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Abstract

We consider the framework of penalized estimation where the penalty term is given by a real-
valued polyhedral gauge, which encompasses methods such as LASSO (and many variants thereof
such as the generalized LASSO), SLOPE, OSCAR, PACS and others. Each of these estimators can
uncover a different structure or “pattern” of the unknown parameter vector. We define a general
notion of patterns based on subdifferentials and formalize an approach to measure their complexity.
For pattern recovery, we provide a minimal condition for a particular pattern to be detected by the
procedure with positive probability, the so-called accessibility condition. Using our approach, we
also introduce the stronger noiseless recovery condition. For the LASSO, it is well known that the
irrepresentability condition is necessary for pattern recovery with probability larger than 1/2 and
we show that the noiseless recovery plays exactly the same role, thereby extending and unifying the
irrepresentability condition of the LASSO to a broad class of penalized estimators. We show that
the noiseless recovery condition can be relaxed when turning to thresholded penalized estimators,
extending the idea of the thresholded LASSO: we prove that the accessibility condition is already
sufficient (and necessary) for sure pattern recovery by thresholded penalized estimation provided
that the signal of the pattern is large enough. Throughout the article, we demonstrate how our
findings can be interpreted through a geometrical lens.

Keywords: penalized estimation, regularization, gauge, pattern recovery, polytope, geometry, LASSO,
generalized LASSO, SLOPE, irrepresentability condition, uniqueness.

1 Introduction

Consider the linear regression model
Y = Xβ + ε,

where X ∈ Rn×p is a design matrix, ε ∈ Rn represents random noise having a symmetric distribution
with a positive density on Rn and β ∈ Rp is the vector of unknown regression coefficients. Penalized
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estimation of β has been studied extensively in the literature, of particular interest the case where the
penalization is polyhedral so that the estimator may detect particular features of β. Depending on the
penalization term, different features can be recovered by the procedure. The most prominent example
is of course the LASSO (Tibshirani, 1996) with its ability to perform model selection, i.e., potentially
uncovering zero components of β. In addition to this sparsity property, the fused LASSO (Tibshirani
et al., 2005) may set adjacent components to be equal. Using the supremum norm in the penalty term
promotes clustering of components that are maximal in absolute value (Jégou et al., 2012). SLOPE
(Bogdan et al., 2015) as well as OSCAR (Bondell & Reich, 2008) display further clustering phenomena
where certain components may be equal in absolute value, to name just a few. When looking closer at
these phenomena under a geometric lens, Schneider & Tardivel (2022) show that for the LASSO, the
naturally arising pattern structure not only carries information about zero components, but also about
the signs of the non-zero components. This natural pattern structure of the LASSO has appeared many
times in the literature, such as in the so-called sign-consistency of the LASSO (see e.g. Zhao & Yu,
2006; Tardivel & Bogdan, 2022) and also the conditioning event in the selective inference approach of
Lee et al. (2016). For SLOPE, the natural pattern structure describes not only signs (zero components
as well as the signs of non-zero components) and clustering (components may be equal in absolute
value, a well-known phenomenon for this estimator), but also conveys information about the ordering
of the coefficients, see Schneider & Tardivel (2022) for details.

In this article, we provide a general approach to characterize the pattern structure naturally arising
for a particular method. We do so by introducing the notion of patterns inherent to a method as
equivalence classes of elements in Rp exhibiting the same subdifferential with respect to the penalizing
term. We assume that the penalty term is given by a polyhedral gauge, a concept slightly more general
than a polyhedral norm which allows to also treat methods such as the generalized LASSO (Ali &
Tibshirani, 2019). We show that the pattern equivalence classes coincide with the normal cones of the
polytope B∗, where B∗ is the subdifferential of the penalizing gauge at zero, and that each equivalence
class can be identified with a face of B∗. We also introduce the concept of complexity of a pattern,
defined to be the dimension of the linear span of the corresponding equivalence class, and prove that
this complexity measure coincides with the codimension of the associated face of B∗.

Given this general notion of patterns, we turn to the question of when an estimation procedure
may recover a specific pattern. A minimal condition is the so-called accessibility condition of a pattern
of β which gives equivalent criteria for the existence of point y ∈ Rn such that the resulting estimator
exhibits the pattern under consideration. We express this criterion both in an analytic manner and
through a geometric criterion involving how the row span of X intersects the polytope B∗. This
extends the geometric condition given for LASSO and SLOPE in Schneider & Tardivel (2022) to the
general framework of gauge-penalized estimation. Note that a different approach for an accessibility
criterion for the LASSO under a uniqueness assumption was also considered in Sepehri & Harris (2017).
Under uniqueness, we prove that this minimal condition already ensures pattern detection with positive
probability, provided that the response vector follows a continuous distribution on Rn.

A stronger condition is given by the noiseless recovery condition, where the estimator determined
by the noiseless signal y = Xβ is required to possess the same pattern as β. This condition can be
proven to be equivalent to the irrepresentability condition in case of the LASSO (see e.g. Bühlmann
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& Van de Geer, 2011) which is a necessary condition for pattern recovery with probability of at least
1/2 (Wainwright, 2009). In fact, the noiseless recovery condition is shown to play exactly the same
role as the irrepresentability condition in the general gauge-penalized estimation framework: it is a a
necessary condition for pattern recovery with probability of at least 1/2 and allows to unify and extend
the concept of an irrepresentability condition to entire class of gauge-penalized estimators.

Inspired by the fact that the thresholded LASSO (where small non-zero components may be set to
zero additionally to existing zeros) can alleviate the recovery of LASSO patterns (Tardivel & Bogdan,
2022), we define a general concept of thresholded estimators that alter the penalized estimator by in
some sense moving to the closest, less complex patterns. We show that for this thresholded penalized
estimation, the noiseless recovery condition which is necessary for pattern recovery without thresh-
olding, the much weaker accessibility condition is already sufficient for sure pattern recovery under a
uniqueness assumption, provided the signal of the pattern is large enough. For completeness, we also
extend the necessary and sufficient condition for uniform uniqueness from Schneider & Tardivel (2022)
to gauge-penalized estimation which again relies on the connection between patterns and the faces of
B∗ and essentially shows that uniqueness occurs if no pattern of complexity exceeding the rank of X
is accessible. Finally, we illustrate some pattern recovery properties with numerical experiments.

The paper is organized as follows. In Section 2, we introduce the given setting and notation.
Section 3 treats defining and illustrating pattern structures. Pattern recovery by penalized estimation
is investigated in Section 4, whereas we turn to pattern recovery by thresholded penalized estimation in
Section 5. Uniform uniqueness is proven in Section 6 and Section 7 gives some numerical illustrations.
All proofs are relegated to Appendix B, before which Appendix A provides some definitions and results
on polytopes and gauges. Finally, Appendix C contains additional results referred to throughout,
including a result on solution existence of the optimization problem treated in the article.

2 Setting and notation

The optimization problem we consider throughout the article is the gauge-penalized least-squares
problem described in the following. Let X ∈ Rn×p be completely arbitrary. Given y ∈ Rn and λ > 0,
we define the set SX,λpen(y) of minimizers to be given by

SX,λpen(y) = Argmin
b∈Rp

1
2‖y −Xb‖

2
2 + λpen(b), (1)

where “pen” is a real-valued polyhedral gauge and ‖.‖2 denotes the Euclidean norm. A gauge is any
non-negative and positively homogeneous convex function that vanishes at 0, and it is polyhedral if its
unit ball is given by a (possibly unbounded) polyhedron. A polyhedral gauge b ∈ Rp 7→ pen(b) ∈ [0,∞)
can always be written as the maximum of finitely many linear functions (Rockafellar, 1997; Mousavi
& Shen, 2019), so that we can assume that

pen(b) = max{u′1b, . . . , u′kb}, for some u1, . . . , uk ∈ Rp with u1 = 0.

Note that a polyhedral gauge whose unit ball B = {b ∈ Rp : pen(x) ≤ 1} is a bounded and symmetric
polyhedron is in fact a polyhedral norm. Examples of polyhedral norms and gauges are discussed
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in more detail in Section 3. For our geometric considerations, a central object of study will be the
polytope B∗ defined as

B∗ = conv(u1, . . . , uk),

where conv(.) denotes the convex hull. In case pen is a norm, B∗ coincides with the unit ball of the
dual norm. The optimization problem in (1) always possesses a solution, as we show in Proposition C.1
in Appendix C1, but it does not have to be unique. We treat uniqueness by giving a necessary and
sufficient condition in Section 6.

The following additional notation will be used throughout the article. By [p], we denote the set
{1, . . . , p}. For a set I ⊆ [p], the symbol Ic denotes its complement Ic = [p] \ I. Given a matrix X
and an index set I, XI is the matrix with columns corresponding to indices in I only, with analogous
notation for a vector b, so that bI denotes the vector with components corresponding to indices in I
only. The column and row space of X are col(X) and row(X), respectively, and rk(X) refers to the
rank of X. For a set S ⊆ Rp, lin(S) is the linear span of S, i.e., the smallest vector space containing S
and aff(S) is the affine hull of S, i.e., the smallest affine space containing S, whereas ~aff(S) refers to
the vector space parallel to aff(S) given by {u − s : u ∈ aff(S)} for a fixed, but arbitrary s ∈ aff(S).
The relative interior of S is denoted by ri(S). The symbol V ⊥ is used for the orthogonal complement
of the vector space V and 1(.) stands for the indicator function. For a convex function φ : Rp → R, a
vector s ∈ Rp is a subgradient of φ at β ∈ Rp if

f(b) ≥ f(β) + s′(b− β) ∀b ∈ Rp.

The convex, non-empty set of all subgradients of φ at β is called the subdifferential of φ at β, denoted
by ∂φ(β). Finally, for a closed and convex set K ⊆ Rp and β ∈ K, the normal cone of K at β is given
by

NK(β) = {s ∈ Rp : s′(b− β) ≤ 0 ∀b ∈ K},

see e.g. (Hiriart-Urruty & Lemarechal, 2001, p.65).

3 The notion of patterns

For a gauge-penalized estimation method, we implicitly define its canonical pattern structure and
complexity in the following definition.

Definition 3.1 (Pattern equivalence class). Let pen be a real-valued polyhedral gauge on Rp. We say
that β and β̃ ∈ Rp have the same pattern with respect to pen if

∂pen(β) = ∂pen(β̃),

i.e., if their subdifferentials of pen coincide. We then write β pen∼ β̃. The set of all elements of Rp

sharing the same pattern as β is called the pattern equivalence class Cβ . Furthermore, we define the
1The existence of a minimizer is clear when pen is a norm. For the special case of the generalized LASSO (in which

pen is not a norm), existence is shown in Ali & Tibshirani (2019) or Dupuis & Vaiter (2019). However, these proofs
cannot be generalized to arbitrary polyhedral gauges.
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complexity of the pattern of β to be the dimension of lin(Cβ).

From Lemma A.2 in Appendix A, it can be learned that the faces of B∗, which is in fact the
subdifferential of pen at 0, are made up of the subdifferentials ∂pen(β), so that there is a one-to-one
relationship between the the pattern equivalence classes and the faces of B∗. This relationship can be
made fully concrete by the following proposition which states that the pattern equivalence classes are,
in fact, given by the (relative interior) of the normal cones of the corresponding subdifferential.

Theorem 3.2. Let pen be a real-valued polyhedral gauge on Rp and let β ∈ Rp. Then Cβ = ri(NB∗(b))
where b is an arbitrary element of ri(∂pen(β)) and lin(Cβ) = ~aff(∂pen(β))⊥.

It is known that the relative interior of the normal cones of a polytope form a partition Rp (see
Ewald, 1996, p. 17, Theorem 4.13), so the first part of Theorem 3.2 shows that this partition is the
same as partitioning the space by the pattern equivalence classes Cβ .

