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Approximating stochastic gradient descent
with diffusions: error expansions and impact of

learning rate schedules
Stefan Ankirchner∗ Stefan Perko†

June 16, 2021

Abstract

Applying a stochastic gradient descent method for minimizing an
objective gives rise to a discrete-time process of estimated parameter
values. In order to better understand the dynamics of the estimated
values it can make sense to approximate the discrete-time process
with a continuous-time diffusion. We refine some results on the weak
error of diffusion approximations. In particular, we explicitly compute
the leading term in the error expansion of an ODE approximation
with respect to a parameter h discretizing the learning rate schedule.
The leading term changes if one extends the ODE with a Brownian
diffusion component. Finally, we show that if the learning rate is time
varying, then its rate of change needs to enter the drift coefficient in
order to obtain an approximation of order 2.

Introduction
Consider a d-dimensional discrete-time stochastic process χ = (χn)n∈N0 with
dynamics

χn+1 = χn − ηn∇fγ(n)(χn), n ∈ N0, (0.1)
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where (fr)r∈Γ is a family of differentiable functions from Rd to R, (ηn)n∈N0

is a sequence of positive reals, and (γ(n))n∈N0 is an i.i.d. sequence of Γ-
valued random variables. We interpret (χn)n∈N0 as the sequence of estimated
parameters when applying a stochastic gradient descent (SGD) method1 for
minimizing the objective 1

|Γ|
∑

i∈Γ fi. We refer to ηn as the learning rate in
the nth step and fγ(n) as the loss due to the n-th sample of the data or mini
batch. In the following we simply call χ a SGD process.

Sometimes it is convenient to approximate the discrete-time process χ
with a continuous-time stochastic process in order to make tools from Stochas-
tic Analysis available for studying its dynamics. In a series of papers, Li, Tai
and E ([8], [9]) have shown that one can approximate the distribution of χ
with the distribution of a processes solving a stochastic differential equation
(SDE) driven by a Brownian motion. In the following we refer to solutions
of such SDEs as diffusions. We remark that the approximating diffusions are
also called stochastic modified equations (SME), e.g. in [8] and [9].

In this paper we aim at refining some results on diffusion approximations
of the SGD process (0.1). In order to take into account a time varying
learning rate from the outset, we assume that the progression of the learning
rate can be described in terms of a continuous function u : [0,∞) → (0, 1].
We may refer to u as a learning rate schedule. We assume that there exists
a positive real h such that for all n ∈ N0 the nth step learning rate satisfies

ηn = hunh. (0.2)

We interpret h as a discretization parameter and use it for measuring errors
of diffusion approximations. One can also view h as the maximal learning
rate, since u is bounded by 1.

Let (χh
n) be the solution of (0.1) with initial condition χh

0 = x ∈ Rd and
with learning rates satisfying (0.2). Moreover, let (Xh), h ∈ (0, 1] be a family
of diffusions with Xh satisfying an SDE of the form

dXh
t = utb

h
t (X

h
t )dt+ ut

√
hσt(X

h
t )dWt, Xh

0 = x, (0.3)

where W represents a Brownian motion, and b and σ are some suitable
coefficients. We say that the family Xh, h ∈ (0, 1], is a weak approximation
of order l ∈ N if for all T ∈ (0,∞) and bounded smooth functions g : Rd → R
there exists a constant C such that for all h ∈ {T/n : n ∈ N0} we have

|E(g(χη
T/h))− E(g(Xη

T ))| ≤ Chl. (0.4)
1It should be pointed out that by requiring γ(0), γ(1), . . . to be i.i.d. we are essentially

only considering SGD with replacement (and variants thereof) as opposed to SGD without
replacement which is more commonly used in practice. However the analysis of the latter
is more complicated, so we will not consider it here.
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By choosing bht (x) = b(x) = −E[∇fγ(x)] and σt(x) = 0 in (0.3) one obtains
an ODE approximation of order 1. In our first main result we provide, for this
first order ODE approximation, an explicit expression of the asymptotically
minimal constant C in the error estimate (0.4). We remark that the minimal
constant corresponds to the leading term in a Taylor expansion of the weak
error in h. Such error expansions for numerical schemes of SDEs are referred
to as Talay-Tubaro expansions (see [10]).

We then consider the diffusion family (0.3) with b(x) = −E[∇fγ(x)] and
σt(x) = σ(x) given by the square root of the covariance matrix of ∇fγ(x). In
our second main result we show that this family is again an approximation
of order 1, however with a different leading error term in the weak error
expansion. Thus, we confirm a conjecture proposed by Feng et al. in [2]
(Remark 2.2.).

Finally, our third main result provides a second order approximation of
χh. In particular, the result reveals that if the learning rate is time varying,
then its rate of change needs to enter the drift coefficient of any approxima-
tion of order 2.

The idea to use diffusion for approximating SGD processes goes back to
[8], [9]. Their approximation results are rigorously shown under the assump-
tion that the learning rate is constant and hence only for diffusion fami-
lies that are time-homogeneous. In contrast, we allow for a time-dependent
learning rate, and thus fall back on inhomogeneous diffusions for the weak
approximation of SGD processes.

The article [5] considers weak approximations of order 2 for SGD pro-
cesses with constant learning rates. Our third main result can be seen as a
generalization of [5, Theorem 1] to the case with non-constant learning rates.

The article [3] also considers diffusion approximations for SGD processes
with time-dependent learning rates, assuming that the sequence of learning
rates satisfies ηn = γ(n+1)−α for some γ ∈ (0,∞) and α ∈ [0, 1). [3, Propo-
sition 25] provides an asymptotic estimate of the weak error as γ converges
to zero. It is remarkable, that the same article also contains a strong ap-
proximation result (see [3, Theorem 1]) based on a coupling technique. In
contrast to [3], we provide explicit formulas for the leading error terms, we
do not make a specific assumption on the learning rate schedule u, and we in-
corporate the rate at which the learning rate changes into the drift coefficient
in order to obtain a second order approximation.

In [1] An et al. extend the diffusion approximation framework to the
setting of asynchronous SGD, where estimates of the gradient ∇fγ arrive
time-delayed by a random staleness process τ . This version of SGD is impor-
tant in the distributed setting, when learning is done on multiple machines at
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once. The resulting diffusion dynamics are a system of two SDEs describing
the expected read, i.e the (conditional) expectation of the parameters delayed
by the staleness, and time-difference quotients of the expected reads scaled
by the discretization factor ∆t =

√
(1− µ)η. Here, 1

µ
is the mean of the stal-

eness. For h = η ≈ 1−µ this is comparable to our setting as ∆t ≈
√
h2 = h.

An approximation error of order 1 is then derived in a strong sense, which is
also possible for our first-order diffusion approximation as remarked there.

In our first two main results we provide explicit formulas for the leading
terms of weak error expansions along the parameter h. The leading terms
are given in terms of integrals of the ODE solution, and thus bear similarities
with the formulas of the leading weak error term when approximating SDEs
with an Euler or Milstein scheme (see [10]). Indeed, our first two results can
be seen as describing the leading term in the Talay-Tubaro expansion of the
weak error. We remark, however, that the error estimate in our second main
result is given with respect to a family of SDEs, whereas the error considered
in [10] refers to a single SDE.

In [2] Feng et al. propose a method for approximating the limiting station-
ary distribution of SGD processes. The method is based on a series expansion
of the backward Kolmogorov equation of a second order diffusion approxi-
mation. Convergence of order 2 is shown under a convexity assumption of
the cost functions guaranteeing that the gradient process is bounded.

1 Main results
We let N = {1, 2, . . . } and N0 = {0, 1, . . . }. Let d ∈ N. We write g ∈ C l if
the function g is l-times continuously differentiable on its open domain. We
may extend this to closed domains, such as [0, T ]×Rd, by requiring g ∈ C l in
the interior and a continuous extension of g and its derivatives to [0, T ]×Rd.

Further, we write g ∈ G(D) if g has (at most) polynomial growth, i.e.
there exists a constant C > 0 and κ ∈ N0, such that

|g(x)| ≤ C(1 + |x|κ) (1.1)

for all x in the domain D of g. Typically, D = Rd or D = [0, T ] × Rd. The
infimum of all such C’s for a given κ will be denoted by ‖g‖Gκ

. We also
sometimes write g ∈ Gκ(D) if ‖g‖Gκ

< ∞, especially for κ = 1. We write
g ∈ Gl(D) if g ∈ C l(D) and all its partial derivatives up to order l are in
G(D).

Now, let (Ω,FΩ,P) be a complete probability space, Γ be a measurable
space and (γ(n))n∈N0 be a sequence of i.i.d. Γ-valued random variables. We
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can view γ(n) as the sample or mini-batch chosen in the n-th iteration of
stochastic gradient descent (SGD). Also let F = (Ft)t≥0 be a filtration on
(Ω,FΩ,P) independent of γ satisfying the usual conditions and W be an
Rd-valued F -Brownian motion.

Let u : [0, T ] → (0,∞) be a function.
Assumption (A1) We have u ∈ C∞, such that u is constant or strictly
decreasing, and takes values in [0, 1].

The function u is a learning rate schedule and represents the change of
the learning rate over time. For all h ∈ (0, 1) we consider the sequence of
learning rates

ηhn = hunh, n ∈ N0.

The parameter h ∈ (0, 1) acts as discretization parameter or maximal learn-
ing rate and is essential in describing the diffusion approximation.

