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Approximating stochastic gradient descent
with diffusions: error expansions and impact of

learning rate schedules

Stefan Ankirchner∗ Stefan Perko†

October 7, 2021

Abstract

Applying a stochastic gradient descent method for minimizing an
objective gives rise to a discrete-time process of estimated parameter
values. In order to better understand the dynamics of the estimated
values it can make sense to approximate the discrete-time process
with a continuous-time diffusion. We refine some results on the weak
error of diffusion approximations. In particular, we explicitly compute
the leading term in the error expansion of an ODE approximation
with respect to a parameter h discretizing the learning rate schedule.
The leading term changes if one extends the ODE with a Brownian
diffusion component. Finally, we show that if the learning rate is time
varying, then its rate of change needs to enter the drift coefficient in
order to obtain an approximation of order 2.

Keywords. Stochastic gradient descent; diffusion; stochastic differential
equation; weak approximation; learning rate schedules; Talay-Tubaro expan-
sion.

Introduction

Consider a d-dimensional discrete-time stochastic process χ = (χn)n∈N0 with
dynamics

χn+1 = χn − ηn∇fγ(n)(χn), n ∈ N0, (0.1)
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where (fr)r∈Γ is a family of differentiable functions from Rd to R, (ηn)n∈N0

is a sequence of positive reals, and (γ(n))n∈N0 is an i.i.d. sequence of Γ-
valued random variables. We interpret (χn)n∈N0 as the sequence of estimated
parameters when applying a stochastic gradient descent (SGD) method1 for
minimizing the objective 1

|Γ|
∑

i∈Γ fi. We refer to ηn as the learning rate in
the nth step and fγ(n) as the loss due to the n-th sample of the data or mini
batch. In the following we simply call χ a SGD process.

Sometimes it is convenient to approximate the discrete-time process χ
with a continuous-time stochastic process in order to make tools from Stochas-
tic Analysis available for studying its dynamics. In a series of papers, Li, Tai
and E ([13], [14]) have shown that one can approximate the distribution of χ
with the distribution of a processes solving a stochastic differential equation
(SDE) driven by a Brownian motion. In the following we refer to solutions
of such SDEs as diffusions. We remark that the approximating diffusions are
also called stochastic modified equations (SME), e.g. in [13] and [14].

In this paper we aim at refining some results on diffusion approximations
of the SGD process (0.1). In order to take into account a time varying
learning rate from the outset, we assume that the progression of the learning
rate can be described in terms of a continuous function u : [0,∞) → (0, 1].
We may refer to u as a learning rate schedule. We assume that there exists
a positive real h such that for all n ∈ N0 the nth step learning rate satisfies

ηn = hunh. (0.2)

We interpret h as a discretization parameter and use it for measuring errors
of diffusion approximations. One can also view h as the maximal learning
rate, since u is bounded by 1.

Let (χhn) be the solution of (0.1) with initial condition χh0 = x ∈ Rd and
with learning rates satisfying (0.2). Moreover, let (Xh), h ∈ (0, 1] be a family
of diffusions with Xh satisfying an SDE of the form

dXh
t = utb

h
t (X

h
t )dt+ ut

√
hσt(X

h
t )dWt, Xh

0 = x, (0.3)

where W represents a Brownian motion, and b and σ are some suitable
coefficients. We say that the family Xh, h ∈ (0, 1], is a weak approximation
of order l ∈ N if for all T ∈ (0,∞) and bounded smooth functions g : Rd → R
there exists a constant C such that for all h ∈ {T/n : n ∈ N0} we have

|E(g(χηT/h))− E(g(Xη
T ))| ≤ Chl. (0.4)

1It should be pointed out that by requiring γ(0), γ(1), . . . to be i.i.d. we are essentially
only considering SGD with replacement (and variants thereof) as opposed to SGD without
replacement which is more commonly used in practice. However the analysis of the latter
is more complicated, so we will not consider it here.
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By choosing bht (x) = b(x) = −E[∇fγ(x)] and σt(x) = 0 in (0.3) one obtains
an ODE approximation of order 1. In our first main result we provide, for this
first order ODE approximation, an explicit expression of the asymptotically
minimal constant C in the error estimate (0.4). We remark that the minimal
constant corresponds to the leading term in a Taylor expansion of the weak
error in h. Such error expansions for numerical schemes of SDEs are referred
to as Talay-Tubaro expansions (see [16]).

We then consider the diffusion family (0.3) with b(x) = −E[∇fγ(x)] and
σt(x) = σ(x) given by the square root of the covariance matrix of ∇fγ(x). In
our second main result we show that this family is again an approximation
of order 1, however with a different leading error term in the weak error
expansion. Thus, we confirm a conjecture proposed by Feng et al. in [5]
(Remark 2.3.). From the different leading terms we draw some consequences,
e.g. we provide conditions guaranteeing that batch gradient converges at
worst as slow as stochastic gradient descent.

Finally, our third main result provides a second order approximation of
χh. In particular, the result reveals that if the learning rate is time varying,
then its rate of change needs to enter the drift coefficient of any approxima-
tion of order 2.

The idea to use diffusions for approximating SGD processes appears first
in [13], [14] and [15]. The approximation results in [13], [14] are rigorously
shown under the assumption that the learning rate is constant and hence
only for diffusion families that are time-homogeneous. In contrast, we allow
for a time-dependent learning rate, and thus fall back on inhomogeneous
diffusions for the weak approximation of SGD processes. In [15] the authors
heuristically use an Ornstein-Uhlenbeck for approximating and analyzing the
SGD process.

The article [9] considers weak approximations of order 2 for SGD pro-
cesses with constant learning rates. Our third main result can be seen as a
generalization of [9, Theorem 1] to the case with non-constant learning rates.

The article [6] also considers diffusion approximations for SGD processes
with time-dependent learning rates, assuming that the sequence of learning
rates satisfies ηn = γ(n+ 1)−α for some γ ∈ (0,∞) and α ∈ [0, 1). [6, Propo-
sition 25] provides an asymptotic estimate of the weak error as γ converges
to zero. It is remarkable, that the same article also contains a strong ap-
proximation result (see [6, Theorem 1]) based on a coupling technique. In
contrast to [6], we provide explicit formulas for the leading error terms, we
do not make a specific assumption on the learning rate schedule u, and we in-
corporate the rate at which the learning rate changes into the drift coefficient
in order to obtain a second order approximation.
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In [2] An et al. extend the diffusion approximation framework to the
setting of asynchronous SGD, where estimates of the gradient ∇fγ arrive
time-delayed by a random staleness process τ . This version of SGD is impor-
tant in the distributed setting, when learning is done on multiple machines at
once. The resulting diffusion dynamics are a system of two SDEs describing
the expected read, i.e the (conditional) expectation of the parameters delayed
by the staleness, and time-difference quotients of the expected reads scaled
by the discretization factor ∆t =

√
(1− µ)η. Here, 1

µ
is the mean of the stal-

eness. For h = η ≈ 1−µ this is comparable to our setting as ∆t ≈
√
h2 = h.

An approximation error of order 1 is then derived in a strong sense, which is
also possible for our first-order diffusion approximation as remarked there.

In [4] the authors propose a method for approximating the limiting sta-
tionary distribution of SGD processes. The method is based on a series
expansion of the backward Kolmogorov equation of a second order diffusion
approximation. Convergence of order 2 is shown under a convexity assump-
tion of the cost functions guaranteeing that the gradient process is bounded.

Theorem 3.5. in [3] by Chen et al. provides an estimate of the Wasserstein-
1 distance between SGD processes and diffusion approximations with con-
stant diffusion coefficient.

In [1] Ali et al discuss an application of the first-order diffusion approxi-
mation of SGD, which they call stochastic gradient flow. The authors derive
population risk bounds between gradient flow, stochastic gradient flow and
ridge regression in the mini-batch, constant learning rate setting.

In [8] Hu and Zhang study mean first passage times of SGD through the
lens of its first-order diffusion approximation.

In [17] Yang et al. study the time it takes for a first-order diffusion
approximation of SGD to get within a specified distance to a global minimum
of a Morse loss function satisfying a “strong saddle condition”. They derive
an asymptotic bound for the mean stopping time depending on ln(η−1) when
η ↓ 0, where η is the (constant) learning rate.

Finally, we remark that in our first two main results we provide explicit
formulas for the leading terms of weak error expansions along the parameter
h. The leading terms are given in terms of integrals of the ODE solution, and
thus bear similarities with the formulas of the leading weak error term when
approximating SDEs with an Euler or Milstein scheme (see [16]). Indeed,
our first two results can be seen as describing the leading term in the Talay-
Tubaro expansion of the weak error. We remark, however, that the error
estimate in our second main result is given with respect to a family of SDEs,
whereas the error considered in [16] refers to a single SDE.
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1 Main results

We let N = {1, 2, . . . } and N0 = {0, 1, . . . }. Let d ∈ N. We write g ∈ C l if
the function g is l-times continuously differentiable on its open domain. We
may extend this to closed domains, such as [0, T ]×Rd, by requiring g ∈ C l in
the interior and a continuous extension of g and its derivatives to [0, T ]×Rd.

Further, we write g ∈ G(D) if g has (at most) polynomial growth, i.e.
there exists a constant C > 0 and κ ∈ N0, such that

|g(x)| ≤ C(1 + |x|κ) (1.1)

for all x in the domain D of g. Typically, D = Rd or D = [0, T ] × Rd. The
infimum of all such C’s for a given κ will be denoted by ‖g‖Gκ . We also
sometimes write g ∈ Gκ(D) if ‖g‖Gκ < ∞, especially for κ = 1. We write
g ∈ Gl(D) if g ∈ C l(D) and all its partial derivatives up to order l are in
G(D).

Now, let (Ω,FΩ,P) be a complete probability space, Γ be a measurable
space and (γ(n))n∈N0 be a sequence of i.i.d. Γ-valued random variables. We
can view γ(n) as the sample or mini-batch chosen in the n-th iteration of
stochastic gradient descent (SGD). Also let F = (Ft)t≥0 be a filtration on
(Ω,FΩ,P) independent of γ satisfying the usual conditions and W be an
Rd-valued F -Brownian motion.

