

∫ T

s

∫ u1

s
· · ·
∫ ul

s
EAl+1

X f(ul+1, Xul+1
) dul+1 . . . du1.
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Proof See Kloeden and Platen (1995) Theorem 5.5.1 (p. 182). All the iterated integrals
are defined since Lαf(·, X·) ∈ Hα for all α with |α| ≤ l. As the hierarchical set choose
A := {α : |α| ≤ l}. For the second statement note that∫ T

s

∫ u1

s
· · ·
∫ ui−1

s
1 dui . . . du1 =

1

i!
(T − s)i,

and that any integral
∫ T
s dWα with α(0) < |α| has expectation zero.

Lemma 24 Consider the stochastic differential equation

dXt = bt(Xt) dt+ σt(Xt) dWt,

where
b : [0, T ]× Rd → Rd, σ : [0, T ]× Rd → Rd×d ∈ G1([0, T ]× Rd) ∩ Lip

and additionally
b, σ ∈ Gl([0, T ]× Rd) ∩ C l′,l([0, T ]× Rd).

Let f : [0, T ]× Rd → R ∈ Gl([0, T ]× Rd) ∩ C l′,l([0, T ]× Rd). Then,

Ai
Xf ∈ Gl−2i ∩ C l′−i,l−2i([0, T ]× Rd),

for all i ∈ N with i ≤ l
2 ∧ l′, where AX is the infinitesimal generator of X.

Proof
Suppose the statement holds for all i′ < i. Then Ai

Xf = AXg for some

g ∈ C l′−(i−1),l−2(i−1)([0, T ]× Rd)

with g ∈ Gl−2(i−1)(Rd). Then,

b†∇g ∈ Gl−2i+1(Rd), tr[σ†σ∇2g] =

d∑
j,k

(σ†σ)j,k∂j,kg ∈ Gl−2i(Rd),

and ∂tg ∈ C l′−i,l−2i+2([0, T ]× Rd). Combining all three statements yields the result.
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