Recall that γ maps into Γ. Let H : Γ × Rd → Rd. Now, given an initial
value x ∈ Rd define (generalized) stochastic gradient descent by

χh
n+1 = χh

n + ηhnHγ(n)(χ
h
n), χ0 = x. (1.2)

Assumption (A2) The function H satisfies H ∈ G1(Rd) uniformly in
r ∈ Γ, i.e. there exists a constant C > 0, such that

|Hr(x)| ≤ C(1 + |x|),

for all r ∈ Γ and x ∈ Rd.
The prototypical example to keep in mind is plain (online) SGD. Given

a sequence of differentiable error functions f1, . . . , fM : Rd → R, where M is
the sample size of our data set, we set Hγ(n)(x) := −∇fγ(n)(x) and choose
γ(n) to be uniformly distributed on {1, . . . ,M}. Finally, set

H̄ := EHγ(0) : Rd → Rd,

and
Σ := E(Hγ(0) − H̄)2⊗ : Rd → Rd×d.

Here z2⊗ = zzT for any z ∈ Rd. These functions appear in the coefficients
of various ODE and SDE approximations of SGD. By Assumption (A2) we
have H̄ ∈ G1(Rd).

Since Σ is positive semi-definite and symmetric, a unique matrix square
root

√
Σ exists.

Assumption (A3) The functions H̄ and
√
Σ are Lipschitz continuous and

in C∞, such that all their partial derivatives are bounded.
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A first order ODE approximation
We first show that the solution of the ODE

dXt = utH̄(Xt) dt (1.3)

is a weak first order approximation of χ. For convenience, we will restrict
the set of acceptable learning rates to

H := {h ∈ (0, 1) : T/h ∈ N}. (1.4)

Let g ∈ G∞(Rd) and fix a time horizon T > 0. For all (t, x) ∈ [0, T ]×Rd we
define

yt(x) = g(X t
T (x)), (1.5)

where X t(x) denotes the solution of (1.3) on [t, T ] with initial condition
X t

t (x) = x. One can show that y ∈ C∞([0, T ] × Rd). Moreover, the partial
derivatives of y with respect to time and space have polynomial growth in the
space variable, uniformly in time. Hence, y ∈ G∞([0, T ] × Rd) in the sense
that for every k ∈ N0 and multi-index2 α ⊆ {1, . . . , d} there exist constants
C ∈ (0,∞) and κ ∈ N0 such that

|∂kt ∂αyt(x)| ≤ C(1 + |x|κ), (1.6)

for all t ∈ [0, T ] and x ∈ Rd. Then, we define the function3

φt(x) =
1

2
u2t tr[∇2yt(x)(H̄(x)2⊗ + Σ(x))] + ut∂t∇yt(x)T H̄(x) +

1

2
∂2t yt(x),

(1.7)

with (t, x) ∈ [0, T ] × Rd. Whenever we want to stress the dependence of φ
on g we write φg.
Theorem 1.1. Assume (A1), (A2) and (A3). Denote by X the solution of
(1.3) with initial condition X0 = x. Then for all g ∈ G∞(Rd),

Eg(χh
T/h)− g(Xh

T ) = h

∫ T

0

φg
t (Xt) dt+O(h2), (1.8)

for all h ∈ H, i.e. all discretization parameters h such that T
h

is an integer.

The parts of assumption (A3) concerning
√
Σ are superfluous for the proof

of this theorem. Recall that the discretization parameter h ∈ H can also be
viewed as the maximal learning rate of SGD.

2See the appendix before Theorem 6.2 for a definition of (unordered) multi-indices.
3Here, ∇ denotes the gradient ∇2 and the Hessian matrix with respect to x and z2⊗ :=

zzT ∈ Rd×d for all z ∈ Rd.
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A first order SDE approximation
For all h ∈ H ∪ {0} we consider the SDE

dXh
t = utH̄(Xh

t ) dt+ ut

√
hΣ(Xh

t ) dWt. (1.9)

Notice that as h → 0 the diffusion term in (1.9) vanishes and hence (1.9)
becomes the ODE (1.3).

For (t, x) ∈ [0, T ]×Rd we denote by Xh,t(x) the solution of (1.9) on [t, T ]
satisfying the initial condition Xh,t

t (x) = x.
Now let g ∈ G∞(Rd) and T > 0. For all h ∈ H∪{0} and (t, x) ∈ [0, T ]×Rd

we define

yht (x) = E[g(Xh,t
T (x))]. (1.10)

As in the ODE case one can show that y ∈ G∞([0, T ]×Rd) in the sense that
(1.6) holds uniformly in h ∈ H. We further define, for all h ∈ H ∪ {0}, the
functions

φh
t (x) =

1

2
u2t tr[∇2yht (x)H̄

2⊗(x)] + ut∂t∇yht (x)T H̄(x) +
1

2
∂2t y

h
t (x), (1.11)

with (t, x) ∈ [0, T ]× Rd. Whenever we want to stress the dependence of φh

on g we write φg,h.

Theorem 1.2. Assume (A1), (A2) and (A3). For all h ∈ H denote by Xh

the solution of (1.9) with initial condition Xh
0 = x. Then for all g ∈ G∞(Rd),

Eg(χh
T/h)− Eg(Xh

T ) = h

∫ T

0

φg,0
t (X0

t )dt+O(h2), (1.12)

for all h ∈ H, i.e. all discretization parameters h such that T
h

is an integer.

A second order SDE approximation
For all h ∈ (0, 1) we consider the SDE

dXh
t =

(
utH̄(Xh

t )−
1

2
h(u2t∇H̄H̄ + u̇tH̄)(Xh

t )

)
dt+ ut

√
hΣ(Xh

t ) dWt,

(1.13)
where ∇g : Rd → Rd×d denotes the Jacobian of a function g : Rd → Rd, i.e.
(∇g)i,j = ∂jfi for all i, j ∈ {1, . . . , d}. Crucially, observe the occurrence of
the u̇ term in (1.13). If u is constant, then u̇ vanishes. Therefore, this term
was not present in previous works such as [9]. To exhibit this term we use an
Itô-Taylor approximation for a time-inhomogeneous SDEs (cf. Lemma 5.1).
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Theorem 1.3. Assume (A1), (A2) and (A3). For all h ∈ (0, 1) let Xh be the
solution of (1.13) with initial condition Xh

0 = x. Then for all g ∈ G∞(Rd)
and T > 0,

max
n∈{0,...,⌊T/h⌋}

|Eg(χh
n)− Eg(Xh

nh)| ∈ O(h2),

as h ↓ 0.

Remark 1.4. To simplify the notation we consider u not depending on
h in Theorem 1.1, 1.2 and 1.3. However, the results can be extended to u
depending on h, as long as u and its partial derivatives are bounded in h. ♦

2 Moment estimates and growth conditions
Let I be a set and X = (X i

t)i∈I,t≥0 be an I-indexed family of continuous-time
stochastic processes. Given p ∈ [1,∞) we define

‖X‖p,t = sup
i∈I

(
E
∫ t

0

|X i
s|p ds

)1/p

, ‖X∗‖p,t = sup
i∈I

(
E sup

s∈[0,t]
|X i

s|p
)1/p

.

Although usually X will be Rd-valued and then | · | refers to the Euclidean
norm, these definitions naturally extend to Rd1×···×dr -valued processes as well.
Similarly, given an I-indexed family of discrete-time stochastic processes X
we define

‖X∗‖p,n = sup
i∈I

(
E max

n′∈{0,...,n}
|X i

n′ |p
)1/p

.

Given an I-indexed family of random variables Y = (Y i)i∈I we also let

‖Y ‖p := sup
i∈I

(E|Y i|p)1/p.

2.1 Stochastic Gradient Descent
Recall the definition of χ in (1.2), as well as Assumptions (A1) and (A2).
We shall prove growth results concerning stochastic gradient descent. Denote
the SGD iterations starting at time n with initial value x ∈ Rd and maximal
learning rate h ∈ (0, 1) by χh,n

n (x). Given a discrete process Y indexed by
h ∈ (0, 1), e.g. Y = χ, we write

∆Y h,k
n (x) := Y h,k

n+1(x)− Y h,k
n (x), (2.1)

for all h ∈ (0, 1), n ∈ N and initial values x ∈ Rd. We let ∆Y h
n := ∆Y h,0

n .
Observe that ∆Y h,n

n (x) = Y h,n
n+1(x)− x.
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Lemma 2.1. We have

E∆χh,n
n =ηhnH̄,

E(∆χh,n
n )2⊗ =(ηhn)

2(Σ + H̄2⊗).

Proof. Straightforward.

Lemma 2.2. The following estimates hold true:

(i) For every T > 0 and p ≥ 1 there exists a constant C > 0, such that

sup
h∈(0,1)

∥∥χh(x)∗
∥∥
p,bT

h c ≤ C(1 + |x|),

for x ∈ Rd.

(ii) There exists a constant C > 0, such that∥∥∆χh,n
n (x)

∥∥
p
≤ hC(1 + |x|),

for all h ∈ (0, 1), n ∈ N and x ∈ Rd.

Proof. (i) Let p ∈ N. For every h ∈ (0, 1) and n ∈ N0,

∥∥(χh)∗
∥∥
p,n

=

(
E max

n′∈{−1,...,n−1}
|χh

n′+1|p
)1/p

.