Let u : [0, T ]→ (0,∞) be a function.
Assumption (A1) We have u ∈ C∞, such that u is constant or strictly
decreasing, and takes values in [0, 1].

The function u is a learning rate schedule and represents the change of
the learning rate over time. For all h ∈ (0, 1) we consider the sequence of
learning rates

ηhn = hunh, n ∈ N0.

The parameter h ∈ (0, 1) acts as discretization parameter or maximal learn-
ing rate and is essential in describing the diffusion approximation.

Recall that γ maps into Γ. Let H : Γ × Rd → Rd. Now, given an initial
value x ∈ Rd define (generalized) stochastic gradient descent by

χhn+1 = χhn + ηhnHγ(n)(χ
h
n), χ0 = x. (1.2)

Assumption (A2) The function H satisfies H ∈ G1(Rd) uniformly in
r ∈ Γ, i.e. there exists a constant C > 0, such that

|Hr(x)| ≤ C(1 + |x|),
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for all r ∈ Γ and x ∈ Rd.
The prototypical example to keep in mind is plain (online) SGD. Given

a sequence of differentiable error functions f1, . . . , fM : Rd → R, where M is
the sample size of our data set, we set Hγ(n)(x) := −∇fγ(n)(x) and choose
γ(n) to be uniformly distributed on {1, . . . ,M}. Finally, set

H̄ := EHγ(0) : Rd → Rd,

and
Σ := E(Hγ(0) − H̄)2⊗ : Rd → Rd×d.

Here z2⊗ = zzT for any z ∈ Rd. These functions appear in the coefficients
of various ODE and SDE approximations of SGD. By Assumption (A2) we
have H̄ ∈ G1(Rd).

Since Σ is positive semi-definite and symmetric, a unique matrix square
root

√
Σ exists.

Assumption (A3) The functions H̄ and
√

Σ are Lipschitz continuous and
in C∞, such that all their partial derivatives are bounded.

Remark 1.1. Even with Assumption 3, Assumption 2 is still necessary by
itself. This is true technically, but also holds in practically relevant settings.
Consider a shallow neural network with cubic activation function given by

y = (θx)3

and minimization of the square loss for two data points

(x1, y1) = (1, 0), (x2, y2) = (−1, 0).

We set Γ = {1, 2}, P (γ(n) = 1) = P(γ(n) = 2) = 1
2

for all n ∈ N and choose
Hr as the derivative of the square loss due to the r-th sample for r = 1, 2,
i.e.

Hr(θ) = 3((θxr)3 − yr)θ2(xr)3.

Here we ignore our usual notational conventions and denote the argument
by θ instead of x. Then H1(θ) = 3θ5 = −H2(θ) and so H1, H2 /∈ G1, but
H̄ = 1

2
H1 + 1

2
H2 = 0 ∈ G1. ♦

A first order ODE approximation

We first show that the solution of the ODE

dXt = utH̄(Xt) dt (1.3)
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is a weak first order approximation of χ. We will refer to equation (1.3) as
(generalized) gradient flow.

For convenience, we will restrict the set of acceptable learning rates to

H := {h ∈ (0, 1) : T/h ∈ N}. (1.4)

Let g ∈ G∞(Rd) and fix a time horizon T > 0. For all (t, x) ∈ [0, T ]×Rd we
define

yt(x) = g(X t
T (x)), (1.5)

where X t(x) denotes the solution of (1.3) on [t, T ] with initial condition
X t
t (x) = x. We write ygt if we want to emphasize the dependence of y on g.

One can show that y ∈ C∞([0, T ]×Rd). Moreover, the partial derivatives of y
with respect to time and space have polynomial growth in the space variable,
uniformly in time. Hence, y ∈ G∞([0, T ] × Rd) in the sense that for every
k ∈ N0 and multi-index2 α ⊆ {1, . . . , d} there exist constants C ∈ (0,∞) and
κ ∈ N0 such that

|∂kt ∂αyt(x)| ≤ C(1 + |x|κ), (1.6)

for all t ∈ [0, T ] and x ∈ Rd. Then, we define the function3

ϕt(x) =
1

2
u2
t tr[∇2yt(x)H̄(x)2⊗] + ut∂t∇yt(x)T H̄(x) +

1

2
∂2
t yt(x), (1.7)

with (t, x) ∈ [0, T ] × Rd. Whenever we want to stress the dependence of ϕ
on g we write ϕg.

Theorem 1.2. Assume (A1), (A2) and (A3). Denote by X the solution of
(1.3) with initial condition X0 = x. Then for all g ∈ G∞(Rd),

Eg(χhT/h)− g(XT ) = h

∫ T

0

ϕgt (Xt) +
1

2
u2
t tr[∇2ygt (Xt)Σ(Xt)] dt+O(h2),

(1.8)

for all h ∈ H, i.e. all discretization parameters h such that T
h

is an integer.

The parts of assumption (A3) concerning
√

Σ are superfluous for the proof
of this theorem. Recall that the discretization parameter h ∈ H can also be
viewed as the maximal learning rate of SGD.

2See the appendix before Theorem 6.2 for a definition of (unordered) multi-indices.
3Here, ∇ denotes the gradient ∇2 and the Hessian matrix with respect to x and z2⊗ :=

zzT ∈ Rd×d for all z ∈ Rd.
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A first order SDE approximation

For all h ∈ H ∪ {0} we consider the SDE

dXh
t = utH̄(Xh

t ) dt+ ut

√
hΣ(Xh

t ) dWt. (1.9)

Notice that as h → 0 the diffusion term in (1.9) vanishes and hence (1.9)
becomes the ODE (1.3).

Now let g ∈ G∞(Rd), T > 0, and consider y defined in (1.5) and ϕ defined
in (1.7).

Theorem 1.3. Assume (A1), (A2) and (A3). For all h ∈ H denote by Xh

the solution of (1.9) with initial condition Xh
0 = x. Then for all g ∈ G∞(Rd),

Eg(χhT/h)− Eg(Xh
T ) = h

∫ T

0

ϕgt dt+O(h2), (1.10)

for all h ∈ H, i.e. all discretization parameters h such that T
h

is an integer.

Note that the process X0 is the same as gradient flow defined in (1.3).

A second order SDE approximation

For all h ∈ (0, 1) we consider the SDE

dXh
t =

(
utH̄(Xh

t )− 1

2
h(u2

t∇H̄H̄ + u̇tH̄)(Xh
t )

)
dt+ ut

√
hΣ(Xh

t ) dWt,

(1.11)
where ∇g : Rd → Rd×d denotes the Jacobian of a function g : Rd → Rd,
i.e. (∇g)i,j = ∂jfi for all i, j ∈ {1, . . . , d}. Crucially, observe the occurrence
of the u̇ term in (1.11). If u is constant, then u̇ vanishes. Therefore, this
term was not present in previous works such as [14]. To exhibit this term we
use an Itô-Taylor approximation for a time-inhomogeneous SDEs (cf. Lemma
5.1).

Theorem 1.4. Assume (A1), (A2) and (A3). For all h ∈ (0, 1) let Xh be the
solution of (1.11) with initial condition Xh

0 = x. Then for all g ∈ G∞(Rd)
and T > 0,

max
n∈{0,...,bT/hc}

|Eg(χhn)− Eg(Xh
nh)| ∈ O(h2),

as h ↓ 0.

Remark 1.5. To simplify the notation we consider u not depending on
h in Theorem 1.2, 1.3 and 1.4. However, the results can be extended to u
depending on h, as long as u and its partial derivatives are bounded in h. ♦
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Consequences

Linear regression takes fewer iterations with batch gradient descent

Recall the definition of (generalized) SGD in (1.2). We now want to compare
χ to the family of deterministic processes given by

χH̄,hk+1 = χH̄,hk + hutH̄(χH̄,hk ).

We will refer to this family of processes as (batch) gradient descent.
Gradient descent is itself an instance of generalized SGD, such that the

increments are deterministic and in particular Var(H̄) = 0. The first-order
ODE and diffusion approximation of χH̄ coincide. Further, they coincide with
the first-order ODE approximation to χ. Theorem 1.2 implies for T > 0 and
g ∈ G∞(Rd),

g(χH̄,hT/h)− g(X0
T ) = h

∫ T

0

ϕgt (X
0
t ) dt+O(h2), (1.12)

for all h ∈ H, where X0 refers to the solution of (1.3) or alternatively to (1.9)
with h = 0, and ϕg is given by (1.7) with ygt := g(X0,t

t ). Together with an
application of Theorem 1.2 to χ we get

Eg(χhT/h)− g(χH̄,h
H̄,T/h

) =
h

2

∫ T

0

u2
t tr[∇2ygt (X

0
t )Σ(X0

t )] dt+O(h2),

where Σ = E(Hγ(0) − H̄)2⊗ is the variance of the SGD increments, as usual.
as a consequence we have the following.

Corollary 1.6. Assume (A1), (A2) and (A3). For all h ∈ H denote by Xh

the solution of (1.9) with initial condition Xh
0 = x. Let g ∈ G∞(Rd) be such

that ygt is convex in a neighborhood of x, for all t ∈ [0, T ]. Then for small
h ∈ H,

Eg(χhT/h) ≥ g(χH̄,hT/h).

Given g ∈ G∞(Rd), we can compute

∇2yt(x) =
d∑
j=1

∇∂jX0,t
T (x)∂jg(X0,t

T (x)) + (∇X0,t
T (x))2∇2g(X t,0

T (x)).

If g is a convex loss function and

d∑
j=1

∇∂jX0,t
T (x)∂jg(X0,t

T (x)) = 0, (1.13)
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then Corollary 1.6 tells us that, at least for small learning rates, gradient
descent converges at worst as fast as SGD.

In the case of a linear ODE

dX0
t = −κ(X0

t −m) dt,

for κ ∈ Rd×d and m ∈ Rd we have4

X0,t
T (x) = (x−m)e−κ(T−t) +m,

for all t ∈ [0, T ] and initial values x ∈ Rd. Then ∇∂jX0,t
T = 0 for j ∈

{1, . . . , d} and so the condition (1.13) is satisfied.