Note that the second statement proves that lin(Cβ) matches the notion of model subspace as defined
in Vaiter et al. (2015, 2018). This statement also demonstrates that the measure of complexity of the
pattern of β introduced in Definition 3.1 coincides with the codimension of the face ∂pen(β) of B∗

which is given by p − dim(∂pen(β))2 as summarized in the corollary below. Note that this quantity
that is also relevant for uniform uniqueness characterized in Theorem 6.1.

Corollary 3.3. Let pen be a real-valued polyhedral gauge on Rp and let β ∈ Rp. Then the complexity
of the pattern of β with respect to pen is given by the codimension of ∂pen(β).

We illustrate the notion of patterns and their complexity as well as the above theorem for several
examples of gauges in the following.

Example (Different penalizations and their patterns).

`1-norm: The subdifferential of the `1-norm at 0 is given by B∗ = ∂‖.‖1(0) = [−1, 1]p. The pattern of
β ∈ Rp can be represented by its sign vector, where sign(β) ∈ {−1, 0, 1}p is defined as

sign(β) = (sign(β1), . . . , sign(βp))′ with sign(βj) = 1{βj ≥ 0} − 1{βj ≤ 0}.

Indeed, the subdifferentials ∂‖.‖1(.) at two points in Rp will be the same if and only if their
sign vectors coincide so that Cβ = {b ∈ Rp : sign(b) = sign(β)} and the pattern structure of
the LASSO carries not only information about zero components, but also the signs of the non-
zero coefficients. Note that the complexity of the LASSO pattern of β, which coincides with
the codimension of ∂‖.‖1(β) by Corollary 3.3, is given by ‖sign(β)‖1, the number of non-null
components of β.

SLOPE-norm: For b ∈ Rp, the sorted-`1 or SLOPE norm is defined as ‖b‖w =
∑p
j=1 wj |b|(j), where

|b|(1) ≥ · · · ≥ |b|(p) and w1 ≥ · · · ≥ wp ≥ 0 with w1 > 0 are pre-defined weights. It can be
shown that B∗ = ∂‖.‖w(0) = conv{(wπ(1), . . . , wπ(p))′ : π ∈ Sp} with Sp denoting the set of all
permutations on [p]. The polytope B∗ is the so-called signed permutahedron, see Negrinho &

2The dimension of a face is defined as the dimension of its affine hull, see Appendix A for details.
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Figure 1: Pattern equivalence classes for the LASSO in p = 2 dimensions: On the left, the blue
polytope is B∗ = ∂‖.‖1(0) = conv{±(1, 1),±(1,−1)}, together with the (uncentered) normal cones of
the faces of B∗ in pink and green. The picture on the right provides the actual normal cones which,
by Theorem 3.2, coincide with the pattern equivalence classes Cβ = {b ∈ Rp : sign(b) = sign(β)} for
the patterns sign(β) ∈ {(0, 0),±(0, 1),±(1, 0),±(1, 1),±(1,−1)}.

Martins (2014) and Schneider & Tardivel (2022) for details. The SLOPE pattern of β ∈ Rp is
represented by pattslope(β) ∈ Zp with each component given by

pattslope(β)j = sign(βj) rank(|β|)j ,

where rank(|β|)j ∈ {0, 1, . . . ,m} with m the number of non-zero values in {|β1|, . . . , |βp|} is
defined as follows: rank(|β|)j = 0 if βj = 0, rank(|β|)j > 0 if |βj | > 0 and rank(|β|)i < rank(|β|)j
if |βi| < |βj |, as can be learned in Schneider & Tardivel (2022). For example, the SLOPE pattern
of β = (3.1,−1.2, 0.5, 0, 1.2,−3.1) is given by pattslope(β) = (3,−2, 1, 0, 2,−3). Indeed, if w ∈ Rp

satisfies w1 > · · · > wp > 0, the subdifferentials ∂‖.‖w(.) at two points in Rp will be the same if
and only if their SLOPE patterns coincide so that Cβ = {b ∈ Rp : pattslope(b) = pattslope(β)}.
This shows that the SLOPE patterns do not only carry information about zeros, signs and
clustering, but also about the order of the clusters. SLOPE patterns are also treated in Hejný
et al. (2023). Note that the complexity of the SLOPE pattern of β, which coincides with the
codimension of ∂‖.‖w(β) by Corollary 3.3, is given by ‖pattslope(β)‖∞, the number of non-zero
clusters in β, see Schneider & Tardivel (2022).

`∞-norm: The subdifferential of the `∞-norm at 0 is the unit ball of the `1-norm, B∗ = ∂‖.‖∞(0) =
{s : ‖s‖1 ≤ 1}. The pattern of β ∈ Rp can be represented by patt∞(β) ∈ {−1, 0, 1}p where each
component is defined as

patt∞(β)j = 1{βj = ‖β‖∞} − 1{βj = −‖β‖∞}.

Note that a zero component of patt∞(β) represents a component of β that is not maximal in
absolute value or a component of the zero vector. For instance, for β = (1.45, 1.45, 0.56, 0,−1.45)′,
the pattern is given by patt∞(β) = (1, 1, 0, 0,−1). Indeed, the subdifferentials at two points in
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Figure 2: Pattern equivalence classes for SLOPE in p = 2 dimensions: On the left, the blue polytope
is B∗ = ∂‖.‖w(0) = conv{±(w1, w2),±(w1,−w2),±(w2, w1),±(w2,−w1)}, the signed permutahedron
for the SLOPE weights w1 > w2 > 0, together with the (uncentered) normal cones of the faces of B∗
in pink and green. The picture on the right provides the actual normal cones which, by Theorem 3.2,
coincide with the pattern equivalence classes Cβ = {b ∈ Rp : pattslope(b) = pattslope(β)} for the
patterns {(0, 0),±(1, 0),±(0, 1),±(1, 1),±(1,−1),±(1, 2),±(1,−2),±(2, 1),±(2,−1)}.

β, β̃ ∈ Rp will be the same if and only if patt∞(β) = patt∞(β̃) so that Cβ = {b ∈ Rp : patt∞(b) =
patt∞(β)}. This shows that the sup-norm patterns carry information about maximal (in absolute
value) and non-maximal components, as well as the sign information of the maximal coefficients.
Note that the complexity of patt∞(β), which coincides with the codimension of ∂‖.‖∞(β)3 by
Corollary 3.3, is given by 1{β 6= 0}(

∑p
j=1 1{|βj | < ‖β‖∞} + 1), the number of non-maximal

components in case β 6= 0 and 0 otherwise.

(0, 1)

(0,−1)

(−1, 0) (1, 0)

(1, 1)

(1,−1)

(−1, 1)

(−1,−1)

(0, 0)

Figure 3: Pattern equivalence classes for the sup-norm in p = 2 dimensions: On the left, the blue
polytope is B∗ = ∂‖.‖∞(0) = conv{±(1, 0),±(0, 1)}, together with the (uncentered) normal cones of
the faces of B∗ in pink and green. The picture on the right provides the actual normal cones which,
by Theorem 3.2, coincide with the pattern equivalence classes Cβ = {b ∈ Rp : patt∞(b) = patt∞(β)}
for the patterns patt∞(β) ∈ {(0, 0),±(0, 1),±(1, 0),±(1, 1),±(1,−1)}.

3An explicit expression for ∂‖.‖∞ (β) can be found in Appendix C.2.
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Generalized LASSO: For the generalized Lasso, the penalty term is given by pen(b) = ‖Db‖1
where D ∈ Rm×p. Note that, when ker(D) 6= {0}, pen is only a semi-norm. We list two common
choices of D. For the subdifferential at 0, we have ∂‖D.‖1(0) = D′[−1, 1]m, see Hiriart-Urruty &
Lemarechal (2001, p.184).

1. Let p ≥ 2 and let Dtv ∈ R(p−1)×p be the first-order difference matrix defined as

Dtv =


−1 1 0 . . . 0
0 −1 1 . . . 0
... . . . . . . . . . ...
0 . . . 0 −1 1

 .

The subdifferentials ∂‖Dtv.‖1(β) and ∂‖Dtv.‖1(β̃) are equal if and only if sign(Dtvβ) =
sign(Dtvβ̃), so that we can represent the pattern by this expression. Note that sign(Dtvβ)j =
0 if βj+1 = βj . Moreover, sign(Dtvβ)j = 1 or sign(Dtvβ)j = −1 if βj+1 > βj or βj+1 < βj ,
respectively. For example, the pattern of β = (1.45, 1.45, 0.56, 0.56,−0.45, 0.35)′ is given by
patttv(β) = sign(Dtvβ) = (0,−1, 0,−1, 1)′. Clearly, Cβ = {b ∈ Rp : patttv(b) = patttv(β)}.
Note that the complexity of patttv(β), which coincides with the codimension of ∂‖Dtv.‖1(β)
by Corollary 3.3, is given by 1 + ‖sign(Dtvβ)‖1, the number of equal adjacent components
plus 1.

0
1

−1

Figure 4: Pattern equivalence classes for the generalized LASSO with penalizing first-order differences
(D = Dtv) in p = 2 dimensions: On the left, the blue polytope is B∗ = ∂pen(0) = conv{±(1,−1)}
together with the (uncentered) normal cones of the faces of B∗ in pink and green. The picture on the
right provides the actual normal cones which, by Theorem 3.2, coincide with the pattern equivalence
classes Cβ = {b ∈ Rp : patttv(b) = patttv(β)} for the patterns patttv(β) ∈ {−1, 0, 1}.
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2. Let p ≥ 3 and let Dtf ∈ R(p−2)×p be the second-order difference matrix defined as

Dtf =


1 −2 1 0 . . . 0
0 1 −2 1 . . . 0
... . . . . . . . . . . . . ...
0 . . . 0 1 −2 1

 .

The resulting method is called `1-trend filtering (Kim et al., 2009) which in this context can
be viewed as a special case of the generalized LASSO. The subdifferentials ∂‖Dtf .‖1(β) and
∂‖Dtf .‖1(β̃) are equal if and only if sign(Dtfβ) = sign(Dtf β̃), so that we can represent the
pattern by this expression. Subdifferentials ∂‖Dtf .‖1(β) = ∂‖Dtf .‖1(β̃) are equal if and only if
sign(Dtfβ) = sign(Dtvβ̃). To illustrate this pattern structure, consider the piecewise linear
curve Gβ = ∪p−1

j=1 [(j, βj), (j + 1, βj+1)]. Note that sign(Dtfβ)j = 0 if, in a neighborhood of
the point (j, βj), the curve Gβ is linear. Moreover, sign(Dtfβ)j = 1 or sign(Dtfβ)j = −1
if, in a neighborhood of the point (j, βj), the curve Gβ convex or concave, respectively. For
instance, Figure 5 provides an illustration of sign(Dtf(x)) for a particular x ∈ R9. Finally,
note that the complexity of patttf(β), which coincides with the codimension of ∂‖Dtf .‖1(β)
by Corollary 3.3, is given by is given by 2 + ‖sign(Dtfβ)‖1, the number “non-linear points”
plus 2.

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9

+

+
0

+
0

+-1
+
0

+
0

+
1

+-1

+

Figure 5: In this figure the dotted curve represents C described above for β = (1, 3, 5, 7, 8, 6, 4, 4, 3)′.
Here, sign(Dtvβ) = (0, 0,−1, 0, 0, 1,−1)′.

Note that for the `1-norm, the sorted-`1-norm and the `∞-norm, the pattern of β itself is a canonical
representative of the equivalence class Cβ . On the other hand, for generalized LASSO, sign(Dtvβ) and
sign(Dtfβ), respectively, characterize the pattern but are not an element of Cβ as there seems to be
no natural way to represent the pattern as such.