If we let χ−1 = 0, then

|χh
n+1|p ≤|χh

n + ηhnHγ(n)(χ
h
n)|p

≤|χh
n|p +

p∑
i=1

(
p

i

)
|χh

n|p−i(ηhn)
i|Hγ(n)(χ

h
n)|i

Now, for i ∈ {1, . . . p}, h ∈ (0, 1) and n ∈ N0,∥∥(|χh|p−i|Hγ(0)(χ
h)|i)∗

∥∥
1,n

≤
∥∥∥(|χh|p−i ‖H‖iG1

(1 + |χh|)i)∗
∥∥∥
1,n

≤ 1

2
ci
∥∥(|χh|p−i + |χh|i+p−i)∗

∥∥
1,n

≤ ci(1 +
∥∥(χh)∗

∥∥p
p,n

)
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with c := 2 ‖H‖G1
and using the inequalities yp + yq ≤ 2(1 + yq) for

0 < p ≤ q and y ≥ 0. Therefore,∥∥(χh)∗
∥∥p
p,n+1

≤E max
n′∈{−1,...,n}

|χh
n′ |p

+ E max
n′∈{−1,...,n}

p∑
i=1

(
p

i

)
(ηhn′)i|χh

n′ |p−i|Hh
γ(n′)(χ

h
n′)|i

≤
∥∥(χh)∗

∥∥p
p,n

+

p∑
i=1

(
p

i

)∥∥((ηhn′)i|χh
n′|p−i|Hh

γ(n′)(χ
h
n′)|i)∗

∥∥
1,n

≤
∥∥(χh)∗

∥∥p
p,n

+ Ch(1 +
∥∥(χh)∗

∥∥p
p,n

)

=(1 + Ch)
∥∥(χh)∗

∥∥p
p,n

+ Ch,

where C :=
∑p

i=1

(
p
i

)
ci. By induction over n,

∥∥(χh)∗
∥∥p
p,n

≤ (1 + Ch)n
∥∥(χh)∗

∥∥p
p,0

+ Ch

(
n−1∑
i=0

(1 + Ch)i

)
,

for all h ∈ (0, 1) and n ∈ N. Consequently,

∥∥χh(x)∗
∥∥p
p,bT

h c ≤ (1 + Ch)b
T
h c|x|p + Ch

bT
h c∑

i=0

(1 + Cη)i

≤ (1 + Cη)
T
h |x|p + Ch

T

h
(1 + Ch)

T
h

= (CT + |x|p)elog(1+Ch)T
h

≤ (CT + |x|p)eCT ,

for all h ∈ (0, T ) and x ∈ Rd, since log(1 + y) ≤ y for all y > −1.
Now, the inclusion follows for p ∈ N. For arbitrary p ≥ 1 we have
‖Y ∗‖p ≤ ‖Y ∗‖⌈p⌉ and thus the result is proven.

(ii) We have ∥∥∆χh,n
n (x)

∥∥
p
=
∥∥ηhnH(x)

∥∥
p
≤ h ‖H‖G1

(1 + |x|),

for all x ∈ Rd and h ∈ (0, 1).
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2.2 Diffusion Approximations
We shall now consider moments and growth conditions for solutions of (fam-
ilies of) stochastic differential equations that will act as approximations to
SGD. Let l ∈ N0. We write f ∈ Lipl if f ∈ C l([0, T ]×Rd) and there exists a
C > 0 such that

|∂αft(x)− ∂αft(y)| ≤ C|x− y|, .

for all t ≥ 0 and multi-indices α with size #α ≤ l. Also set Lip := Lip0.
Given an index set I, these conditions extend to I-indexed families of func-
tions (fi)i∈I in a uniform sense. We shall consider stochastic differential
equations with (families of) coefficients

b : I × [0, T ]× Rd → Rd, σ : I × [0, T ]× Rd → Rd×d.

Proposition 2.3. Let l ∈ N, p ≥ 1 and b, σ ∈ G1(Rd) ∩ Lipl, such that b is
Rd-valued and σ is Rd×d-valued. Let X be the unique solution to the family
of stochastic differential equations

dX i,s
t (x) = bit(X

i,s
t (x)) dt+ σi

t(X
i,s
t (x)) dWt, X i,s

s (x) = x.

and g : I × Rd → R ∈ Gl(Rd). Define

vi,st (x) := Egi(X i,s
t (x)).

Then v ∈ Gl(Rd).

Note that the polynomial growth of v and its partial derivatives up to
order l is considered uniformly in i ∈ I and s, t ∈ [0, T ].

Proof. Let α be a multi-index. By induction one can show E∂αg(X) =
∂αEg(X) using Theorem 6.2. By the higher chain rule,

|∂αvi,st | =E|∂αgi(X i,s
t )| ≤

#α∑
j=1

∥∥∇jgi(X)∗
∥∥
2

∑
B∈Sα

j

N(α,B)
∏
β∈B

‖∂βX∗‖2#B ,

where Sα
i is the set of all partitions of α into i multi-set multi-indices (each

partition being a multi-set as well), N(α,B) ∈ N, #B is the size of the
partition and the product

∏
β∈B respects the multiplicities of β ∈ B. Since

g ∈ Gl(Rd) and by Theorem 6.2 we conclude ∂αv ∈ G(Rd).
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Remark 2.4. Assume now we are given an SDE with separable coefficients,
specifically

dXt = utB(Xt) dt+ utS(Xt) dWt,

where B, S ∈ Lip∩G∞. Further, suppose Assumption (A1) holds. Given
g ∈ G∞(Rd) we want to show that y defined by

yi,ht := Egi(Xh,t
T )

satisfies y ∈ G∞([0, T ]× Rd).
To this end let U : Im u→ R be, such that

U =

{
u̇ ◦ u−1, u strictly monotone
0, u constant

Then U is continuous, bounded and

dut = U(ut) dt.

Consider the system

dZt = b(Zt) dt+ Σ(Zt) dWt,

with
Zt =

(
Xt

ut

)
, b

(
x
y

)
=

(
yB(x)
U(y)

)
,Σ

(
x
y

)
=

(
yS(x)

0

)
.

Then b,Σ ∈ G(Rd). If the coefficients of an autonomous SDE

dZt = b(Zt) dt+ Σ(Zt) dWt

are in G∞ and g ∈ G∞(Rd), then clearly also AZg ∈ G∞([0, T ]×Rd), where
AZ is the infinitesimal generator of Z. By Proposition 2.3 then EAZg(Z) ∈
G∞([0, T ]×Rd). If g ∈ G∞(Rd), then yi,ht := Egi(Xh,t

T ) satisfies the Feynman-
Kac equation4

∂tyt + LXyt = 0, yT = g,

where Lh
X is the infinitesimal generator of Xh. In particular,

∂tEg(X t
T ) = ∂tEg(Zt

T ) = ∂tEg(Z0
T−t) = LZ(Eg(Z0

T−t)) ∈ G([0, T ]× Rd),

with the understanding that g(x, y) := g(x). Inductively,

∂α∂
k
t Eg(X t

T ) = ∂αL
k
ZE(g(Z0

T−t)) ∈ G([0, T ]× Rd).

All in all we have y ∈ G∞([0, T ] × Rd), i.e. y is smooth in time and space,
and all its derivatives have polynomial growth (uniformly in time). ♦

4cf. [4], Theorem 7.14 and Remark 7.6.
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Next, we will refine the families of stochastic differential equations in
consideration to equations of the form

dXh
t = bht (X

h
t ) dt+

√
hσh

t (X
h
t ) dWt,

indexed by a discretization parameter h ∈ (0, 1). Given the family of solu-
tions X of an h-indexed family of stochastic differential equations we define
the family of discrete processes

X̃h
n(x) := Xh

nh(x), (2.2)

with h ∈ (0, 1), x ∈ Rd and n ∈ {0, . . . , bT/hc}. Then,

∆X̃h,n
n (x) = Xh

nh(x)− x.

Lemma 2.5. Let

b : (0, 1)× [0, T ]× Rd → Rd, σ : [0, T ]× Rd → Rd×d ∈ G1(Rd) ∩ Lip

and X be the unique solution to to stochastic differential equation

dXh
t = bht (X

h
t ) dt+

√
hσt(X

h
t ) dWt.

Then for all p ≥ 2 there exists a C ∈ G(Rd), such that∥∥∥∆X̃h,n
n

∥∥∥
p
≤ hC,

for all h ∈ (0, 1) and n ∈ {0, . . . , bT/hc}.

Proof. We have∥∥∥∆X̃h,n
n

∥∥∥
p
≤

∥∥∥∥∥
∫ (n+1)h

nh

bhs (Xs)ds

∥∥∥∥∥
p

+
√
h

∥∥∥∥∥
∫ (n+1)h

nh

σ(Xh
s ) dWs

∥∥∥∥∥
p

.

On the one hand∥∥∥∥∥
∫ (n+1)h

nh

bht (X
h
t )dt

∥∥∥∥∥
p

≤h1−
1
p

(∫ (n+1)h

nh

E|bht (Xt)|p dt

)1/p

≤h
(
E sup

t,h
|bht (Xt)|p

)1/p

=h ‖b(X)∗‖p ,
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and x 7→ ‖b(X(x))∗‖p ∈ G(Rd) by Theorem 6.1 and since b ∈ G1(Rd). On
the other hand,

√
h

∥∥∥∥∥
∫ (n+1)h

nh

σt(X
h
t ) dWt

∥∥∥∥∥
p

≤
√
p(p− 1)

2
h1−

1
p

∥∥σ(Xh)
∥∥
p

≤c1h ‖σ(X)∗‖p ,

where we have used Itô’s isometry and Jensen’s inequality.

