
Noiseless recovery condition for the supremum norm
Proposition 1. Let β ∈ Rp where β 6= 0 and I := {i ∈ [p] : |βi| < ‖β‖∞}. Let X̃ = (X̃1|XI) where

X̃1 =
∑
i/∈I

sign(βi)Xi.

The following equivalence occurs

∃λ > 0 ∃β̂ ∈ SX,λ‖.‖∞(Xβ) such that β̂
‖.‖∞∼ β ⇔ X̃ ′(X̃ ′)+e1 = e1,

where e1 is a vector whose first component is 1 and remaining components are 0.

Before giving the proof, we recall that the subdifferential of the `∞ norm at 0 is the unit ball of
the `1 norm and for x 6= 0 this subdifferential is equal to

∂‖.‖∞(x) = {s ∈ Rp : ‖s‖1 ≤ 1 and s′x = ‖x‖∞}

=

{
s ∈ Rp : ‖s‖1 = 1 and

{
sixi ≥ 0 if |xi| = ‖x‖∞
si = 0 otherwise

}
. (1)

Proof. (=⇒) Let us assume that there exists λ > 0 and β̂ ∈ SX,λ‖.‖∞(Xβ) such that β̂
‖.‖∞∼ β. Then

the following property holds

1

λ
X ′(Xβ −Xβ̂) ∈ ∂‖.‖∞(β̂) = ∂‖.‖∞(β). (2)

Let us set c = (‖β‖∞, βI)′ and ĉ = (‖β̂‖∞, β̂I)′. By constructionXβ = X̃c. Moreover, since ∂‖.‖∞(β) =

∂‖.‖∞(β̂), we also have Xβ̂ = X̃ĉ. Consequently, according to (2), we have

1

λ
X ′X̃(c− ĉ) ∈ ∂‖.‖∞(β).

Given a subgradient s ∈ ∂‖.‖∞(β), according to (2), the following implications hold{
∀i ∈ I X ′iX̃(c− ĉ) = 0
1
λ

∑
i/∈I sign(βi)X

′
iX̃(c− ĉ) = 1

⇒ 1

λ
X̃ ′X̃(c− ĉ) = e1 ⇒ X̃(c− ĉ) = λ(X̃ ′)+e1.

Using the last implication, one may deduce the following fact

1

λ
X ′(Xβ −Xβ̂) =

1

λ
X ′X̃(c− ĉ) = X ′(X̃ ′)+e1.

Since X ′(X̃ ′)+e1 ∈ ∂‖.‖∞(β), let us prove that X̃ ′(X̃ ′)+e1 = e1.

X ′(X̃ ′)+e1 ∈ ∂‖.‖∞(β)⇒

{
∀i ∈ I X ′i(X̃ ′)+e1 = 0∑
i/∈I sign(βi)X

′
i(X̃

′)+e1 = X ′1(X̃ ′)+e1 = 1
⇒ X̃ ′(X̃ ′)+e1 = e1.

(⇐=) Let us define ĉ = c− λX̃+(X̃ ′)+e1 = (ĉ1, ĉ−1)′ (the first component is ĉ1 and remaining compo-
nents are ĉ−1) and let us set β̂ as follows

∀i /∈ I β̂i = sign(βi)ĉ1 and β̂I = ĉ−1.

Because c1 = ‖β‖∞, then for λ > 0 small enough, we have {i ∈ [p] : |β̂i| < ‖β̂‖∞} = {i ∈ [p] :

|βi| < ‖β‖∞} = I and for i /∈ I we have βiβ̂i > 0. Consequently, for λ small enough we have
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∂‖.‖∞(β̂) = ∂‖.‖∞(β). Therefore, to conclude the proof, it is enough to show that β̂ ∈ SX,λ‖.‖∞(Xβ),
i.e. 1

λX
′(Xβ −Xβ̂) ∈ ∂‖.‖∞(β̂). Because col((X̃ ′)+) = col(X̃) and since X̃X̃+ is the projection onto

col(X̃) we have the following equalities

1

λ
X ′(Xβ −Xβ̂) =

1

λ
X ′(X̃c− X̃ĉ) = X ′X̃X̃+(X̃ ′)+e1 = X ′(X̃ ′)+e1.

Finally, let us prove that X ′(X̃ ′)+e1 ∈ ∂‖.‖∞(β).

X̃ ′(X̃ ′)+e1 = e1 ⇒

{
X ′1(X̃ ′)+e1 = 1

∀i ∈ I X ′i(X̃ ′)+e1 = 0

⇒

{∑
i/∈I sign(βi)X

′
i(X̃

′)+e1 = 1

∀i ∈ I X ′i(X̃ ′)+e1 = 0
⇒ X ′(X̃ ′)+e1 ∈ ∂‖.‖∞(β).

Consequently, for λ > 0 small enough, β̂ ∈ SX,λ‖.‖∞(Xβ).

Linear span of a pattern equivalent class
In Proposition 2 we prove that the linear span of a pattern equivalent class is equal to the model
subspace as defined in Vaiter.