4 Pattern recovery in penalized estimation

We now turn to the question of when a pattern can be recovered by a penalized estimation procedure.
For this, we introduce the notion of accessible patterns in the following definition which requires
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the existence of a response vector such that the resulting estimator exhibits the required pattern.
Accessibility clearly is a minimal condition for possible pattern recovery. This definition generalizes
the notion of accessible sign vectors for LASSO (Sepehri & Harris, 2017; Schneider & Tardivel, 2022)
and accessible patterns for SLOPE (Schneider & Tardivel, 2022) to the general class of penalized
estimators considered in this paper.

Definition 4.1 (Accessible pattern). Let X ∈ Rn×p, λ > 0 and pen be a real-valued polyhedral gauge.
We say that β ∈ Rp has an accessible pattern with respect to X and λpen, if there exists y ∈ Rn and
β̂ ∈ SX,λpen(y) such that β̂ pen∼ β.

When pen is the `1-norm scaled by a tuning parameter λ > 0, i.e., pen = λ‖.‖1 the above definition
coincides with the notion of accessibility of sign vectors with respect to X. When pen is the sorted
`1-norm, i.e., pen = ‖.‖w for some w ∈ Rp with w1 > · · · > wp > 0, the above definition coincides with
the notion of accessible SLOPE patterns with respect to X. Proposition 4.2 provides both a geometric
and an analytic characterization for the general notion of accessible patterns.

Proposition 4.2 (Characterization of accessible patterns). Let X ∈ Rn×p and pen : Rp → R be a
real-valued polyhedral gauge.

1. Geometric characterization: The pattern of β ∈ Rp is accessible with respect to X and λpen if
and only if

row(X) ∩ ∂pen(β) 6= ∅.

2. Analytic characterization: The pattern of β ∈ Rp is accessible with respect to X and λpen if and
only if for any b ∈ Rp the implication

Xβ = Xb =⇒ pen(β) ≤ pen(b)

holds.

Based on Proposition 4.2, it is clear that the notion of accessibility does not depend on the value of
the tuning parameter λ. We therefore also say that the pattern of β is accessible with respect to X and
pen. The geometric characterization shows that we have accessibility for the pattern of β if and only
if row(X) intersects the face of B∗ that corresponds to the pattern of β. The following proposition
strengthens the notion of accessibility, showing that under uniform uniqueness, accessibility already
implies the existence a set of y′s in Rn with non-empty interior that lead the pattern of interest:

Proposition 4.3. Let X ∈ Rn×p, λ > 0 and pen : Rp → R be a real-valued polyhedral gauge. Assume
that uniform uniqueness holds, i.e. for any y ∈ Rn, the set SX,λpen(y) contains the unique minimizer
β̂(y). Let β ∈ Rp. If the pattern of β is accessible with respect to X and pen, the set

Aβ = {y : β̂(y) pen∼ β} ⊆ Rn

has non-empty interior.

Clearly, Proposition 4.3 demonstrates that under a uniqueness assumption, accessibility of a pattern
already implies that the pattern can be detected by the penalized procedure with positive probability,
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provided that y is generated by a continuous distribution taking on all values in Rn. Hejný et al.
(2023) call this concept attainability which they view in an asymptotic setting for SLOPE.

Corollary 4.4. Let X ∈ Rn×p, λ > 0 and pen : Rp → R be a real-valued polyhedral gauge. Let β ∈ Rp

have an accessible pattern and assume that uniform uniqueness holds. If Y follows a distribution with
a positive Lebesgue-density on Rn, then

P(β̂(Y ) pen∼ β) > 0.

We now turn to a stronger requirement for pattern recovery. For this, we consider the solution
path of a penalized estimator which is given by the curve 0 < λ 7→ β̂λ, where β̂λ is the (assumed to be
unique) element of SX,λpen(y) for fixed y ∈ Rn and X ∈ Rn×p. The solution path of the generalized
LASSO or OSCAR and Clustered LASSO is studied in Tibshirani & Taylor (2011) or Takahashi &
Nomura (2020), respectively. Definition 4.5 below alludes to the notion of a solution path. Note,
however, that Definition 4.5 does not require uniqueness of estimator.

Definition 4.5 (Noiseless recovery condition). Let pen be a real-valued polyhedral gauge, X ∈ Rn×p

and β ∈ Rp. We say that the pattern of β satisfies the noiseless recovery condition with respect to X
and pen if

∃λ > 0,∃β̂ ∈ SX,λpen(Xβ) such that β̂ pen∼ β.

For instance, β = 0 satisfies the noiseless recovery condition with respect to X and pen since then
Xβ = 0 and 0 ∈ SX,λpen(0). Another way of stating the noiseless recovery condition is to require that
in the noiseless case Y = Xβ, the solution path contains a minimizer having the same pattern as β.
The noiseless recovery condition is illustrated for the supremum norm in Figure 6 for the particular
case where X and β are given by

X =
(

1 0 2
0 1 1

)
and β = (0, 2, 2)′.

In Theorem C.5 in Appendix C.3, we prove that the noiseless recovery condition occurs if and only
if X ′Xlin(Cβ)∩∂pen(β) 6= ∅. Based on this characterization, it is clear that the condition depends on β
only through its pattern. For an analytic expression for checking the noiseless recovery condition, some
formulas are given in the literature. For example, when pen = ‖.‖1, the noiseless recovery condition
can be shown to be equivalent to

‖X ′(X ′I)+sign(βI)‖∞ ≤ 1 and sign(βI) ∈ row(XI), (2)

where I = {j ∈ [p] : βj 6= 0}. Note that if ker(XI) = {0}, we have sign(βI) ∈ row(XI) and
the expression (2) coincides with the well-known irrepresentability condition for the LASSO given by
‖X ′IcXI(X ′IXI)−1sign(βI)‖∞ ≤ 1, (Bühlmann & Van de Geer, 2011; Wainwright, 2009; Zou, 2006;
Zhao & Yu, 2006). Thus, the irrepresentability condition for the LASSO can be thought of as an
analytical shortcut for checking the noiseless recovery condition. For the sorted-`1-norm, when m =
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Solution path for the supremum norm

λ208/3

1

2 1st component
2nd component
3rd component

patt‖.‖∞ =

(0, 0, 0)′

patt‖.‖∞ =

(1, 1, 1)′

patt‖.‖∞ =

(0, 1, 1)′

Figure 6: Shown are the curves of the three component functions λ 7→ β̂λ,1 (black dotted curve),
λ 7→ β̂λ,2 (red dotted curve) and λ 7→ β̂λ,3 (blue dotted curve) for λ > 0, where {β̂λ} = SX,λ‖.‖∞(Xβ).
Note that patt∞(β) satisfies the noiseless recovery condition. Indeed, patt∞(β̂λ) = (0, 1, 1)′ for λ ∈
(0, 8/3).

pattslope(β), the noiseless recovery condition is equivalent to

‖X ′(X̃ ′m)+W̃m‖∗w ≤ 1 and W̃m ∈ row(X̃m),

where ‖.‖∗w is the dual sorted-`1-norm, X̃m is the so-called clustered matrix and W̃m is the clustered
parameter, see Bogdan et al. (2022) for details. In Proposition C.4 in Appendix C.2, we also provide
an analytic characterization of the noiseless recovery condition for the supremum norm: Let I = {j ∈
[p] : |βj | < ‖β‖∞}, X̃ = (X̃1|XI) where X̃1 = XIcsign(βĪ). The noiseless recovery condition holds if
and only if

‖X ′(X̃ ′)+e1‖1 ≤ 1 and e1 ∈ row(X̃), where e1 = (1, 0, . . . , 0)′.

Figure 6 confirms this characterization. Indeed, in the above example we have

X̃ =
(

2 1
1 0

)
, e1 = (1, 0)′ and X ′(X̃ ′)+e1 = (0, 1/2, 1/2)′

and based on Figure 6 one may observe that the noiseless recovery condition holds for β. In the
following, we show that

1. The noiseless recovery condition is a necessary condition for pattern recovery with a probability
larger than 1/2, see Theorem 4.6.

2. Thresholded penalized estimators recover the pattern of β under much weaker condition than
the noiseless recovery condition, see Section 5.

Theorem 4.6. Let Y = Xβ+ ε where X ∈ Rn×p is a fixed matrix, β ∈ Rp and ε follows a symmetric
distribution. Let pen be a real-valued polyhedral gauge. If β does not satisfy the noiseless recovery
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condition with respect to X and pen, then

P
(
∃λ > 0 ∃β̂ ∈ SX,λpen(Y ) such that β̂ pen∼ β

)
≤ 1/2.

By Theorem 4.6, if the noiseless recovery condition does not hold for the LASSO (for example,
when ‖X ′

I
XI(X ′IXI)−1sign(βI)‖∞ > 1), then

P(∃λ > 0 ∃β̂ ∈ SX,λ‖.‖1(Y ) such that sign(β̂) = sign(β)) ≤ 1/2.

This above result is stronger than the one given in Theorem 2 in Wainwright (2009) which shows
that P(sign(β̂LASSO(λ)) = sign(β)) ≤ 1/2 for fixed λ > 0. Theorem 4.6 demonstrates that the
noiseless recovery condition can be viewed as a unified irrepresentability condition in a general penalized
estimation framework.

Clearly, if β satisfies the noiseless recovery condition with respect to X and pen, β is accessible
with respect to X and pen by taking y = Xβ in the definition of accessibility. In the following
section, we show that thresholded penalized least-squares estimators recover the pattern of β under
the accessibility condition only provided that the signal is strong enough.

5 Pattern recovery by thresholded penalized estimators

In practice, some additional information about β may be known a priori, e.g. its sparsity. Therefore it
can be quite natural to threshold small components of β̂LASSO and so consider the thresholded LASSO
estimator β̂LASSO,τ for some threshold τ ≥ 0. In fact, if the threshold is appropriately selected, the
estimator allows to recover sign(β) under weaker conditions than LASSO itself (Tardivel & Bogdan,
2022). We aim at generalizing this property to the broader class of penalized estimators considered
in this article. Before introducing this general notion of thresholded estimation, recall that for any
threshold τ ≥ 0, the inclusion ∂‖.‖1(β̂LASSO) ⊆ ∂‖.‖1(β̂LASSO,τ ) occurs. This observation is essential to
formally define the notion of a thresholded estimator as defined in Definition 5.1 below. To motivate
the formal definition, we list the following heuristic examples.

1. The penalty term ‖ · ‖∞ promotes clustering of components that are maximal in absolute value:
Once |β̂j | < ‖β̂‖∞ but |β̂j | ≈ ‖β̂‖∞, it is quite natural to set |β̂j | = ‖β̂‖∞. Let β̂thr be the
estimator taking into account this approximation, obtained after slightly modifying β̂. Then
∂‖.‖∞(β̂) ⊆ ∂‖.‖∞(β̂thr).

2. The sorted-`1-norm penalty promotes clustering of components equal in absolute value: Once
|β̂SLOPE
j | ≈ |β̂SLOPE

i |, it is quite natural to set |β̂SLOPE
i | = |β̂SLOPE

j |. Let β̂thr be the estimator
taking into account this approximation and obtained after slightly modifying β̂SLOPE. Then,
∂‖.‖w(β̂SLOPE) ⊆ ∂‖.‖w(β̂thr).

3. The penalty term ‖Dtv · ‖ promotes neighboring components to be equal: Once β̂j ≈ β̂j+1, it is
quite natural to set β̂j = β̂j+1. Let β̂thr be the estimator taking into account this approximation
and obtained after slightly modifying β̂. Then, ∂‖Dtv.‖1(β̂) ⊆ ∂‖Dtv.‖1(β̂thr).
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Motivated by the above examples, we define the concept of a thresholded estimator below.

Definition 5.1 (τ -thresholded penalized estimator). Let X ∈ Rn×p, λ > 0, and pen be a real-valued
polyhedral gauge. Moreover, let y ∈ Rn. Given β̂ ∈ SX,λpen(y), we say that β̂thr,τ is a τ -thresholded
penalized estimator of β̂ if

1. ‖β̂ − β̂thr,τ‖∞ ≤ τ ,

2. ∂pen(β̂) ⊆ ∂pen(β̂thr,τ ),

3. dim(∂pen(b)) ≤ dim(∂pen(β̂thr,τ )) for all b with ‖β̂ − b‖∞ ≤ τ .