Proposition 2.6. Let l ∈ N, k ∈ N0,

b : (0, 1)× [0, T ]× Rd → Rd, σ : [0, T ]× Rd → Rd×d ∈ G1(Rd) ∩ Lipl+1,

and let X be the unique solution to the stochastic differential equation

dXh
t = bht (X

h
t ) dt+

√
hσt(X

h
t ) dWt.

Suppose further we are given

f : I × (0, 1)× N× Rd → R, (i, h, k, x) 7→ f i,h
k (x) ∈ Gl+1(Rd),

and that there exists a function C ∈ G(Rd), such that

|E(∆χh,k
k )α − E(∆X̃h,k

k )α| ≤hl+1C,#α ≤ l∥∥∥∆χh,k
k

∥∥∥l+1

p
,
∥∥∥∆X̃h,k

k

∥∥∥l+1

p
≤hl+1C, p ∈ {2, 2l + 2},

for all h ∈ (0, 1) and k ∈ {0, . . . , bT/hc}. Then there exists a function
C ∈ G(Rd), such that

|Ef i,h
k (χh,k

k+1)− Ef i,h
k (X̃h,k

k+1)| ≤ hl+1C,

for all h ∈ (0, 1), i ∈ I and k ∈ {0, . . . , bT/hc}.

Proof. By Taylor’s theorem there exists θ∆χh,k
k
, θ∆X̃k,h

k
∈ (0, 1) for every h ∈

(0, 1) and k, such that

fk(χ
h,k
k+1)− fk(X̃

h,k
k+1) =fk(χ

h,k
k+1)− fk − (fk(X̃

h,k
k+1)− fk)

=
∑

0<#α≤l

1

α!
∂αfk · ((∆χh,k

k )α − (∆X̃k,h
k )α)

+
∑

#β=l+1

∑
D∈∆Yk,∆Zk

1

β!
∂βfk(·+ θDD)Dβ

14



Since f ∈ Gl+1(Rd) there exists a C ∈ G(Rd), such that

|E(∂βf(x+ θDhDh(x))Dh(x)β)| ≤ ‖∂βf‖Gκ
(1 + 2κ−1|x|κ + 2κ−1 ‖D(x)‖κ2)

· ‖D(x)‖l+1
2l+2

≤c(1 + |x|κ + C(x))hl+1C(x),

for #β = l + 1, D ∈ ∆χ,∆X̃ and some c > 0 and κ ∈ N. Therefore,

|Ef(χh,k
k+1(x))− Ef(X̃h,k

k+1(x))| ≤c
∑

0<#α≤l

‖∂αf‖Gκ
(1 + |x|κ)hl+1C

+ c
∑

#β=l+1

‖∂βf‖Gκ
(1 + |x|κ + C)hl+1C,

for some c > 0.

Proposition 2.7. Let l ∈ N and g ∈ Gl+1(Rd). Suppose X is given as in
Proposition 2.6 and for every sequence v : I × (0, 1) × Rd → R ∈ Gl+1(Rd)
there exists a function C ∈ G(Rd), such that

|Evi,h(χh,k
k+1)− Evi,h(X̃h,k

k+1)| ≤ hl+1C,

for all i ∈ I, h ∈ (0, 1) and k ∈ {0, . . . , bT/hc}. Further, let

g.P h
k,n(x) :=

∫
Rd

g(y)P h
k,n(x, dy) = Eg(X̃h,k

n (x)),

where P is the transition kernel of (n, X̃h
n)n and suppose

g.P : (k, n, h, x) 7→ g.P h
k,n(x) ∈ Gl+1(Rd).

Then there exists a function C ∈ G(Rd), such that

max
n∈{0,...,⌊T/h⌋}

|Eg(χh
n)− Eg(X̃h

n)| ≤ hlC

on Rd.

Proof. We have

g.P : (k, n, h, x) 7→ g.P h
k,n(x) ∈ Gl+1(Rd)
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by Proposition 2.3. Given n ∈ N, Eg(X̃n)− Eg(χn) equals
n−1∑
k=1

(Eg(X̃k−1
n χk−1)− Eg(X̃k

nχk)) + Eg(X̃n−1
n χn−1)− Eg(χn)

=
n−1∑
k=1

EE(g(X̃k
nX̃

k−1
k χk−1)|X̃k−1

k χk−1)− EE(g(X̃k
nχk)|χk)

+ Eg.Pn,n(X̃
n−1
n χn−1)− Eg.Pn,n(χn)

=
n∑

k=1

(Eg.Pk,n(X̃
k−1
k χk−1)− Eg.Pk,n(χk)),

regardless of initial value x ∈ Rd or discretization parameter h ∈ (0, 1).
There exists a function C ∈ G(Rd), such that

|Eg.P h
k,n(χ

h,k
k+1)− Eg.P h

k,n(X̃
h,k
k+1)| ≤ hl+1C,

for all h ∈ (0, 1) and k ∈ {0, . . . , bT/hc}. Hence,

|Eg(X̃h
n)− Eg(χh

n)| ≤
bT

h c∑
k=1

hl+1EC(χh
k−1) ≤ hlTC ′,

by Lemma 2.2, for some C ′ ∈ G(Rd), all h ∈ (0, 1) and n ∈ {0, . . . , bT/hc},
since

EC(χh
k−1) ≤‖C‖Gκ

(1 + E|χh
k−1|κ) ≤ ‖C‖Gκ

(
1 + sup

h∈(0,1)
‖χ∗‖κκ,⌊T/h⌋

)
≤c(1 + |χ0|κ),

for some c > 0, κ ∈ N, all h ∈ (0, 1) and k ∈ {0, . . . , bT/hc}.

3 Proof of the ODE approximation
We shall give a proof of Theorem 1.1. Fix g ∈ G∞(Rd) and define once more
yt(x) := g(X t

T (x)), where X is the solution to the ordinary modified equation
(1.3),

dXt = utH̄(Xt) dt.

We then have y ∈ G∞([0, T ] × Rd) by Proposition 2.3 and Remark 2.4 and
since we have H̄ ∈ G∞(Rd) by Assumption (A3). Further, y satisfies the
Feynman-Kac equation

∂tyt(x) +∇yt(x)TutH̄(x) = 0, yT (x) = g(x). (3.1)
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From now on let χh and X denote the solutions of (1.2) and (1.3), respec-
tively, with the same fixed initial condition χ0 ∈ Rd.

Lemma 3.1. Let ξ : H → R be the function such that for all h ∈ H

Eg(χh
T/h)− g(XT ) = h2

T
h
−1∑

k=0

Eφkh(χ
h
k) + h2ξ(h),

where φ is defined as in (1.7). Then ξ is bounded.

Proof. By Taylor’s theorem,

yt+h(x+ δ)− yt(x) =h∂tyt(x) +
d∑

j=1

∂jyt(x)δj +
h2

2
∂2t yt(x)

+ h
d∑

j=1

∂t,jyt(x)δj +
1

2

d∑
i,j

∂i,jyt(x)δiδj

+Rh(δ)

=h∂tyt(x) +∇yt(x)T δ +
h2

2
∂2t yt(x)

+ h∂t∇yt(x)T δ +
1

2
tr(∇2yt(x)δ

2⊗)

+Rh(δ),

where

Rh(δ) :=
3∑

k=0

∑
#β=3−k

1

β!k!
∂kt ∂βyt+θh(x+ θδ)hkδβ

for some θ ∈ (0, 1), all h ∈ (0, 1) and δ ∈ Rd. By choosing t = kh, δ = ∆χh
k

and applying expectation we get

Ey(k+1)h(χ
h
k+1)− Eykh(χh

k) = hAh
1 + h2(Ah

2 + Ah
3 + Ah

4) + ERh(∆χh
k),

where

Ah
1 := E[∂tykh(χh

k) + h−1∇ykh(χh
k)

T∆χh
k],

Ah
2 :=

1

2
u2khE tr[∇2ykh(χ

h
k)((H̄(χh

k) + (Hγ(0) − H̄)(χh
k))

2⊗)],

Ah
3 := ukhE[∂t∇ykh(χh

k)
T H̄(χh

k)],

Ah
4 :=

1

2
E[∂2t ykh(χh

k)].
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Using (3.1) we can simplify

Ah
1 =E[E(∂tykh(χh

k) +∇ykh(χh
k)

TukhH̄(χh
k)|χh

k)] = 0,

and further

Ah
2 =

1

2
u2khE tr[∇2ykh(χ

h
k)(H̄

2⊗ + Σ)(χh
k)].

Moreover, for k ∈ {0, . . . , 3} and #β = 3− k,

Ehk(∆χh
n)

β = hkh3−k(ukh)
3−kEH̄(χh

n)
β = O(h3),

since |ut| ≤ 1 and

E(|H̄(χh
n)|β)1/#β ≤ sup

h∈(0,1)

∥∥H̄(χh)∗
∥∥
#β,bT

h c

≤
∥∥H̄∥∥

G1

(
1 + sup

h∈(0,1)

∥∥(χh)∗
∥∥
#β,bT

h c

)
≤c(1 + |χ0|),

by Lemma 2.2. Since ∂kt ∂
2−k
α y ∈ G([0, T ] × Rd) for all k ∈ {0, 1, 2}, the

remainder satisfies ERh(∆χh
n) = O(h3). Therefore, there exists a function

C ∈ G(Rd) with

Eg(χh
T/h)− g(XT ) =EyT (χh

T/h)− Ey0(χ0)

=

T
h
−1∑

k=0

Ey(k+1)h(χ
h
k+1)− Eykh(χh

k)

=h2

T
h
−1∑

k=0

Eφkh(χ
h
k) +O(h2),

for all h ∈ H.