Gradient descent is to gradient flow what SGD is to its first-order
diffusion approximation

Comparing (1.12) with Theorem 1.3 we also have the following.

Corollary 1.7. Assume (A1), (A2) and (A3). For all h ∈ H denote by Xh

the solution of (1.9) with initial condition Xh
0 = x. Then for all g ∈ G∞(Rd),

g(χH̄,hT/h)− g(X0
T ) = Eg(χhT/h)− Eg(Xh

T ) +O(h2), (1.14)

for all h ∈ H, i.e. all discretization parameters h such that T
h

is an integer.

In other words the weak approximation error between SGD and its first-
order diffusion approximation is essentially matched by the approximation
error between gradient descent and gradient flow, which are both determin-
istic rather than stochastic processes.

2 Moment estimates and growth conditions

Let I be a set and X = (X i
t)i∈I,t≥0 be an I-indexed family of continuous-time

stochastic processes. Given p ∈ [1,∞) we define

‖X‖p,t = sup
i∈I

(
E
∫ t

0

|X i
s|p ds

)1/p

, ‖X∗‖p,t = sup
i∈I

(
E sup
s∈[0,t]

|X i
s|p
)1/p

.

Although usually X will be Rd-valued and then | · | refers to the Euclidean
norm, these definitions naturally extend to Rd1×···×dr -valued processes as well.

4Given A ∈ Rd×d the matrix exponential of A is denoted by eA.

10



Similarly, given an I-indexed family of discrete-time stochastic processes X
we define

‖X∗‖p,n = sup
i∈I

(
E max
n′∈{0,...,n}

|X i
n′ |p
)1/p

.

Given an I-indexed family of random variables Y = (Y i)i∈I we also let

‖Y ‖p := sup
i∈I

(E|Y i|p)1/p.

2.1 Stochastic Gradient Descent

Recall the definition of χ in (1.2), as well as Assumptions (A1) and (A2).
We shall prove growth results concerning stochastic gradient descent. Denote
the SGD iterations starting at time n with initial value x ∈ Rd and maximal
learning rate h ∈ (0, 1) by χh,nn (x). Given a discrete process Y indexed by
h ∈ (0, 1), e.g. Y = χ, we write

∆Y h,k
n (x) := Y h,k

n+1(x)− Y h,k
n (x), (2.1)

for all h ∈ (0, 1), k, n ∈ N0 with k ≤ n and initial values x ∈ Rd. We let
∆Y h

n := ∆Y h,0
n . Observe that ∆Y h,n

n (x) = Y h,n
n+1(x)− x.

Lemma 2.1. We have

E∆χh,nn =ηhnH̄,

E(∆χh,nn )2⊗ =(ηhn)2(Σ + H̄2⊗).

Proof. Straightforward.

Lemma 2.2. The following estimates hold true:

(i) For every T > 0 and p ≥ 1 there exists a constant C > 0, such that

sup
h∈(0,1)

∥∥χh(x)∗
∥∥
p,bTh c ≤ C(1 + |x|),

for x ∈ Rd.

(ii) There exists a constant C > 0, such that∥∥∆χh,nn (x)
∥∥
p
≤ hC(1 + |x|),

for all h ∈ (0, 1), n ∈ N and x ∈ Rd.
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Proof. (i) Let p ∈ N. For every h ∈ (0, 1) and n ∈ N0,

∥∥(χh)∗
∥∥
p,n

=

(
E max
n′∈{−1,...,n−1}

|χhn′+1|p
)1/p

.

If we let χ−1 = 0, then

|χhn+1|p ≤|χhn + ηhnHγ(n)(χ
h
n)|p

≤|χhn|p +

p∑
i=1

(
p

i

)
|χhn|p−i(ηhn)i|Hγ(n)(χ

h
n)|i

Now, for i ∈ {1, . . . p}, h ∈ (0, 1) and n ∈ N0,∥∥(|χh|p−i|Hγ(0)(χ
h)|i)∗

∥∥
1,n
≤
∥∥∥(|χh|p−i ‖H‖iG1

(1 + |χh|)i)∗
∥∥∥

1,n

≤ 1

2
ci
∥∥(|χh|p−i + |χh|i+p−i)∗

∥∥
1,n

≤ ci(1 +
∥∥(χh)∗

∥∥p
p,n

)

with c := 2 ‖H‖G1
and using the inequalities yp + yq ≤ 2(1 + yq) for

0 < p ≤ q and y ≥ 0. Therefore,∥∥(χh)∗
∥∥p
p,n+1

≤E max
n′∈{−1,...,n}

|χhn′|p

+ E max
n′∈{−1,...,n}

p∑
i=1

(
p

i

)
(ηhn′)

i|χhn′|p−i|Hh
γ(n′)(χ

h
n′)|i

≤
∥∥(χh)∗

∥∥p
p,n

+

p∑
i=1

(
p

i

)∥∥((ηhn′)
i|χhn′ |p−i|Hh

γ(n′)(χ
h
n′)|i)∗

∥∥
1,n

≤
∥∥(χh)∗

∥∥p
p,n

+ Ch(1 +
∥∥(χh)∗

∥∥p
p,n

)

=(1 + Ch)
∥∥(χh)∗

∥∥p
p,n

+ Ch,

where C :=
∑p

i=1

(
p
i

)
ci. By induction over n,

∥∥(χh)∗
∥∥p
p,n
≤ (1 + Ch)n

∥∥(χh)∗
∥∥p
p,0

+ Ch

(
n−1∑
i=0

(1 + Ch)i

)
,

12



for all h ∈ (0, 1) and n ∈ N. Consequently,

∥∥χh(x)∗
∥∥p
p,bTh c ≤ (1 + Ch)b

T
h c|x|p + Ch

bTh c∑
i=0

(1 + Ch)i

≤ (1 + Ch)
T
h |x|p + Ch

T

h
(1 + Ch)

T
h

= (CT + |x|p)elog(1+Ch)T
h

≤ (CT + |x|p)eCT ,

for all h ∈ (0, T ) and x ∈ Rd, since log(1 + y) ≤ y for all y > −1.
Now, the inclusion follows for p ∈ N. For arbitrary p ≥ 1 we have
‖Y ∗‖p ≤ ‖Y ∗‖dpe and thus the result is proven.

(ii) We have ∥∥∆χh,nn (x)
∥∥
p

=
∥∥ηhnH(x)

∥∥
p
≤ h ‖H‖G1

(1 + |x|),

for all x ∈ Rd and h ∈ (0, 1).

2.2 Diffusion Approximations

We shall now consider moments and growth conditions for solutions of (fam-
ilies of) stochastic differential equations that will act as approximations to
SGD. Let l ∈ N0. We write f ∈ Lipl if f ∈ C l([0, T ]×Rd) and there exists a
C > 0 such that

|∂αft(x)− ∂αft(y)| ≤ C|x− y|,

for all t ≥ 0 and multi-indices α with size #α ≤ l. Also set Lip := Lip0.
Given an index set I, these conditions extend to I-indexed families of func-
tions (fi)i∈I in a uniform sense.

Further, we extend the use of the notation G to families of functions.
More precisely, given a family of functions

f : I × Rd → R, (i, x) 7→ fi(x),

we write f ∈ G(Rd) whenever there exists a constant C > 0 and κ ∈ N such
that

|fi(x)| ≤ C(1 + |x|κ), (2.2)

for all x ∈ Rd and i ∈ I. Again, we define ‖g‖Gκ as the infimum of all C’s in
(2.2).

13



Notice that the index set may comprise the time interval [0, T ]. Usually,
we have I = H or or I = H× [0, T ] or I = (0, 1).

Similarly we extend the use of the notations Gl to families of functions. In
particular, for an I-indexed family of functions f : I×[0, T ]×Rd → R we write
f ∈ G∞([0, T ]×Rd) if each fi is infinitely continuously differentiable in time
and space, and all derivatives have at most polynomial growth, uniformly in
i ∈ I.

Finally, all the definitions extend naturally to other ranges such as Rd or
Rd×d.

We shall consider stochastic differential equations with (families of) coef-
ficients

b : I × [0, T ]× Rd → Rd, σ : I × [0, T ]× Rd → Rd×d.

Proposition 2.3. Let l ∈ N, p ≥ 1 and b, σ ∈ G1(Rd) ∩ Lipl, such that b is
Rd-valued and σ is Rd×d-valued. Let X be the unique solution to the family
of stochastic differential equations

dX i,s
t (x) = bit(X

i,s
t (x)) dt+ σit(X

i,s
t (x)) dWt, X i,s

s (x) = x.

and g : I × Rd → R ∈ Gl(Rd). Define

vi,st (x) := Egi(X i,s
t (x)).

Then v ∈ Gl(Rd).

Note that the polynomial growth of v and its partial derivatives up to
order l is considered uniformly in i ∈ I and s, t ∈ [0, T ].

Proof. Let α be a multi-index. By induction one can show E∂αg(X) =
∂αEg(X) using Theorem 6.2 in the Appendix. By the higher chain rule,

|∂αvi,st | =E|∂αgi(X i,s
t )| ≤

#α∑
j=1

∥∥∇jgi(X)∗
∥∥

2

∑
B∈Sαj

N(α,B)
∏
β∈B

‖∂βX∗‖2#B ,

where Sαi is the set of all partitions of α into i multi-set multi-indices (each
partition being a multi-set as well), N(α,B) ∈ N, #B is the size of the
partition and the product

∏
β∈B respects the multiplicities of β ∈ B. From

g ∈ Gl(Rd) and Theorem 6.2 we conclude ∂αv ∈ G(Rd).

Remark 2.4. Assume now we are given an SDE with separable coefficients,
specifically

dXt = utB(Xt) dt+ utS(Xt) dWt,
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where B, S ∈ Lip∩G∞. Further, suppose Assumption (A1) holds. Given
g ∈ G∞(Rd) we want to show that y defined by

yi,ht := Egi(Xh,t
T )

satisfies y ∈ G∞([0, T ]× Rd).
To this end let U : Imu→ R be, such that

U =

{
u̇ ◦ u−1, u strictly monotone

0, u constant

Then U is continuous, bounded and

dut = U(ut) dt.