Proposition 2. Let φ(x) = max{u′1x . . . , u′lx} for some u1, . . . , ul ∈ Rp be a convex function then

lin(Cx) =
−−−→
∂φ(x)⊥

The proof of Proposition 2 is mainly based on the following lemmas

Lemma 1. Let P be the polyhedron {x ∈ Rp : s′1x ≤ r1, . . . , s
′
nx ≤ rn} let x ∈ P and I := {i ∈ [n] :

s′ix = ri} then
NP (x) = cone{si}i∈I

The proof of Lemma 1 is given in Gruber (Proposition 14.1 page 250).

Lemma 2. Let P be the polyhedron {x ∈ Rp : s′1x ≤ r1, . . . , s
′
nx ≤ rn} let x ∈ P and I := {i ∈ [n] :

s′ix = ri} then
lin(NP (x)) =

−−−−→
aff(F )⊥

where F is the smallest face of P containing x:

F = {x ∈ P : s′ix = ri ∀i ∈ I}

Proof. The face F can be rewritten as the following polyhedron:

F =

{
x ∈ Rp :

{
s′ix ≤ ri and − s′ix ≤ −ri ∀i ∈ I
s′ix ≤ ri ∀i /∈ I

}
.

Consequently, according to Lemma 1, the following identity occurs.

NF (x) = cone{si,−si : i ∈ I} = lin{si : i ∈ I} = lin(cone{si : i ∈ I}) = lin(NP (x)).

It remains to prove that NF (x) =
−−−−→
aff(F )⊥. Let v ∈

−−−−→
aff(F )⊥. Because

−−−−→
aff(F ) = lin{w − x : w ∈ F}

then for all w ∈ F we have v′(w − x) = 0. Therefore, v ∈ NF (x). Conversely, let v ∈ NF (x). Because
x ∈ ri(F ) then for x ∈ F and δ 6= 0 small enough x+ δ(x− x) ∈ F . Consequently,

v′(x+ δ(x− x)− x) = δv′(x− x) ≤ 0. (3)

Taking δ arbitrarily small and positive (resp. negative) in (3) leads to v′(x−x) ≤ 0 (resp. v′(x−x) ≥ 0).
Therefore, v ∈

−−−−→
aff(F )⊥
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Proof of Proposition 2. According to Theorem 4 (in main) we have lin(Cx) = lin(ri(NB∗(∂φ(x)))),
where B∗ is the polytope conv{u1, . . . , ul}. Since a linear space is closed one may deduce that
NB∗(∂φ(x))) ⊂ lin(ri(NB∗(∂φ(x)))). Consequently, lin(ri(NB∗(∂φ(x)))) = lin(NB∗(∂φ(x))). Let
u ∈ ri(∂φ(x)). Because lin(NB∗(∂φ(x))) = lin(NB∗(u)) (see e.g. Ewald page 16) and since ∂φ(x) is the
smallest face of B∗ containing u one may deduce, according to Lemma 1, that lin(NB∗(u)) =

−−−→
∂φ(x)⊥.

Therefore lin(Cx) =
−−−→
∂φ(x)⊥.

Geometrical characterisation of the noiseless recovery condition
Theorem 1 we provides a geometrical characterisation of the noiseless recovery condition.

Theorem 1. Let pen be a polyhedral norm.

∃λ > 0 ∃β̂ ∈ SX,λpen(Xβ), β̂
pen∼ β ⇔ X ′Xlin(Cβ)∩ ∂pen(β) 6= ∅⇔ X ′X

−−−−−−−−→
aff(∂pen(β))⊥ ∩ ∂pen(β) 6= ∅.

Proof. According to Proposition 2, lin(Cβ) =
−−−−−−−−→
aff(∂pen(β))⊥. Therefore X ′Xlin(Cβ) ∩ ∂pen(β) 6= ∅⇔

X ′X
−−−−−−−−→
aff(∂pen(β))⊥ ∩ ∂pen(β) 6= ∅. Let us prove the first equivalence

( =⇒ ): Let β̂ ∈ SX,λpen(Xβ) such that β̂ pen∼ β then

1

λ
X ′X(β − β̂) ∈ ∂pen(β).

Since β̂ ∈ Cβ then β−β̂
λ ∈ lin(Cβ). Consequently,

X ′Xlin(Cβ) ∩ ∂pen(β) 6= ∅.

(⇐= ): Let us assume that X ′Xlin(Cβ)) ∩ ∂pen(β) 6= ∅, i.e. there exists such z ∈ lin(Cβ)) such that
X ′Xz ∈ ∂pen(β). Let us set β̂ = β−λz. Because, according to Proposition 3 (in main), Cβ is relatively
open and because z ∈ lin(Cβ) = aff(Cβ) (since 0 lies in the relative boundary of Cβ), then for λ small
enough we have β̂ pen∼ β. Consequently

1

λ
X ′(Xβ −Xβ̂) = X ′Xz ∈ ∂pen(β̂).

Therefore β̂ ∈ SX,λpen(Xβ), which achieves the proof.
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