The bound on the function ξ in Lemma 3.1 only depends on the growth
of g and its derivatives as well as H̄ and Σ. We use this fact in the next step,
where we apply Lemma 3.1 to the family of functions (φnh)n≥0,h∈H.

For all n ≥ 1 and h ∈ H define ξn(h) as the real such that

Eφnh(χ
h
n)− φnh(X

h
nh) = h2

n−1∑
k=0

Eψnh,kh(χ
h
k) + h2ξn(h) (3.2)

18



with

ψs,t(x) :=
1

2
u2t tr(∇2zs,t(x)(H̄

2⊗ + Σ)(x)) + ut∂t∇zs,t(x)H̄(x)

+
1

2
∂2t zs,t(x),

zs,t :=φs(X
t
s).

Now choose a constant B ∈ [0,∞) such that for all n and h we have

|ξn(h)| ≤ B. (3.3)

We this estimate we can bound the differences of the form Eφnh(χ
h
n) −

φnh(Xnh).

Lemma 3.2. There exists a constant C > 0 such that
T
h
−1∑

n=0

|Eφnh(χ
h
n)− φnh(Xnh)| ≤ C

for all h ∈ H.

Proof. By (3.2) and (3.3)
T
h
−1∑

n=0

|Eφnh(χ
h
n)− φnh(Xnh)| ≤h2

T
h
−1∑

n=0

n−1∑
k=0

E|ψnh,kh(χ
h
k)|+Bh

≤Cmax
n,k

E|ψnh,kh(χ
h
k)|,

for some C > 0 and all h ∈ (0, 1).
Because ∂kt ∂2−k

α y ∈ G([0, T ]×Rd) for all k ∈ {0, 1, 2}, g ∈ G(Rd), u ∈ L∞

and H̄,Σ ∈ G(Rd) we have φ ∈ G([0, T ]× Rd). With Lemma 2.2,

max
n,k

E|ψnh,kh(χ
h
n)| ≤ ‖φ‖Gκ

(
1 + sup

h∈(0,1)

∥∥(χh)∗
∥∥κ
1

)
≤C(1 + |χ0|κ),

for some C > 0, κ ∈ N and all h ∈ (0, 1).

Proof of Theorem 1.1. Let g ∈ G∞(Rd). Then Lemma 3.1 implies

Eg(χh
T/h)− g(XT ) = h

⌊T/h⌋−1∑
n=0

hEφnh(χ
h
n) +O(h2),
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Using Lemma 3.2,
T
h
−1∑

n=0

hEφnh(χ
h
n) =

∫ T

0

φt(Xt) dt+ h

T
h
−1∑

n=0

Eφnh(χ
h
n)− φnh(Xnh)

+

T
h
−1∑

n=0

hφnh(Xnh)−
∫ T

0

φt(Xt) dt,

with

h

T
h
−1∑

n=0

|Eφnh(χ
h
n)− φnh(Xnh)| ≤hC,

T
h
−1∑

n=0

|hφnh(Xnh)−
∫ T

0

φt(Xt) dt| ≤hC ′.

Hence,

Eg(χh
T/h)− g(XT ) = h

∫ T

0

φt(Xt) dt+O(h2),

for all h ∈ H.

4 Proof of the first-order SDE approximation
The proof to Theorem 1.2 is somewhat analogous to the ODE case. The dif-
fusion coefficient makes the Feynman-Kac formula slightly more complicated,
but the proof works essentially the same way.

One notable difference however comes from the newly acquired depen-
dence of the solution X on h ∈ H. This carries over to y and by extension
to the function

φh
t (x) :=

1

2
u2t tr(∇2yht (x)H̄

2⊗(x)) + ut∂t∇yht (x)H̄(x) +
1

2
∂2t y

h
t (x).

Note the absence of the Σ term compared to the ODE case. By using argu-
ments as in Section 3, we arrive at an approximation of the form

Eg(χh
T/h)− Eg(Xh

T ) = h

∫ T

0

Eφh
t (X

h
t ) dt+O(h2). (4.1)

We then need to improve the estimate to

Eg(χh
T/h)− Eg(Xh

T ) = h

∫ T

0

φ0
t (X

0
t ) dt+O(h2).
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This requires an additional estimation of the difference φh
t (X

h
t ) − φ0

t (X
0
t ).

Let us be more specific now.
First, to deal with the dependence of the integral in (4.1) on h we extend

our definition of G. If we are given a family of functions

f : I × [0, T ]× Rd → R, (i, t, x) 7→ f i
t (x)

and write f ∈ G([0, T ] × Rd), then this implies the existence of a constant
C > 0 and κ ∈ N, such that

|f i
t (x)| ≤ C(1 + |x|κ), (4.2)

for all x ∈ Rd, t ∈ [0, T ] and i ∈ I. Usually, we have I = H or I = (0, 1).
Again, we define ‖g‖Gκ

as the infimum of all C’s in (4.2). The notation
f ∈ G∞([0, T ] × Rd) is defined analogously. If we write f ∈ G(Rd) (e.g.)
without introducing f explicitly as a family, then we mean f : Rd → R ∈ G
as introduced before.

Now let g ∈ G∞(Rd) and define, for all h ∈ [0, 1), t ∈ [0, T ] and x ∈ Rd,

yht (x) := Eg(Xh,t
T (x)),

where Xh,t(x) denotes the solution of (1.9) on [t, T ] with initial condition
Xh,t

t (x) = x. Then y ∈ G∞([0, T ]×Rd), as defined in (4.2) with I = H, and
it satisfies the Feynman-Kac equation

∂tyt(x) +∇yTt (x)utH̄(x) +
1

2
hu2t tr(∇2yt(x)Σ(x)) = 0, yT (x) = g(x).

(4.3)

Given a family (fh
t )h∈(0,1),t≥0 of continuous-time stochastic processes (or merely

functions) we define for every h ∈ (0, 1) the discrete-time process

f̃h
n := fh

nh, n ∈ N.

From now on let χh and Xh denote the solutions of (1.2) and (1.9), respec-
tively, with the same fixed initial condition χ0 ∈ Rd and h ∈ H. Then we
have the following.

Lemma 4.1. We have

Eg(χh
T/h)− Eg(Xh

T ) = h2
n−1∑
k=0

EΦh
k(χ

h
k) +O(h2),

for all h ∈ H, where Φh := φ̃h.
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Proof. Follow the proof of Lemma 3.1. Setting Y := ỹ, the Taylor expansion
of y gives us

EY h
k+1(χ

h
k+1)− EY h

k (χ
h
k) = hAh

1 + h2(Ah
2 + Ah

3 + Ah
4) + ERh(∆χh

k),

as before, except with

Ah
1 :=E(∂tY h

k (χ
h
k) + h−1∇Y h

k (χ
h
k)

T∆χh
k +

1

2
hu2kh tr(∇2Y h

k (χ
h
k)Σ(χ

h
k)))

=0

by (4.3) and to compensate for the additional term

Ah
2 :=

1

2
u2khE tr(∇2Y h

k (χ
h
k)H̄

2⊗(χh
k)).

Again, we could have stated Lemma 4.1 with g depending on h and t, so we
may show the following.

Lemma 4.2. With the conditions as in Lemma 4.1 we have
T
h
−1∑

n=0

|EΦh
n(χ

h
n)− EΦh

n(X̃
h
n)| ≤ O(1)

for all H 3 h ↓ 0.

Our initial approximation follows just as in the ODE case, so we shall omit
the proof of the following lemma.

Lemma 4.3. For all g ∈ G∞(Rd) and h ∈ H,

Eg(χh
T/h)− Eg(Xh

T ) = h

∫ T

0

Eφh
t (X

h
t ) dt+O(h2), (4.4)

where

φh
t (x) =

1

2
u2t tr(∇2yht (x)H̄

2⊗(x)) + ut∂t∇yht (x)H̄(x) +
1

2
∂2t y

h
t (x).

Next we shall improve Inequality (4.4) in order to arrive at the inequality
in Theorem 1.2. An additional step compared to the ODE approximation is
then deriving an estimate of |Eφh

t (X
h
t )−φh

0(X
0
t )| to get rid of the dependence

of the integral
∫ T

0
|Eφh

t (X
h
t )| dt on h ∈ (0, 1). First, consider estimating the

difference yh − y0 and its derivatives up to order 2.
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Lemma 4.4. Let yht (x) = Eg(Xh,t
T (x)). Define the H-indexed family

dht (x) :=
yht (x)− y0t (x)

h
.

Then d ∈ G2([0, T ]× Rd).

Proof. For every s ∈ [0, T ] and h ∈ H, such that s
h
∈ N0 we have

|yhs − y0s | ≤
T−s
h

−1∑
n=0

|Ey0s+(n+1)h(X
h,s
s+(n+1)h)− Ey0s+nh(X

h,s
s+nh)|,

where this is meant as an inequality of functions on Rd, the set of possible
initial values. To shorten notation, throughout this proof we omit the initial
value in Xh,s(x).

