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Abstract

For many penalized estimators the penalty term is a real-valued polyhedral gauge such as
LASSO, SLOPE, OSCAR, PACS, fused LASSO, clustered LASSO and generalized LASSO. This
article focuses on the subdifferential recovery at β with respect to a penalty term (also called
pattern recovery), where β is an unknown parameter of regression coefficients. For LASSO, when
the penalty term is the `1 norm, the pattern of β only depends on the sign of β and sign recovery
by LASSO is a well known topic in the litterature. We generalize the notion of pattern recovery
and illustrate it for many examples of real-valued polyhedral gauge penalty. We provide theoretical
guarantees for pattern recovery; in particular the “noiseless recovery condition” is necessary for a
probability of recovery larger than 1/2. This condition may be relaxed using thresholded penalized
least squares estimators; a new class of estimators generalizing thresholded LASSO. Indeed, we
show that the “accessibility condition”, a weaker condition than the “noiseless recovery condition”,
is necessary and asymptotically sufficient for pattern recovery by a thresholded penalized least
squares estimator.

1 Introduction
We consider the linear regression model

Y = Xβ + ε,

whereX ∈ Rn×p is a design matrix, ε ∈ Rn represents random noise having a symmetric and continuous
distribution with a positive density on Rn and β ∈ Rp is the vector of unknown regression coefficients.

Penalized estimation of β has been studied extensively in literature. This includes methods such as
the LASSO (Chen and Donoho, 1994; Tibshirani, 1996), SLOPE (Zeng and Figueiredo, 2014; Bogdan
et al., 2015; Negrinho and Martins, 2014), OSCAR (Bondell and Reich, 2008), fused LASSO (Tibshirani
et al., 2005), clustered LASSO (She, 2010), PACS (Sharma et al., 2013) and generalized LASSO
(Tibshirani and Taylor, 2012). When the loss function is the residual sum of squares, these estimators
minimize the function given by b ∈ Rp 7→ 1

2‖y−Xb‖
2
2+λpen(b). The penalty term “pen” is a real-valued

∗Previous versions of this article were also circulated under the title “The Geometry of Model Recovery by Penalized
and Thresholded Estimators”.

†The order of authors is alphabetical.

1



polyhedral gauge, i.e., a non-negative and positively homogeneous convex function that vanishes at 0
and whose unit ball is given by a (possibly unbounded) polyhedron.

Each of these estimators typically exhibits a particular structure, as illustrated, e.g., in Vaiter
et al. (2015). The LASSO is sparse (some components of this estimator may be equal zero), the fused
LASSO is sparse and some adjacent components are equal (Tibshirani et al., 2005), the supremum
norm promotes clustering of components that are maximal in absolute value (Jégou et al., 2012), and
SLOPE as well as OSCAR display further clustering phenomena where certain components may be
equal in absolute value (Bondell and Reich, 2008; Figueiredo and Nowak, 2016; Schneider and Tardivel,
2022; Bogdan et al., 2022; Skalski et al., 2022). In this article, we use a general geometric approach to
characterize the different structures inherent to these methods.

1.1 Pattern recovery by penalized least-squares estimators
Given y ∈ Rn and λ > 0, the set SX,λpen(y) of minimizers of a penalized least-squares optimization
problem is defined as follows

SX,λpen(y) = Argmin
b∈Rp

1

2
‖y −Xb‖22 + λpen(b). (1)

The solution set SX,λpen is always non-empty when pen is a real-valued polyhedral gauge. This can be
learned from Proposition 3 in Appendix A1. Note that SX,λpen does not have to be a singleton and we
treat uniqueness by giving a necessary and sufficient condition for it in Section 5. We now introduce
the notion of a pattern equivalence class, a central concept to this article.

Definition 1 (Pattern equivalence class). Let pen be a real-valued polyhedral gauge on Rp. We say
that β and β̃ with β, β̃ ∈ Rp share the same pattern with respect to pen if

∂pen(β) = ∂pen(β̃),

where ∂pen denotes the subdifferential of pen. We then write β pen∼ β̃. The set of all elements of Rp
sharing the same pattern as β is called the pattern equivalence class Cβ.

We prove that the pattern equivalence classes coincide with the normal cones of the polar dual
to the unit ball of pen in Theorem 4 in Appendix C.4. This interesting property is illustrated in
Figures 1-4 in Section 2.2.

For the `1 norm two vectors β, β̃ ∈ Rp have the same pattern if and only if sign(β) = sign(β̃). More
generally, two vectors having the same pattern with respect to a real-valued polyhedral gauge penalty
share a specific structure as illustrated on many examples in section 2.2. Given X and Y , we aim at
recovering the pattern of β; for LASSO this means recovering sign(β).

In this article, Theorem 1 gives a necessary condition (called noiseless recovery condition) for
pattern recovery by penalized least squares estimators. Later, in Section 4, we will introduce penalized
estimators relaxing this condition. Beforehand, we are going to summarize well known necessary
conditions for sign recovery by LASSO.

Sign recovery by LASSO

We note β̂LASSO as a unique element of SX,λ‖.‖1(Y ) (we implicitly assume that SX,λ‖.‖1(Y ) is a
singleton in this section). Of course, LASSO estimator depends on X,λ and Y and, when it is
relevant, one may emphasise these dependencies. As mentioned above, the LASSO estimator is a
sparse method that nullifies some of the components with positive probability, entailing that the
estimator also performs so-called variable selection. Instigated by this sparsity property, an abundant

1The existence of a minimizer is clear when pen is a norm. For the special case of the generalized LASSO (in which
pen is not a norm), existence is shown in Ali and Tibshirani (2019) or Dupuis and Vaiter (2019). However, these proofs
do not carry over to the general case.
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literature has arisen to deal with the recovery of the location of the non-null components of β, or,
more specifically, the recovery of the sign vector of β (Fuchs, 2005; Meinshausen and Bühlmann,
2006; Wainwright, 2009; Zhao and Yu, 2006; Zou, 2006). A natural necessary condition for sign
recovery by LASSO is for sign(β) to be accessible by the LASSO, i.e. for a fixed λ > 0, there has
to exist y ∈ Rn for which sign(β̂LASSO(y)) = sign(β). Otherwise, the sign recovery is impossible. A
geometrical characterization of accessible sign vectors is given in Sepehri and Harris (2017); Schneider
and Tardivel (2022). When sign(β) is accessible, then the probability of sign recovery is not null
(as soon as the set {y ∈ Rn : sign(β̂LASSO(y)) = sign(β)} is not Lebesgue negligible). However, the
accessibility of sign(β) by LASSO does not mean that the probability of sign recovery by LASSO is
close to 1 even if the non-null components of β are extremely large. Actually, the irrepresentability
condition is necessary for sign recovery with a probability larger than 1/2 (Wainwright, 2009) and
this condition implies accessibility. More precisely, the irrepresentability condition is satisfied when
‖X ′

I
XI(X

′
IXI)

−1sign(βI)‖∞ ≤ 1 where I := {i ∈ [p] : βi 6= 0} and I := {i ∈ [p] : βi = 0}.

Other results towards pattern recovery

SLOPE. The notions of accessibility condition and irrepresentability condition for SLOPE have been
recently introduced respectively in Schneider and Tardivel (2022) and in Bogdan et al. (2022). In
particular, in this last article, similarly as for LASSO, when the SLOPE irrepresentability condition
does not occur, the probability of pattern recovery is smaller than 1/2.

Generalized LASSO. By substituting the `1 norm by a real-valued polyhedral gauge pen = ‖D.‖1,
one constructs an estimator β̂ ∈ SX,λ‖D.‖1(Y ) where Dβ̂ has some null components. It is a reason
why the generalized LASSO is frequently used for pattern recovery. Of course, the pattern induced by
generalized LASSO depends on the matrix D.

For instance, when D is a matrix such that Db = (b2 − b1, . . . , bp − bp−1)′ (denoted Dtv below)
then the penalty term ‖D.‖1 promotes neighbor components of β̂ being equal and entailing that this
estimator can recover the jump set: {i ∈ [p − 1] : βi 6= βi+1} (Hütter and Rigollet, 2016). Actually,
articles by (Qian and Jia, 2016; Owrang et al., 2017) provide theoretical properties for jump set re-
covery under an irrepresentability condition.

Model subspace recovery. More generally, for a wide class of penalty terms including real-valued poly-
hedral gauges, Vaiter et al. (2015) showed that an irrepresentability condition is a sufficient condition
for model subspace recovery by penalized least squares estimators. The notion of model subspace is
related to the notion of pattern. Specifically, the model subspace of x ∈ Rp is a vector subspace of
Rp perpendicular to ∂pen(x). For the `1 norm two vectors x, z ∈ Rp have the same model subspace
when {i ∈ [p] : xi 6= 0} = {i ∈ [p] : zi 6= 0}. In the particular case of LASSO, Theorem 6 in Vaiter
et al. (2015) shows that ‖X ′

I
XI(X

′
IXI)

−1sign(βI)‖∞ < 1 is a sufficient condition for model subspace
recovery, i.e. the recovery of {i ∈ [p] : βi 6= 0}. Whereas correct, this statement is not optimal. Indeed
when ‖X ′

I
XI(X

′
IXI)

−1sign(βI)‖∞ < 1 it is well known that LASSO actually can recover sign(β) (and
a fortiori {i ∈ [p] : βi 6= 0}) (Wainwright, 2009). Whereas we do not retain the notion of model sub-
space in this article; in supplementary material, we prove that the linear span of a pattern equivalence
class coincides with the model subspace.

The noiseless recovery condition as well as the irrepresentability condition can be relaxed using struc-
tured estimators as explained hereafter.

1.2 Pattern recovery by a structured estimator
Theorem 2 generalizes results known for LASSO (see the following subsection) to a wide class of penal-
ized estimators. Specifically, we prove in this paper that thresholded penalized least squares estimators
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can recover, with a large probability, the pattern of β under a weaker condition than penalized least
squares estimators (which are not thresholded). Now we introduce the notion of structured estimator.

Definition 2 (Thresholded penalized least squares estimator).
Let pen be a real-valued polyhedral gauge, X ∈ Rn×p, y ∈ Rn and λ > 0. Given β̂ ∈ SX,λpen(y), we
say that β̂thr is a structured estimator of β̂ if ∂pen(β̂) ⊆ ∂pen(β̂thr).

Definition 2 will be illustrated on many examples in section 4.