Note that the thresholded LASSO is, in fact, an example of τ -thresholded estimator with threshold
τ in the sense of the above definition. Another example of a τ -thresholded estimator when the penalty
term is the supremum norm can be found in Algorithm 1 in Appendix C.4. Generally, we require
the thresholded penalized β̂thr,τ estimator to be close to the penalized estimator β̂ (1.), to exhibit a
pattern structure that is embedded in the pattern structure of β̂ (2.), and to have a pattern of minimal
complexity in that neighborhood of β̂ (3.).

The notion of accessibility introduced for penalized estimators in Section 4 also covers thresholded
estimators as can be learned from the proposition below.

Proposition 5.2. Let pen be a real-valued polyhedral gauge, X ∈ Rn×p, λ > 0 and β ∈ Rp. We have

∃y ∈ Rn, ∃β̂ ∈ SX,λpen(y) such that β̂ pen∼ β

⇐⇒ ∃y ∈ Rn,∃β̂ ∈ SX,λpen(y) such that ∂pen(β̂) ⊆ ∂pen(β).

According to Propositions 4.2 and 5.2, if there exists b ∈ Rp such that Xb = Xβ and pen(b) <
pen(β), then for any y ∈ Rn, λ > 0, and β̂ ∈ SX,λpen(y) we have ∂pen(β̂) 6⊆ ∂pen(β). Consequently,
no penalized nor thresholded penalized estimator can recover the pattern of β. On the other hand, if
pen(b) ≥ pen(β) for all b ∈ Rp withXb = Xβ, then both penalized and thresholded penalized estimator
can recover the pattern of β albeit with different “choices” of y. Of course, in practice, a statistician
does not aim at picking the appropriate y to recover the pattern of β, but instead uses the response of
a linear regression model as a particular y to infer this pattern. Along these lines, by Theorem 4.6, if
Y = Xβ+ε under a symmetric distribution for ε, the noiseless recovery condition (a stronger condition
than accessibility) is necessary for recovering the pattern of β via a penalized estimator with probability
larger than 1/2. In Theorem 5.3, we show how the noiseless recovery condition can be relaxed when
turning to thresholded estimators. More concretely, the minimal condition of accessibility is already
sufficient for sure pattern recovery by thresholded estimation, provided that the signal of the pattern
is “large enough”, as is formalized in the following theorem.

Theorem 5.3. Let pen be a real-valued polyhedral gauge, X ∈ Rn×p, β ∈ Rp, and λ > 0. Assume
that uniform uniqueness holds, i.e. for any y ∈ Rn, the set SX,λpen(y) contains the unique minimizer
β̂(y). For arbitrary ε ∈ Rn and for r ∈ N, set y(r) = X(rβ) + ε. If pen(b) ≥ pen(b) for any b ∈ Rp
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with Xb = Xβ, then there exists r0 ∈ N and τ ≥ 0 such that for all r ≥ r0∂pen(b) ⊆ ∂pen(β) for any b with ‖b− β‖∞ ≤ τ

∃b0 with ‖b0 − β‖∞ ≤ τ such that b0
pen∼ β.

Consequently, a τ -thresholded penalized estimator β̂thr,τ (y(r)) recovers the pattern of β.

Similar results for the LASSO (in which non-null components are large enough, i.e., r ≥ r0 in
Theorem 5.3) are given in Tardivel & Bogdan (2022) and Descloux et al. (2022). In particular,
Theorem 5.3 corroborates Theorem 1 in Tardivel & Bogdan (2022), which proves that the thresholded
LASSO estimator recovers the sign of β once accessibility (termed identifiability in that reference)
holds and non-null components of β are large enough.

6 A necessary and sufficient condition for uniform uniqueness

In Proposition 4.3, Corollary 4.4 and Theorem 5.3 we require uniform uniqueness, i.e., uniqueness of
the penalized optimization problem (1) for a given X ∈ Rn×p for all λ > 0 and all y ∈ Rn. We provide
a necessary and sufficient condition for this kind of uniqueness in Theorem 6.1 below. This theorem
relaxes the coercivity condition for the penalty term needed in Theorem 1 in Schneider & Tardivel
(2022) and extends the result to encompass methods such as the generalized LASSO.

Theorem 6.1 (Necessary and sufficient condition for uniform uniqueness). Let pen be a real-valued
polyhedral gauge, X ∈ Rn×p, and λ > 0. Then the solution set SX,λpen(y) from (1) is a singleton for
all y ∈ Rn if and only if row(X) does not intersect a face of B∗ whose dimension4 is strictly less than
def(X) = dim(ker(X)).

Note that a face F of B∗ satisfies

dim(F ) < def(X) ⇐⇒ codim(F ) > rk(X),

where codim(F ) = p − dim(F ). Using Corollary 3.3 and Proposition 4.2, we may therefore conclude
the following result from Theorem 6.1.

Corollary 6.2. Let pen be a real-valued polyhedral gauge, X ∈ Rn×p, and λ > 0. Then the opti-
mization problem in (1) is uniquely solvable for all y ∈ Rn if and only if no pattern with complexity
exceeding rk(X) is accessible.

We now illustrate some cases of non-uniqueness occurring for the generalized LASSO with pen(b) =
‖Db‖1 for some D ∈ Rm×p. Clearly, the set of generalized LASSO minimizers SX,λ‖D.‖1(y) is un-
bounded for every y ∈ Rn once ker(X) ∩ ker(D) 6= {0}. Consequently, ker(X) ∩ ker(D) = {0} is a
necessary condition for uniform uniqueness, yet, it is not sufficient, as illustrated in the example below.

4The dimension of a face is defined as the dimension of its affine hull, see Appendix A for details.
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Example. An example of generalized LASSO optimization problem for which the set of minimizers is
not restricted to a singleton is given in Barbara et al. (2019):

Argmin
b∈Rp

1
2‖y −Xb‖

2
2 + 1

2‖Db‖1 where X =

 1 1 1
3 1 1√
2 0 0

 , D =

1 1 0
1 0 1
2 1 1

 and y =

1
1
0

 .

Note that SX, 1
2‖D.‖1(y) = conv{(0, 1/2, 0)′, (0, 0, 1/2)′} (Barbara et al., 2019). Since

‖Db‖1 = max{±(4b1 + 2b2 + 2b3),±(2b1 + 2b2),±(2b1 + 2b3)}

we have B∗ = conv{±(4, 2, 2)′,±(2, 2, 0)′,±(2, 0, 2)′}. Because the vertex F = (4, 2, 2)′ is an element
of row(X) and satisfies codim(F ) = 3−dim(F ) = 3−0 > 2 = rk(X), uniform uniqueness cannot hold.
This complies of course with the fact that SX, 1

2‖D.‖1(y) is not a singleton.

When ker(X) ∩ ker(D) = {0}, in broad generality, the set of generalized LASSO minimizers is a
polytope, i.e., a bounded polyhedron (Barbara et al., 2019), and extremal points can be computed
explicitly (Dupuis & Vaiter, 2019). This description is relevant when the set of minimizers is not a
singleton.

7 Numerical experiments

We illustrate the accessibility and the noiseless recovery condition in numerical experiments for the
case when the penalty term is given by the supremum norm. More concretely, we start by illustrating
the relationship between the probability of either condition holding and the particular pattern under
consideration. For these simulations, we consider n = 100, p = 150 and the matrixX = (X1 . . . X150) ∈
R100×150 having iid N (0, 1/100) entries.

Clearly, both the noiseless recovery as well as the accessibility condition for the supremum norm
depend on β through patt∞(β), providing information about maximal and non-maximal components
(both understood in absolute value), as well as the signs of the maximal components in absolute value,
see the example in Section 3 for details. Furthermore, since the distribution of X we consider here
is invariant under changing signs of and permuting columns, the probability that a non-zero vector
β ∈ Rp having k non-maximal components satisfies the noiseless recovery condition is given by

PX(‖X ′(X̃ ′)+e1‖∞ ≤ 1 and e1 ∈ row(X̃)),

where X̃ = (X̃1|XI) with X̃1 =
∑p−k
j=1 Xj and Xj denoting the j-th column of X, e1 = (1, 0, . . . , 0)′

and I = {p− k+ 1, . . . , p}, see also Proposition C.4 in Appendix C.2. This shows that the probability
of satisfying the noiseless recovery condition for a non-zero β ∈ Rp depends only on the number of
non-maximal components of β. Additionally, the accessibility condition is satisfied with probability

PX(min{‖γ‖∞ : Xγ = X̃1} = 1).

Note that asymptotically, when both n and p are large, the accessibility condition has probability
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almost 1 when k < 2n − p and probability almost 0 when k > 2n − p, see (Amelunxen et al., 2014).
Figure 7 now provides both the probability of the accessibility condition and the noiseless recovery
condition as a function of k, the number of non-maximal components. We see that the noiseless
recovery condition essentially never holds for our choice of X, implying that the probability of pattern
recovery is always bounded by 1/2 in this setting.

Figure 7: The probability of the accessibility and the noiseless recovery holding for (the pattern of)
β, plotted as a function of the number of non-maximal components k of the β. For k = 2n − p = 50
(see the dotted line), the probability of the accessibility condition holding is roughly 0.5.

Given the insights from Figure 7 and the fact that thresholding the penalized estimator allevi-
ates pattern recovery, as learned from Theorem 5.3, we illustrate the pattern recovery properties
for penalized and thresholded penalized estimators in a second numerical study. For this, we con-
sider the linear model Y = Xβ + ε for a fixed X ∈ R100×150 generated once according to the
distribution mentioned above and for ε ∈ Rn with iid N (0, 1) entries. For β ∈ R150, we choose
β1 = · · · = β60 = 20, β61 = · · · = β120 = −20 and β121 = · · · = β150 = 0. The tuning
parameter is selected by the SURE formula which, for a given X and y, minimizes the function
0 < λ 7→ 1

2‖y − Xβ̂λ‖
2
2 + card({j ∈ [p] : |β̂λ,j | < ‖β̂λ‖∞}), see for example Minami (2020) or Vaiter

et al. (2017). Note that, up to the additive constant 1, the second term is indeed the complexity of
the pattern of β̂ according to Definition 3.1. Figure 8 now shows how the penalized estimator fails
to recover the pattern and how a thresholded estimator could detect the correct pattern given an
appropriate threshold.
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Figure 8: Illustration of pattern recovery by sup-norm penalized estimation and the potential of
thresholded estimation: The figure shows a plot of β̂λ ∈ R150, by plotting each component (j, β̂λ,j).
The true parameter β has k = 30 non-maximal components. Here, the noiseless recovery condition
does not hold and we see that β̂λ cannot recover the pattern of β, in particular maximal components
of β are not estimated at a similar value by β̂λ. On the other hand, the accessibility condition does
hold thus a thresholded penalized estimator may potentially recover the pattern of β. In particular,
components of β equal to 20 (−20 or 0) are approximately estimated at 20 (−20 or 0, respectively).
Thus – with an appropriate threshold – a thresholded penalized estimator can recover the pattern of
β.

A Facts about polytopes and polyhedral gauges

We recall some basic definitions and facts about polytopes which we will use throughout the proofs.
The following can be found in textbooks such as Gruber (2007) and Ziegler (2012).

A set P ⊆ Rp is called a polytope if it is the convex hull of a finite set of points {v1, . . . , vk} ⊆ Rp,
namely,

P = conv{v1, . . . , vk}.

The dimension dim(P ) of a polytope is defined as the dimension of aff(P ), the affine subspace spanned
by P . An inequality a′x ≤ c is called a valid inequality of P if P ⊆ {x ∈ Rp : a′x ≤ c}. A face F of P
is any subset F ⊆ P that satisfies

F = {x ∈ P : a′x = c} for some a ∈ Rp and c ∈ R with P ⊆ {x ∈ Rp : a′x ≤ c}.