Set Ah
t := y0t+h(X

h,s
t+h) − y0t (X

h,s
t ). Since y0 ∈ G∞([0, T ] × Rd), applying

Taylor’s theorem to it implies

Ah
t =∂ty

0
t (X

h,s
t )h+∇y0t (X

h,s
t )∆Xh,s

t +
1

2
tr(∇2y0t (X

h,s
t )(∆Xh,s

t )2⊗)

+ h2Rh
t (∆X

h,s
t )

with some remainder term R : H × [0, T ] × Rd → R ∈ G([0, T ] × Rd) and
∆Xh,s

t := Xh,s
t+h −Xh,s

t . By the Feynman-Kac formula (4.3),

EAh
t =E[∇y0t (X

h,s
t )(∆Xh,s

t − hutH̄(Xh,s
t ))]

+
1

2
trE[∇2y0t (X

h,s
t )((∆Xh,s

t )2⊗ − h2u2tΣ(X
h,s
t ))] + h2ERh

t (∆X
h,s
t ).

With an Itô-Taylor expansion (e.g. by using Lemma 5.1 below) we see that
there exists a C ∈ G(Rd) with

|E(∆Xh,s
t − hutH̄(Xh,s

t ))| ≤Ch2,
|E((∆Xh,s

t )2⊗ − h2u2tΣ(X
h,s
t ))| ≤Ch2,

for all h ∈ (0, 1) and s, t ∈ [0, T ] with s ≤ t. Since ∇y0 and ∇2y0 are
bounded, uniformly in space and time, we conclude

|yhs − y0s | ≤
T

h
Ch2 ≤ TCh,

for some C ∈ G(Rd), all h ∈ H and s ∈ [0, T ] such that s
h
∈ N0. For general

t ∈ [0, T ] with nh ≤ t < (n+ 1)h a Taylor approximation yields

|yht − yhnh| ≤ (t− nh)|∂tyht |+ h2R
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for some remainder R ∈ G([0, T ] × Rd). Since ∂ty ∈ G([0, T ] × Rd) and
(t− nh) ≤ h we conclude the existence of a C ∈ G(Rd) with

|yht − yhnh| ≤ Ch,

for all h ∈ H. A similar argument applies to the difference y0t − y0nh. Hence,

|yht − y0t | ≤ |yht − yhnh|+ |yhnh − y0nh|+ |y0nh − y0t | ≤ Ch,

for some C ∈ G(Rd), all h ∈ H and t ∈ [0, T ].
Now, consider partial derivatives of y. For j ∈ {1, . . . , d} define

wh
t (x, y) = E[∇g(Xh,t

T (x))T∂jX
h,t
T (x, y)],

where the derivative Yr := ∂jX
h,t
r (x, y) satisfies the SDE

dYr = ur∇H̄(Xh,t
r (x))Yr dr + ur

√
h∇
√
Σ(Xh,t

r (x))Yr dWr,

with initial condition Yt = y and

(∇
√

Σ(x)y)i,j =
d∑

k=1

∂i

√
Σ(x)j,kyk,

for all x, y ∈ Rd and i, j ∈ {1, . . . , d}. Note that wh(x, 1) = ∂jy
h(x). The

Feynman-Kac equation applies to the system (Xh,t
r , ∂jX

h,t
r ) giving us

0 =∂tw
h
t (x, y) + ut∇xw

h
t (x, y)H̄(x) +∇yw

h
t (x, y)y∂jH̄(x)

+
1

2
hu2t tr

(
∇2

x,yw
h
t (x, y)S(x, y)

)
,

with

S(x, y) :=

(
Σ(x)

√
Σ(x)(∇

√
Σ(x)y)T

∇
√
Σ(x)y

√
Σ(x)

T
(∇
√

Σ(x)y)(∇
√
Σ(x)y)T

)
.

Similarly to the above argument, using Taylor’s theorem we can show

x 7→1

h
|Ew0

t+(n+1)h(X
h
t+(n+1)h(x), ∂jX

h
t+(n+1)h(x, 1)) (4.5)

− Ew0
t+nh(X

h
t+nh(x), ∂jX

h
t+nh(x, 1))| ∈ G(Rd) (4.6)

and conclude, using a telescoping sum,

1

h
|∂jyht − ∂jy

0
t | ∈ G(Rd).
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By differentiating the process X once more, an analogous argument works
for any second space-derivative to prove

1

h
|∂i,jyht − ∂i,jy

0
t | ∈ G(Rd),

with i, j ∈ {1, . . . , d}. Then use the Feynman-Kac equation for y to conclude
1

h
|∂tyht − ∂ty

0
t | ∈ G(Rd).

We can then do essentially the same for ∂j∂ty with j ∈ {1, . . . , d} and ∂2t y.

Consider the linear operator

F : G2([0, T ]× Rd) → G([0, T ]× Rd)

given by

Ftf(x) :=
1

2
u2t tr(∇2ft(x)H̄

2⊗(x)) + ut∂t∇ft(x)H̄(x) +
1

2
∂2t ft(x).

We have already seen it in action. Notice for example that φh
t (x) = Fty

h(x)
for all t ∈ [0, T ] and x ∈ Rd. In the next lemma we consider spaces of the
form

Gl
κ([0, T ]×Rd) = {f ∈ C l([0, T ]×Rd) :

∥∥∂kt ∂αf∥∥Gκ
<∞, k ≤ l, |α| ≤ l− k}.

This is a Banach space when equipped with the norm

‖f‖Gl
κ
:=

l∑
k=0

∑
|α|≤l−k

∥∥∂kt ∂αf∥∥Gκ
.

This works regardless of whether we consider functions f : [0, T ] × Rd → R
or families of function, such as f : H × [0, T ] × Rd → R with polynomial
growth uniformly in H and [0, T ]. Of course, by construction

Gl([0, T ]× Rd) =
⋃
κ∈N0

Gl
κ([0, T ]× Rd).

Lemma 4.5. Let κ ∈ N0. The function

F : G2
κ([0, T ]× Rd) → Gκ+2([0, T ]× Rd)

with

Ftf(x) =
1

2
u2t tr[∇2ft(x)H̄

2⊗(x)] + ut∂t∇ft(x)T H̄(x) +
1

2
∂2t ft(x).

is a continuous linear operator. The statement applies for spaces of families
of functions as well (cf. (4.2)).
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Proof. The linearity of F is trivial. Now, given f ∈ G2
κ([0, T ]×Rd) we have

‖Ff‖Gκ+2
≤9

2
‖u‖2∞

d∑
i,j

‖∂i,jf‖Gκ

∥∥H̄ i

∥∥
G1

∥∥H̄j

∥∥
G1

+ 3 ‖u‖∞
d∑

i=1

‖∂t∂if‖Gκ

∥∥H̄ i

∥∥
G1

+
1

2

∥∥∂2t f∥∥Gκ

From this we can see that ‖Ff‖Gκ+2 <∞, so F is well-defined. Furthermore,
the bound on ‖Ff‖Gκ+2

is a scalar multiple of the norm on G2
κ([0, T ] × Rd)

proving the continuity.

Corollary 4.6. There exists a function C ∈ G(Rd), such that

|φh
t (x)− φ0

t (x)| ≤ hC(x),

for all t ∈ [0, T ], x ∈ Rd and h ∈ H. Consequently,

|Eφh
t (X

h
t )− Eφ0

t (X
h
t )| ∈ O(h) (4.7)

for all t ∈ [0, T ] and h ∈ H.

Proof. With d defined as in Lemma 4.4 we have

φh − φ0 = hFd.

Now apply Lemma 4.4 and the fact that F maps into G([0, T ]× Rd). With
this Inequality (4.7) follows from Theorem 6.1.

Lemma 4.7. We have

|Eφ0
t (X

h
t )− φ0

t (X
0
t )| ∈ O(h) (4.8)

for all t ∈ [0, T ] and h ∈ H.

Proof. If we replace χh
k by X̃h

k in Lemma 3.1 and its extension in (3.2),
then the proof proceeds the same way. We use the Itô-Taylor approxima-
tion Lemma 5.1 to calculate E(∆X̃h

n|X̃h
n) and E((∆X̃h

n)
2⊗|X̃h

n), and estimate∥∥∥X̃h
∥∥∥
#β

using Theorem 6.1.
This lets us derive the expression

Eφ0
nh(X̃

h
n)− φ0

nh(X
0
nh) = h2

n−1∑
k=0

EΨh
n,k(X̃

h
k) +O(h2),

26



where
Ψh

n,k(x) := Fkh(Eφ0
nh(X

h,·
nh))(x).

and we consider X as a random field with variable initial value x ∈ Rd.
Then the H × [0, T ]-indexed family vh,rs (x) := Eφ0

r(X
h,s
r (x)) satisfies v ∈

G∞([0, T ]× Rd) by an extension of Remark 2.4. So Lemma 4.5 implies

|Ψh
n,k(x)| = |(Fkhv

h,nh)(x)| ≤ C(1 + |x|κ),

for some C > 0 and κ ∈ N. Now consider an arbitrary t ∈ [0, T ] with
nh ≤ t < (n + 1)h. Then Taylor’s theorem, the Cauchy-Schwarz inequality
and the fact that (t− nh) ≤ h imply

|Eφ0
t (X

h
t )− Eφ0

nh(X
h
nh)| ≤h|E∂tφ0

nh(X
h
nh)|+

∥∥∇φ0
nh(X

h
nh)
∥∥
2

∥∥∆Xh
nh

∥∥
2

+O(h2),

with some remainder R ∈ G([0, T ]× Rd). So,

|Eφ0
t (X

h
t )− Eφ0

nh(X
h
nh)| ∈ O(h)

for all h ∈ H by Lemma 2.5, Theorem 6.1 and since φ0 ∈ G([0, T ] × Rd).
Similarly

|φ0
t (X

0
t )− φ0

nh(X
0
nh)| ∈ O(h),

for all h ∈ H. Hence,

|Eφ0
t (X

h
t )− φ0

t (X
0
t )| ≤|Eφ0

t (X
h
t )− Eφ0

nh(X̃
h
n)|

+ |Eφ0
nh(X̃

h
n)− φ0

nh(X
0
nh)|

+ |φ0
t (X

0
t )− φ0

nh(X
0
nh)|

∈O(h)

for all t ∈ [0, T ] and h ∈ H.