Sign recovery by thresholded LASSO

Hereafter, we provide a brief presentation of results known for thresholded LASSO. Given a threshold
τ ≥ 0, we remind that thresholded LASSO β̂LASSO,τ is defined as follows

β̂LASSO
i

,τ =

{
β̂LASSO
i if |β̂LASSO

i | > τ,

0 otherwise.
(2)

Note that for every τ ≥ 0 we have ∂‖.‖1(β̂LASSO) ⊆ ∂‖.‖1(β̂LASSO,τ ) and thus β̂LASSO,τ is a structured
estimator of β̂LASSO in the sense of Definition 2.

It is well known that thresholded LASSO does not have the same statistical properties as LASSO
(Meinshausen and Yu, 2009; Weinstein et al., 2020). Concerning sign recovery, the accessibility condi-
tion is necessary for sign recovery by thresholded LASSO. Indeed, Tardivel and Bogdan (2022) recently
proved that if sign(β̂LASSO,τ ) = sign(β), then sign(β) is accessible for the LASSO. Moreover, they also
proved that, contrarily to LASSO, thresholded LASSO can recover the sign of β with a large proba-
bility under the accessibility condition (even if the irrepresentability condition is not satisfied) as soon
as non-null components of β are sufficiently large. This nice property for sign recovery by thresholded
LASSO remains true for thresholded basis pursuit (Saligrama and Zhao, 2011; Descloux and Sardy,
2021; Descloux et al., 2022).

1.3 Notation
Hereafter, we give some notations that we are going to use in this article.

• Given a matrix X ∈ Rn×p, X ′ represents the transpose of the matrix X, ker(X) represents the
null space of X: ker(X) = {z ∈ Rp : Xz = 0} and row(X) represents the vector space spanned
by rows of X: row(X) = {X ′z : z ∈ Rn}. The defect of X is def(X) = dim(ker(X)).

• Given p ∈ N, the notation [p] represents the set of integers {1, . . . , p}.

• Given x ∈ Rp and τ the notation xτ represents the thresholded vector

xτ = (x11 (|x1| > τ) , . . . , xp1 (|xp| > τ)) .

• The notation B∞(a, r) represents the closed ball for the `∞ norm centered in a with radius r.

2 Examples of polyhedral gauges and examples of pattern equiv-
alence class

2.1 Real-valued polyhedral gauges, polyhedral norms
It is known that a real-valued polyhedral gauge pen can be written as the maximum of linear functions
as follows (Rockafellar, 1997; Mousavi and Shen, 2019)

∀x ∈ Rp,pen(x) = max{u′1x, . . . , u′kx}, for some u1, . . . , uk ∈ Rp with u1 = 0.
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Note that a polyhedral gauge whose unit ball {x ∈ Rp : pen(x) ≤ 1} is a bounded and symmetric
with respect to the origin polyhedron is a polyhedral norm. Examples of polyhedral norms are the `1
norm: ‖x‖1 =

∑p
i=1 |xi|, the supremum norm: ‖x‖∞ = max{|x1|, . . . , |xp|} and the sorted `1 norm:

‖x‖w =
∑p
i=1 wi|x|(i), where w1 > 0, w1 ≥ · · · ≥ wp ≥ 0 and (.) is a permutation on [p] such that

|x|(1) ≥ · · · ≥ |x|(p).
Furthermore, the composition of real-valued polyhedral gauge with a linear map is still a real-

valued polyhedral gauge. For example, for generalized LASSO, the penalty term is the real-valued
polyhedral gauge x ∈ Rp 7→ ‖Dx‖1 where D ∈ Rm×p. Note that, when {0} ( ker(D), the function
x ∈ Rp 7→ ‖Dx‖1 is not a norm but only a semi-norm. Hereafter we present two matrices D, which
are relevant for generalized LASSO (this list is not exhaustive).

• Let p ≥ 2 and let Dtv ∈ R(p−1)×p be the first order difference matrix defined as follows

Dtv =


−1 1 0 . . . 0

0 −1 1
. . .

...
...

. . . . . . . . . 0
0 . . . 0 −1 1

 .

• Let p ≥ 3 and let Dtf ∈ R(p−2)×p be the second order difference matrix defined as follows

Dtf =


−1 2 −1 0 . . . 0

0 −1 2 −1
. . .

...
...

. . . . . . . . . . . . 0
0 . . . 0 −1 2 −1

 .

The `1 trend filtering (Kim et al., 2009) is actually a generalized LASSO with the penalty term
being ‖Dtf .‖1.

2.2 Subgradients, subdifferentials and patterns
We remind the reader of the definition on subgradient and subdifferential. The following can be found
for instance in Hiriart-Urruty and Lemarechal (2001):
For a function f : Rp → R, a vector s ∈ Rp is a subgradient of f at x ∈ Rp if

f(z) ≥ f(x) + s′(z − x) ∀z ∈ Rp.

The set of all subgradients of f at x is called the subdifferential of f at x, denoted by ∂f (x).
In this article, we only consider continuous convex functions and thus the set of subgradients is a
non-empty convex set.

Example 1. The subdifferential of the `1 norm at x ∈ Rp is given by

∂‖.‖1(x) = ∂|.|(x1)× · · · × ∂|.|(xp) where ∂|.|(t) =


{1} if t > 0

[−1, 1] if t = 0

{−1} if t < 0

The subdifferential of the `∞ norm at 0 is the unit ball of the `1 norm and for x ∈ Rp where x 6= 0 this
subdifferential is equal to

∂‖.‖∞(x) =

{
s ∈ Rp : ‖s‖1 = 1 and

{
sixi ≥ 0 if |xi| = ‖x‖∞
0 otherwise

}
.

Finally, note that for the real-valued polyhedral gauge x ∈ Rp 7→ ‖Dx‖1 we have ∂‖D.‖1(x) = D′∂‖.‖1(Dx)
(see Hiriart-Urruty and Lemarechal (2001) page 184).
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The subdifferential of the sorted `1 norm, not reminded above, has a more complex expression than
subdifferentials of both the `1 and `∞ norms and is given in Dupuis and Tardivel (2022); Schneider and
Tardivel (2022). Now, we want to illustrate that two vectors x, z ∈ Rp having the same subdifferential
with respect to a real-valued polyhedral gauge share a common pattern.

Pattern for the `1 norm: The sign vector sign(x) ∈ {−1, 0, 1}p is defined as follows

sign(x) = (sign(x1), . . . , sign(xp)) where sign(xi) :=


1 if xi > 0

0 if xi = 0

−1 if xi < 0

Subdifferentials ∂‖.‖1(x) = ∂‖.‖1(z) are equal if and only if sign(x) = sign(z). For instance when
x = (1.45,−0.38, 1.56, 0,−2.76) then sign(x) = (1,−1, 1, 0,−1).

Graphical illustration when p = 2 (Figure 1):

(0, 1)

(0, 1)

(0, 1)

(0, 1)

(1, 1)

(−1,−1)

(−1, 1)

(1,−1)

(0, 1)

(0, 1)

(0, 1)

(0, 0)

Figure 1: In this figure pen(b) = |b1| + |b2|. On the left the blue polytope is B∗ = ∂pen(0) =
conv{±(1, 1),±(1,−1)} (B∗ is the unit ball of the `∞ norm). Red and green (unbounded) sets are
preimages, with respect to the projection onto B∗, of vertices and edge centers. The picture on the right
provides sign(x) ∈ {(0, 0),±(1, 0),±(0, 1),±(1, 1),±(1,−1)} depending on the localization of x ∈ R2.

Pattern for the `∞ norm: The vector sign∞(x) element of the finite alphabet {−1, ∗, 1}p is defined
as follows

∀i ∈ [p] sign∞(x)i :=


1 if xi > 0 and if xi = ‖x‖∞
∗ if xi = 0 or if |xi| < ‖x‖∞
−1 if xi < 0 and if xi = −‖x‖∞

Note that the notation ∗ represents a components which is null or not maximal in absolute value.
Subdifferentials ∂‖.‖∞(x) = ∂‖.‖∞(z) are equal if and only if sign∞(x) = sign∞(z). For instance
when x = (1.45, 1.45, 0.56, 0,−1.45) then sign∞(x) = (1, 1, ∗, ∗,−1).

Graphical illustration when p = 2 (Figure 2):

Pattern for the sorted `1 norm: Let x ∈ Rp. The SLOPE pattern of x, patt(x), is defined by

patt(x)i = sign(xi) rank(|x|)i, ∀i ∈ [p]
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(∗, 1)

(∗,−1)

(−1, ∗) (1, ∗)

(1, 1)

(1,−1)

(−1, 1)

(−1,−1)

(∗, ∗)

Figure 2: In this figure pen(b) = max{|b1|, |b2|}. On the left the blue polytope is B∗ = ∂pen(0) =
conv{±(1, 0),±(0, 1)} (B∗ is the unit ball of the `1 norm). Red and green (unbounded) sets are
preimages, with respect to the projection onto B∗, of vertices and edge centers. The picture on the
right provides sign∞(x) ∈ {(∗, ∗), (∗,±1), (±1, ∗), (±1,±1)} depending on the localization of x ∈ R2.

where rank(|x|)i ∈ {0, 1, . . . , k}, k is the number of nonzero distinct values in {|x1|, . . . , |xp|},
rank(|x|)i = 0 if xi = 0, rank(|x|)i > 0 if |xi| > 0 and rank(|x|)i < rank(|x|)j if |xi| < |xj |.
Let w ∈ Rp where w1 > · · · > wp > 0. Then, subdifferentials ∂‖.‖w(x) = ∂‖.‖w(z) are equal
if and only if patt(x) = patt(z). For instance when x = (3.1,−1.2, 0.5, 0, 1.2,−3.1) then
patt(x) = (3,−2, 1, 0, 2,−3).

Graphical illustration when p = 2 (Figure 3):

Pattern for the real-valued polyhedral gauge ‖Dtv.‖1: Let p ≥ 2. The vector jump(x) element
of the finite alphabet {↗,→,↘}p−1 is defined as follows

∀i ∈ [p− 1], jump(x)i :=


↗ if xi+1 > xi

→ if xi+1 = xi

↘ if xi+1 < xi

Subdifferentials ∂‖Dtv.‖1(x) = ∂‖Dtv.‖1(z) are equal if and only if jump(x) = jump(z). For in-
stance when x = (1.45, 1.45, 0.56, 0.56,−0.45, 0.35) then jump(x) = (→,↘,→,↘,↗).