Note that F = ∅ and F = P are faces of P and that any face F is again a polytope. A non-empty
face F with F 6= P is called proper. A point x0 ∈ P lies in ri(P ), the relative interior of P , if x0 is
not contained in a proper face of P . We state two useful properties of faces in the following lemma.

Lemma A.1. Let P ⊆ Rp be a polytope given by P = conv{v1, . . . , vk}, where v1, . . . , vk ∈ Rp. The
following properties hold.

1. If F and F̃ are faces of P , then so is F ∩ F̃ .

2. Let L be an affine line contained in the affine span of P . If L ∩ ri(P ) 6= ∅, then L intersects a
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proper face of P .

Lemma A.2 characterizes the connection between a certain class of convex functions (which en-
compasses polyhedral gauges) and the faces of a related polytope. The lemma is needed to prove
Theorem 6.1.

Lemma A.2. Let v1, . . . , vk ∈ Rp, P be the polytope P = conv{v1, . . . , vk} and φ be the convex
function defined by

φ(x) = max{v′1x, . . . , v′kx} for x ∈ Rp.

Then the subdifferential of φ at x is a face of P and is given by

∂φ(x) = conv{vl : l ∈ Iφ(x)} = {s ∈ P : s′x = φ(x)}, where Iφ(x) = {l ∈ [k] : v′lx = φ(x)}.

Conversely, let F be a non-empty face of P . Then F = ∂φ(x) for some x ∈ Rp.

Proof. The fact that ∂φ(x) = conv{ul : l ∈ Iφ(x)} can be found in (Hiriart-Urruty & Lemarechal,
2001, p. 183). To prove the second equality, we consider the following. If l ∈ Iφ(x), by definition of
Iφ(x), v′lx = φ(x) and thus vl ∈ {s ∈ P : s′x = φ(x)}. Since {s ∈ P : s′x = φ(x)} is a convex set, one
may deduce that

conv{vl : l ∈ Iφ(x)} ⊆ {s ∈ P : s′x = φ(x)}.

Conversely, assume s ∈ P is such that s /∈ conv{vl : l ∈ Iφ(x)}. We then have s =
∑k
l=1 αlvl where

α1, . . . , αk ≥ 0,
∑k
l=1 αl = 1 and αl0 > 0 for some l0 /∈ Iφ(x). Since v′lx ≤ φ(x) for all l ∈ [k] and

u′l0x < φ(x), we also get

s′x =
k∑
l=1

αlv
′
lx < φ(x).

Consequently, s /∈ {s ∈ P : s′x = φ(x)} and thus

{s ∈ P : s′x = φ(x)} ⊆ conv{vl : l ∈ Iφ(x)}.

Therefore, ∂φ(x) = conv{vl : l ∈ Iφ(x)} = {s ∈ P : s′x = φ(x)}.
Now we show that the subdifferentials of φ are the (non-empty) faces of P . Let x ∈ Rp. By

definition of φ, v′lx ≤ φ(x) for every l ∈ [k] so that the inequality x′s ≤ φ(x) is valid for all s ∈ P . This
implies that ∂φ(x) is a non-empty face of P . Conversely, let F = {s ∈ P : a′s = c} be a non-empty
face of P where a ∈ Rp, c ∈ R and a′s ≤ c is a valid inequality for all s ∈ P . We prove that F = ∂φ(a).
For this, take any s ∈ F . We get a′s = c as well as a′s ≤ φ(a) as shown above, implying that c ≤ φ(a).
Analogously, for any s ∈ ∂φ(a), a′s = φ(a) as well as a′s ≤ c since ∂φ(a) ⊆ P , yielding φ(a) ≤ c.
Therefore we may deduce that φ(a) = c and thus F = ∂φ(a).

B Appendix – Proofs

We use the following additional notation for the remainder of the appendix. Given a matrix A ∈ Rn×p,
col(A) represents the vector space spanned by columns of A: col(A) = {Ab : b ∈ Rp} and A+ stands
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for the Moore-Penrose inverse of A. For a vector v, v⊥ represents lin({v})⊥, the hyperplane orthogonal
to v. We denote the convex cone or positive hull generated by v1, . . . , vk with cone(v1, . . . , vk).

B.1 Proof of Theorem 3.2 from Section 3

We now prove Theorem 3.2, the first part stating that the equivalence classes Cβ with respect to pen
coincide with the relative interior of the normal cones of the faces of B∗. Note that, since B∗ is a
polytope, the normal cones of B∗ are the same at all points in the relative interior of a particular face
of B∗, (see e.g. Ewald, 1996, p.16). Since ∂pen(β) is a face of B∗ by Lemma A.2 in Appendix A, this
means that NB∗(b) = NB∗(b̃) for all b, b̃ ∈ ri(∂pen(β)). For simplicity, we write NB∗(∂pen(β)) for the
normal cone of B∗ at (any) b ∈ ri(∂pen(β)), so that Theorem 3.2 states that

Cβ = ri(NB∗(∂pen(β))).

For the second part of Theorem 3.2, namely lin(Cβ) = ~aff(∂pen(β))⊥, we will need the following
lemma.

Lemma B.1. Let P be the polyhedron {b ∈ Rp : s′1b ≤ r1, . . . , s
′
mb ≤ rm}, b̄ ∈ P and Ī = {l ∈ [m] :

s′lb̄ = rl}. We then have
lin(NP (b̄)) = ~aff(F )⊥,

where F is the smallest face of P containing b̄, i.e., F = {b ∈ P : s′lb = rl ∀l ∈ Ī}.

Proof. According to (Gruber, 2007, Proposition 14.1, p. 250), we have NP (b̄) = cone({sl}l∈Ī) and
therefore lin(NP (b̄)) = lin({sl}l∈Ī). Clearly, ~aff(F ) ⊆ lin({sl}l∈Ī)⊥ and conversely, if h ∈ lin({sl}l∈Ī)⊥

then, for η > 0 small enough, s′l(b̄ + ηh) = rl for all l ∈ Ī and s′l(b̄ + ηh) < rl for all l /∈ Ī. Therefore
b̄+ ηh ∈ F and thus h ∈ ~aff(F ) and consequently lin(NP (b̄)) = lin({sl}l∈Ī) = ~aff(F )⊥.

Proof of Theorem 3.2: Cβ = ri(NB∗(∂pen(β))). We split the proof into four steps.

1) We first show that Cβ ⊆ NB∗(∂pen(β)). For this, take b ∈ Cβ and v ∈ ri(∂pen(b)). Since for any
z ∈ B∗ we have

b′(z − v) = b′z︸︷︷︸
≤pen(b)

− b′z︸︷︷︸
=pen(b)

≤ pen(b)− pen(b) = 0,

we may conclude that b ∈ NB∗(v) = NB∗(∂pen(b)) = NB∗(∂pen(β)).

2) Next, we show that lin(NB∗(∂pen(β))) ⊆ ~aff(∂pen(β))⊥: take s ∈ NB∗(∂pen(β)) and note that
this implies

s′(z − v) ≤ 0 ∀z ∈ B∗,∀v ∈ ri(∂pen(β)).

Since ∂pen(β) ⊆ B∗, we can conclude for any v, w ∈ ri(∂pen(β)) that both

s′(w − v) ≤ 0 and s′(v − w) ≤ 0

hold so that s ⊥ v − w for any v, w ∈ ri(∂pen(β)). Consequently s ⊥ v − w for any v, w ∈ ∂pen(β)5.
5There exists sequences (vn)n∈N and (wn)n∈N in ri(∂pen(β)) such that limn→∞ vn = v and limn→∞ wn = w. Since

s′(vn − wn) = 0 one may deduce that s′(v − w) = 0.

20



Therefore, the following holds.

lin(NB∗(∂pen(β))) ⊆ lin{v − w : v, w ∈ ri(∂pen(β))}⊥ = ~aff(∂pen(β))⊥.

3) By 1), we have Cβ ⊆ NB∗(∂pen(β)). We now establish the stronger result Cβ ⊆ ri(NB∗(∂pen(β))).
For this, let b ∈ Cβ . We show that B(b, ε)∩aff(NB∗(∂pen(β))) ⊆ NB∗(∂pen(β)) for small enough ε > 0,
implying the desired claim. Take any s ∈ B(b, ε) ∩ aff(NB∗(∂pen(β))). By Lemma B.7, we know that
s ∈ B(b, ε) implies ∂pen(s) ⊆ ∂pen(b) = ∂pen(β) for small enough ε > 0. If ∂pen(s) ( ∂pen(β), pick
v ∈ ∂pen(s) and w ∈ ∂pen(β) \ ∂pen(s). Since v − w ∈ ~aff(∂pen(β)) and s ∈ aff(NB∗(∂pen(β))) ⊆
lin(NB∗(∂pen(β))) then, by 2), we have s ∈ ~aff(∂pen(β))⊥ and therefore s′(v − w) = 0. Finally, since
s′v = pen(s), we may deduce that s′w = pen(s) and thus w ∈ ∂pen(s) which leads to a contradiction.
Consequently, s ∈ Cβ so that B(b, ε) ∩ aff(NB∗(∂pen(β))) ⊆ Cβ ⊆ NB∗(∂pen(β)).

4) So far, we have shown that Cβ ⊆ ri(NB∗(∂pen(β))). We now argue that equality holds. For this,
note that it is known that the relative interior of the normal cones provide a partition of the underlying
space (see e.g. Ewald, 1996, p.17), so that the sets ri(NB∗(∂pen(β))) form a partition of Rp. Since the
sets Cβ also form a partition one may deduce that Cβ = ri(NB∗(∂pen(β))).

We now show the second part lin(Cβ) = ~aff(∂pen(β))⊥. Because Cβ = ri(NB∗(∂pen(β))) and
linear subspaces are closed, one may deduce that NB∗(∂pen(β))) ⊆ lin(ri(NB∗(∂pen(β))). Conse-
quently, lin(ri(NB∗(∂pen(β))) = lin(NB∗(∂pen(β))). Let s ∈ ri(∂pen(β)). Because lin(NB∗(∂pen(β))) =
lin(NB∗(s)) and since ∂pen(β) is the smallest face of B∗ containing s, we may deduce by Lemma B.1
that lin(NB∗(s)) = lin(Cβ) = ~aff(∂pen(β))⊥.

B.2 Proofs for Section 4

Proof of Proposition 4.2

The following lemma can be seen as generalizing Proposition 4.1 from Gilbert (2017) from the `1-norm
to all convex functions.

Lemma B.2. Let β ∈ Rp and φ be a convex function on Rp. Then row(X) intersects ∂φ(β) if and
only if, for any b ∈ Rp, the following implication holds

Xβ = Xb =⇒ φ(β) ≤ φ(b). (3)

Proof. Consider the function ιβ : Rp → {0,∞} given by

ιβ(b) =

0 when Xb = Xβ

∞ else.

Then (3) holds for any b ∈ Rp if and only if β is a minimizer of the function b 7→ φ(b) + ιβ(b). It
is straightforward to show that ∂ιβ (β) = row(X). We can therefore deduce that the implication (3)
holds for any b ∈ Rp if and only if

0 ∈ row(X) + ∂φ(β) ⇐⇒ row(X) ∩ ∂φ(β) 6= ∅.
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Proof of Proposition 4.2. By Lemma B.2, the geometric characterization of accessible patterns is equiv-
alent to the analytic one. We show the geometric characterization.

( =⇒ ) When the pattern of β is accessible with respect to X and λpen, there exists y ∈ Rn and
β̂ ∈ SX,λpen(y) such that β̂ pen∼ β. Because β̂ is a minimizer, 1

λX
′(y − Xβ̂) ∈ ∂pen(β̂) = ∂pen(β), so

that, clearly, row(X) intersects ∂pen(β).