Consider the system

dZt = b(Zt) dt+ Σ(Zt) dWt,

with

Zt =

(
Xt

ut

)
, b

(
x
y

)
=

(
yB(x)
U(y)

)
,Σ

(
x
y

)
=

(
yS(x)

0

)
.

Then b,Σ ∈ G(Rd). If the coefficients of an autonomous SDE

dZt = b(Zt) dt+ Σ(Zt) dWt

are in G∞ and g ∈ G∞(Rd), then clearly also AZg ∈ G∞([0, T ]×Rd), where
AZ is the infinitesimal generator of Z. By Proposition 2.3 then EAZg(Z) ∈
G∞([0, T ]×Rd). If g ∈ G∞(Rd), then yi,ht := Egi(Xh,t

T ) satisfies the Feynman-
Kac equation5

∂tyt + LXyt = 0, yT = g,

where LhX is the infinitesimal generator of Xh. In particular,

∂tEg(X t
T ) = ∂tEg(Zt

T ) = ∂tEg(Z0
T−t) = LZ(Eg(Z0

T−t)) ∈ G([0, T ]× Rd),

with the understanding that g(x, y) := g(x). Inductively,

∂α∂
k
t Eg(X t

T ) = ∂αL
k
ZE(g(Z0

T−t)) ∈ G([0, T ]× Rd).

All in all we have y ∈ G∞([0, T ] × Rd), i.e. y is smooth in time and space,
and all its derivatives have polynomial growth (uniformly in time). ♦

5cf. [7], Theorem 7.14 and Remark 7.6.
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Next we shall consider families of stochastic differential equations

dXh
t = bht (X

h
t ) dt+

√
hσht (Xh

t ) dWt,

indexed by a discretization parameter h ∈ (0, 1). Given the family of solu-
tions X of an h-indexed family of stochastic differential equations we define
the family of discrete processes

X̃h
n(x) := Xh

nh(x), (2.3)

with h ∈ (0, 1), x ∈ Rd and n ∈ {0, . . . , bT/hc}. Then,

∆X̃h,n
n (x) = Xh

nh(x)− x.

Lemma 2.5. Let

b : (0, 1)× [0, T ]× Rd → Rd, σ : [0, T ]× Rd → Rd×d ∈ G1(Rd) ∩ Lip

and X be the unique solution to stochastic differential equation

dXh
t = bht (X

h
t ) dt+

√
hσt(X

h
t ) dWt.

Then for all p ≥ 2 there exists a C ∈ G(Rd), such that∥∥∥∆X̃h,n
n

∥∥∥
p
≤ hC,

for all h ∈ (0, 1) and n ∈ {0, . . . , bT/hc}.

Proof. We have∥∥∥∆X̃h,n
n

∥∥∥
p
≤

∥∥∥∥∥
∫ (n+1)h

nh

bhs (Xs)ds

∥∥∥∥∥
p

+
√
h

∥∥∥∥∥
∫ (n+1)h

nh

σ(Xh
s ) dWs

∥∥∥∥∥
p

.

On the one hand∥∥∥∥∥
∫ (n+1)h

nh

bht (X
h
t )dt

∥∥∥∥∥
p

≤h1− 1
p

(∫ (n+1)h

nh

E|bht (Xt)|p dt

)1/p

≤h
(
E sup

t,h
|bht (Xt)|p

)1/p

=h ‖b(X)∗‖p ,
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and x 7→ ‖b(X(x))∗‖p ∈ G(Rd) by Theorem 6.1 and since b ∈ G1(Rd). On
the other hand,

√
h

∥∥∥∥∥
∫ (n+1)h

nh

σt(X
h
t ) dWt

∥∥∥∥∥
p

≤
√
p(p− 1)

2
h1− 1

p

∥∥σ(Xh)
∥∥
p

≤c1h ‖σ(X)∗‖p ,

where we have used Itô’s isometry and Jensen’s inequality.

Proposition 2.6. Let l ∈ N, k ∈ N0,

b : (0, 1)× [0, T ]× Rd → Rd, σ : [0, T ]× Rd → Rd×d ∈ G1(Rd) ∩ Lipl+1,

and let X be the unique solution to the stochastic differential equation

dXh
t = bht (X

h
t ) dt+

√
hσt(X

h
t ) dWt.

Suppose further we are given

f : I × (0, 1)× N× Rd → R, (i, h, k, x) 7→ f i,hk (x) ∈ Gl+1(Rd),

and that there exists a function C ∈ G(Rd), such that

|E(∆χh,kk )α − E(∆X̃h,k
k )α| ≤hl+1C,#α ≤ l∥∥∥∆χh,kk

∥∥∥l+1

p
,
∥∥∥∆X̃h,k

k

∥∥∥l+1

p
≤hl+1C, p ∈ {2, 2l + 2},

for all h ∈ (0, 1) and k ∈ {0, . . . , bT/hc}. Then there exists a function
C ∈ G(Rd), such that

|Ef i,hk (χh,kk+1)− Ef i,hk (X̃h,k
k+1)| ≤ hl+1C,

for all h ∈ (0, 1), i ∈ I and k ∈ {0, . . . , bT/hc}.

Proof. By Taylor’s theorem there exists θ∆χh,kk
, θ∆X̃k,h

k
∈ (0, 1) for every h ∈

(0, 1) and k, such that

fk(χ
h,k
k+1)− fk(X̃h,k

k+1) =fk(χ
h,k
k+1)− fk − (fk(X̃

h,k
k+1)− fk)

=
∑

0<#α≤l

1

α!
∂αfk · ((∆χh,kk )α − (∆X̃k,h

k )α)

+
∑

#β=l+1

∑
D∈∆Yk,∆Zk

1

β!
∂βfk(·+ θDD)Dβ

17



Since f ∈ Gl+1(Rd) there exists a C ∈ G(Rd), such that

|E(∂βf(x+ θDhD
h(x))Dh(x)β)| ≤ ‖∂βf‖Gκ (1 + 2κ−1|x|κ + 2κ−1 ‖D(x)‖κ2)

· ‖D(x)‖l+1
2l+2

≤c(1 + |x|κ + C(x))hl+1C(x),

for #β = l + 1, D ∈ ∆χ,∆X̃ and some c > 0 and κ ∈ N. Therefore,

|Ef(χh,kk+1(x))− Ef(X̃h,k
k+1(x))| ≤c

∑
0<#α≤l

‖∂αf‖Gκ (1 + |x|κ)hl+1C

+ c
∑

#β=l+1

‖∂βf‖Gκ (1 + |x|κ + C)hl+1C,

for some c > 0.

Proposition 2.7. Let l ∈ N and g ∈ Gl+1(Rd). Suppose X is given as in
Proposition 2.6 and for every sequence v : I × (0, 1) × Rd → R ∈ Gl+1(Rd)
there exists a function C ∈ G(Rd), such that

|Evi,h(χh,kk+1)− Evi,h(X̃h,k
k+1)| ≤ hl+1C,

for all i ∈ I, h ∈ (0, 1) and k ∈ {0, . . . , bT/hc}. Further, let

g.P h
k,n(x) :=

∫
Rd
g(y)P h

k,n(x, dy) = Eg(X̃h,k
n (x)),

where P is the transition kernel of (n, X̃h
n)n and suppose

g.P : (k, n, h, x) 7→ g.P h
k,n(x) ∈ Gl+1(Rd).

Then there exists a function C ∈ G(Rd), such that

max
n∈{0,...,bT/hc}

|Eg(χhn)− Eg(X̃h
n)| ≤ hlC

on Rd.

Proof. We have

g.P : (k, n, h, x) 7→ g.P h
k,n(x) ∈ Gl+1(Rd)
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by Proposition 2.3. Given n ∈ N, Eg(X̃n)− Eg(χn) equals

n−1∑
k=1

(Eg(X̃k−1
n χk−1)− Eg(X̃k

nχk)) + Eg(X̃n−1
n χn−1)− Eg(χn)

=
n−1∑
k=1

EE(g(X̃k
nX̃

k−1
k χk−1)|X̃k−1

k χk−1)− EE(g(X̃k
nχk)|χk)

+ Eg.Pn,n(X̃n−1
n χn−1)− Eg.Pn,n(χn)

=
n∑
k=1

(Eg.Pk,n(X̃k−1
k χk−1)− Eg.Pk,n(χk)),

regardless of initial value x ∈ Rd or discretization parameter h ∈ (0, 1).
There exists a function C ∈ G(Rd), such that

|Eg.P h
k,n(χh,kk+1)− Eg.P h

k,n(X̃h,k
k+1)| ≤ hl+1C,

for all h ∈ (0, 1) and k ∈ {0, . . . , bT/hc}. Hence,

|Eg(X̃h
n)− Eg(χhn)| ≤

bTh c∑
k=1

hl+1EC(χhk−1) ≤ hlTC ′,

by Lemma 2.2, for some C ′ ∈ G(Rd), all h ∈ (0, 1) and n ∈ {0, . . . , bT/hc},
since

EC(χhk−1) ≤‖C‖Gκ (1 + E|χhk−1|κ) ≤ ‖C‖Gκ

(
1 + sup

h∈(0,1)

‖χ∗‖κκ,bT/hc

)
≤c(1 + |χ0|κ),

for some c > 0, κ ∈ N, all h ∈ (0, 1) and k ∈ {0, . . . , bT/hc}.

3 Proof of the ODE approximation

We shall give a proof of Theorem 1.2. Fix g ∈ G∞(Rd) and define once more
yt(x) := g(X t

T (x)), where X is the solution to the gradient flow equation
(1.3),

dXt = utH̄(Xt) dt.

We then have y ∈ G∞([0, T ] × Rd) by Proposition 2.3 and Remark 2.4 and
since we have H̄ ∈ G∞(Rd) by Assumption (A3). Further, y satisfies the
Feynman-Kac equation

∂tyt(x) +∇yt(x)TutH̄(x) = 0, yT (x) = g(x). (3.1)
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From now on let χh and X denote the solutions of (1.2) and (1.3), respec-
tively, with the same fixed initial condition χ0 ∈ Rd.