Graphical illustration when p = 2 (Figure 4):

Pattern for the real-valued polyhedral gauge ‖Dtf .‖1: Let p ≥ 3. The vector knot(x) element
of the finite alphabet {l, cx, cv}p−2 is defined as follows

∀i ∈ [2 : p− 1], knot(x)i :=


cx if xi < (xi+1 − xi−1)/2

l if xi = (xi+1 − xi−1)/2

cv if xi > (xi+1 − xi−1)/2

Let us consider the piecewise linear curve C := ∪p−1
i=1 [(i, xi), (i+ 1, xi+1)]. Note that knot(x)i is

equal to l (resp. cx or cv) when, in the neighborhood of i, the curve Cx is linear (resp. convex
or concave). Subdifferentials ∂‖Dtf .‖1(x) = ∂‖Dtf .‖1(z) are equal if and only if knot(x) = knot(z).
For instance, Figure 5 provides an illustration of knot(x) for a particular x ∈ R9.
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(0, 0) (1, 0)

(−1, 0)

(0, 1)

(0,−1)

(1, 1)

(−1,−1)

(−1, 1)

(1,−1)

(2, 1)

(1, 2)

(−2, 1)

(−1, 2)

(−2,−1)

(−1,−2)

(2,−1)

(1,−2)

Figure 3: In this figure pen(b) = w1|b|(1) + w2|b|(2) for some w1 > w2 > 0. On the left the blue
polytope is B∗ = ∂pen(0) = conv{±(w1, w2),±(w1,−w2),±(w2, w1),±(w2,−w1)} (B∗, also called the
signed permutahedron, is the unit ball of the dual sorted `1 norm). Red and green (unbounded) sets
are preimages, with respect to the projection onto B∗, of vertices and edge centers. The picture on the
right provides patt(x) ∈ {(0, 0),±(1, 0),±(0, 1),±(1, 1),±(1,−1),±(1, 2),±(1,−2),±(2, 1),±(2,−1)}
depending on the localization of x ∈ R2.

→↗

↘

Figure 4: In this figure pen(b) = |b1− b2|. On the left the blue polytope is B∗ = ∂pen(0) = conv{±(1−
1)}. Red and green (unbounded) sets are preimages, with respect to the projection onto B∗, of vertices
and edge center. The picture on the right provides jump(x) ∈ {↗,→,↘} depending on the localization
of x ∈ R2.

Illustration when p = 3: When p = 3 then pen(b) = |b1 − 2b2 + b3| and B∗ = ∂pen(0) =
conv{±(1,−2, 1)}. The three normal cones of the segmentB∗ are the half-space {x = (x1, x2, x3) ∈
R3 : x2 ≤ (x1 + x3)/2} associated to the vertex (1,−2, 1), {x = (x1, x2, x3) ∈ R3 : x2 =
(x1 +x3)/2} a vector plane perpendicular to B∗ and the half-space {x = (x1, x2, x3) ∈ R3 : x2 ≥
(x1 + x3)/2} associated to the vertex (−1, 2,−1). Therefore, the sets {x ∈ R3 : knot(x) = cx},
{x ∈ R3 : knot(x) = l} and {x ∈ R3 : knot(x) = cx} are relative interior of normal cones of B∗.
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1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9

+

+
l

+
l

+
cv

+
l

+
l

+
cx

+
cv

+

Figure 5: In this figure the dotted curve represents C described above for x = (1, 3, 5, 7, 6, 5, 4, 6, 5).
Here knot(x) = (l, l, cv, l, l, cx, cv).

As illustrated above, B∗ = ∂pen(0) is a a polytope in Rp. It is known that relative interiors of
normal cones of a polytope provide a partition in Rp (see e.g. Theorem 4.13 page 17 in Ewald (1996)).
In Appendix C.4 we prove that the partition given by relative interior normal cones of B∗ coincides
with equivalent classes for the relation pen∼ .

3 Pattern recovery in penalized estimation

3.1 Accessibility: a necessary condition for pattern recovery with a positive
probability

We introduce the notion of accessible patterns in the following definition. This definition generalizes
the notion of accessible sign vectors (Sepehri and Harris, 2017; Schneider and Tardivel, 2022) and
accessible patterns for SLOPE (Schneider and Tardivel, 2022) to a broad class of penalized estimators.

Definition 3 (Accessible pattern). Let X ∈ Rn×p, λ > 0 and pen be a polyhedral gauge. We say that
β ∈ Rp has an accessible pattern with respect to X and λpen, if there exists y ∈ Rn and β̂ ∈ SX,λpen(y)

such that β̂ pen∼ β.

When pen is the `1-norm scaled by a tuning parameter λ > 0, i.e., pen = λ‖.‖1 the above definition
coincides with the notion of accessibility of sign vectors with respect to X. When pen is the sorted
`1-norm, i.e., pen = ‖.‖w for some w ∈ Rp with w1 > · · · > wp > 0, the above definition coincides with
the notion of accessible SLOPE patterns with respect to X. Proposition 1 provides both a geometric
and an analytic characterization of accessible patterns.

Proposition 1 (Characterization of accessible patterns). Let X ∈ Rn×p and pen : Rp → R be a
real-valued polyhedral gauge.

1) Geometric characterization: The pattern of β ∈ Rp is accessible with respect to X and λpen if
and only if

row(X) ∩ ∂pen(β) 6= ∅.

2) Analytic characterization: The pattern of β ∈ Rp is accessible with respect to X and λpen if and
only if for any b ∈ Rp the implication

Xβ = Xb =⇒ pen(β) ≤ pen(b)

holds.

Based on Proposition 1, it is clear that the notion of accessibility does not depend on the tuning
parameter λ.
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3.2 The noiseless recovery condition: a necessary condition for pattern
recovery with a probability larger than 1/2

The solution path for a penalized estimator is the curve 0 < λ 7→ β̂λ where β̂λ is the unique element of
SX,λpen(y) for fixed y ∈ Rn and X ∈ Rn×p. The solution path for the generalized LASSO or OSCAR
and Clustered LASSO is studied in Tibshirani and Taylor (2012) or Takahashi and Nomura (2020),
respectively. Definition 4 is based on this notion of a solution path. Note that Definition 4 does not
require uniqueness of estimator.

Definition 4 (Noiseless recovery condition). Let pen be a real-valued polyhedral gauge, X ∈ Rn×p and
β ∈ Rp. We say that the pattern of β satisfies the noiseless recovery condition with respect to X and
pen if

∃λ > 0 ∃β̂ ∈ SX,λpen(Xβ) such that β̂ pen∼ β.

For instance, β = 0 satisfies the noiseless recovery condition with respect to X and pen since we
then have Xβ = 0 and 0 ∈ SX,λpen(0). In other words, the noiseless recovery condition means that
in the noiseless case when Y = Xβ, in the solution path, one may pick a minimizer having the same
pattern as β.

The noiseless recovery condition is illustrated for the LASSO in Figure 6 in the particular case
where X and β are given hereafter

X =

(
5/6 1 0
1/3 0 1

)
and β = (10, 0, 0)′.

LASSO solution path

λ

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

1st component

2nd component

3rd component

sign =
(1, 1, 0)

sign =
(0, 1, 0)

sign =
(0, 0, 0)

Figure 6: This figure provides curves of the functions λ > 0 7→ (β̂LASSO
λ )1 (black curve), λ > 0 7→

(β̂LASSO
λ )2 (red curve), λ > 0 7→ (β̂LASSO

λ )3 (blue curve). Note that sign(β) does not satisfy the
noiseless recovery condition. Indeed, sign(β̂LASSO

λ ) = (1, 1, 0)′ for λ ∈ (0, λ1) (where λ1 = 20/3),
sign(β̂LASSO

λ ) = (0, 1, 0)′ for λ ∈ [λ1, λ2) (where λ2 = 25/3) and sign(β̂LASSO
λ )) = (0, 0, 0)′ for λ ≥ λ2.

Consequently, for every λ > 0, sign(β̂LASSO
λ ) 6= (1, 0, 0)′.

In supplementary material, we provides a geometrical characterisation of the noiseless recovery
condition. Neither the above definition nor the geometrical characterisation provide an analytic ex-

10



pression for checking the noiseless recovery condition, but some formulas are given in the literature.
For example, when pen = ‖.‖1, the noiseless recovery condition is equivalent to

‖X ′(X ′I)+sign(βI)‖∞ ≤ 1 and sign(βI) ∈ row(XI), (3)

where I = {i ∈ [p] : βi 6= 0} and XI is the matrix whose columns are (Xj)j∈I . Note that under the
minor assumption that ker(XI) = {0} then sign(βI) ∈ row(XI) occurs and the expression (3) coincides
with the irrepresentability condition: ‖X ′

I
XI(X

′
IXI)

−1sign(βI)‖∞ ≤ 1 where XI is a matrix whose
columns are (Xj)j /∈I (Bühlmann and Van de Geer, 2011; Wainwright, 2009; Zou, 2006; Zhao and Yu,
2006). Thus, the well known irrepresentability condition for LASSO can be thought of as an analytical
shortcut for checking the noiseless recovery condition. Figure 6 confirms this. Indeed, in the above
example, we have ‖X ′

I
XI(X

′
IXI)

−1sign(βI)‖∞ = 30/29 > 1 and based on Figure 6, one may observe
that the noiseless recovery condition does not hold for β. For the sorted `1 norm when M = patt(β),
the noiseless recovery condition is equivalent to

‖X ′(X̃ ′M )+W̃M‖∗w ≤ 1 and W̃M ∈ row(X̃M ),

where ‖.‖∗w is the dual sorted `1 norm, X̃M is the clustered matrix and W̃M is the clustered parameter
(see Bogdan et al. (2022) for more details). In appendix we also provide an analytic characterisation
of noiseless pattern recovery when the penalty term is the supremum norm. However, this article does
not aim at providing a list of analytical shortcuts for checking the noiseless recovery condition. In fact,
we want to show that

a) The noiseless recovery condition is a necessary condition for pattern recovery with a probability
larger than 1/2, see Theorem 1.

b) Thresholded penalized estimators recover the pattern of β under much weaker condition than
the noiseless recovery condition, see Section 4.

Theorem 1. Let Y = Xβ + ε where X ∈ Rn×p is a fixed matrix, β ∈ Rp and ε follows a symmetric
distribution. Let pen be a real-valued polyhedral gauge. If β does not satisfy the noiseless recovery
condition with respect to X and pen, then

P
(
∃λ > 0 ∃β̂ ∈ SX,λpen(Y ) such that β̂ pen∼ β

)
≤ 1/2.

By Theorem 1, if the noiseless recovery condition does not hold for the LASSO (for example, when
‖X ′

I
XI(X

′
IXI)

−1sign(βI)‖∞ > 1), the following holds

P(∃λ > 0 ∃β̂ ∈ SX,λ‖.‖1(Y ) such that sign(β̂) = sign(β)) ≤ 1/2.