Proof of Theorem 1.2. Combining inequalities (4.7) and (4.8) gives us

|Eφh
t (X

h
t )− φ0

t (X
0
t )| ≤|Eφh

t (X
h
t )− Eφ0

t (X
h
t )|+ |Eφ0

t (X
h
t )− φ0

t (X
0
t )|

∈O(h)

for all h ∈ H. We conclude with the help of (4.4),

Eg(χh
T/h)− Eg(Xh

T ) = h

∫ T

0

φ0
t (X

0
t ) dt+O(h2).
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5 Proof of the second-order SDE approxima-
tion

In this section the solution to an SDE X depends on both the time t ∈ [0, T ]
as well as the initial value x ∈ Rd. For example given functions f1, f2 : Rd →
R and t ∈ [0, T ] the equation

f1 = f2(Xt)

means
f1(x) = f2(Xt(x)),

for all x ∈ Rd, and similarly for the SGD iterations χh.

Lemma 5.1. Let b0, b1, σ ∈ G1([0,∞) × Rd) ∩ G∞([0,∞) × Rd), such that
b0, b1 are Rd-valued and σ is Rd×d-valued. Let h ∈ (0, 1), n ∈ N and consider
the stochastic differential equation

dXt = (b0t + hb1t )(X
h
t ) dt+

√
hσt(X

h
t ) dWt, Xnh = x,

with t ∈ [nh, (n+ 1)h]. Then there exists a function C ∈ G(Rd), such that

E∆X̃h,n
n =hb0nh +

1

2
h2(2b1nh + (∇b0b0)nh + ḃ0nh) + h3C

E(∆X̃h,n
n )2⊗ =h2

(
(b0)2⊗ + σTσ

)
nh

+ h3C,

for all h ∈ (0, 1).

Proof. For any multi-index α define

mα(z) := (z − x)α =
d∏

j=1

(zj − xj)
α(j).

Then for any other multi-index β,

∂βmα(z) =
d∏

j=1

β(j)∏
k=1

(α(j)− k + 1)(z − x)α−β, z ∈ Rd,

where it is understood that yα−β = 0 if α(j) < β(j) for any j ∈ {1, . . . , d}.
Further, (∆X̃h,n

n )α = mα(X
nh
(n+1)h). Write

AX = ∂t +AX,0 + hAX,1
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with
AX,0g := (b0 + hb1)T∇g,AX,1g =

1

2
tr(σTσ∇2g).

Denote by Ai
X the i-th fold iteration of AX and observe that AXg already

depends on time even if g does not. An Itô-Taylor expansion implies (cf.
Theorem 6.3)

E(∆X̃h,n
n )α =

2∑
i=1

hi

i!
Ai

Xmα(nh, x) +

∫ (k+1)h

nh

∫ t

nh

∫ s

nh

EA3
Xmα(u,Xu) dudsdt.

We have

AX(mj)(nh, x) =AX,0(mj)

=b0nh(x)j + hb1nh(x)j

A2
X(mj)(nh, x) =(A2

X,0 +AX,1AX,0 + ∂tAX,0)(mj)(nh, x)

=(∇b0b0 + h(∇b0b1 +∇b1b0) + h2∇b1b1)nh(x)j

+
1

2
h tr(∇2b0jσ

Tσ)nh(x) +
1

2
h2 tr(∇2b1jσ

Tσ)(x)

+ ḃ0nh(x)j + hḃ1nh(x)j,

where ∇2gj is simply the Hessian of gj : Rd → R. Therefore,
2∑

i=0

1

i!
hiAi

Xmj(nh, x) =hb
0
nh(x) + h2

(
b1nh +

1

2
(∇b0b0)nh +

1

2
ḃ0nh

)
(x)j

+ h3C(x),

for some C ∈ G(Rd). By Lemma 6.4, A3
Xmj ∈ G([0, T ]×Rd) and by Theorem

6.1 we have∥∥(A3
Xmj(s,Xs))

∥∥
1
≤ C(1 + ‖|Xs|κ‖1) ≤ C(1 + |x|κ),

for some constant C > 0. Hence,∣∣∣∣∣
∫ (k+1)h

nh

∫ t

nh

∫ s

nh

EA3
Xmj(u,Xu) dudsdt

∣∣∣∣∣ ≤
∫ (k+1)h

nh

∫ t

nh

∫ s

nh

C(x) du ds dt

=h3C ′(x),

with C,C ′ ∈ G(Rd), and so

E∆Xh
nh =hb0nh +

1

2
h2
(
2b1nh + (∇b0b0)nh + ḃ0nh

)
+ h3C(x),
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for some C ∈ G(Rd).
Now, let us consider a multi-index α = {j1, j2}. Writing fnh(x)α =

[fnh(x)]j1,j2 and (fα)nh(x) = (fj1,j2)nh(x), we have

AX(mα)(nh, x) =AX,1(nh,mα) =
1

2
h(σTσ)nh(x)α

A2
X(mα)(nh, x) =(A2

X,0 +AX,0AX,1 +A2
X,1 + ∂tAX,1)(mα)(nh, x)

=(b0(b0)T + h(b0(b1)T + b1(b0)T ) + h2b1(b1)T )nh(x)α

+
1

2

(
h

d∑
l=1

b0l ∂l(σ
Tσ)α + h2

d∑
l=1

b1l ∂l(σ
Tσ)α

)
nh

(x)

+
1

4
h2 tr(∇2(σTσ)ασ

Tσ)nh(x)

+
1

2
h∂t(σ

Tσ)nh(x)α,

where ∇2(σTσ)α is the Hessian of (σTσ)j1,j2 , and so again using Lemma 6.4,

E(∆Xh
nh)

2⊗ = h2
(
(b0)2⊗ + σTσ

)
nh

+ h3C,

for some C ∈ G(Rd).

Remark 5.2. With Lemma 5.1 and 2.1 we may compare SGD with the
solution of the family of SDE’s

dXh
t = (b0t + hb1t )(X

h
t ) dt+

√
hσt(X

h
t ) dWt, Xh

nh = x,

with the choice ηhk = hunh.

E∆χh
k − E∆X̃h,n

n =h(unhH̄ − b0nh) +
1

2
h2(2b1nh + (∇b0b0)nh + ḃ0nh) + h3C,

E(∆χh
k)

2⊗ − E(∆X̃h,n
n )2⊗ =h2(u2tΣ− σTσ + u2t H̄

2⊗ − (b0)2⊗)nh + h3C.

This gives us an idea of how to choose the coefficients b0, b1 and σ, which is

b0t := utH̄, b1t := −1

2

(
u2t∇H̄H̄ + u̇tH̄

)
, σt := ut

√
Σ.

Note that the conditions

H̄,
√
Σ ∈ G1(Rd), H̄,Σ ∈ G∞(Rd), u ∈ C∞([0, 1]× [0, T ])

are enough to satisfy the assumptions of Lemma 5.1 for all h ∈ (0, 1) and
n ∈ {0, . . . , bT/hc}. ♦
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We are finally ready to prove Theorem 1.3.

Proof of the Main Theorem 1.3. By Rem. 5.2

|E(∆χh,n
n )α − E(∆X̃h,n

n )α| ≤ h3C,

for #α ≤ 2 and by Lemma 2.2 and 2.5∥∥∆χh,n
n

∥∥3
p
∨
∥∥∆Xh,n

n

∥∥3
p
≤ h3C

for all n ∈ N, h ∈ (0, 1) and some C ∈ G(Rd). Therefore, given any g ∈
G∞(Rd), by Proposition 2.6 with I = {(i+ 1, n) ∈ N2 : i < n},∣∣∣Eg.P h

k+1,n(χ
h,k
k+1)− Eg.P h

k+1,n(X
h,kh
(k+1)h)

∣∣∣ ≤ h3C

for some C ∈ G(Rd), where P h are transition kernels of (Xh
nh)n∈N0 . Then, by

Proposition 2.7 together with Lemma 2.2 and Proposition 2.3,

max
n∈{0,...,⌊T/h⌋}

|Eg(Xh
nh)− Eg(χh

n)| ≤h2C

for some C ∈ G(Rd) and all h ∈ (0, 1).