Recall the definition of ϕ in (1.7) and the statement of Theorem 1.2. We
define

Φt(x) = ϕt(x) +
1

2
u2
t tr[∇2yt(x)Σ(x)],

for all x ∈ Rd and t ∈ [0, T ].

Lemma 3.1. Let ξ : H → R be the function such that for all h ∈ H

Eg(χhT/h)− g(XT ) = h2

T
h
−1∑

k=0

EΦkh(χ
h
k) + h2ξ(h).

Then ξ is bounded.

Proof. By Taylor’s theorem,

yt+h(x+ δ)− yt(x) =h∂tyt(x) +
d∑
j=1

∂jyt(x)δj +
h2

2
∂2
t yt(x)

+ h
d∑
j=1

∂t,jyt(x)δj +
1

2

d∑
i,j

∂i,jyt(x)δiδj

+Rh(δ)

=h∂tyt(x) +∇yt(x)T δ +
h2

2
∂2
t yt(x)

+ h∂t∇yt(x)T δ +
1

2
tr(∇2yt(x)δ2⊗)

+Rh(δ),

where

Rh(δ) :=
3∑

k=0

∑
#β=3−k

1

β!k!
∂kt ∂βyt+θh(x+ θδ)hkδβ

for some θ ∈ (0, 1), all h ∈ (0, 1) and δ ∈ Rd. By choosing t = kh, δ = ∆χhk
and applying expectation we get

Ey(k+1)h(χ
h
k+1)− Eykh(χhk) = hAh1 + h2(Ah2 + Ah3 + Ah4) + ERh(∆χhk),
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where

Ah1 := E[∂tykh(χ
h
k) + h−1∇ykh(χhk)T∆χhk],

Ah2 :=
1

2
u2
khE tr[∇2ykh(χ

h
k)((H̄(χhk) + (Hγ(0) − H̄)(χhk))

2⊗)],

Ah3 := ukhE[∂t∇ykh(χhk)T H̄(χhk)],

Ah4 :=
1

2
E[∂2

t ykh(χ
h
k)].

Using (3.1) we can simplify

Ah1 =E[E(∂tykh(χ
h
k) +∇ykh(χhk)TukhH̄(χhk)|χhk)] = 0,

and further

Ah2 =
1

2
u2
khE tr[∇2ykh(χ

h
k)(H̄

2⊗ + Σ)(χhk)].

Moreover, for k ∈ {0, . . . , 3} and #β = 3− k,

Ehk(∆χhn)β = hkh3−k(ukh)
3−kEH̄(χhn)β = O(h3),

since |ut| ≤ 1 and

E(|H̄(χhn)|β)1/#β ≤ sup
h∈(0,1)

∥∥H̄(χh)∗
∥∥

#β,bTh c

≤
∥∥H̄∥∥

G1

(
1 + sup

h∈(0,1)

∥∥(χh)∗
∥∥

#β,bTh c

)
≤c(1 + |χ0|),

by Lemma 2.2. Since ∂kt ∂
2−k
α y ∈ G([0, T ] × Rd) for all k ∈ {0, 1, 2}, the

remainder satisfies ERh(∆χhn) = O(h3). Therefore,

Eg(χhT/h)− g(XT ) =EyT (χhT/h)− Ey0(χ0)

=

T
h
−1∑

k=0

Ey(k+1)h(χ
h
k+1)− Eykh(χhk)

=h2

T
h
−1∑

k=0

EΦkh(χ
h
k) +O(h2),

for all h ∈ H.
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The bound on the function ξ in Lemma 3.1 only depends on the growth
of g and its derivatives as well as H̄ and Σ. We use this fact in the next step,
where we apply Lemma 3.1 to the family of functions (Φnh)n≥0,h∈H.

For all n ≥ 1 and h ∈ H define ξn(h) as the real such that

EΦnh(χ
h
n)− Φnh(X

h
nh) = h2

n−1∑
k=0

Eψnh,kh(χhk) + h2ξn(h) (3.2)

with

ψs,t(x) :=
1

2
u2
t tr(∇2zs,t(x)(H̄2⊗ + Σ)(x)) + ut∂t∇zs,t(x)H̄(x)

+
1

2
∂2
t zs,t(x),

zs,t :=Φs(X
t
s).

Now choose a constant B ∈ [0,∞) such that for all n and h we have

|ξn(h)| ≤ B. (3.3)

We this estimate we can bound the differences of the form EΦnh(χ
h
n) −

Φnh(Xnh).

Lemma 3.2. There exists a constant C > 0 such that
T
h
−1∑

n=0

|EΦnh(χ
h
n)− Φnh(Xnh)| ≤ C

for all h ∈ H.

Proof. By (3.2) and (3.3)

T
h
−1∑

n=0

|EΦnh(χ
h
n)− Φnh(Xnh)| ≤h2

T
h
−1∑

n=0

n−1∑
k=0

E|ψnh,kh(χhk)|+Bh

≤C
(

1 + max
n,k

E|ψnh,kh(χhk)|
)
,

for some C > 0 and all h ∈ (0, 1).
Because ∂kt ∂

2−k
α y ∈ G([0, T ]×Rd) for all k ∈ {0, 1, 2}, g ∈ G(Rd), u ∈ L∞

and H̄,Σ ∈ G(Rd) we have Φ ∈ G([0, T ]× Rd). With Lemma 2.2,

max
n,k

E|ψnh,kh(χhn)| ≤ ‖Φ‖Gκ

(
1 + sup

h∈(0,1)

∥∥(χh)∗
∥∥κ

1

)
≤C(1 + |χ0|κ),

for some C > 0, κ ∈ N and all h ∈ (0, 1).
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Proof of Theorem 1.2. Let g ∈ G∞(Rd). Then Lemma 3.1 implies

Eg(χhT/h)− g(XT ) = h

bT/hc−1∑
n=0

hEΦnh(χ
h
n) +O(h2),

Using Lemma 3.2,

T
h
−1∑

n=0

hEΦnh(χ
h
n) =

∫ T

0

Φt(Xt) dt+ h

T
h
−1∑

n=0

EΦnh(χ
h
n)− Φnh(Xnh)

+

T
h
−1∑

n=0

hΦnh(Xnh)−
∫ T

0

Φt(Xt) dt,

with

h

T
h
−1∑

n=0

|EΦnh(χ
h
n)− Φnh(Xnh)| ≤hC,

T
h
−1∑

n=0

|hΦnh(Xnh)−
∫ T

0

Φt(Xt) dt| ≤hC ′.

Hence,

Eg(χhT/h)− g(XT ) = h

∫ T

0

Φt(Xt) dt+O(h2),

for all h ∈ H.

4 Proof of the first-order SDE approximation

The proof to Theorem 1.3 is somewhat analogous to the ODE case. The dif-
fusion coefficient makes the Feynman-Kac formula slightly more complicated,
but the proof works essentially the same way.

One notable difference however comes from the newly acquired depen-
dence of the solution X on h ∈ H. This carries over to y and by extension
to the function

ϕht (x) :=
1

2
u2
t tr(∇2yht (x)H̄2⊗(x)) + ut∂t∇yht (x)H̄(x) +

1

2
∂2
t y

h
t (x).

Note the absence of the Σ term compared to the ODE case. By using argu-
ments as in Section 3, we arrive at an approximation of the form

Eg(χhT/h)− Eg(Xh
T ) = h

∫ T

0

Eϕht (Xh
t ) dt+O(h2). (4.1)
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We then need to improve the estimate to

Eg(χhT/h)− Eg(Xh
T ) = h

∫ T

0

ϕ0
t (X

0
t ) dt+O(h2).

This requires an additional estimation of the difference ϕht (X
h
t ) − ϕ0

t (X
0
t ).

Let us be more specific now.
Let g ∈ G∞(Rd) and define, for all h ∈ [0, 1), t ∈ [0, T ] and x ∈ Rd,

yht (x) := Eg(Xh,t
T (x)),

where Xh,t(x) denotes the solution of (1.9) on [t, T ] with initial condition
Xh,t
t (x) = x. Then y ∈ G∞([0, T ]×Rd), as defined in (2.2) with I = H, and

it satisfies the Feynman-Kac equation

∂tyt(x) +∇yTt (x)utH̄(x) +
1

2
hu2

t tr(∇2yt(x)Σ(x)) = 0, yT (x) = g(x).

(4.2)

Given a family (fht )h∈(0,1),t≥0 of continuous-time stochastic processes (or merely
functions) we define for every h ∈ (0, 1) the discrete-time process

f̃hn := fhnh, n ∈ N.

From now on let χh and Xh denote the solutions of (1.2) and (1.9), respec-
tively, with the same fixed initial condition χ0 ∈ Rd and h ∈ H. Then we
have the following.

Lemma 4.1. We have

Eg(χhT/h)− Eg(Xh
T ) = h2

n−1∑
k=0

EΦh
k(χ

h
k) +O(h2),

for all h ∈ H, where Φh := ϕ̃h.

Proof. Follow the proof of Lemma 3.1. Setting Y := ỹ, the Taylor expansion
of y gives us

EY h
k+1(χhk+1)− EY h

k (χhk) = hAh1 + h2(Ah2 + Ah3 + Ah4) + ERh(∆χhk),

as before, except with

Ah1 :=E(∂tY
h
k (χhk) + h−1∇Y h

k (χhk)
T∆χhk +

1

2
hu2

kh tr(∇2Y h
k (χhk)Σ(χhk)))

=0
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by (4.2) and to compensate for the additional term

Ah2 :=
1

2
u2
khE tr(∇2Y h

k (χhk)H̄
2⊗(χhk)).

Again, we could have stated Lemma 4.1 with g depending on h and t, so we
may show the following.

Lemma 4.2. With the conditions as in Lemma 4.1 we have

T
h
−1∑

n=0

|EΦh
n(χhn)− EΦh

n(X̃h
n)| ≤ O(1)

for all H 3 h ↓ 0.