This above result is stronger than the one given in Theorem 2 in Wainwright (2009) which shows that
P(sign(β̂LASSO(λ)) = sign(β)) ≤ 1/2 for fixed λ > 0.

Clearly, if β satisfies the noiseless recovery condition with respect to X and pen, β is accessible
with respect to X and pen by taking y = Xβ in the definition of accessibility. In the following section,
we show that thresholded penalized least-squares estimators also recover the pattern of β under the
accessibility condition.

4 Pattern recovery by thresholded penalized estimators
In practice, some additional information about β may be priorly known, e.g. its sparsity. Therefore
it is quite natural to threshold small components of β̂LASSO and so consider the thresholded LASSO
estimator β̂LASSO,τ for some threshold τ ≥ 0. Moreover, if the threshold is appropriately selected,
the estimator allows to recover sign(β) under weaker conditions than LASSO itself (Tardivel and
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Bogdan, 2022). We aim at generalizing this property to a broader class of penalized estimators. Before
introducing the notion of a structured estimator, recall that for any threshold τ ≥ 0, the inclusion
∂‖.‖1(β̂LASSO) ⊆ ∂‖.‖1(β̂LASSO,τ ) occurs. This last inclusion is the keystone concept to introduce the
notion of a structured estimator as defined in Definition 2 in the introduction. Some heuristic examples
are listed hereafter:

(a) The penalty term ‖ · ‖∞ promotes clustering of components that are maximal in absolute value:
Once |β̂j | < ‖β̂‖∞ but |β̂j | ≈ ‖β̂‖∞, it is quite natural to set |β̂j | = ‖β̂‖∞. Let β̂thr be the
estimator taking into account this approximation, obtained after slightly modifying β̂. Then
∂‖.‖∞(β̂) ⊆ ∂‖.‖∞(β̂thr).

(b) The sorted `1 norm penalty promotes clustering of components equal in absolute value: Once
|β̂SLOPE
j | ≈ |β̂SLOPE

i |, it is quite natural to set |β̂SLOPE
i | = |β̂SLOPE

j |. Let β̂thr be the estimator
taking into account this approximation and obtained after modifying slightly β̂SLOPE. Then,
∂‖.‖w(β̂SLOPE) ⊆ ∂‖.‖w(β̂thr).

(c) The penalty term ‖Dtv · ‖ promotes neighboring components to be equal: Once β̂j ≈ β̂j+1, it is
quite natural to set β̂j = β̂j+1. Let β̂thr be the estimator taking into account this approximation
and obtained after modifying slightly β̂. Then, ∂‖Dtv.‖1(β̂) ⊆ ∂‖Dtv.‖1(β̂thr).

The notion of accessibility introduced for penalized estimators in Section 3 also covers the structured
estimators as can be learned from the proposition below.

Proposition 2. Let pen be a real-valued polyhedral gauge, X ∈ Rn×p and β ∈ Rp. We have

∃y ∈ Rn, ∃β̂ ∈ SX,λpen(y) such that β̂ pen∼ β

⇐⇒ ∃y ∈ Rn,∃β̂ ∈ SX,λpen(y) such that ∂pen(β̂) ⊆ ∂pen(β).

According to Propositions 1 and 2, if there exists b ∈ Rp such that Xb = Xβ and pen(b) < pen(β),
then for any y ∈ Rn, λ > 0, and β̂ ∈ SX,λpen(y) we have ∂pen(β̂) 6⊆ ∂pen(β). Consequently, no penalized
nor thresholded penalized estimator can recover the pattern of β.

On the other hand, if pen(b) ≥ pen(β) for all b ∈ Rp with Xb = Xβ, then both penalized and
structured penalized estimator can recover the pattern of β with different “choices” of y. However,
in practice, a statistician does not aim at picking the appropriate y to recover the pattern of β, but
instead uses the response of a linear regression model as a particular y to infer this pattern.

In this direction, by Theorem 1, if Y = Xβ+ε, the noiseless recovery condition (a stronger condition
than the accessibility condition) is necessary for recovering the pattern of β via a penalized estimator
with probability larger than 1/2. In Theorem 2, we relax the stringent noiseless recovery condition
by considering a structured estimator. Before stating this theorem, we introduce a following class of
structured estimators.

Definition 5 (τ -thresholded penalized estimator). Let pen be a real-valued polyhedral gauge, X ∈
Rn×p, y ∈ Rn and λ ≥ 0. Given β̂ ∈ SX,λpen(y), we say that β̂str,τ is a τ -structured estimator of β̂ if

1) ∂pen(β̂) ⊆ ∂pen(β̂str,τ ),

2) ‖β̂ − β̂str,τ‖∞ ≤ τ ,

3) dim(∂pen(b)) ≤ dim(∂pen(β̂str,τ )) for all b with ‖β̂ − b‖∞ ≤ τ .

The thresholded LASSO is, in fact, an example of τ -structured estimator with threshold τ . Another
example of a τ -structured estimator when the penalty term is the supremum norm, is given in Algo-
rithm 1. Theorem 2 shows that a structured estimator recovers the pattern of β under the assumption
that Xb = Xβ implies pen(b) ≥ pen(β) and that the signal is “large enough”, as is formalized in the
following theorem.
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Theorem 2. Let pen be a real-valued polyhedral gauge, X ∈ Rn×p, β ∈ Rp, and λ > 0. Assume that
uniform uniqueness holds, i.e. for any y ∈ Rn, the set SX,λpen(y) contains the unique minimizer β̂(y).
For ε ∈ Rn and for r ∈ N set y(r) = X(rβ) + ε. If pen(b) ≥ pen(β) for any b ∈ Rp with Xb = Xβ,
then there exists r0 ∈ N and τ ≥ 0 such that for all r ≥ r0{

∂pen(b) ⊆ ∂pen(β) for any b ∈ B∞(β̂(y(r)), τ)

∃b0 ∈ B∞(β̂(y(r)), τ) such that b0
pen∼ β

Consequently, a τ -thresholded penalized estimator β̂str,τ (y(r)) recovers the pattern of β.

Similar results in which non-null components are large enough (i.e., r ≥ r0 in Theorem 2) are
given in Tardivel and Bogdan (2022) and Descloux et al. (2022). In particular, Theorem 2 corrobo-
rates Theorem 1 in Tardivel and Bogdan (2022), which proves that the thresholded LASSO estimator
recovers the sign of β once the accessibility condition holds and non-null components of β are large
enough. Similarly as thresholded LASSO, when pen = ‖.‖∞, a τ -estimator can be explicitly computed
as illustrated in Algorithm 1 below.

Algorithm 1 Thresholded penalized least-squares estimator when the penalty term is the `∞-norm:

Require: estimation: β̂, threshold τ ≥ 0.
if ‖β̂‖∞ ≤ τ then
β̂str,τ ← 0.

else

∀j ∈ [p] β̂str,τ
j ←


‖β̂‖∞ − τ if β̂j ≥ ‖β̂‖∞ − 2τ and β̂j ≥ 0,

−‖β̂‖∞ + τ if β̂j ≤ −‖β̂‖∞ + 2τ and β̂j < 0,

β̂j otherwise.

end if
return β̂str,τ

5 A necessary and sufficient condition for uniform uniqueness
Since uniqueness is an assumption in Theorem 2, we provide a a necessary and sufficient condition for
uniform uniqueness of the penalized optimization problem (1) in Theorem 3. This theorem relaxes the
coercivity condition for the penalty term needed in Theorem 1 in Schneider and Tardivel (2022) and
extends the result to encompass methods such as the generalized LASSO.

Theorem 3 (Necessary and sufficient condition for uniform uniqueness). Let X ∈ Rn×p and λ > 0.
Let pen be a real-valued polyhedral gauge, i.e., pen(x) = max{u′1x, . . . , u′kx} for some u1, . . . , uk ∈ Rp
with u1 = 0. Let

SX,λpen(y) = Argmin
b∈Rp

1

2
‖y −Xb‖22 + λpen(b). (4)

Then the solution to the above minimization problem is unique, i.e, SX,λpen(y) is a singleton for all
y ∈ Rn if and only if row(X) does not intersect a face of the polytope B∗ = conv{u1, . . . , uk} whose
dimension2 is strictly less than def(X).

Note that a face F of B∗ satisfies

dim(F ) < def(X) ⇐⇒ codim(F ) > rk(X),

2The dimension of a face F is defined as the dimension of the affine hull of F .
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where codim(F ) = p − dim(F ). We now illustrate some cases of non-uniqueness occurring for the
generalized LASSO with pen(b) = ‖Db‖1 for some D ∈ Rm×p. Clearly, the set of generalized LASSO
minimizers SX,λ‖D.‖1(y) is unbounded for every y ∈ Rn once ker(X) ∩ ker(D) 6= {0}. Consequently,
ker(X) ∩ ker(D) = {0} is a necessary condition for uniform uniqueness, yet, it is not sufficient, as
illustrated in the example below.

Example 2. An example of generalized LASSO optimization problem for which the set of minimizers
is not restricted to a singleton is given in Barbara et al. (2019). We recall this example hereafter:

Argmin
b∈Rp

1

2
‖y −Xb‖22 +

1

2
‖Db‖1 where X =

 1 1 1
3 1 1√
2 0 0

 , D =

1 1 0
1 0 1
2 1 1

 and y =

1
1
0

 .

Note that SX, 12‖D.‖1(y) = conv{(0, 1/2, 0)′, (0, 0, 1/2)′} (Barbara et al., 2019). Since

‖Db‖1 = max{±(4b1 + 2b2 + 2b3),±(2b1 + 2b2),±(2b1 + 2b3)}
then B∗ = conv{±(4, 2, 2)′,±(2, 2, 0)′,±(2, 0, 2)′}. Because the vertex F = (4, 2, 2)′ is an element of
row(X) and satisfies dim(F ) = 0 < 1 = def(X) then, according Theorem 3, the uniform uniqueness
cannot hold. This complies with the fact that SX, 12‖D.‖1(y) is not a singleton.

When ker(X) ∩ ker(D) = {0}, in broad generality, the set of generalized LASSO minimizers is a
polytope (a bounded polyhedron) (Barbara et al., 2019) and extremal points can be explicitly computed
(Dupuis and Vaiter, 2019). This description is relevant when the set of minimizers is not a singleton.

