Noiseless recovery condition for the supremum norm

Proposition 1. Let $\beta \in \mathbb{R}^p$ where $\beta \neq 0$ and $I := \{i \in [p] : |\beta_i| < \|\beta\|_{\infty}\}$. Let $\tilde{X} = (\tilde{X}_1|X_I)$ where

$$\tilde{X}_1 = \sum_{i \notin I} \operatorname{sign}(\beta_i) X_i$$

The following equivalence occurs

$$\exists \lambda > 0 \; \exists \hat{\beta} \in S_{X,\lambda \parallel \cdot \parallel_{\infty}}(X\beta) \text{ such that } \hat{\beta} \stackrel{\parallel \cdot \parallel_{\infty}}{\sim} \beta \Leftrightarrow \tilde{X}'(\tilde{X}')^+ e_1 = e_1,$$

where e_1 is a vector whose first component is 1 and remaining components are 0.

Before giving the proof, we recall that the subdifferential of the ℓ_{∞} norm at 0 is the unit ball of the ℓ_1 norm and for $x \neq 0$ this subdifferential is equal to

$$\partial_{\|.\|_{\infty}}(x) = \{ s \in \mathbb{R}^{p} : \|s\|_{1} \leq 1 \text{ and } s'x = \|x\|_{\infty} \} \\ = \left\{ s \in \mathbb{R}^{p} : \|s\|_{1} = 1 \text{ and } \begin{cases} s_{i}x_{i} \geq 0 & \text{if } |x_{i}| = \|x\|_{\infty} \\ s_{i} = 0 & \text{otherwise} \end{cases} \right\}.$$
(1)

Proof. (\Longrightarrow) Let us assume that there exists $\lambda > 0$ and $\hat{\beta} \in S_{X,\lambda \parallel \cdot \parallel_{\infty}}(X\beta)$ such that $\hat{\beta} \stackrel{\parallel \cdot \parallel_{\infty}}{\sim} \beta$. Then the following property holds

$$\frac{1}{\lambda}X'(X\beta - X\hat{\beta}) \in \partial_{\|.\|_{\infty}}(\hat{\beta}) = \partial_{\|.\|_{\infty}}(\beta).$$
⁽²⁾

Let us set $c = (\|\beta\|_{\infty}, \beta_I)'$ and $\hat{c} = (\|\hat{\beta}\|_{\infty}, \hat{\beta}_I)'$. By construction $X\beta = \tilde{X}c$. Moreover, since $\partial_{\|\cdot\|_{\infty}}(\beta) = \partial_{\|\cdot\|_{\infty}}(\hat{\beta})$, we also have $X\hat{\beta} = \tilde{X}\hat{c}$. Consequently, according to (2), we have

$$\frac{1}{\lambda} X' \tilde{X}(c-\hat{c}) \in \partial_{\|.\|_{\infty}}(\beta).$$

Given a subgradient $s \in \partial_{\|.\|_{\infty}}(\beta)$, according to (2), the following implications hold

$$\begin{cases} \forall i \in I \quad X'_i \tilde{X}(c-\hat{c}) = 0\\ \frac{1}{\lambda} \sum_{i \notin I} \operatorname{sign}(\beta_i) X'_i \tilde{X}(c-\hat{c}) = 1 \end{cases} \Rightarrow \frac{1}{\lambda} \tilde{X}' \tilde{X}(c-\hat{c}) = e_1 \Rightarrow \tilde{X}(c-\hat{c}) = \lambda(\tilde{X}')^+ e_1. \end{cases}$$

Using the last implication, one may deduce the following fact

$$\frac{1}{\lambda}X'(X\beta - X\hat{\beta}) = \frac{1}{\lambda}X'\tilde{X}(c-\hat{c}) = X'(\tilde{X}')^+e_1.$$

Since $X'(\tilde{X}')^+ e_1 \in \partial_{\|\cdot\|_{\infty}}(\beta)$, let us prove that $\tilde{X}'(\tilde{X}')^+ e_1 = e_1$.

$$X'(\tilde{X}')^{+}e_{1} \in \partial_{\|.\|_{\infty}}(\beta) \Rightarrow \begin{cases} \forall i \in I \; X'_{i}(\tilde{X}')^{+}e_{1} = 0\\ \sum_{i \notin I} \operatorname{sign}(\beta_{i})X'_{i}(\tilde{X}')^{+}e_{1} = X'_{1}(\tilde{X}')^{+}e_{1} = 1 \end{cases} \Rightarrow \tilde{X}'(\tilde{X}')^{+}e_{1} = e_{1}.$$

(\Leftarrow) Let us define $\hat{c} = c - \lambda \tilde{X}^+ (\tilde{X}')^+ e_1 = (\hat{c}_1, \hat{c}_{-1})'$ (the first component is \hat{c}_1 and remaining components are \hat{c}_{-1}) and let us set $\hat{\beta}$ as follows

$$\forall i \notin I \quad \hat{\beta}_i = \operatorname{sign}(\beta_i)\hat{c}_1 \text{ and } \hat{\beta}_I = \hat{c}_{-1}.$$