(⇐= ) If row(X) intersects the face ∂pen(β), then there exists z ∈ Rn such that X ′z ∈ ∂pen(β). For
y = Xβ + λz, we have 1

λX
′(y−Xβ) = X ′z, so that β ∈ SX,λpen(y), and the pattern of β is accessible

with respect to X and λpen.

Proof of Proposition 4.3

Proof. Assume that the pattern of β is accessible. Using Gilbert (2017, Proposition 5.2,(35))6, we may
conclude that there exists z ∈ Rn such that X ′z ∈ ri(∂pen(β)). We set y = λz +Xβ and note that

1
λ
X ′(y −Xβ) = X ′z ∈ ri(∂pen(β)),

so that y ∈ Aβ . We now show that for small, but otherwise arbitrary ε ∈ Rn, y+ ε still lies in Aβ . For
this, we decompose Rn into

Rn = col(XUβ)⊕ col(XUβ)⊥ = col(XUβ)⊕ ker(U ′βX ′),

where Uβ ∈ Rp×m contains a basis of lin(Cβ) as columns. (Note thatm is the complexity of the pattern
β.) We accordingly decompose ε = ε̃+ ε̌, where ε̃ ∈ col(XUβ) and ε̌ ∈ ker(U ′βX ′) which satisfy ‖ε̌‖2 ≤
‖ε‖2 and ‖ε̃‖2 ≤ ‖ε‖2. By construction, we have ε̃ = XUβ(XUβ)+ε̃. We set β̃ = β+Uβ(XUβ)+ε̃. Note
that β ∈ Cβ and Uβ(XUβ)+ε̃ ∈ lin(Cβ). By Theorem 3.2, Cβ is relatively open. Moreover, we have
lin(Cβ) = aff(Cβ) = ~aff(Cβ), which holds since 0 lies in the relative boundary of Cβ by Theorem 3.2
and aff(Cβ) is closed, so that 0 ∈ aff(Cβ). Therefore, there exists r0 > 0 such that ‖ε‖2 ≤ r0 implies
β̃ ∈ Cβ . Moreover,

1
λ
X ′(y + ε−Xβ̃) = 1

λ
X ′
(
y +XUβ(XUβ)+ε̃+ ε̌−X(β + Uβ(XUβ)+ε̃)

)
= X ′z + 1

λ
X ′ε̌.

SinceX ′z ∈ ri(∂pen(β)) andX ′ε̌/λ ∈ col(Uβ)⊥ = lin(Cβ)⊥ = ~aff(∂pen(β)), by Theorem 3.2, there exists
r1 > 0 such that ‖ε‖2 ≤ r1 implies X ′(y + ε − Xβ̃)/λ ∈ ∂pen(β). Finally, when ‖ε‖2 ≤ min{r0, r1}
then ∂pen(β̃) = ∂pen(β) proving that SX,λpen(y + ε) = {β̃}, where β̃ pen∼ β.

Proof of Theorem 4.6

Lemma B.3. Let φ : Rp → R be the polyhedral gauge defined as

φ(x) = max{u′1x, . . . , u′kx} for some u1, . . . , uk ∈ Rp

6To make the connection to the constrained problem treated in this reference, set A = X and b = Xβ̂(y).
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If ∂φ(x) = ∂φ(v), we have ∂φ(x) = ∂φ(αx+ (1− α)v) = ∂φ(v) for all α ∈ [0, 1].

Proof. Let s ∈ ∂φ(x) = ∂φ(v). Since s is a subgradient at x and at v, the following two inequalities
hold

φ(αx+ (1− α)v) ≥ φ(x)− (1− α)s′(x− v)

φ(αx+ (1− α)v) ≥ φ(v) + αs′(x− v).

Multiplying the first inequality by α, the second by (1− α) and adding them, we get

φ(αx+ (1− α)v) ≥ αφ(x) + (1− α)φ(v).

Using the convexity of φ, we arrive at

φ(αx+ (1− α)v) = αφ(x) + (1− α)φ(v).

By Lemma A.2 we have ∂φ(x) = conv{ul : l ∈ I}, where Iφ(x) = {l ∈ [k] : u′lx = φ(x)}. Therefore, if
ul ∈ ∂φ(x) = ∂φ(v), then u′lx = φ(x) and u′lv = φ(v), thus

u′l(αx+ (1− α)v) = αφ(x) + (1− α)φ(v) = φ(αx+ (1− α)v).

Consequently, ul ∈ ∂φ(αx + (1 − α)v). On the other hand, if ul /∈ ∂φ(x), then u′lx < φ(x) and
u′lv < φ(v), thus

u′l(αx+ (1− α)v) < αφ(x) + (1− α)φ(v) = φ(αx+ (1− α)v).

Consequently, ul /∈ ∂φ(αx+ (1− α)v) and the claim follows.

Lemma B.4. Let X ∈ Rn×p and β ∈ Rp. The following set is convex

Vβ = {y ∈ Rn : ∃λ > 0 ∃β̂ ∈ SX,λpen(y) such that β̂ pen∼ β}.

Note that Vβ may be empty.

Proof. Assume that Vβ 6= ∅. Let y, ỹ ∈ Vβ . Then there exist λ > 0 and λ̃ > 0 such that β̂ ∈ SX,λpen(y)
and β̃ ∈ SX,λ̃pen(ỹ) with ∂pen(β̂) = ∂pen(β̃) = ∂pen(β). Consequently,

X ′(y −Xβ̂) ∈ λ∂pen(β) and X ′(ỹ −Xβ̃) ∈ λ̃∂pen(β).

Let α ∈ (0, 1) and y̌ = αy+ (1−α)ỹ. Define λ̌ = αλ+ (1−α)λ̃ and β̌ = αβ̂+ (1−α)β̃. We show that
y̌ ∈ Vβ . Indeed, observe that

X ′
(
y̌ −Xβ̌

)
= αX ′(y −Xβ̂) + (1− α)X ′(ỹ −Xβ̃) ∈ αλ∂pen(β) + (1− α)λ̃∂pen(β) = λ̌∂pen(β).

By Lemma B.3, ∂pen(β̌) = ∂pen(αβ̂ + (1 − α)β̃) = ∂pen(β), so that β̌ ∈ SX,λ̌pen(y̌) also, which proves
the claim.
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Proof of Theorem 4.6. Assume that the noiseless recovery condition does not hold for β. Then Xβ /∈
Vβ , where Vβ is defined as in Lemma B.4. Consequently, by convexity of Vβ , we have Xβ + ε /∈ Vβ or
Xβ − ε /∈ Vβ for any realization of ε ∈ Rn. Therefore

1 = Pε({Xβ + ε /∈ Vβ} ∪ {Xβ − ε /∈ Vβ})

≤ Pε({Xβ + ε /∈ Vβ}) + P({Xβ − ε /∈ Vβ}) = 2Pε({Xβ + ε /∈ Vβ}).

Consequently,

1
2 ≥ Pε({Xβ + ε ∈ Vβ}) = Pε(∃λ > 0 ∃β̂ ∈ SX,λpen(Y ) such that β̂ pen∼ β).

B.3 Proofs for Section 5

Proof of Proposition 5.2. We only need to prove the implication ( ⇐= ), as the other direction is
obvious. Assume that ∂pen(β̂) ⊆ ∂pen(β). Since β̂ ∈ SX,λpen(y), we have 1

λX
′(y − Xβ̂) ∈ ∂pen(β̂) ⊆

∂pen(β). Consequently, row(X) intersects ∂pen(β) which implies that the pattern of β is accessible
with respect to X and pen by Proposition 4.2. Consequently, there exists y ∈ Rn and there exists
β̂ ∈ SX,λpen(y) for which β̂ pen∼ β.

Proof of Theorem 5.3

Lemmas B.5 and B.6 are used to prove Theorem 5.3 which claims that, asymptotically, β̂(y(r))/r
converges to β when r tends to ∞.

Before stating these lemmas, note that for a non-empty closed and convex set K ⊆ Rp and x ∈ K,
the asymptotic cone is defined as (cf. Hiriart-Urruty & Lemarechal, 2001)

K∞ = {d ∈ Rp : x+ td ∈ K ∀t > 0}.

Moreover, the following statements hold.

• The set K∞ does not depend on the choice of x ∈ K.

• A non-empty closed and convex set K is compact if and only if K∞ = {0}.

Lemma B.5. Let pen be a real-valued polyhedral gauge on Rp, X ∈ Rn×p, v ∈ col(X). Let K1 ≥ 0,
K2 ≥ 0 be large enough such that K = {b ∈ Rp : pen(b) ≤ K1, ‖Xb − v‖2 ≤ K2} is non-empty. If
ker(X) ∩ ker(pen) = {0} then, the set K is compact.

Proof. Clearly, K is closed and convex. If pen(d) > 0 or if Xd 6= 0 then d /∈ K∞. Consequently,
K∞ ⊂ ker(X) ∩ ker(pen) = {0} and thus K is compact.

Lemma B.6. Let X ∈ Rn×p, λ > 0, pen be a real-valued polyhedral gauge on Rp and assume that
uniform uniqueness holds for (1). Let β ∈ Rp, ε ∈ Rn and set y(r) = X(rβ) + ε. If β is accessible with
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respect to X and pen, then
lim
r→∞

β̂(y(r))/r = β.

Proof. Since β̂(y(r)) is a minimizer of SX,λpen(y(r)), the following inequality holds

1
2‖y

(r) −Xβ̂(y(r))‖22 + λpen(β̂(y(r))) ≤ 1
2‖y

(r) −X(rβ)‖22 + λpen(rβ).

Since y(r) −X(rβ) = ε, one may deduce that

λpen(β̂(y(r))) ≤ 1
2‖ε‖

2
2 + λpen(rβ)

=⇒ pen(β̂(y(r))/r) ≤ ‖ε‖
2
2

2λr + pen(β)

=⇒ lim sup
r→∞

pen(β̂(y(r))/r) ≤ pen(β). (4)

Consequently, the sequence
(

pen(β̂(y(r))/r)
)
r∈N

is bounded. In addition, the Cauchy-Schwarz in-
equality gives the following implications

1
2‖ε+X(rβ)−Xβ̂(y(r))‖22 + λpen(β̂(y(r))) ≤ 1

2‖ε‖
2
2 + λpen(rβ)

=⇒ − ‖ε‖2 ‖X(rβ)−Xβ̂(y(r))‖2 + 1
2‖X(rβ)−Xβ̂(y(r))‖22 ≤ λpen(rβ)− λpen(β̂(y(r)))

=⇒ − ‖ε‖2/r
∥∥∥X (β̂(y(r))/r − β

)∥∥∥
2

+ 1
2

∥∥∥X (β̂(y(r))/r − β
)∥∥∥2

2
≤ λpen(β)/r − λ/r pen

(
β̂(y(r))/r

)
.

(5)

Let α ∈ [0,∞] be the limes superior of the sequence(∥∥∥X (β̂(y(r))/r − β
)∥∥∥

2

)
r∈N

. (6)

By (5) we get

lim sup
r→∞

λpen(β)− λpen(β̂(y(r))/r)
r

≥

α2/2 if α <∞

∞ if α =∞.

Moreover, by (4) we get

lim sup
r→∞

λpen(β)− λpen(β̂(y(r))/r)
r

= 0

We can conclude that α = 0 and that the sequence (6) converges to 0.
Due to uniform uniqueness, we have ker(pen)∩ker(X) = {0} and thus, by Lemma B.5, the sequence

(β̂(y(r))/r)r∈N is bounded. Therefore, to prove that limr→∞ β̂(y(r))/r = β, it suffices to show that
β is the unique accumulation point of this sequence. We extract a subsequence (β̂(yφ(r))/φ(r))r∈N
converging to γ ∈ Rp (where φ : N → N is an increasing function). By (4), one may deduce that
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pen(γ) ≤ pen(β). Moreover, we get that

0 = lim
r→∞

∥∥∥X (β̂(y(φ(r))/φ(r)− β
)∥∥∥2

2
= ‖X(γ − β)‖22.