6 Numerical experiments
Below, in our simulations, we consider the linear regression model Y = Xβ + ε where:

• The matrix X = (X1| . . . |X150) ∈ R100×150 has iid N (0, 1/100) entries.

• The random noise ε ∈ Rn has iid N (0, 1) entries.

Hereafter, given a set S ⊆ [p], the notation XS represents a matrix whose columns are (Xi)i∈S .

Numerical experiments for LASSO
For LASSO, the noiseless recovery condition and the accessibility condition depend on β through
sign(β) ∈ {−1, 0, 1}p. Moreover, since the distribution of X is invariant by a) changing the sign of
a column and b) by columns’ permutation then, the probability that a k−sparse vector satisfies the
noiseless recovery condition is given by

PX(‖X ′(X ′I)+1k‖∞ ≤ 1 and 1k ∈ row(XI)), where I = [k] and 1k = (1, . . . , 1)′ ∈ Rk.

Moreover, the accessibility condition is satisfied with probability

PX(min{‖γ‖1 : Xγ = XI1k} = k).

Figure 7 provides these probabilities as functions of k: the number of nonzero components.
Figure 8 illustrates sign recovery properties by LASSO and thresholded LASSO for a particular

observation of X ∈ R100×150, a particular observation of Y ∈ R100 and when β ∈ R150 is a k−sparse
parameter with k ∈ {4, 30}, β1 = · · · = βk/2 = 20 and βk/2+1 = · · · = βk = −20. For the LASSO
estimator, we consider the following setting:

• LASSO with a large tuning parameter λ = 2
√

2 log(150) (as suggested by Candès and Plan
(2009)).

• LASSO with a small tuning parameter; the one provided by SURE formula, which for a given X
and Y minimizes the function λ > 0 7→ 1

2‖Y −Xβ̂
LASSO(λ)‖22 + |{i ∈ [p] : β̂LASSO

i (λ) 6= 0}| (see
e.g. Tibshirani and Taylor (2012) or Vaiter et al. (2017)).
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Figure 7: These curves provide the probability of the noiseless recovery condition and the probability
of the accessibility condition as functions of the support size k. The value k = 50/ log(150) = 9.9
(Wainwright, 2009) is, approximately, the preimage of 0.5 for the noiseless recovery curve and k =
100ρDT (2/3) = 47.8, where ρDT is the phase transition curve (Donoho and Tanner, 2009b,a), is
approximately the preimage of 0.5 for the accessibility curve.

Numerical experiments when the penalty term is the supremum norm
The noiseless recovery condition and the accessibility condition depend on β through sign∞(β) ∈
{−1, ∗, 1}p. Moreover, since the distribution of X is invariant by a) changing the sign of a column
and b) by columns’ permutation then, the probability that a non-null vector having k non-maximal
components in absolute value satisfies the noiseless recovery condition is given by

PX(X̃ ′(X̃ ′)+e1 = e1) where X̃ = (X̃1|XI) with X̃1 =

p−k∑
i=1

Xi and I = {p− k + 1, . . . , p}.

Note that an explicit formula for checking the noiseless recovery condition is given in supplementary
material. Moreover, the accessibility condition is satisfied with probability

PX(min{‖γ‖∞ : Xγ = X̃1} = 1).

Figure 9 provides both the probability of the accessibility condition and the probability of the noiseless
recovery condition as functions of k: the number of non-maximal components in absolute value.

In my opinion the values of β, λ, X and ε, that have been used in Figure 9, should be added.

In Figure 10 we illustrate the pattern recovery properties by a penalized least squares estimator
and a thresholded penalized least squares estimator where the penalty term is the supremum norm.
Specifically, β ∈ R150 satisfies β1 = · · · = β60 = 20, β61 = · · · = β120 = −20 and β121 = · · · = β150 = 0.
The tuning parameter is selected as follows:

• The tuning parameter is given by the SURE formula which, for a given X and Y , minimizes the
function λ > 0 7→ 1

2‖Y −Xβ̂λ‖
2
2 + card({i ∈ [p] : |β̂i| < ‖β̂λ‖∞}) where β̂λ is the penalized least

squares estimator (see e.g. Minami (2020) or Vaiter et al. (2017)).
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Figure 8: Illustrations of sign recovery by LASSO and thresholded LASSO. On the top, when k = 4,
both the noiseless recovery condition and the accessibility condition hold. Thus, both LASSO and
thresholded LASSO can recover the sign of β. With the large tuning parameter λ = 2

√
2 log(150) the

sign of β is recovered both by LASSO and thresholded LASSO (top left). When the tuning parameter
is small (computed by SURE), some null components of β are not correctly estimated at 0 (black
points which do not lie on the x-axis), but there exists a threshold, for which the thresholded LASSO
recovers the sign of β (top right). On the bottom, when k = 30, the accessibility condition holds but
the noiseless recovery condition does not hold, thus thresholded LASSO can recover the sign of β but
LASSO cannot. When the tuning parameter is large: λ = 2

√
2 log(150), both LASSO and thresholded

LASSO fail to recover the sign of β (bottom left). When the tuning parameter is small, some null
components of β are not correctly estimated at 0 but there exists a threshold, for which the thresholded
LASSO recovers the sign of β (bottom right).
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Figure 9: These curves provide the probability of the noiseless recovery and the probability of the
accessibility condition as functions of the number of non-maximal components in absolute value k.
The value k = 50 (Amelunxen et al., 2014) provides, approximately, the preimage of 0.5 for the
accessibility curve.
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Figure 10: Illustrations of pattern recovery by a penalized estimator and a thresholded penalized
estimator where the penalty term is the supremum norm. When k = 30, the accessibility condition
holds, but the noiseless recovery condition does not hold. Thus, as illustrated on this picture, a
thresholded penalized estimator can recover the pattern of β but a penalized estimator cannot.

A Appendix – Existence of the minimizer
We show that the optimization problem of interest in this article always has a minimizer.

Proposition 3. Let X ∈ Rn×p, y ∈ Rn, pen(x) = max{u′1x, . . . , u′lx} where u1, . . . , ul ∈ Rp with
u1 = 0. For

f : b ∈ Rp 7→ 1

2
‖y −Xb‖22 + λpen(b),

the optimization problem minb∈Rp f(b) has at least one minimizer.

For the remainder of this section, without loss of generality, we set λ = 1 since otherwise, this
parameter can be absorbed into the penalty function. The proof of Proposition 3 relies on the following
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two lemmas.

Lemma 1. Let the assumptions of Proposition 3 hold and let (βm)m∈N be a minimizing sequence of
f :

lim
m→∞

f(βm) = inf
b∈Rp

f(b).

Then also (Xβm)m∈N and (pen(βm))m∈N converge. Moreover, these limits do not depend on the
minimizing sequence.

Proof. The sequence (Xβm)n∈N is bounded. Otherwise, ‖y−Xβm‖22 would be unbounded also, contra-
dicting inf{f(b) : b ∈ Rp} ≤ f(0) <∞. Let β̃m be another minimizing sequence. Note that also Xβ̃m
is bounded. Now extract arbitrary converging subsequences (Xβnm)m∈N and (Xβ̃ñm)m∈N with limits
l and l̃, respectively. Note that (βnm)m∈N and (β̃ñm)m∈N are still minimizing sequences so that also
pen(βnm) and pen(β̃ñm) must converge. We now show that l = l̃. If l 6= l̃, set β̄m = (βnm + β̃ñm)/2. By
the above considerations, (f(β̄m))m∈N is convergent. Since the function z ∈ Rn 7→ ‖y − z‖22 is strictly
convex and pen is convex, we may deduce that

lim sup
m→∞

f(β̄m) ≤ 1

2
‖y − (l + l̃)/2‖22 + lim sup

m→∞
pen(β̄m)

<
1

2

(
‖y − l‖22/2 + ‖y − l̃‖22/2

)
+ lim
m→∞

pen(βnm)/2 + lim
m→∞

pen(β̃ñm)/2

=
1

2
lim
m→∞

f(βnm) +
1

2
lim
m→∞

f(β̃ñm) = inf
b∈Rp

f(b),

yielding a contradiction. Since the selection of convergent subsequences was arbitrary, this implies
that (Xβm)m∈N and (Xβ̃m)m∈N share a unique limit point and that the sequences (pen(βm))m∈N and
(pen(β̃m))m∈N converges as well.

We remark that Lemma 1 also holds for any non-negative, convex function in place of the polyhedral
gauge pen.

Lemma 2. Let the assumptions of Proposition 3 hold and let γ ≥ 0. The optimization problem

min
b∈Rp
‖y −Xb‖22 subject to pen(b) ≤ γ (5)

has at least one minimizer.

Proof. Let Pγ = {b ∈ Rp : pen(b) ≤ γ} be the closed and convex feasible region of (5). We set z = Xb
and note that the linearly transformed set XPγ is still closed and convex. Therefore, the minimization
problem

min ‖y − z‖22 subject to z ∈ XPγ

has a unique solution ẑ ∈ XPγ , namely, the projection of y onto XPγ . Consequently, ẑ = Xb̂ for some
b̂ ∈ Pγ , where b̂ is not necessarily unique. Finally, b̂ clearly is a solution of the optimization problem
(5).

Before we turn to the proof of Proposition 3, we make the following observations. Note that we
can decompose the polyhedron Pγ = {b ∈ Rp : pen(b) ≤ γ} = {b ∈ Rp : u′1b, . . . , u

′
lb ≤ γ}, where

γ ≥ 0, into the sum of a polyhedral cone (the so-called recession cone of Pγ) and a polytope, (see, e.g.,
Ziegler, 2012, Theorem 1.2 and Proposition 1.12). For γ = 1, we can therefore write

P1 = {b ∈ Rp : u′1b ≤ 0, . . . , u′lb ≤ 0}+ E,

where E is a polytope and therefore bounded. For arbitrary γ ≥ 0, we then write

Pγ = P0 + γE. (6)
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Proof of Proposition 3. Let (βm)m∈N be a minimizing sequence of f . By Lemma 1, both sequences
(Xβm)m∈N and (pen(βm))m∈N converge to, say, l and γ, respectively. This implies that

1

2
‖y − l‖22 + γ = inf

b∈Rp
f(b).

Let β̂ be an arbitrary solution of (5). We prove that f(β̂) = ‖y− l‖22 + γ. For this, we distinguish the
following two cases.

1) Assume that γ > 0. For n large enough so that pen(βm) > 0, we set un as

um =
γ

pen(βm)
βm.