Our initial approximation follows just as in the ODE case, so we shall omit
the proof of the following lemma.

Lemma 4.3. For all g ∈ G∞(Rd) and h ∈ H,

Eg(χhT/h)− Eg(Xh
T ) = h

∫ T

0

Eϕht (Xh
t ) dt+O(h2), (4.3)

where

ϕht (x) =
1

2
u2
t tr(∇2yht (x)H̄2⊗(x)) + ut∂t∇yht (x)H̄(x) +

1

2
∂2
t y

h
t (x).

Next we shall improve (4.3) in order to arrive at the equality in Theorem
1.3. An additional step compared to the ODE approximation is then deriving
an estimate of |Eϕht (Xh

t )−ϕh0(X0
t )| to get rid of the dependence of the integral∫ T

0
|Eϕht (Xh

t )| dt on h ∈ (0, 1). First, consider estimating the difference yh−y0

and its derivatives up to order 2.

Lemma 4.4. Let yht (x) = Eg(Xh,t
T (x)). Define the H-indexed family

dht (x) :=
yht (x)− y0

t (x)

h
.

Then d ∈ G2([0, T ]× Rd).
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Proof. For every s ∈ [0, T ] and h ∈ H, such that s
h
∈ N0 we have

|yhs − y0
s | ≤

T−s
h
−1∑

n=0

|Ey0
s+(n+1)h(X

h,s
s+(n+1)h)− Ey0

s+nh(X
h,s
s+nh)|,

where this is meant as an inequality of functions on Rd, the set of possible
initial values. To shorten notation, throughout this proof we omit the initial
value in Xh,s(x).

Set Aht := y0
t+h(X

h,s
t+h) − y0

t (X
h,s
t ). Since y0 ∈ G∞([0, T ] × Rd), applying

Taylor’s theorem to it implies

Aht =∂ty
0
t (X

h,s
t )h+∇y0

t (X
h,s
t )∆Xh,s

t +
1

2
tr(∇2y0

t (X
h,s
t )(∆Xh,s

t )2⊗)

+ h2Rh
t (∆Xh,s

t )

with some remainder term R : H × [0, T ] × Rd → R ∈ G([0, T ] × Rd) and
∆Xh,s

t := Xh,s
t+h −X

h,s
t . By the Feynman-Kac formula (4.2),

EAht =E[∇y0
t (X

h,s
t )(∆Xh,s

t − hutH̄(Xh,s
t ))]

+
1

2
trE[∇2y0

t (X
h,s
t )((∆Xh,s

t )2⊗ − h2u2
tΣ(Xh,s

t ))] + h2ERh
t (∆Xh,s

t ).

With an Itô-Taylor expansion (e.g. by using Lemma 5.1 below) we see that
there exists a C ∈ G(Rd) with

|E(∆Xh,s
t − hutH̄(Xh,s

t ))| ≤Ch2,

|E((∆Xh,s
t )2⊗ − h2u2

tΣ(Xh,s
t ))| ≤Ch2,

for all h ∈ (0, 1) and s, t ∈ [0, T ] with s ≤ t. Since ∇y0 and ∇2y0 are
bounded, uniformly in space and time, we conclude

|yhs − y0
s | ≤

T

h
Ch2 ≤ TCh,

for some C ∈ G(Rd), all h ∈ H and s ∈ [0, T ] such that s
h
∈ N0. For general

t ∈ [0, T ] with nh ≤ t < (n+ 1)h a Taylor approximation yields

|yht − yhnh| ≤ (t− nh)|∂tyht |+ h2R

for some remainder R ∈ G([0, T ] × Rd). Since ∂ty ∈ G([0, T ] × Rd) and
(t− nh) ≤ h we conclude the existence of a C ∈ G(Rd) with

|yht − yhnh| ≤ Ch,
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for all h ∈ H. A similar argument applies to the difference y0
t − y0

nh. Hence,

|yht − y0
t | ≤ |yht − yhnh|+ |yhnh − y0

nh|+ |y0
nh − y0

t | ≤ Ch,

for some C ∈ G(Rd), all h ∈ H and t ∈ [0, T ].
Now, consider partial derivatives of y. For j ∈ {1, . . . , d} define

wht (x, y) = E[∇g(Xh,t
T (x))T∂jX

h,t
T (x, y)],

where the derivative Yr := ∂jX
h,t
r (x, y) satisfies the SDE

dYr = ur∇H̄(Xh,t
r (x))Yr dr + ur

√
h∇
√

Σ(Xh,t
r (x))Yr dWr,

with initial condition Yt = y and

(∇
√

Σ(x)y)i,j =
d∑

k=1

∂i

√
Σ(x)j,kyk,

for all x, y ∈ Rd and i, j ∈ {1, . . . , d}. Note that wh(x, 1) = ∂jy
h(x). The

Feynman-Kac equation applies to the system (Xh,t
r , ∂jX

h,t
r ) giving us

0 =∂tw
h
t (x, y) + ut∇xw

h
t (x, y)H̄(x) +∇yw

h
t (x, y)y∂jH̄(x)

+
1

2
hu2

t tr
(
∇2
x,yw

h
t (x, y)S(x, y)

)
,

with

S(x, y) :=

(
Σ(x)

√
Σ(x)(∇

√
Σ(x)y)T

∇
√

Σ(x)y
√

Σ(x)
T

(∇
√

Σ(x)y)(∇
√

Σ(x)y)T

)
.

Similarly to the above argument, using Taylor’s theorem we can show

x 7→1

h
|Ew0

t+(n+1)h(X
h
t+(n+1)h(x), ∂jX

h
t+(n+1)h(x, 1)) (4.4)

− Ew0
t+nh(X

h
t+nh(x), ∂jX

h
t+nh(x, 1))| ∈ G(Rd) (4.5)

and conclude, using a telescoping sum,

1

h
|∂jyht − ∂jy0

t | ∈ G(Rd).

By differentiating the process X once more, an analogous argument works
for any second space-derivative to prove

1

h
|∂i,jyht − ∂i,jy0

t | ∈ G(Rd),
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with i, j ∈ {1, . . . , d}. Then use the Feynman-Kac equation for y to conclude

1

h
|∂tyht − ∂ty0

t | ∈ G(Rd).

We can then do essentially the same for ∂j∂ty with j ∈ {1, . . . , d} and ∂2
t y.

Consider the linear operator

F : G2([0, T ]× Rd)→ G([0, T ]× Rd)

given by

Ftf(x) :=
1

2
u2
t tr(∇2ft(x)H̄2⊗(x)) + ut∂t∇ft(x)H̄(x) +

1

2
∂2
t ft(x).

We have already seen it in action. Notice for example that ϕht (x) = Ftyh(x)
for all t ∈ [0, T ] and x ∈ Rd. In the next lemma we consider spaces of the
form

Gl
κ([0, T ]×Rd) = {f ∈ C l([0, T ]×Rd) :

∥∥∂kt ∂αf∥∥Gκ <∞, k ≤ l, |α| ≤ l− k}.

This is a Banach space when equipped with the norm

‖f‖Glκ :=
l∑

k=0

∑
|α|≤l−k

∥∥∂kt ∂αf∥∥Gκ .
This works regardless of whether we consider functions f : [0, T ] × Rd → R
or families of functions, such as f : H × [0, T ] × Rd → R with polynomial
growth uniformly in H and [0, T ]. Of course, by construction

Gl([0, T ]× Rd) =
⋃
κ∈N0

Gl
κ([0, T ]× Rd).

Lemma 4.5. Let κ ∈ N0. The function

F : G2
κ([0, T ]× Rd)→ Gκ+2([0, T ]× Rd)

with

Ftf(x) =
1

2
u2
t tr[∇2ft(x)H̄2⊗(x)] + ut∂t∇ft(x)T H̄(x) +

1

2
∂2
t ft(x).

is a continuous linear operator. The statement applies for spaces of families
of functions as well (cf. (2.2)).
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Proof. The linearity of F is trivial. Now, given f ∈ G2
κ([0, T ]×Rd) we have

‖Ff‖Gκ+2
≤9

2
‖u‖2

∞

d∑
i,j

‖∂i,jf‖Gκ
∥∥H̄ i

∥∥
G1

∥∥H̄j

∥∥
G1

+ 3 ‖u‖∞
d∑
i=1

‖∂t∂if‖Gκ
∥∥H̄ i

∥∥
G1

+
1

2

∥∥∂2
t f
∥∥
Gκ

From this we can see that ‖Ff‖Gκ+2 <∞, so F is well-defined. Furthermore,
the bound on ‖Ff‖Gκ+2

is a scalar multiple of the norm on G2
κ([0, T ] × Rd)

proving the continuity.

Corollary 4.6. There exists a function C ∈ G(Rd), such that

|ϕht (x)− ϕ0
t (x)| ≤ hC(x),

for all t ∈ [0, T ], x ∈ Rd and h ∈ H. Consequently,

|Eϕht (Xh
t )− Eϕ0

t (X
h
t )| ∈ O(h) (4.6)

for all t ∈ [0, T ] and h ∈ H.

Proof. With d defined as in Lemma 4.4 we have

ϕh − ϕ0 = hFd.

Now apply Lemma 4.4 and the fact that F maps into G([0, T ]× Rd). With
this Inequality (4.6) follows from Theorem 6.1 in the Appendix.

Lemma 4.7. We have

|Eϕ0
t (X

h
t )− ϕ0

t (X
0
t )| ∈ O(h) (4.7)

for all t ∈ [0, T ] and h ∈ H.

Proof. If we replace χhk by X̃h
k in Lemma 3.1 and its extension in (3.2),

then the proof proceeds the same way. We use the Itô-Taylor approxima-
tion Lemma 5.1 to calculate E(∆X̃h

n|X̃h
n) and E((∆X̃h

n)2⊗|X̃h
n), and estimate∥∥∥X̃h

∥∥∥
#β

using Theorem 6.1.

This lets us derive the expression

Eϕ0
nh(X̃

h
n)− ϕ0

nh(X
0
nh) = h2

n−1∑
k=0

EΨh
n,k(X̃

h
k) +O(h2),
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where
Ψh
n,k(x) := Fkh(Eϕ0

nh(X
h,·
nh))(x).