Remark 5.3. We can improve Theorem 1.3 to include random initial values.
Let ξ ∈ L2 be independent of γ and the filtration F . Then,

max
n∈{0,...,⌊T/h⌋}

|Eg(χh
n(ξ))− Eg(Xh

nh(ξ))|

= max
n∈{0,...,⌊T/h⌋}

|E(Eg(χh
n(x))− Eg(Xh

nh(x))|ξ = x)|

≤E
(

max
n∈{0,...,⌊T/h⌋}

|Eg(χh
n(x))− Eg(Xh

nh(x))| |ξ = x

)
≤h2C(ξ),

for all x ∈ Rd and h ∈ (0, 1) and some C ∈ G(Rd). ♦

6 Appendix
Theorem 6.1. Let b, σ ∈ G1([0, T ] × Rd) ∩ Lip, such that b is Rd-valued
and σ is Rd×d-valued. Then, for every p ≥ 2, T > 0 and random field
φ : Ω × [0, T ] × Rd → Rd with ‖φ∗‖p,T < ∞, the stochastic differential
equation

dXt = bt(Xt) dt+ σt(Xt) dWt, X0 = φ
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admits a unique5 solution X on [0, T ], such that the family of solutions
X = (Xt)t≥0 satisfies ‖X∗‖p,T <∞ and

‖X∗‖p,T ≤ (1 + ‖φ∗‖p,T ).

The same bound holds if we consider I-indexed families b, σ, φ and X for
some index set I.

Proof. This essentially a standard result, cf. [7] Theorem 3.1 and 3.2 for
example. The extension to an index set I and from an initial value x ∈ Rd

to a process φ is discussed in [9] Theorem 18 and 19.

A (unordered) multi-index α ⊆ {1, . . . , d} is a multi-subset of {1, . . . , d},
i.e. a function α : {1, . . . , d} → N0. The size #α of α is given by

#α :=
d∑

j=1

α(j).

Every subset A ⊆ {1, . . . , d} becomes a multi-set by identifying it with its
indicator function. Given multi-indices α and β we write α ≤ β if α(j) ≤ β(j)
for all j ∈ {1, . . . , d} and in that case the multi-index β − α is well defined
by component-wise. Further, write j ∈ α if {j} ≤ α and set α− j := α−{j}
in that case.

If a function f : Rd → R is l-times continuously differentiable, then by
Schwarz’s theorem the partial derivative with respect to a multi-index α with
#α ≤ l is well-defined recursively by

∂αf = ∂j∂α−jf, ∂∅f = f.

where j is any j ∈ {1, . . . , d} with j ∈ α. Given x ∈ Rd and multi-index α
we define

xα :=
d∏

j=1

x
α(j)
j .

Theorem 6.2. Let l ∈ N, p ≥ 1 and b, σ ∈ G1([0, T ]× Rd) ∩ Lipl, such that
b is Rd-valued and σ is Rd×d-valued. Let x ∈ Rd, s ∈ [0, T ] and X be the
unique solution to the family of stochastic differential equations

dXt = bt(Xt) dt+ σt(Xt) dWt, Xs = x.

5Of course, we mean unique up to indistinguishability.
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Then X is l-times continuously differentiable w.r.t. x at any (t, x) ∈ [s, T ]×
Rd, a.s. and for every multi-index α with 0 < #α ≤ l, ∂αX satisfies the
stochastic differential equation

∂αXt = ψα +

∫ t

s

∇bu(Xu)∂αXu du+

∫ t

s

∇σu(Xu)∂αXu dWu,

where ‖ψ∗
α‖p ∈ G(Rd) for all p ≥ 2. Moreover,

E(∂αXt) = ∂αE(Xt),

for all t ≥ 0. Again, the results extend readily to I-indexed coefficients and
processes for some index set I.

Proof. For the proof cf. [7] Theorem 3.4. More specifically, for every l ∈ N,
assuming the result holds for all l′ < l define

Y := (X, ∂1X, . . . ∂dX, ∂1,1X, . . . , ∂1,dX, ∂2,1X, . . . , ∂d,...,dX)T ,

where the last partial derivative is of the order l − 1. Then Y satisfies the
stochastic differential equation

Y =


x
e1
...
0

+


0
ψ1
...

ψd,...,d

+

∫ t

s


bu(Xu)

∇bu(Xu)∂1Xu
...

∇l−1bu(Xu)∂d,...,dXu

 du

+

∫ t

s


σu(Xu)

∇σu(Xu)∂1Xu
...

∇l−1σu(Xu)∂d,...,dXu

 dWu,

where the processes ψ1, . . . , ψd,...,d consists of additional integrals
∫ t

s
du and∫ t

s
dWu of the remaining terms induced by repeated application of the chain

rule. The terms within
∫ t

s
du and

∫ t

s
dWu respectively are seen to be func-

tions of u and the state Y , satisfying the conditions of [7] Theorem 3.4. By
applying it again to the SDE governing Y the result follows via induction on
l.

Given a set A the Kleene closure is the set of all A-tuples of arbitrary
length, i.e.

A∗ :=
⋃
n≥0

An,
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where A0 = {()}. We let |(a1, . . . , an)| = n and |()| = 0 be the length of such
a tuple.

We care about the set of (ordered) multi-indices {0, . . . , d}∗, where Rd

is the state space of W . As the same implies now (1, 2) 6= (2, 1) , unlike
the (unordered) multi-indices considered before. Given a multi-index α ∈
{0, . . . , d}∗ of length l = |α| > 0 we define the left- and right deletions

α− = (α1, . . . , αl−1),
−α = (α2, . . . , αl) ∈ {0, . . . , d}l−1.

Let H() be the set of all continuous stochastic processes and define

H(0) = {X ∈ H() :

∫ t

0

|Xs| ds <∞, a.s., t ≥ 0},

H(1) = {X ∈ H() :

∫ t

0

|Xs|2 ds <∞, a.s., t ≥ 0}.

Also for convenience set H(j) := H(1) for all j ∈ {1, . . . , d}.
We letW 0

t = t, t ≥ 0. Given a progressively measurable stochastic process
X : Ω× [0,∞) → Rd and α ∈ {0, . . . d}∗ with l = |α| we define the multiple
Itô integral ∫ t

s

X dWα =

{
X, |α| = 0,∫ t

s

∫ u

s
X dWα−

dWαl , |α| > 0,

as long as X ∈ Hα, where the latter is the case exactly when∫ ·

s

X dWα− =

(∫ t

s

X dWα−
)

t≥0

∈ H(αl).

Further, given f ∈ C1,2([0,∞)× Rd) define

AXf := L0f :=
∂f

∂t
+∇fT b+

1

2
tr(∇2fσσT ),

Ljf :=σT
j,·∇f =

d∑
k=1

σk,j∂xk
f, j ∈ {1, . . . , d}.

For any α ∈ {0, . . . , d}∗ set

α(0) := #{j : αj = 0}.

Given f ∈ Cα(0),2(|α|−α(0))([0,∞)×Rd) we define the Itô coefficient function

Lαf :=

{
f, |α| = 0,

Lα1(L−αf), |α| > 0.
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Theorem 6.3. Let b, σ ∈ G1([0, T ]×Rd)∩Lip, such that b is Rd-valued and
σ is Rd×d-valued, 0 ≤ s ≤ t ≤ T, x ∈ Rd and let X be the unique solution to
the stochastic differential equation

dXt = bt(Xt) dt+ σt(Xt) dWt, X0 = x.

on [s, T ]. Then given f ∈ Cα(0),2(|α|−α(0))([0,∞)× Rd) we have

f(T,XT ) =
∑
|α|≤l

∫ T

s

Lαf(s,Xs) dW
α +

∑
|β|=l+1

∫ T

s

Lαf(·, X·) dW
α.

Further, applying expectation yields

Ef(T,XT ) =
l∑

i=0

(T − s)i

i!
Ai

Xf(s,Xs)

+

∫ T

s

∫ u1

s

· · ·
∫ ul

s

EAl+1
X f(ul+1, Xul+1

) dul+1 . . . du1.

Proof. See [6] Theorem 5.5.1 (p. 182). All the iterated integrals are defined
since Lαf(·, X·) ∈ Hα for all α with |α| ≤ l. As the hierarchical set choose
A := {α : |α| ≤ l}. For the second statement note that∫ T

s

∫ u1

s

· · ·
∫ ui−1

s

1 dui . . . du1 =
1

i!
(T − s)i,

and that any integral
∫ T

s
dWα with α(0) < |α| has expectation zero.

Lemma 6.4. Consider the stochastic differential equation

dXt = bt(Xt) dt+ σt(Xt) dWt,

where

b : [0, T ]× Rd → Rd, σ : [0, T ]× Rd → Rd×d ∈ G1([0, T ]× Rd) ∩ Lip

and additionally

b, σ ∈ Gl([0, T ]× Rd) ∩ C l′,l([0, T ]× Rd).

Let f : [0, T ]× Rd → R ∈ Gl([0, T ]× Rd) ∩ C l′,l([0, T ]× Rd). Then,

Ai
Xf ∈ Gl−2i ∩ C l′−i,l−2i([0, T ]× Rd),

for all i ∈ N with i ≤ l
2
∧ l′, where AX is the infinitesimal generator of X.
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Proof. Suppose the statement holds for all i′ < i. Then Ai
Xf = AXg for

some g ∈ C l′−(i−1),l−2(i−1)([0, T ]× Rd) with g ∈ Gl−2(i−1)(Rd). Then,

AX,0g =
d∑

j=1

bj∂jg ∈ Gl−2i+1(Rd),

AX,1g =
d∑
j,k

(σTσ)j,k∂j,kg ∈ Gl−2i(Rd),

and ∂tg ∈ C l′−i,l−2i+2([0, T ]×Rd). Combining all three statements yields the
result.
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