Clearly, pen(um) = γ so that um ∈ Pγ . Consequently, by definition of β̂, we have ‖y − Xβ̂‖22 ≤
‖y −Xum‖22 and pen(β̂) ≤ γ, so that

f(β̂) =
1

2

∥∥∥y −Xβ̂∥∥∥2

2
+ pen(β̂) ≤ 1

2
‖y −Xum‖22 + γ −→ 1

2
‖y − l‖22 + γ

as m→∞, implying f(β̂) = inf{f(b) : b ∈ Rp}.
2) Assume that γ = 0. Using (6), we can write βm = um + pen(βm)vm with um ∈ P0 and vm ∈ E,

where E is bounded. Since Xβm → l and pen(βm)vn → 0 one may deduce that also Xum → l, yielding

f(β̂) =
1

2

∥∥∥y −Xβ̂∥∥∥2

2
≤ 1

2
‖y −Xum‖22 −→

1

2
‖y − l‖22

as m→∞ implying again that f(β̂) = inf{f(b) : b ∈ Rp} which completes the proof.

B Appendix – Facts about polytopes and polyhedral gauges
We recall some basic definitions and facts about polytopes which we will use throughout the proofs.
The following can be found in textbooks such as Gruber (2007) and Ziegler (2012).

A set P ⊆ Rp is called a polytope if it is the convex hull of a finite set of points {v1, . . . , vk} ⊆ Rp,
namely,

P = conv{v1, . . . , vk}.
The dimension dim(P ) of a polytope is defined as the dimension of aff(P ), the affine subspace spanned
by P . An inequality a′x ≤ c is called a valid inequality of P if P ⊆ {x ∈ Rp : a′x ≤ c}. A face F of P
is any subset F ⊆ P that satisfies

F = {x ∈ P : a′x = c} for some a ∈ Rp and c ∈ R with P ⊆ {x ∈ Rp : a′x ≤ c}.

Note that F = ∅ and F = P are faces of P and that any face F is again a polytope. A non-empty
face F with F 6= P is called proper. A point x0 ∈ P lies in ri(P ), the relative interior of P , if x0 is
not contained in a proper face of P . We state two useful properties of faces in the following lemma.

Lemma 3. Let P ⊆ Rp be a polytope given by P = conv{v1, . . . , vk}, where v1, . . . , vk ∈ Rp. The
following properties hold.

i) If F and F̃ are faces of P , then so is F ∩ F̃ .

ii) Let L be an affine line contained in the affine span of P . If L ∩ ri(P ) 6= ∅, then L intersects a
proper face of P .

Lemma 4 characterizes the connection between a certain class of convex functions (which en-
compasses polyhedral gauges) and the faces of a related polytope. The lemma is needed to prove
Theorem 3.
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Lemma 4. Let v1, . . . , vk ∈ Rp, P be the polytope P = conv{v1, . . . , vk} and φ be the convex function
defined by

φ(x) = max{v′1x, . . . , v′kx} for x ∈ Rp.
Then the subdifferential of φ at x is a face of P and is given by

∂φ(x) = conv{vl : l ∈ Iφ(x)} = {s ∈ P : s′x = φ(x)}, where Iφ(x) = {l ∈ [k] : v′lx = φ(x)}.

Conversely, let F be a non-empty face of P . Then F = ∂φ(x) for some x ∈ Rp.

Proof. The fact that ∂φ(x) = conv{ul : l ∈ Iφ(x)} can be found in Hiriart-Urruty and Lemarechal
(2001, p. 183). To prove the second equality, we consider the following. If l ∈ Iφ(x), by definition of
Iφ(x), v′lx = φ(x) and thus vl ∈ {s ∈ P : s′x = φ(x)}. Since {s ∈ P : s′x = φ(x)} is a convex set, one
may deduce that

conv{vl : l ∈ Iφ(x)} ⊆ {s ∈ P : s′x = φ(x)}.

Conversely, assume s ∈ P is such that s /∈ conv{vl : l ∈ Iφ(x)}. We then have s =
∑k
l=1 αlvl where

α1, . . . , αk ≥ 0,
∑k
l=1 αl = 1 and αl0 > 0 for some l0 /∈ Iφ(x). Since v′lx ≤ φ(x) for all l ∈ [k] and

u′l0x < φ(x), we also get

s′x =

k∑
l=1

αlv
′
lx < φ(x).

Consequently, s /∈ {s ∈ P : s′x = φ(x)} and thus

{s ∈ P : s′x = φ(x)} ⊆ conv{vl : l ∈ Iφ(x)}.

Therefore, ∂φ(x) = conv{vl : l ∈ Iφ(x)} = {s ∈ P : s′x = φ(x)}.
Now we show that the subdifferentials of φ are the (non-empty) faces of P . Let x ∈ Rp. By

definition of φ, v′lx ≤ φ(x) for every l ∈ [k] so that the inequality x′s ≤ φ(x) is valid for all s ∈ P . This
implies that ∂φ(x) is a non-empty face of P . Conversely, let F = {s ∈ P : a′s = c} be a non-empty
face of P where a ∈ Rp, c ∈ R and a′s ≤ c is a valid inequality for all s ∈ P . We prove that F = ∂φ(a).
For this, take any s ∈ F . We get a′s = c as well as a′s ≤ φ(a) as shown above, implying that c ≤ φ(a).
Analogously, for any s ∈ ∂φ(a), a′s = φ(a) as well as a′s ≤ c since ∂φ(a) ⊆ P , yielding φ(a) ≤ c.
Therefore we may deduce that φ(a) = c and thus F = ∂φ(a).

C Appendix – Proofs
We use the following notation in the appendix.

• Let S be a subset of Rp then

– By conv(S) we denote the convex hull of a subset S. In particular when S = {x1, . . . , xl}
then

conv(S) =

{
l∑
i=1

αixi : α1 ≥ 0, . . . , αl ≥ 0,

l∑
i=1

αi = 1

}
.

– By aff(S) we denote the affine hull of a subset S. In particular when S = {x1, . . . , xl} then

aff(S) =

{
l∑
i=1

αixi :

l∑
i=1

αi = 1

}
.

– By
−→
aff(S) we denote the vector space parallel to aff(S). In particular when S = {x1, . . . , xl}

then
−→
aff(S) =

{
l∑
i=1

αixi :

l∑
i=1

αi = 0

}
.
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– By lin(S) we denote the vector span of S.

– By ri(S) we denote the relative interior of S.

• Given a matrix A ∈ Rn×p, col(A) represents the vector space spanned by columns of A: col(A) =
{Az : z ∈ Rp}.

• The orthogonal complement of a vector space V is denoted V ⊥. In the particular case where
V = lin(v), for some v ∈ Rp, then v⊥ represents lin(v)⊥, the hyperplane orthogonal to v.

C.1 Proof of Theorem 3 from Section 5
The following lemma, also needed to show Theorem 3, states that the fitted values are unique over
all non-unique solutions of the penalized problem for a given y. It is a generalization of Lemma 1 in
Tibshirani (2013), which shows this fact for the special case of the LASSO.

Lemma 5. Let X ∈ Rn×p, y ∈ Rn, λ > 0 and pen be a polyhedral gauge. Then Xβ̂ = Xβ̃ and
pen(β̂) = pen(β̃) for all β̂, β̃ ∈ SX,pen(y).

Proof. Assume that Xβ̂ 6= Xβ̃ for some β̂, β̃ ∈ SX,λpen(y) and let β̌ = (β̂+ β̃)/2. Because the function
µ ∈ Rn 7→ ‖y − µ‖22 is strictly convex, one may deduce that

‖y −Xβ̌‖22 <
1

2
‖y −Xβ̂‖22 +

1

2
‖y −Xβ̃‖22.

Consequently,

1

2
‖y −Xβ̌‖22 + λpen(β̌) <

1

2

(
1

2
‖y −Xβ̂‖22 + λpen(β̂) +

1

2
‖y −Xβ̃‖22 + λpen(β̃)

)
,

which contradicts both β̂ and β̃ being minimizers. Finally, Xβ̂ = Xβ̃ clearly implies pen(β̂) =
pen(β̃).

Proof. ( =⇒ ) Assume that there exists a face F of B∗ = conv{u1, . . . , uk} that intersects row(X) and
satisfies dim(F ) < def(X). By Lemma 4, F = ∂pen(β̂) for some β̂ ∈ Rp. Let z ∈ Rn with X ′z ∈ F ,
which exists by assumption. Now let y = Xβ̂ + λz. Note that β̂ ∈ SX,λpen(y) since

0 ∈ X ′Xβ̂ −X ′y + λ∂pen(β̂) ⇐⇒ 1

λ
X ′(y −Xβ̂) = X ′z ∈ ∂pen(β̂).

We now construct β̃ ∈ SX,λpen(y) with β̃ 6= β̂. According to Lemma 4, ∂pen(β̂) = conv{ul : l ∈ I}
where I = Ipen(β̂) = {l ∈ [k] : u′lβ̂ = pen(β̂)} and thus u′lβ̂ < pen(β̂) whenever l /∈ I. We now show
that it is possible to pick h ∈ ker(X) with h 6= 0 but u′lh = 0 for all l ∈ I. We then make h small
enough such that u′l(β̂ + h) ≤ pen(β̂) still holds for all l /∈ I, which in turn implies that pen(β̂ + h) =

max{u′lβ̂ : l ∈ I} = pen(β̂). This, together with Xβ̂ = X(β̂ + h), yields β̂ 6= β̃ = β̂ + h ∈ SX,λpen(y)
also. We now show that ker(X)∩ col(U)⊥ 6= {0}, where U = (ul)l∈I ∈ Rp×|I|. For this, we distinguish
two cases:

1) Assume that 0 ∈ aff{ul : l ∈ I}. Then aff{ul : l ∈ I} = col(U) and dim(F ) = rk(U) < def(X).
This implies that

dim(ker(X)) + dim(col(U)⊥) > p,

which proves what was claimed.
2) Assume that 0 /∈ aff{ul : l ∈ I}. Note that this implies that v = X ′z ∈ row(X)∩conv{ul : l ∈ I}

satisfies X ′z 6= 0. We also have rk(U) = dim(aff{ul : l ∈ I}) + 1 = dim(F ) + 1 ≤ def(X) which implies
that

dim(ker(X)) + dim(col(U)⊥) ≥ p.
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If ker(X) ∩ col(U)⊥ = {0}, then Rp = ker(X) ⊕ col(U)⊥. But we also have ker(X) ⊆ v⊥ as well as
col(U)⊥ ⊆ v⊥, yielding a contradiction and proving the claim.