Because $c_1 = \|\beta\|_{\infty}$, then for $\lambda > 0$ small enough, we have $\{i \in [p] : |\hat{\beta}_i| < \|\hat{\beta}\|_{\infty}\} = \{i \in [p] : |\beta_i| < \|\beta\|_{\infty}\} = I$ and for $i \notin I$ we have $\beta_i \hat{\beta}_i > 0$. Consequently, for λ small enough we have

 $\partial_{\|.\|_{\infty}}(\hat{\beta}) = \partial_{\|.\|_{\infty}}(\beta)$. Therefore, to conclude the proof, it is enough to show that $\hat{\beta} \in S_{X,\lambda\|.\|_{\infty}}(X\beta)$, i.e. $\frac{1}{\lambda}X'(X\beta - X\hat{\beta}) \in \partial_{\|.\|_{\infty}}(\hat{\beta})$. Because $\operatorname{col}((\tilde{X}')^+) = \operatorname{col}(\tilde{X})$ and since $\tilde{X}\tilde{X}^+$ is the projection onto $\operatorname{col}(\hat{X})$ we have the following equalities

$$\frac{1}{\lambda}X'(X\beta - X\hat{\beta}) = \frac{1}{\lambda}X'(\tilde{X}c - \tilde{X}\hat{c}) = X'\tilde{X}\tilde{X}^{+}(\tilde{X}')^{+}e_{1} = X'(\tilde{X}')^{+}e_{1}.$$

Finally, let us prove that $X'(\tilde{X}')^+ e_1 \in \partial_{\|.\|_{\infty}}(\beta)$.

$$\begin{split} \tilde{X}'(\tilde{X}')^+ e_1 &= e_1 \quad \Rightarrow \quad \begin{cases} X_1'(\tilde{X}')^+ e_1 = 1\\ \forall i \in I \; X_i'(\tilde{X}')^+ e_1 = 0 \end{cases} \\ &\Rightarrow \quad \begin{cases} \sum_{i \notin I} \operatorname{sign}(\beta_i) X_i'(\tilde{X}')^+ e_1 = 1\\ \forall i \in I \; X_i'(\tilde{X}')^+ e_1 = 0 \end{cases} \quad \Rightarrow X'(\tilde{X}')^+ e_1 \in \partial_{\|.\|_{\infty}}(\beta). \end{split}$$

Consequently, for $\lambda > 0$ small enough, $\hat{\beta} \in S_{X,\lambda \parallel \cdot \parallel_{\infty}}(X\beta)$.

Linear span of a pattern equivalent class

In Proposition 2 we prove that the linear span of a pattern equivalent class is equal to the model subspace as defined in Vaiter.

Proposition 2. Let $\phi(x) = \max\{u'_1 x \dots, u'_l x\}$ for some $u_1, \dots, u_l \in \mathbb{R}^p$ be a convex function then

$$\ln(C_x) = \partial \phi(x)^{\perp}$$

The proof of Proposition 2 is mainly based on the following lemmas

Lemma 1. Let P be the polyhedron $\{x \in \mathbb{R}^p : s'_1 x \leq r_1, \ldots, s'_n x \leq r_n\}$ let $\overline{x} \in P$ and $\overline{I} := \{i \in [n] : s'_i \overline{x} = r_i\}$ then

$$N_P(\overline{x}) = cone\{s_i\}_{i \in \overline{I}}$$

The proof of Lemma 1 is given in Gruber (Proposition 14.1 page 250).

Lemma 2. Let P be the polyhedron $\{x \in \mathbb{R}^p : s'_1 x \leq r_1, \ldots, s'_n x \leq r_n\}$ let $\overline{x} \in P$ and $\overline{I} := \{i \in [n] : s'_i \overline{x} = r_i\}$ then

$$\lim(N_P(\overline{x})) = \overrightarrow{\operatorname{aff}(F)}^{\perp}$$

where F is the smallest face of P containing \overline{x} :

$$F = \{ x \in P : s'_i x = r_i \quad \forall i \in \overline{I} \}$$

Proof. The face F can be rewritten as the following polyhedron:

$$F = \left\{ x \in \mathbb{R}^p : \left\{ \begin{array}{ll} s'_i x \leq r_i \text{ and } -s'_i x \leq -r_i & \forall i \in \overline{I} \\ s'_i x \leq r_i & \forall i \notin \overline{I} \end{array} \right\}.$$

Consequently, according to Lemma 1, the following identity occurs.

$$N_F(\overline{x}) = cone\{s_i, -s_i : i \in \overline{I}\} = \ln\{s_i : i \in \overline{I}\} = \ln(cone\{s_i : i \in \overline{I}\}) = \ln(N_P(\overline{x})).$$