Finally, γ satisfies
Xγ = Xβ and pen(γ) ≤ pen(β),

and we show that the only γ ∈ Rp satisfying the above is γ = β. Because the pattern of β is accessible,
there exists z ∈ Rn such that X ′z ∈ ∂pen(β). Let y = Xβ + λz, then β ∈ SX,λpen(y). Consequently,
if there exists γ 6= β such that Xβ = Xγ and pen(γ) ≤ pen(β), one may deduce that γ ∈ SX,λpen(y)
also, contradicting the uniform uniqueness assumption. Consequently, γ = β and

lim
r→∞

β̂(y(r))
r

= β.

Finally, the proof of the sufficient condition in Theorem 5.3 is based on Lemma B.6 and on
Lemma B.7 given below.

Lemma B.7. Let pen be a real-valued polyhedral gauge on Rp. Then, there exists τ > 0 depending on
β such that

∂pen(b) ⊆ ∂pen(β) for all b ∈ B∞(β, τ).

Proof. Let I = {l ∈ [k] : u′lβ = pen(β)}. By Lemma A.2, ∂pen(β) = conv{ul}l∈I . Since

u′lβ < pen(β) ∀l /∈ I,

and since linear functions and the gauge pen are continuous, one may pick τ > 0 small enough such
that

u′lb < pen(b) ∀l /∈ I, ∀b ∈ B∞(β, τ).

Consequently, for any b ∈ B∞(β, τ), we have J = {l ∈ [k] : u′lb = pen(b)} ⊆ I and thus

∂pen(b) = conv{ul}l∈J ⊆ conv{ul}l∈I = ∂pen(β).

Proof of Theorem 5.3. By Lemma B.7, there exists τ0 > 0 such that for any b ∈ B∞(β, τ0) we have
∂pen(b) ⊆ ∂pen(β). By Lemma B.6, β̂(y(r))/r converges to β when r tends to ∞. Consequently, we
have

∃r0 ∈ N such that ∀r ≥ r0, ‖β̂(y(r))/r − β‖∞ ≤ τ0/2.

Consequently, for r ≥ r0 we have

∀b ∈ B∞(β̂(y(r))/r, τ0/2), ∂pen(b) ⊆ ∂pen(β) and

∃b̃ ∈ B∞(β̂(y(r))/r, τ0/2), ∂pen(b̃) = ∂pen(β).
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Since for any t > 0 and any x ∈ Rp, we have ∂pen(x) = ∂pen(tx), one may deduce that

∀b ∈ B∞(β̂(y(r)), rτ0/2), ∂pen(b) ⊆ ∂pen(β)

∃b̃ ∈ B∞(β̂(y(r)), rτ0/2), ∂pen(b̃) = ∂pen(β)

Consequently, the claim follows by taking τ = rτ0/2.

B.4 Proof of Theorem 6.1 from Section 6

The following lemma – needed to show Theorem 6.1 – states that the fitted values are unique over
all non-unique solutions of the penalized problem for a given y. It is a generalization of Lemma 1 in
Tibshirani (2013), which shows this fact for the special case of the LASSO.

Lemma B.8. Let X ∈ Rn×p, y ∈ Rn, λ > 0 and pen be a polyhedral gauge. Then Xβ̂ = Xβ̃ and
pen(β̂) = pen(β̃) for all β̂, β̃ ∈ SX,pen(y).

Proof. Assume that Xβ̂ 6= Xβ̃ for some β̂, β̃ ∈ SX,λpen(y) and let β̌ = (β̂+ β̃)/2. Because the function
µ ∈ Rn 7→ ‖y − µ‖22 is strictly convex, one may deduce that

‖y −Xβ̌‖22 <
1
2‖y −Xβ̂‖

2
2 + 1

2‖y −Xβ̃‖
2
2.

Consequently,

1
2‖y −Xβ̌‖

2
2 + λpen(β̌) < 1

2

(
1
2‖y −Xβ̂‖

2
2 + λpen(β̂) + 1

2‖y −Xβ̃‖
2
2 + λpen(β̃)

)
,

which contradicts both β̂ and β̃ being minimizers. Finally, Xβ̂ = Xβ̃ clearly implies pen(β̂) =
pen(β̃).

Proof of Theorem 6.1. ( =⇒ ) Assume that there exists a face F of B∗ = conv{u1, . . . , uk} that
intersects row(X) and satisfies dim(F ) < def(X). By Lemma A.2, F = ∂pen(β̂) for some β̂ ∈ Rp. Let
z ∈ Rn with X ′z ∈ F , which exists by assumption. Now let y = Xβ̂ + λz. Note that β̂ ∈ SX,λpen(y)
since

0 ∈ X ′Xβ̂ −X ′y + λ∂pen(β̂) ⇐⇒ 1
λ
X ′(y −Xβ̂) = X ′z ∈ ∂pen(β̂).

We now construct β̃ ∈ SX,λpen(y) with β̃ 6= β̂. According to Lemma A.2, ∂pen(β̂) = conv{ul : l ∈ I}
where I = Ipen(β̂) = {l ∈ [k] : u′lβ̂ = pen(β̂)} and thus u′lβ̂ < pen(β̂) whenever l /∈ I. We now show
that it is possible to pick h ∈ ker(X) with h 6= 0 but u′lh = 0 for all l ∈ I. We then make h small
enough such that u′l(β̂ + h) ≤ pen(β̂) still holds for all l /∈ I, which in turn implies that pen(β̂ + h) =
max{u′lβ̂ : l ∈ I} = pen(β̂). This, together with Xβ̂ = X(β̂ + h), yields β̂ 6= β̃ = β̂ + h ∈ SX,λpen(y)
also. We now show that ker(X)∩ col(U)⊥ 6= {0}, where U = (ul)l∈I ∈ Rp×|I|. For this, we distinguish
two cases:

1) Assume that 0 ∈ aff{ul : l ∈ I}. Then aff{ul : l ∈ I} = col(U) and dim(F ) = rk(U) < def(X).
This implies that

dim(ker(X)) + dim(col(U)⊥) > p,
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which proves what was claimed.
2) Assume that 0 /∈ aff{ul : l ∈ I}. Note that this implies that v = X ′z ∈ row(X)∩conv{ul : l ∈ I}

satisfies X ′z 6= 0. We also have rk(U) = dim(aff{ul : l ∈ I}) + 1 = dim(F ) + 1 ≤ def(X) which implies
that

dim(ker(X)) + dim(col(U)⊥) ≥ p.

If ker(X) ∩ col(U)⊥ = {0}, then Rp = ker(X) ⊕ col(U)⊥. But we also have ker(X) ⊆ v⊥ as well as
col(U)⊥ ⊆ v⊥, yielding a contradiction and proving the claim.

(⇐= ) Assume that there exists y ∈ Rn such that β̂, β̃ ∈ SX,λpen(y) with β̂ 6= β̃. We then have

1
λ
X ′(y −Xβ̂) ∈ ∂pen(β̂) and 1

λ
X ′(y −Xβ̃) ∈ ∂pen(β̃).

According to Lemma B.8, Xβ̂ = Xβ̃, thus 1
λX
′(y − Xβ̂) = 1

λX
′(y − Xβ̃). Consequently, one may

deduce that row(X) intersects the face ∂pen(β̂) ∩ ∂pen(β̃). Let F ∗ = conv{ul : l ∈ I∗} be a face of
∂pen(β̂) ∩ ∂pen(β̃) of smallest dimension among all faces of ∂pen(β̂) ∩ ∂pen(β̃) intersecting row(X). By
minimality of dim(F ∗), row(X) intersects the relative interior of F ∗, namely, there exists z ∈ Rn such
that v = X ′z lies in F ∗, but not on a proper face of F ∗. We will now show that if dim(F ∗) ≥ def(X),
then row(X) intersects a proper face of F ∗, yielding a contradiction.

For this, first observe that dim(F ∗) = dim(aff{ul : l ∈ I∗}) and that we can write the affine space
aff{ul : l ∈ I∗} = ul0 + col(Ũ∗) where l0 ∈ I∗ and Ũ∗ = (ul−ul0)l∈I∗\{l0} ∈ Rp×|I∗|−1, implying that
dim(F ∗) = rk(Ũ∗).

Now let h = β̂− β̃ 6= 0. Clearly, h ∈ ker(X). Moreover, since pen(β̂) = pen(β̃) by Lemma B.8, and
since ul ∈ ∂pen(β̂) ∩ ∂pen(β̃) for all l ∈ I∗, by Lemma A.2, we get

u′lh = u′lβ̂ − u′lβ̃ = pen(β̂)− pen(β̃) = 0 ∀l ∈ I∗.

Therefore, h ∈ ker(X) ∩ col(U∗)⊥, where U∗ = (ul)l∈I∗ ∈ Rp×|I∗|. Assume that dim(F ∗) ≥ def(X).
Then

dim(row(X)) + dim(col(Ũ∗)) ≥ rk(X) + def(X) = p.

If row(X) ∩ col(Ũ∗) = {0}, then Rp = row(X) ⊕ col(Ũ∗). However, the last relationship cannot hold
since row(X) = ker(X)⊥ ⊆ h⊥ as well as col(Ũ∗) ⊆ col(U∗) ⊆ h⊥, where h 6= 0. Consequently,
there exists 0 6= ṽ ∈ row(X) ∩ col(Ũ∗). The affine line L = {X ′z + tṽ : t ∈ R} ⊆ row(X) intersects
the relative interior of F ∗ at t = 0 and clearly lies in aff(F ∗) = ul0 + col(Ũ∗), since X ′z ∈ F ∗ and
ṽ ∈ col(Ũ∗). Therefore, L must intersect a proper face of F ∗ by Lemma A.1. But then also row(X)
intersects a proper face of F ∗, which yields the required contradiction.

C Appendix – Additional results

C.1 Existence of a minimizer

We show that the optimization problem of interest in this article always has a minimizer.
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Proposition C.1. Let X ∈ Rn×p, y ∈ Rn, pen(x) = max{u′1x, . . . , u′lx} where u1, . . . , ul ∈ Rp with
u1 = 0. For

f : b ∈ Rp 7→ 1
2‖y −Xb‖

2
2 + λpen(b),

the optimization problem minb∈Rp f(b) has at least one minimizer.

For the remainder of this section, without loss of generality, we set λ = 1 since otherwise, this
parameter can be absorbed into the penalty function. The proof of Proposition C.1 relies on the
following two lemmas.

Lemma C.2. Let the assumptions of Proposition C.1 hold and let (βm)m∈N be a minimizing sequence
of f :

lim
m→∞

f(βm) = inf
b∈Rp

f(b).

Then also (Xβm)m∈N and (pen(βm))m∈N converge. Moreover, these limits do not depend on the
minimizing sequence.

Proof. The sequence (Xβm)n∈N is bounded. Otherwise, ‖y−Xβm‖22 would be unbounded also, contra-
dicting inf{f(b) : b ∈ Rp} ≤ f(0) <∞. Let β̃m be another minimizing sequence. Note that also Xβ̃m
is bounded. Now extract arbitrary converging subsequences (Xβnm)m∈N and (Xβ̃ñm)m∈N with limits
l and l̃, respectively. Note that (βnm)m∈N and (β̃ñm)m∈N are still minimizing sequences so that also
pen(βnm) and pen(β̃ñm) must converge. We now show that l = l̃. If l 6= l̃, set β̄m = (βnm + β̃ñm)/2. By
the above considerations, (f(β̄m))m∈N is convergent. Since the function z ∈ Rn 7→ ‖y − z‖22 is strictly
convex and pen is convex, we may deduce that

lim sup
m→∞

f(β̄m) ≤ 1
2‖y − (l + l̃)/2‖22 + lim sup

m→∞
pen(β̄m)

<
1
2
(
‖y − l‖22/2 + ‖y − l̃‖22/2

)
+ lim
m→∞

pen(βnm)/2 + lim
m→∞

pen(β̃ñm)/2

= 1
2 lim
m→∞

f(βnm) + 1
2 lim
m→∞

f(β̃ñm) = inf
b∈Rp

f(b),

yielding a contradiction. Since the selection of convergent subsequences was arbitrary, this implies
that (Xβm)m∈N and (Xβ̃m)m∈N share a unique limit point and that the sequences (pen(βm))m∈N and
(pen(β̃m))m∈N converges as well.