(⇐= ) Assume that there exists y ∈ Rn such that β̂, β̃ ∈ SX,λpen(y) with β̂ 6= β̃. We then have

1

λ
X ′(y −Xβ̂) ∈ ∂pen(β̂) and

1

λ
X ′(y −Xβ̃) ∈ ∂pen(β̃).

According to Lemma 5, Xβ̂ = Xβ̃, thus 1
λX
′(y − Xβ̂) = 1

λX
′(y − Xβ̃). Consequently, one may

deduce that row(X) intersects the face ∂pen(β̂) ∩ ∂pen(β̃). Let F ∗ = conv{ul : l ∈ I∗} be a face of
∂pen(β̂) ∩ ∂pen(β̃) of smallest dimension among all faces of ∂pen(β̂) ∩ ∂pen(β̃) intersecting row(X). By
minimality of dim(F ∗), row(X) intersects the relative interior of F ∗, namely, there exists z ∈ Rn such
that v = X ′z lies in F ∗, but not on a proper face of F ∗. We will now show that if dim(F ∗) ≥ def(X),
then row(X) intersects a proper face of F ∗, yielding a contradiction.

For this, first observe that dim(F ∗) = dim(aff{ul : l ∈ I∗}) and that we can write the affine space
aff{ul : l ∈ I∗} = ul0 + col(Ũ∗) where l0 ∈ I∗ and Ũ∗ = (ul−ul0)l∈I∗\{l0} ∈ Rp×|I∗|−1, implying that
dim(F ∗) = rk(Ũ∗).

Now let h = β̂ − β̃ 6= 0. Clearly, h ∈ ker(X). Moreover, since pen(β̂) = pen(β̃) by Lemma 5, and
since ul ∈ ∂pen(β̂) ∩ ∂pen(β̃) for all l ∈ I∗, by Lemma 4, we get

u′lh = u′lβ̂ − u′lβ̃ = pen(β̂)− pen(β̃) = 0 ∀l ∈ I∗.

Therefore, h ∈ ker(X) ∩ col(U∗)⊥, where U∗ = (ul)l∈I∗ ∈ Rp×|I∗|. Assume that dim(F ∗) ≥ def(X).
Then

dim(row(X)) + dim(col(Ũ∗)) ≥ rk(X) + def(X) = p.

If row(X) ∩ col(Ũ∗) = {0}, then Rp = row(X) ⊕ col(Ũ∗). However, the last relationship cannot hold
since row(X) = ker(X)⊥ ⊆ h⊥ as well as col(Ũ∗) ⊆ col(U∗) ⊆ h⊥, where h 6= 0. Consequently,
there exists 0 6= ṽ ∈ row(X) ∩ col(Ũ∗). The affine line L = {X ′z + tṽ : t ∈ R} ⊆ row(X) intersects
the relative interior of F ∗ at t = 0 and clearly lies in aff(F ∗) = ul0 + col(Ũ∗), since X ′z ∈ F ∗ and
ṽ ∈ col(Ũ∗). Therefore, L must intersect a proper face of F ∗ by Lemma 3. But then also row(X)
intersects a proper face of F ∗, which yields the required contradiction.

C.2 Proofs for Section 3
Proof of Proposition 1

The following lemma can be seen as generalizing Proposition 4.1 from Gilbert (2017) from the `1-norm
to all convex functions.

Lemma 6. Let β ∈ Rp and φ be a convex function on Rp. Then row(X) intersects ∂φ(β) if and only
if, for any b ∈ Rp, the following implication holds

Xβ = Xb =⇒ φ(β) ≤ φ(b). (7)

Proof. Consider the function ιβ : Rp → {0,∞} given by

ιβ(b) =

{
0 when Xb = Xβ

∞ else.

Then (7) holds for any b ∈ Rp if and only if β is a minimizer of the function b 7→ φ(b) + ιβ(b). It
is straightforward to show that ∂ιβ (β) = row(X). We can therefore deduce that the implication (7)
holds for any b ∈ Rp if and only if

0 ∈ row(X) + ∂φ(β) ⇐⇒ row(X) ∩ ∂φ(β) 6= ∅.
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Proof of Proposition 1. By Lemma 6, the geometric characterization of accessible patterns is equivalent
to the analytic one. We show the geometric characterization.

( =⇒ ) When the pattern of β is accessible with respect to X and λpen, there exists y ∈ Rn and
β̂ ∈ SX,λpen(y) such that β̂ pen∼ β. Because β̂ is a minimizer, 1

λX
′(y − Xβ̂) ∈ ∂pen(β̂) = ∂pen(β), so

that, clearly, row(X) intersects ∂pen(β).

(⇐= ) If row(X) intersects the face ∂pen(β), then there exists z ∈ Rn such that X ′z ∈ ∂pen(β). For
y = Xβ + λz, we have 1

λX
′(y−Xβ) = X ′z, so that β ∈ SX,λpen(y), and the pattern of β is accessible

with respect to X and λpen.

Proof of Theorem 1

Lemma 7. Let φ : Rp → R be the polyhedral gauge defined as

φ(x) = max{u′1x, . . . , u′kx} for some u1, . . . , uk ∈ Rp

If ∂φ(x) = ∂φ(v), we have ∂φ(x) = ∂φ(αx+ (1− α)v) = ∂φ(v) for all α ∈ [0, 1].

Proof. Let s ∈ ∂φ(x) = ∂φ(v). Since s is a subgradient at x and at v, the following two inequalities
hold

φ(αx+ (1− α)v) ≥ φ(x)− (1− α)s′(x− v)

φ(αx+ (1− α)v) ≥ φ(v) + αs′(x− v).

Multiplying the first inequality by α, the second by (1− α) and adding them, we get

φ(αx+ (1− α)v) ≥ αφ(x) + (1− α)φ(v).

Using the convexity of φ, we arrive at

φ(αx+ (1− α)v) = αφ(x) + (1− α)φ(v).

By Lemma 4 we have ∂φ(x) = conv{ul : l ∈ I}, where Iφ(x) = {l ∈ [k] : u′lx = φ(x)}. Therefore, if
ul ∈ ∂φ(x) = ∂φ(v), then u′lx = φ(x) and u′lv = φ(v), thus

u′l(αx+ (1− α)v) = αφ(x) + (1− α)φ(v) = φ(αx+ (1− α)v).

Consequently, ul ∈ ∂φ(αx + (1 − α)v). On the other hand, if ul /∈ ∂φ(x), then u′lx < φ(x) and
u′lv < φ(v), thus

u′l(αx+ (1− α)v) < αφ(x) + (1− α)φ(v) = φ(αx+ (1− α)v).

Consequently, ul /∈ ∂φ(αx+ (1− α)v) and the claim follows.

Lemma 8. Let X ∈ Rn×p and β ∈ Rp. The following set is convex

Vβ = {y ∈ Rn : ∃λ > 0 ∃β̂ ∈ SX,λpen(y) such that β̂ pen∼ β}.

Note that Vβ may be empty.

Proof. Assume that Vβ 6= ∅. Let y, ỹ ∈ Vβ . Then there exist λ > 0 and λ̃ > 0 such that β̂ ∈ SX,λpen(y)

and β̃ ∈ SX,λ̃pen(ỹ) with ∂pen(β̂) = ∂pen(β̃) = ∂pen(β). Consequently,

X ′(y −Xβ̂) ∈ λ∂pen(β) and X ′(ỹ −Xβ̃) ∈ λ̃∂pen(β).

Let α ∈ (0, 1) and y̌ = αy+ (1−α)ỹ. Define λ̌ = αλ+ (1−α)λ̃ and β̌ = αβ̂+ (1−α)β̃. We show that
y̌ ∈ Vβ . Indeed, observe that

X ′
(
y̌ −Xβ̌

)
= αX ′(y −Xβ̂) + (1− α)X ′(ỹ −Xβ̃) ∈ αλ∂pen(β) + (1− α)λ̃∂pen(β) = λ̌∂pen(β).

By Lemma 7, ∂pen(β̌) = ∂pen(αβ̂ + (1−α)β̃) = ∂pen(β), so that β̌ ∈ SX,λ̌pen(y̌) also, which proves the
claim.
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Proof of Theorem 1. Assume that the noiseless recovery condition does not hold for β. Then Xβ /∈ Vβ ,
where Vβ is defined as in Lemma 8. Consequently, by convexity of Vβ , we have Xβ + ε /∈ Vβ or
Xβ − ε /∈ Vβ for any realization of ε ∈ Rn. Therefore

1 = Pε({Xβ + ε /∈ Vβ} ∪ {Xβ − ε /∈ Vβ})
≤ Pε({Xβ + ε /∈ Vβ}) + P({Xβ − ε /∈ Vβ}) = 2Pε({Xβ + ε /∈ Vβ}).

Consequently,

1

2
≥ Pε({Xβ + ε ∈ Vβ}) = Pε(∃λ > 0 ∃β̂ ∈ SX,λpen(Y ) such that β̂ pen∼ β).

C.3 Proof for Section 4
Proof of Proposition 2

Proof of Proposition 2. We only need to prove the implication (⇐= ), as the other direction is obvious.
Assume that ∂pen(β̂) ⊆ ∂pen(β). Since β̂ ∈ SX,λpen(y), we have 1

λX
′(y − Xβ̂) ∈ ∂pen(β̂) ⊆ ∂pen(β).

Consequently, row(X) intersects ∂pen(β) which implies that the pattern of β is accessible with respect
to X and pen by Proposition 1. Consequently, there exists y ∈ Rn and there exists β̂ ∈ SX,λpen(y) for
which β̂ pen∼ β.

Proof of Theorem 2

Lemmas 9 and 10 are used to prove Theorem 2 which claims that, asymptotically, β̂(y(r))/r converges
to β when r tends to ∞.

Before stating these lemmas, note that for a non-empty closed and convex set C ⊆ Rp and x ∈ C,
the asymptotic cone is defined as (cf. Hiriart-Urruty and Lemarechal, 2001)

C∞ = {d ∈ Rp : x+ td ∈ C ∀t > 0}.

Moreover, the following statements hold.

• The set C∞ does not depend on the choice of x ∈ C.

• A non-empty closed and convex set C is compact if and only if C∞ = {0}.

Lemma 9. Let pen be a real-valued polyhedral gauge on Rp, X ∈ Rn×p, v ∈ col(X). Let K1 ≥ 0,
K2 ≥ 0 be large enough such that C = {b ∈ Rp : pen(b) ≤ K1, ‖Xb − v‖2 ≤ K2} is non-empty. If
ker(X) ∩ ker(pen) = {0} then, the set C is compact.