Here Xh,·
nh is a random field with variable initial value x ∈ Rd. Then the

H×[0, T ]-indexed family vh,rs (x) := Eϕ0
r(X

h,s
r (x)) satisfies v ∈ G∞([0, T ]×Rd)

by an extension of Remark 2.4. So Lemma 4.5 implies

|Ψh
n,k(x)| = |(Fkhvh,nh)(x)| ≤ C(1 + |x|κ),

for some C > 0 and κ ∈ N. Now consider an arbitrary t ∈ [0, T ] with
nh ≤ t < (n + 1)h. Then Taylor’s theorem, the Cauchy-Schwarz inequality
and the fact that (t− nh) ≤ h imply

|Eϕ0
t (X

h
t )− Eϕ0

nh(X
h
nh)| ≤h|E∂tϕ0

nh(X
h
nh)|+

∥∥∇ϕ0
nh(X

h
nh)
∥∥

2

∥∥∆Xh
nh

∥∥
2

+O(h2),

with some remainder R ∈ G([0, T ]× Rd). So,

|Eϕ0
t (X

h
t )− Eϕ0

nh(X
h
nh)| ∈ O(h)

for all h ∈ H by Lemma 2.5, Theorem 6.1 and since ϕ0 ∈ G([0, T ] × Rd).
Similarly

|ϕ0
t (X

0
t )− ϕ0

nh(X
0
nh)| ∈ O(h),

for all h ∈ H. Hence,

|Eϕ0
t (X

h
t )− ϕ0

t (X
0
t )| ≤|Eϕ0

t (X
h
t )− Eϕ0

nh(X̃
h
n)|

+ |Eϕ0
nh(X̃

h
n)− ϕ0

nh(X
0
nh)|

+ |ϕ0
t (X

0
t )− ϕ0

nh(X
0
nh)|

∈O(h)

for all t ∈ [0, T ] and h ∈ H.

Proof of Theorem 1.3. Combining inequalities (4.6) and (4.7) gives us

|Eϕht (Xh
t )− ϕ0

t (X
0
t )| ≤|Eϕht (Xh

t )− Eϕ0
t (X

h
t )|+ |Eϕ0

t (X
h
t )− ϕ0

t (X
0
t )|

∈O(h)

for all h ∈ H. We conclude with the help of (4.3),

Eg(χhT/h)− Eg(Xh
T ) = h

∫ T

0

ϕ0
t (X

0
t ) dt+O(h2).
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5 Proof of the second-order SDE approxima-

tion

In this section we provide a proof of Theorem 1.4. We start with a moment
estimate of SDE increments.

Lemma 5.1. Let b0, b1, σ ∈ G1([0,∞) × Rd) ∩ G∞([0,∞) × Rd), such that
b0, b1 are Rd-valued and σ is Rd×d-valued. Let h ∈ (0, 1), n ∈ N and consider
the stochastic differential equation

dXt = (b0
t + hb1

t )(X
h
t ) dt+

√
hσt(X

h
t ) dWt, Xnh = x,

with t ∈ [nh, (n+ 1)h]. Then there exists a function C ∈ G(Rd), such that

E∆X̃h,n
n =hb0

nh +
1

2
h2(2b1

nh + (∇b0b0)nh + ḃ0
nh) + h3C

E(∆X̃h,n
n )2⊗ =h2

(
(b0)2⊗ + σTσ

)
nh

+ h3C,
(5.1)

for all h ∈ (0, 1).

Remark 5.2. The statements in Equation (5.1) are meant as statements for
all initial values x ∈ Rd of the SDE. In order to simplify notation, in this
section we generally omit the initial condition and formulate statements for
the flow of the stochastic differential equation, i.e. the mapping from the set
of initial conditions Rd to the collection of random variables Xt representing
the corresponding solution at time t ∈ [0, T ]. ♦

Proof. For any multi-index α define

mα(z) := (z − x)α =
d∏
j=1

(zj − xj)α(j).

Then for any other multi-index β,

∂βmα(z) =
d∏
j=1

β(j)∏
k=1

(α(j)− k + 1)(z − x)α−β, z ∈ Rd,

where it is understood that yα−β = 0 if α(j) < β(j) for any j ∈ {1, . . . , d}.
Further, (∆X̃h,n

n )α = mα(Xnh
(n+1)h). Write

AX = ∂t +AX,0 + hAX,1
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with

AX,0g := (b0 + hb1)T∇g,AX,1g =
1

2
tr(σTσ∇2g).

Denote by AiX the i-th fold iteration of AX and observe that AXg already
depends on time even if g does not. An Itô-Taylor expansion implies (cf.
Theorem 6.3)

E(∆X̃h,n
n )α =

2∑
i=1

hi

i!
AiXmα(nh, x) +

∫ (k+1)h

nh

∫ t

nh

∫ s

nh

EA3
Xmα(u,Xu) dudsdt.

We have

AX(mj)(nh, x) =AX,0(mj)

=b0
nh(x)j + hb1

nh(x)j

A2
X(mj)(nh, x) =(A2

X,0 +AX,1AX,0 + ∂tAX,0)(mj)(nh, x)

=(∇b0b0 + h(∇b0b1 +∇b1b0) + h2∇b1b1)nh(x)j

+
1

2
h tr(∇2b0

jσ
Tσ)nh(x) +

1

2
h2 tr(∇2b1

jσ
Tσ)(x)

+ ḃ0
nh(x)j + hḃ1

nh(x)j,

where ∇2gj is simply the Hessian of gj : Rd → R. Therefore,

2∑
i=0

1

i!
hiAiXmj(nh, x) =hb0

nh(x) + h2

(
b1
nh +

1

2
(∇b0b0)nh +

1

2
ḃ0
nh

)
(x)j

+ h3C(x),

for some C ∈ G(Rd). By Lemma 6.4, A3
Xmj ∈ G([0, T ]×Rd) and by Theorem

6.1 we have∥∥(A3
Xmj(s,Xs))

∥∥
1
≤ C(1 + ‖|Xs|κ‖1) ≤ C(1 + |x|κ),

for some constant C > 0. Hence,∣∣∣∣∣
∫ (k+1)h

nh

∫ t

nh

∫ s

nh

EA3
Xmj(u,Xu) dudsdt

∣∣∣∣∣ ≤
∫ (k+1)h

nh

∫ t

nh

∫ s

nh

C(x) du ds dt

=h3C ′(x),

with C,C ′ ∈ G(Rd), and so

E∆Xh
nh =hb0

nh +
1

2
h2
(

2b1
nh + (∇b0b0)nh + ḃ0

nh

)
+ h3C(x),
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for some C ∈ G(Rd).
Now, let us consider a multi-index α = {j1, j2}. Writing fnh(x)α =

[fnh(x)]j1,j2 and (fα)nh(x) = (fj1,j2)nh(x), we have

AX(mα)(nh, x) =AX,1(nh,mα) =
1

2
h(σTσ)nh(x)α

A2
X(mα)(nh, x) =(A2

X,0 +AX,0AX,1 +A2
X,1 + ∂tAX,1)(mα)(nh, x)

=(b0(b0)T + h(b0(b1)T + b1(b0)T ) + h2b1(b1)T )nh(x)α

+
1

2

(
h

d∑
l=1

b0
l ∂l(σ

Tσ)α + h2

d∑
l=1

b1
l ∂l(σ

Tσ)α

)
nh

(x)

+
1

4
h2 tr(∇2(σTσ)ασ

Tσ)nh(x)

+
1

2
h∂t(σ

Tσ)nh(x)α,

where ∇2(σTσ)α is the Hessian of (σTσ)j1,j2 , and so again using Lemma 6.4,

E(∆Xh
nh)

2⊗ = h2
(
(b0)2⊗ + σTσ

)
nh

+ h3C,

for some C ∈ G(Rd).

Remark 5.3. With Lemma 5.1 and 2.1 we may compare SGD with the
solution of the family of SDE’s

dXh
t = (b0

t + hb1
t )(X

h
t ) dt+

√
hσt(X

h
t ) dWt, Xh

nh = x,

with the choice ηhk = hunh.

E∆χhk − E∆X̃h,n
n =h(unhH̄ − b0

nh) +
1

2
h2(2b1

nh + (∇b0b0)nh + ḃ0
nh) + h3C,

E(∆χhk)
2⊗ − E(∆X̃h,n

n )2⊗ =h2(u2
tΣ− σTσ + u2

t H̄
2⊗ − (b0)2⊗)nh + h3C.

This gives us an idea of how to choose the coefficients b0, b1 and σ, which is

b0
t := utH̄, b1

t := −1

2

(
u2
t∇H̄H̄ + u̇tH̄

)
, σt := ut

√
Σ.

Note that the conditions

H̄,
√

Σ ∈ G1(Rd), H̄,Σ ∈ G∞(Rd), u ∈ C∞([0, 1]× [0, T ])

are enough to satisfy the assumptions of Lemma 5.1 for all h ∈ (0, 1) and
n ∈ {0, . . . , bT/hc}. ♦
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We are finally ready to prove Theorem 1.4.

Proof of the Main Theorem 1.4. By Rem. 5.3

|E(∆χh,nn )α − E(∆X̃h,n
n )α| ≤ h3C,

for #α ≤ 2 and by Lemma 2.2 and 2.5∥∥∆χh,nn
∥∥3

p
∨
∥∥∆Xh,n

n

∥∥3

p
≤ h3C

for all n ∈ N, h ∈ (0, 1) and some C ∈ G(Rd). Therefore, given any g ∈
G∞(Rd), by Proposition 2.6 with I = {(i+ 1, n) ∈ N2 : i < n},∣∣∣Eg.P h

k+1,n(χh,kk+1)− Eg.P h
k+1,n(Xh,kh

(k+1)h)
∣∣∣ ≤ h3C

for some C ∈ G(Rd), where P h are transition kernels of (Xh
nh)n∈N0 . Then, by

Proposition 2.7 together with Lemma 2.2 and Proposition 2.3,

max
n∈{0,...,bT/hc}

|Eg(Xh
nh)− Eg(χhn)| ≤h2C

for some C ∈ G(Rd) and all h ∈ (0, 1).