It remains to prove that $N_F(\overline{x}) = \overrightarrow{\operatorname{aff}(F)}^{\perp}$. Let $v \in \overrightarrow{\operatorname{aff}(F)}^{\perp}$. Because $\overrightarrow{\operatorname{aff}(F)} = \lim\{w - \overline{x} : w \in F\}$ then for all $w \in F$ we have $v'(w - \overline{x}) = 0$. Therefore, $v \in N_F(\overline{x})$. Conversely, let $v \in N_F(\overline{x})$. Because $\overline{x} \in \operatorname{ri}(\overline{F})$ then for $x \in F$ and $\delta \neq 0$ small enough $\overline{x} + \delta(x - \overline{x}) \in F$. Consequently,

$$v'(\overline{x} + \delta(x - \overline{x}) - \overline{x}) = \delta v'(x - \overline{x}) \le 0.$$
(3)

Taking δ arbitrarily small and positive (resp. negative) in (3) leads to $v'(x-\overline{x}) \leq 0$ (resp. $v'(x-\overline{x}) \geq 0$). Therefore, $v \in \overrightarrow{\operatorname{aff}(F)}^{\perp}$

Proof of Proposition 2. According to Theorem 4 (in main) we have $\lim(C_x) = \lim(\operatorname{ri}(N_{B^*}(\partial\phi(x))))$, where B^* is the polytope $\operatorname{conv}\{u_1, \ldots, u_l\}$. Since a linear space is closed one may deduce that $N_{B^*}(\partial\phi(x))) \subset \lim(\operatorname{ri}(N_{B^*}(\partial\phi(x))))$. Consequently, $\lim(\operatorname{ri}(N_{B^*}(\partial\phi(x)))) = \lim(N_{B^*}(\partial\phi(x)))$. Let $u \in \operatorname{ri}(\partial\phi(x))$. Because $\lim(N_{B^*}(\partial\phi(x))) = \lim(N_{B^*}(u))$ (see *e.g.* Ewald page 16) and since $\partial\phi(x)$ is the smallest face of B^* containing u one may deduce, according to Lemma 1, that $\lim(N_{B^*}(u)) = \overline{\partial\phi(x)^{\perp}}$.

Geometrical characterisation of the noiseless recovery condition

Theorem 1 we provides a geometrical characterisation of the noiseless recovery condition.

Theorem 1. Let pen be a polyhedral norm.

$$\exists \lambda > 0 \ \exists \hat{\beta} \in S_{X,\lambda \text{pen}}(X\beta), \ \hat{\beta} \stackrel{\text{pen}}{\sim} \beta \Leftrightarrow X'X \text{lin}(C_{\beta}) \cap \partial_{\text{pen}}(\beta) \neq \emptyset \Leftrightarrow X'X \overline{\operatorname{aff}(\partial_{\text{pen}}(\beta))}^{\perp} \cap \partial_{\text{pen}}(\beta) \neq \emptyset.$$

Proof. According to Proposition 2, $\lim(C_{\beta}) = \overline{\operatorname{aff}(\partial_{\operatorname{pen}}(\beta))}^{\perp}$. Therefore $X'X \operatorname{lin}(C_{\beta}) \cap \partial_{\operatorname{pen}}(\beta) \neq \emptyset \Leftrightarrow X'X \overline{\operatorname{aff}(\partial_{\operatorname{pen}}(\beta))}^{\perp} \cap \partial_{\operatorname{pen}}(\beta) \neq \emptyset$. Let us prove the first equivalence (\Longrightarrow) : Let $\hat{\beta} \in S_{X,\lambda \operatorname{pen}}(X\beta)$ such that $\hat{\beta} \stackrel{\operatorname{pen}}{\sim} \beta$ then

$$\frac{1}{\lambda}X'X(\beta-\hat{\beta})\in\partial_{\mathrm{pen}}(\beta).$$

Since $\hat{\beta} \in C_{\beta}$ then $\frac{\beta - \hat{\beta}}{\lambda} \in \lim(C_{\beta})$. Consequently,

$$X'X \operatorname{lin}(C_{\beta}) \cap \partial_{\operatorname{pen}}(\beta) \neq \emptyset.$$

 (\Leftarrow) : Let us assume that $X'X\operatorname{lin}(C_{\beta})) \cap \partial_{\operatorname{pen}}(\beta) \neq \emptyset$, i.e. there exists such $z \in \operatorname{lin}(C_{\beta})$ such that $X'Xz \in \partial_{\operatorname{pen}}(\beta)$. Let us set $\hat{\beta} = \beta - \lambda z$. Because, according to Proposition 3 (in main), C_{β} is relatively open and because $z \in \operatorname{lin}(C_{\beta}) = \operatorname{aff}(C_{\beta})$ (since 0 lies in the relative boundary of C_{β}), then for λ small enough we have $\hat{\beta} \stackrel{\text{pen}}{=} \beta$. Consequently

$$\frac{1}{\lambda}X'(X\beta - X\hat{\beta}) = X'Xz \in \partial_{\text{pen}}(\hat{\beta})$$

Therefore $\hat{\beta} \in S_{X,\lambda pen}(X\beta)$, which achieves the proof.