Noiseless recovery condition for the supremum norm
Proposition 1. Let 5 € R? where 8 # 0 and I :={i € [p] : |Bi] < ||Blloc}. Let X = (X1|X1) where
igl
The following equivalence occurs
I\ 5 A ll-lloo AL T
> 033 € Sx a|l.||.. (XB) such that "~ 3 & X'(X')Te; = ey,
where ey is a vector whose first component is 1 and remaining components are 0.

Before giving the proof, we recall that the subdifferential of the ¢, norm at 0 is the unit ball of
the ¢; norm and for x # 0 this subdifferential is equal to

I oo () {s €RP: ||s[ly <1 and s’z = [[2] o}

>0 if o] =
{s €RP:|s|ly =1 and {Szmz 20 if |z = lzllec } (1)

s; =0 otherwise

Proof. (=) Let us assume that there exists A > 0 and Be Sx Al (XB) such that B Il 3. Then
the following property holds

%X/(XB—XB) €91 (B) =0y (B). (2)

Let us set ¢ = (||3lo0; 81)’ and é = (||3]|oe; B1)’. By construction X3 = Xe¢. Moreover, since 1. (B) =
Il (B), we also have X3 = Xé. Consequently, according to (2), we have

%X’X(C = &) €9y (B)-

Given a subgradient s € 9) (), according to (2), the following implications hold

] ! Y —_— c = ~ ~ ~ ~
{W €l XiX(e—¢=0 = %X’X(c &) =e1 = X(c— &) = AX) e

5 Zigf sign(B;) X! X (c—¢) =1

Using the last implication, one may deduce the following fact

%X’(Xﬁ —-Xj) = %X’X’(c —&)=X'"(X")tey.

Since X'(X')*e1 € 9. (B), let us prove that X'(X')*e; = e;.

vie T Xi(xn) e =0 S XX e e
S S8 XX Fer = XY (XY ¥er = 1 1=en

3

>

X'(X") ey € 0. (B) = {
(«<=) Let us define é = ¢ — AXt(X')te; = (¢1,¢é_1)" (the first component is ¢, and remaining compo-
nents are ¢_1) and let us set § as follows

Vig I B; = sign(B;)é1 and Br=¢é_1.

Because ¢; = ||Blo0, then for A > 0 small enough, we have {i € [p] : |3i| < ||Bllec} = {i € [p] :
|Bi] < Bl = I and for ¢ ¢ I we have 5;5; > 0. Consequently, for A small enough we have



a\l-\lm(B) = ). (B). Therefore, to conclude the proof, it is enough to show that Be Sx Al (XB),
LX'(Xp-XpB) e 8H.Hm(B)- Because col((X')") = col(X) and since X X is the projection onto
col(X) we have the following equalities

1 1 -~ -
TX(XB = XB) = 1 X'(Ke - X&) = X'XXH(K) e = X/ (X)) e
Finally, let us prove that X'(X’")*e; € 9. (B).
~ o~ X! X/ te, =1
XI(XI)+€1 =e; = ( ) €1 =
Viel X/(X)te; =0

{Zi¢l sign(8;) X{(X')Fer =1 = X'(X')er € 9. (B).

Viel X/ (X )te; =0

Consequently, for A > 0 small enough, Be Sx Al (XB).

Linear span of a pattern equivalent class

In Proposition 2 we prove that the linear span of a pattern equivalent class is equal to the model
subspace as defined in Vaiter.

Proposition 2. Let ¢(z) = max{ujx ... ,ujx} for some uq,...,u; € RP be a convex function then

lin(C ﬁ L

The proof of Proposition 2 is mainly based on the following lemmas

Lemma 1. Let P be the polyhedron {x € RP : shx < ry,...,shx <r,} letT € P and I := {i € [n] :
SiT =r;} then
Np(T) = cone{s;}

The proof of Lemma 1 is given in Gruber (Proposition 14.1 page 250).
Lemma 2. Let P be the polyhedron {x € RP : shx < ry,...,shx <r,} letT € P and I := {i € [n] :

SiT =r;} then
lin(Np(Z)) = aff(F3l

where F' is the smallest face of P containing T:

F={zeP:slx=r;, Viel}

i€l

Proof. The face F' can be rewritten as the following polyhedron:

7 cRP six <rjand —sle <-r; Viel
=<z : )
six<r; Vigl

Consequently, according to Lemma 1, the following identity occurs.

Np(T) = cone{s;, —s; i € I} =lin{s; : i € I} = lin(cone{s; : i € I}) = lin(Np(T)).
It remains to prove that Np(%) = aff(F FyL. Let v e aff(F;L. Because aff(F; =lin{w—-7:w € F}

then for all w € F we have v (w —T) = 0. Therefore, v € Np(Z). Conversely, let v € Np(T). Because
Z € 1i(F) then for € F and § # 0 small enough T + 6(z — Z) € F. Consequently,

V(@ +6(x—7)—7) =d'(z —7) <0. (3)

Taking ¢ arbitrarily small and positive (resp. negative) in (3) leads to v'(x—=) < 0 (resp. v'(z—T) > 0).
Therefore, v € aﬁ"(F;J- O



Proof of Proposition 2. According to Theorem 4 (in main) we have lin(C,) = lin(ri(Np-(0¢(z)))),
where B* is the polytope conv{u,...,u;}. Since a linear space is closed one may deduce that
Np«(0¢(x))) C lin(ri(Np«(04(x)))). Consequently, lin(ri(Np-(dp(x)))) = lin(Np«(dp(x))). Let
u € 11(0¢(x)). Because lin(Np«(9¢(z))) = lin(Np«(u)) (see e.g. Ewald page 16) and since d¢(x) is the
smallest face of B* containing u one may deduce, according to Lemma 1, that lin(Np«(u)) = 9¢(x) .
Therefore lin(C,) = 8¢)(x;L. O

Geometrical characterisation of the noiseless recovery condition
Theorem 1 we provides a geometrical characterisation of the noiseless recovery condition.

Theorem 1. Let pen be a polyhedral norm.
3N > 038 € Sxapen(XB), B B & X' XIin(Cp) N Open(B) # & & X' Xl Dpon (8))* N Open(B) # 2.

Proof. According to Proposition 2, lin(Cg) = aff (Open(8))*. Therefore X' X1in(Cg) N pen(B) # D &

X' Xaft (Open(B) ;L N Open(B) # @. Let us prove the first equivalence
(= ): Let Be Sx apen(XB) such that B B then

XX (8 = B) € Bpen ().

Since 3 € Cp then % € lin(Cjp). Consequently,
X'X1in(Cps) N Open(B) # 2.

(<=): Let us assume that X'X1in(Cj)) N Open(B) # O, i.e. there exists such z € lin(Cp)) such that
X'Xz € Open(B). Let us set B = B— \z. Because, according to Proposition 3 (in main), Cjp is relatively
open and because z € lin(Cg) = aff(Cjs) (since 0 lies in the relative boundary of Cj), then for A small

enough we have B X" B. Consequently

TX(XB ~ XB) = XXz € Open( D).

Therefore B € Sx apen(XB), which achieves the proof. O