Remark 5.4. We can improve Theorem 1.4 to include random initial values.
Let ξ ∈ L2 be independent of γ and the filtration F . Then,

max
n∈{0,...,bT/hc}

|Eg(χhn(ξ))− Eg(Xh
nh(ξ))|

= max
n∈{0,...,bT/hc}

|E(Eg(χhn(x))− Eg(Xh
nh(x))|ξ = x)|

≤E
(

max
n∈{0,...,bT/hc}

|Eg(χhn(x))− Eg(Xh
nh(x))| |ξ = x

)
≤h2C(ξ),

for all x ∈ Rd and h ∈ (0, 1) and some C ∈ G(Rd). ♦

6 Appendix

Here we collect some known results from Stochastic Analysis that are needed
for the proofs of our main theorems. We adapt the presentation to our setting
in order to make the present article more self-contained.
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Theorem 6.1. Let b, σ ∈ G1(Rd) ∩ Lip, such that b is Rd-valued and σ is
Rd×d-valued. Then, for every p ≥ 2, T > 0 and random field ϕ : Ω× [0, T ]×
Rd → Rd with ‖ϕ∗‖p,T <∞, the stochastic differential equation

dXt = bt(Xt) dt+ σt(Xt) dWt, X0 = ϕ

admits a unique6 solution X on [0, T ], such that the family of solutions X =
(Xt)t≥0 satisfies ‖X∗‖p,T <∞ and

‖X∗‖p,T ≤ (1 + ‖ϕ∗‖p,T ).

The same bound holds if we consider I-indexed families b, σ, ϕ and X for
some index set I.

Proof. This essentially a standard result, cf. [11] Theorem 3.1 and 3.2 for
example. The extension to an index set I and from an initial value x ∈ Rd

to a process ϕ is discussed in [14] Theorem 18 and 19.

A (unordered) multi-index α ⊆ {1, . . . , d} is a multi-subset of {1, . . . , d},
i.e. a function α : {1, . . . , d} → N0. The size #α of α is given by

#α :=
d∑
j=1

α(j).

Every subset A ⊆ {1, . . . , d} becomes a multi-set by identifying it with its
indicator function. Given multi-indices α and β we write α ≤ β if α(j) ≤ β(j)
for all j ∈ {1, . . . , d} and in that case the multi-index β − α is well defined
by component-wise. Further, write j ∈ α if {j} ≤ α and set α− j := α−{j}
in that case.

If a function f : Rd → R is l-times continuously differentiable, then by
Schwarz’s theorem the partial derivative with respect to a multi-index α with
#α ≤ l is well-defined recursively by

∂αf = ∂j∂α−jf, ∂∅f = f.

where j is any j ∈ {1, . . . , d} with j ∈ α. Given x ∈ Rd and multi-index α
we define

xα :=
d∏
j=1

x
α(j)
j .

6Of course, we mean unique up to indistinguishability.
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Theorem 6.2. Let l ∈ N, p ≥ 1 and b, σ ∈ G1(Rd) ∩ Lipl, such that b is
Rd-valued and σ is Rd×d-valued. Let x ∈ Rd, s ∈ [0, T ] and X be the unique
solution to the family of stochastic differential equations

dXt = bt(Xt) dt+ σt(Xt) dWt, Xs = x.

Then X is l-times continuously differentiable w.r.t. x at any (t, x) ∈ [s, T ]×
Rd, a.s. and for every multi-index α with 0 < #α ≤ l, ∂αX satisfies the
stochastic differential equation

∂αXt = ψα +

∫ t

s

∇bu(Xu)∂αXu du+

∫ t

s

∇σu(Xu)∂αXu dWu,

where ‖ψ∗α‖p ∈ G(Rd) for all p ≥ 2. Moreover,

E(∂αXt) = ∂αE(Xt),

for all t ≥ 0. Again, the results extend readily to I-indexed coefficients and
processes for some index set I.

Proof. For the proof cf. [11] Theorem 3.4. More specifically, for every l ∈ N,
assuming the result holds for all l′ < l define

Y := (X, ∂1X, . . . ∂dX, ∂1,1X, . . . , ∂1,dX, ∂2,1X, . . . , ∂d,...,dX)T ,

where the last partial derivative is of the order l − 1. Then Y satisfies the
stochastic differential equation

Y =


x
e1
...
0

+


0
ψ1
...

ψd,...,d

+

∫ t

s


bu(Xu)

∇bu(Xu)∂1Xu
...

∇l−1bu(Xu)∂d,...,dXu

 du

+

∫ t

s


σu(Xu)

∇σu(Xu)∂1Xu
...

∇l−1σu(Xu)∂d,...,dXu

 dWu,

where the processes ψ1, . . . , ψd,...,d consists of additional integrals
∫ t
s
du and∫ t

s
dWu of the remaining terms induced by repeated application of the chain

rule. The terms within
∫ t
s
du and

∫ t
s
dWu respectively are seen to be func-

tions of u and the state Y , satisfying the conditions of [11] Theorem 3.4. By
applying it again to the SDE governing Y the result follows via induction on
l.
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Given a set A the Kleene closure is the set of all A-tuples of arbitrary
length, i.e.

A∗ :=
⋃
n≥0

An,

where A0 = {()}. We let |(a1, . . . , an)| = n and |()| = 0 be the length of such
a tuple.

We care about the set of (ordered) multi-indices {0, . . . , d}∗, where Rd

is the state space of W . As the same implies now (1, 2) 6= (2, 1) , unlike
the (unordered) multi-indices considered before. Given a multi-index α ∈
{0, . . . , d}∗ of length l = |α| > 0 we define the left- and right deletions

α− = (α1, . . . , αl−1), −α = (α2, . . . , αl) ∈ {0, . . . , d}l−1.

Let H() be the set of all continuous stochastic processes and define

H(0) = {X ∈ H() :

∫ t

0

|Xs| ds <∞, a.s., t ≥ 0},

H(1) = {X ∈ H() :

∫ t

0

|Xs|2 ds <∞, a.s., t ≥ 0}.

Also for convenience set H(j) := H(1) for all j ∈ {1, . . . , d}.
We let W 0

t = t, t ≥ 0. Given a progressively measurable stochastic process
X : Ω× [0,∞) → Rd and α ∈ {0, . . . d}∗ with l = |α| we define the multiple
Itô integral ∫ t

s

X dWα =

{
X, |α| = 0,∫ t
s

∫ u
s
X dWα− dWαl , |α| > 0,

as long as X ∈ Hα, where the latter is the case exactly when∫ ·
s

X dWα− =

(∫ t

s

X dWα−
)
t≥0

∈ H(αl).

Further, given f ∈ C1,2([0,∞)× Rd) define

AXf := L0f :=
∂f

∂t
+∇fT b+

1

2
tr(∇2fσσT ),

Ljf :=σTj,·∇f =
d∑

k=1

σk,j∂xkf, j ∈ {1, . . . , d}.

For any α ∈ {0, . . . , d}∗ set

α(0) := #{j : αj = 0}.
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Given f ∈ Cα(0),2(|α|−α(0))([0,∞)×Rd) we define the Itô coefficient function

Lαf :=

{
f, |α| = 0,

Lα1(L−αf), |α| > 0.

Theorem 6.3. Let b, σ ∈ G1(Rd) ∩ Lip, such that b is Rd-valued and σ is
Rd×d-valued, 0 ≤ s ≤ t ≤ T, x ∈ Rd and let X be the unique solution to the
stochastic differential equation

dXt = bt(Xt) dt+ σt(Xt) dWt, X0 = x.

on [s, T ]. Then given f ∈ Cα(0),2(|α|−α(0))([0,∞)× Rd) we have

f(T,XT ) =
∑
|α|≤l

∫ T

s

Lαf(s,Xs) dW
α +

∑
|β|=l+1

∫ T

s

Lαf(·, X·) dWα.

Further, applying expectation yields

Ef(T,XT ) =
l∑

i=0

(T − s)i

i!
AiXf(s,Xs)

+

∫ T

s

∫ u1

s

· · ·
∫ ul

s

EAl+1
X f(ul+1, Xul+1

) dul+1 . . . du1.

Proof. See [10] Theorem 5.5.1 (p. 182). All the iterated integrals are defined
since Lαf(·, X·) ∈ Hα for all α with |α| ≤ l. As the hierarchical set choose
A := {α : |α| ≤ l}. For the second statement note that∫ T

s

∫ u1

s

· · ·
∫ ui−1

s

1 dui . . . du1 =
1

i!
(T − s)i,

and that any integral
∫ T
s
dWα with α(0) < |α| has expectation zero.

Lemma 6.4. Consider the stochastic differential equation

dXt = bt(Xt) dt+ σt(Xt) dWt,

where

b : [0, T ]× Rd → Rd, σ : [0, T ]× Rd → Rd×d ∈ G1([0, T ]× Rd) ∩ Lip

and additionally

b, σ ∈ Gl([0, T ]× Rd) ∩ C l′,l([0, T ]× Rd).

Let f : [0, T ]× Rd → R ∈ Gl([0, T ]× Rd) ∩ C l′,l([0, T ]× Rd). Then,

AiXf ∈ Gl−2i ∩ C l′−i,l−2i([0, T ]× Rd),

for all i ∈ N with i ≤ l
2
∧ l′, where AX is the infinitesimal generator of X.
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Proof. Suppose the statement holds for all i′ < i. Then AiXf = AXg for
some g ∈ C l′−(i−1),l−2(i−1)([0, T ]× Rd) with g ∈ Gl−2(i−1)(Rd). Then,

AX,0g =
d∑
j=1

bj∂jg ∈ Gl−2i+1(Rd),

AX,1g =
d∑
j,k

(σTσ)j,k∂j,kg ∈ Gl−2i(Rd),

and ∂tg ∈ C l′−i,l−2i+2([0, T ]×Rd). Combining all three statements yields the
result.
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