We remark that Lemma C.2 also holds for any non-negative, convex function in place of the
polyhedral gauge pen.

Lemma C.3. Let the assumptions of Proposition C.1 hold and let γ ≥ 0. The optimization problem

min
b∈Rp
‖y −Xb‖22 subject to pen(b) ≤ γ (7)

has at least one minimizer.

Proof. Let Pγ = {b ∈ Rp : pen(b) ≤ γ} be the closed and convex feasible region of (7). We set z = Xb

and note that the linearly transformed set XPγ is still closed and convex. Therefore, the minimization
problem

min ‖y − z‖22 subject to z ∈ XPγ
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has a unique solution ẑ ∈ XPγ , namely, the projection of y onto XPγ . Consequently, ẑ = Xb̂ for some
b̂ ∈ Pγ , where b̂ is not necessarily unique. Finally, b̂ clearly is a solution of the optimization problem
(7).

Before we turn to the proof of Proposition C.1, we make the following observations. Note that we
can decompose the polyhedron Pγ = {b ∈ Rp : pen(b) ≤ γ} = {b ∈ Rp : u′1b, . . . , u′lb ≤ γ}, where
γ ≥ 0, into the sum of a polyhedral cone (the so-called recession cone of Pγ) and a polytope, (see, e.g.,
Ziegler, 2012, Theorem 1.2 and Proposition 1.12). For γ = 1, we can therefore write

P1 = {b ∈ Rp : u′1b ≤ 0, . . . , u′lb ≤ 0}+ E,

where E is a polytope and therefore bounded. For arbitrary γ ≥ 0, we then write

Pγ = P0 + γE. (8)

Proof of Proposition C.1. Let (βm)m∈N be a minimizing sequence of f . By Lemma C.2, both sequences
(Xβm)m∈N and (pen(βm))m∈N converge to, say, l and γ, respectively. This implies that

1
2‖y − l‖

2
2 + γ = inf

b∈Rp
f(b).

Let β̂ be an arbitrary solution of (7). We prove that f(β̂) = ‖y− l‖22 + γ. For this, we distinguish the
following two cases.

1) Assume that γ > 0. For n large enough so that pen(βm) > 0, we set un as

um = γ

pen(βm)βm.

Clearly, pen(um) = γ so that um ∈ Pγ . Consequently, by definition of β̂, we have ‖y − Xβ̂‖22 ≤
‖y −Xum‖22 and pen(β̂) ≤ γ, so that

f(β̂) = 1
2

∥∥∥y −Xβ̂∥∥∥2

2
+ pen(β̂) ≤ 1

2 ‖y −Xum‖
2
2 + γ −→ 1

2‖y − l‖
2
2 + γ

as m→∞, implying f(β̂) = inf{f(b) : b ∈ Rp}.
2) Assume that γ = 0. Using (8), we can write βm = um + pen(βm)vm with um ∈ P0 and vm ∈ E,

where E is bounded. Since Xβm → l and pen(βm)vn → 0 one may deduce that also Xum → l, yielding

f(β̂) = 1
2

∥∥∥y −Xβ̂∥∥∥2

2
≤ 1

2 ‖y −Xum‖
2
2 −→

1
2 ‖y − l‖

2
2

as m→∞ implying again that f(β̂) = inf{f(b) : b ∈ Rp} which completes the proof.
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C.2 A characterization of the noiseless recovery condition for the supre-
mum norm

Note that the noiseless recovery condition is always satisfied for β = 0. We give a characterization for
β 6= 0 when the penalty term is given by the supremum norm.

Proposition C.4. Let X ∈ Rn×p and β ∈ Rp where β 6= 0 and I = {j ∈ [p] : |βj | < ‖β‖∞}.
Furthermore, let X̃ = (X̃1|XI) where

X̃1 = XIcsign(βIc).

Then

∃λ > 0,∃β̂ ∈ SX,λ‖.‖∞(Xβ) with β̂ ‖.‖∞∼ β ⇐⇒ e1 ∈ row(X̃) and ‖X ′(X̃ ′)+e1‖1 ≤ 1,

where e1 = (1, 0, . . . , 0)′ ∈ Rp.

Before presenting the proof, recall that the subdifferential of the `∞-norm at 0 is the unit ball of
the `1-norm, and for β 6= 0, this subdifferential is equal to

∂‖.‖∞(β) = {s ∈ Rp : ‖s‖1 ≤ 1 and s′β = ‖β‖∞}

=

s ∈ Rp : ‖s‖1 = 1 and ∀j ∈ [p]

sjβj ≥ 0 if |βj | = ‖β‖∞
sj = 0 otherwise

 . (9)

Proof. ( =⇒ ) Assume there exists λ > 0 and β̂ ∈ SX,λ‖.‖∞(Xβ) such that β̂ ‖.‖∞∼ β. Then

1
λ
X ′(Xβ −Xβ̂) ∈ ∂‖.‖∞(β̂) = ∂‖.‖∞(β). (10)

We set c = (‖β‖∞, β′I)′ and ĉ = (‖β̂‖∞, β̂′I)′. By construction, X̃c = Xβ. Moreover, since ∂‖.‖∞(β) =
∂‖.‖∞(β̂), we also have X̃ĉ = Xβ̂. Consequently, by (10), we get

1
λ
X ′X̃(c− ĉ) ∈ ∂‖.‖∞(β).

Therefore, using (9), we get that
X ′IX(c− ĉ) = 0,

as well as

β′
1
λ
X ′X̃(c− ĉ) = 1

λ
β′IcX

′
IcX̃(c− ĉ) = 1

λ
‖β‖∞sign(βIc)′X ′IcX̃(c− ĉ) = 1

λ
‖β‖∞X̃ ′1X̃(c− ĉ) = ‖β‖∞,

so that
1
λ
X̃ ′1X̃(c− ĉ) = 1.
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Therefore, we may conclude

1
λ
X̃ ′X̃(c− ĉ) = e1 =⇒ X̃(c− ĉ) = λ(X̃ ′)+e1,

which also yields
1
λ
X ′(Xβ −Xβ̂) = 1

λ
X ′X̃(c− ĉ) = X ′(X̃ ′)+e1 ∈ ∂‖.‖∞(β).

We therefore immediately get ‖X ′(X̃ ′)+e1‖1 ≤ 1. It remains to show that and e1 ∈ row(X̃). Note
that. analogously to above, X ′(X̃ ′)+e1 ∈ ∂‖.‖∞(β) implies that

X̃ ′(X̃ ′)+e1 = e1.

Since X̃ ′(X̃ ′)+ is the orthogonal projection onto row(X̃), we may deduce that e1 ∈ row(X̃).

( ⇐= ) As above, let c = (‖β‖∞, β′I)′ and set ĉ = c − λX̃+(X̃ ′)+e1 = (ĉ1, ĉ−1)′, where the first
component is ĉ1 and remaining components are ĉ−1. We define β̂ through

β̂Ic = ĉ1sign(βIc) and β̂I = ĉ−1.

Since c1 = ‖β‖∞ for small enough λ > 0, we have {j ∈ [p] : |β̂j | < ‖β̂‖∞} = {j ∈ [p] : |βj | < ‖β‖∞} = I

as well as βj β̂j > 0 for j /∈ I. Therefore, for small enough λ, ∂‖.‖∞(β̂) = ∂‖.‖∞(β) holds. To
conclude the proof, it suffices to show that β̂ ∈ SX,λ‖.‖∞(Xβ), i.e., 1

λX
′(Xβ −Xβ̂) ∈ ∂‖.‖∞(β̂). Since

col((X̃ ′)+) = col(X̃) and X̃X̃+ is the orthogonal projection onto col(X̃), we get

1
λ
X ′(Xβ −Xβ̂) = 1

λ
X ′(X̃c− X̃ĉ) = X ′X̃X̃+(X̃ ′)+e1 = X ′(X̃ ′)+e1,

so that left to show isX ′(X̃ ′)+e1 ∈ ∂‖.‖∞(β), which holds if both ‖X ′(X̃ ′)+e1‖1 ≤ 1 and β′X ′(X̃ ′)+e1 =
‖β‖∞ are true. The first inequality holds by assumption. To show the latter, note that the assumption
X̃ ′(X̃ ′)+e1 = e1 implies that

‖β‖∞ = c′e1 = c′X̃ ′(X̃ ′)+e1 = β′X ′(X̃ ′)+e1.

Consequently, for λ > 0 small enough, β̂ ∈ SX,λ‖.‖∞(Xβ).

C.3 A geometric characterization of the noiseless recovery condition

We provide a geometric criterion for the noiseless recovery condition in the theorem below. In partic-
ular, this characterization shows that the noiseless recovery condition depends on β only through its
pattern.

Theorem C.5. Let X ∈ Rn×p and pen : Rp → R be a real-valued polyhedral gauge. Let β ∈ Rp. Then

∃λ > 0,∃β̂ ∈SX,λpen(Xβ) with β̂ pen∼ β ⇐⇒ X ′Xlin(Cβ) ∩ ∂pen(β) 6= ∅

⇐⇒ X ′X ~aff(∂pen(β))⊥ ∩ ∂pen(β) 6= ∅
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Proof. First note that by Theorem 3.2, lin(Cβ) = ~aff(∂pen(β))⊥. Therefore X ′Xlin(Cβ) ∩ ∂pen(β) 6=
∅ ⇐⇒ X ′X ~aff(∂pen(β))⊥ ∩ ∂pen(β) 6= ∅ and the last equivalence clearly holds. We now prove the
first equivalence.

( =⇒ ) Let β̂ ∈ SX,λpen(Xβ) with β̂ pen∼ β. Then

1
λ
X ′X(β − β̂) ∈ ∂pen(β).

Since β̂ ∈ Cβ , we get (β − β̂)/λ ∈ lin(Cβ) which yields the desired implication.
( ⇐= ) We assume that X ′Xlin(Cβ) ∩ ∂pen(β) 6= ∅, i.e., there exists such b ∈ lin(Cβ) such

that X ′Xb ∈ ∂pen(β). We set β̂ = β − λb. Again, by Theorem 3.2, Cβ is relatively open. Note that
b ∈ lin(Cβ) = aff(Cβ) = ~aff(Cβ), which holds since 0 lies in the relative boundary of Cβ by Theorem 3.2
and aff(Cβ) is closed, so that 0 ∈ aff(Cβ). Therefore, for small enough λ, we have β̂ ∈ Cβ and β̂ pen∼ β.
Consequently,

1
λ
X ′(Xβ −Xβ̂) = X ′Xb ∈ ∂pen(β̂),

so that β̂ ∈ SX,λpen(Xβ), which finishes the proof.

C.4 An algorithm for a τ-thresholded estimator for the supremum norm

Algorithm 1 Thresholded penalized least-squares estimator when the penalty term is the `∞-norm:
Require: estimation: β̂, threshold τ ≥ 0.

if ‖β̂‖∞ ≤ τ then
β̂thr,τ ← 0.

else
∀j ∈ [p] : β̂thr,τ

j ←


‖β̂‖∞ − τ if β̂j ≥ ‖β̂‖∞ − 2τ and β̂j ≥ 0,
−‖β̂‖∞ + τ if β̂j ≤ −‖β̂‖∞ + 2τ and β̂j < 0,
β̂j otherwise.

end if
return β̂thr,τ
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