Proof. Clearly, C is closed and convex. If pen(d) > 0 or if Xd 6= 0 then d /∈ C∞. Consequently,
C∞ ⊂ ker(X) ∩ ker(pen) = {0} and thus C is compact.

Lemma 10. Let X ∈ Rn×p, λ > 0, pen be a real-valued polyhedral gauge on Rp and assume that
uniform uniqueness holds for (1). Let β ∈ Rp, ε ∈ Rn and set y(r) = X(rβ) + ε. If β is accessible with
respect to X and pen, then

lim
r→∞

β̂(y(r))/r = β.

Proof. Since β̂(y(r)) is a minimizer of SX,λpen(y(r)), the following inequality holds

1

2
‖y(r) −Xβ̂(y(r))‖22 + λpen(β̂(y(r))) ≤ 1

2
‖y(r) −X(rβ)‖22 + λpen(rβ).

24



Since y(r) −X(rβ) = ε, one may deduce that

λpen(β̂(y(r))) ≤ 1

2
‖ε‖22 + λpen(rβ)

=⇒ pen(β̂(y(r))/r) ≤ ‖ε‖
2
2

2λr
+ pen(β)

=⇒ lim sup
r→∞

pen(β̂(y(r))/r) ≤ pen(β). (8)

Consequently, the sequence
(

pen(β̂(y(r))/r)
)
r∈N

is bounded. In addition, the Cauchy-Schwarz in-
equality gives the following implications

1

2
‖ε+X(rβ)−Xβ̂(y(r))‖22 + λpen(β̂(y(r))) ≤ 1

2
‖ε‖22 + λpen(rβ)

=⇒ − ‖ε‖2 ‖X(rβ)−Xβ̂(y(r))‖2 +
1

2
‖X(rβ)−Xβ̂(y(r))‖22 ≤ λpen(rβ)− λpen(β̂(y(r)))

=⇒ − ‖ε‖2/r
∥∥∥X (β̂(y(r))/r − β

)∥∥∥
2

+
1

2

∥∥∥X (β̂(y(r))/r − β
)∥∥∥2

2
≤ λpen(β)/r − λ/r pen

(
β̂(y(r))/r

)
.

(9)

Let α ∈ [0,∞] be the limes superior of the sequence(∥∥∥X (β̂(y(r))/r − β
)∥∥∥

2

)
r∈N

. (10)

By (9) we get

lim sup
r→∞

λpen(β)− λpen(β̂(y(r))/r)

r
≥

{
α2/2 if α <∞
∞ if α =∞.

Moreover, by (8) we get

lim sup
r→∞

λpen(β)− λpen(β̂(y(r))/r)

r
= 0

We can conclude that α = 0 and that the sequence (10) converges to 0.
Due to uniform uniqueness, we have ker(pen)∩ ker(X) = {0} and thus, by Lemma 9, the sequence

(β̂(y(r))/r)r∈N is bounded. Therefore, to prove that limr→∞ β̂(y(r))/r = β, it suffices to show that
β is the unique accumulation point of this sequence. We extract a subsequence (β̂(yφ(r))/φ(r))r∈N
converging to γ ∈ Rp (where φ : N → N is an increasing function). By (8), one may deduce that
pen(γ) ≤ pen(β). Moreover, we get that

0 = lim
r→∞

∥∥∥X (β̂(y(φ(r))/φ(r)− β
)∥∥∥2

2
= ‖X(γ − β)‖22.

Finally, γ satisfies
Xγ = Xβ and pen(γ) ≤ pen(β),

and we show that the only γ ∈ Rp satisfying the above is γ = β. Because the pattern of β is accessible,
there exists z ∈ Rn such that X ′z ∈ ∂pen(β). Let y = Xβ + λz, then β ∈ SX,λpen(y). Consequently,
if there exists γ 6= β such that Xβ = Xγ and pen(γ) ≤ pen(β), one may deduce that γ ∈ SX,λpen(y)
also, contradicting the uniform uniqueness assumption. Consequently, γ = β and

lim
r→∞

β̂(y(r))

r
= β.
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Finally, the proof of the sufficient condition in Theorem 2 is based on Lemma 10 and on Lemma 11
given below.

Lemma 11. Let pen be a real-valued polyhedral gauge on Rp. Then, there exists τ > 0 depending on
β such that

∂pen(b) ⊆ ∂pen(β) for all b ∈ B∞(β, τ).

Proof. Let I = {l ∈ [k] : u′lβ = pen(β)}. By Lemma 4, ∂pen(β) = conv{ul}l∈I . Since

u′lβ < pen(β) ∀l /∈ I,

and since linear functions and the gauge pen are continuous, one may pick τ > 0 small enough such
that

u′lb < pen(b) ∀l /∈ I, ∀b ∈ B∞(β, τ).

Consequently, for any b ∈ B∞(β, τ), we have J = {l ∈ [k] : u′lb = pen(b)} ⊆ I and thus

∂pen(b) = conv{ul}l∈J ⊆ conv{ul}l∈I = ∂pen(β).

Proof of Theorem 2. By Lemma 11, there exists τ0 > 0 such that for any b ∈ B∞(β, τ0) we have
∂pen(b) ⊆ ∂pen(β). By Lemma 10, β̂(y(r))/r converges to β when r tends to∞. Consequently, we have

∃r0 ∈ N such that ∀r ≥ r0, ‖β̂(y(r))/r − β‖∞ ≤ τ0/2.

Consequently, for r ≥ r0 we have

∀b ∈ B∞(β̂(y(r))/r, τ0/2), ∂pen(b) ⊆ ∂pen(β) and

∃b̃ ∈ B∞(β̂(y(r))/r, τ0/2), ∂pen(b̃) = ∂pen(β).

Since for any t > 0 and any x ∈ Rp, we have ∂pen(x) = ∂pen(tx), one may deduce that

∀b ∈ B∞(β̂(y(r)), rτ0/2), ∂pen(b) ⊆ ∂pen(β)

∃b̃ ∈ B∞(β̂(y(r)), rτ0/2), ∂pen(b̃) = ∂pen(β)

Consequently, the claim follows by taking τ = rτ0/2.

C.4 Pattern equivalence classes are relative interior normal cones of B∗

Hereafter, we remind the definition of a normal cone (see e.g. Hiriart-Urruty and Lemarechal (2001)
page 65). Let K be a closed convex set in Rp and x ∈ K. The normal cone of K at x is

NK(x) := {s ∈ Rp : s′(z − x) ≤ 0 ∀z ∈ K}.

The following fact is particularly relevant when K is a polytope. Let F be a face of K. If x ∈ ri(F )
and z ∈ ri(F ) then NK(x) = NK(z) (see e.g. Ewald (1996) page 16).

We already know that ∂pen(x) is a face of the polytope B∗ (see Lemma 4). According to the above
property, the normal cone NB∗(s) does not depend on s ∈ ri(∂pen(x)) and we denote it NB∗(∂pen(x)).
The following notation represents the pattern equivalence class of an arbitrary x ∈ Rp for pen∼

Cx :=
{
w ∈ Rp : w

pen∼ x
}
.

Our objective is to prove Theorem 4.
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Theorem 4. Let x ∈ Rp then Cx = ri(NB∗(∂pen(x))).

To prove the above theorem we are going to use some lemmas listed hereafter.

Lemma 12. Let x ∈ Rp then Cx ⊂ NB∗(∂pen(x))

Proof. Let w ∈ Cx and s ∈ ri(∂pen(x)). Since s ∈ ∂pen(x) = ∂pen(w) then, for z ∈ B∗, we have

w′(z − s) = w′z︸︷︷︸
≤pen(w)

− w′s︸︷︷︸
=pen(w)

≤ pen(w)− pen(w) = 0

Consequently, w ∈ NB∗(s) = NB∗(∂pen(x)).

Lemma 13. Let x ∈ Rp then lin(NB∗(∂pen(x))) ⊆
−→
aff(∂pen(x))⊥.

Proof. Let v ∈ ri(∂pen(x)), s ∈ ri(∂pen(x)) (then NB∗(s) = NB∗(v) = NB∗(∂pen(x))) and z ∈
NB∗(∂pen(x)). Since z ∈ NB∗(s) we have

z′(w − s) ≤ 0 ∀w ∈ B∗.

In particular z′(v − s) ≤ 0. Moreover, since z ∈ NB∗(v), we have

z′(w − v) ≤ 0 ∀w ∈ B∗.

In particular z′(s − v) ≤ 0. Therefore, z′(s − v) = 0. Finally, since NB∗(∂pen(x)) is perpendicular to
the set {s− v : s, v ∈ ri(∂pen(x))}, one may deduce that

lin(NB∗(s)) ⊆ lin({s− v : s, v ∈ ri(∂pen(x))})⊥ ⊆
−→
aff(∂pen(x))⊥.

Lemma 14. Let x ∈ Rp then Cx ⊂ ri(NB∗(∂pen(x)))

Proof. Let w ∈ Cx and let z ∈ B(w, ε) ∩ aff(NB∗(∂pen(x))) where ε > 0. Let us show that for
ε > 0 small enough z ∈ Cx. According to Lemma 11, for ε > 0 small enough we have z ∈ B(w, ε)
implies ∂pen(z) ⊆ ∂pen(w) = ∂pen(x). Moreover, if ∂pen(z) ( ∂pen(x) then pick u ∈ ∂pen(z) and
v ∈ ∂pen(x) \ ∂pen(z). Since u − v ∈

−→
aff(∂pen(x)), since x ∈ NB∗(∂pen(x)) (Lemma 1) and z ∈

aff(NB∗(∂pen(x))) = lin(NB∗(∂pen(x))) then, according to Lemma 2, we have x′(u−v) = 0 = z′(u−v).
Consequently, u′z = pen(z) = v′z and thus v ∈ ∂pen(z) which leads to a contradiction. Therefore
z ∈ Cx.

Proof of Theorem 4. As proved in Lemma 4 any non-empty face of B∗ can be written as ∂pen(x) for
some x ∈ Rp. Consequently, one may chose a subset E ⊂ Rp for which φ : z ∈ E 7→ ∂pen(z) is a
bijection between E and non-empty faces of B∗. Note that E is finite (since a polytope has a finite
number of faces) and let us set E = {x1, . . . , xl} then we have the following properties

• Because ∂pen(xi) 6= ∂pen(xj) once i 6= j then Cxi ∩ Cxj = ∅. Moreover, let x ∈ Rp then ∂pen(x)
is a face of B∗. Therefore ∂pen(x) = ∂pen(xi) for some i ∈ [l] thus x ∈ Cxi . Consequently,
Cx1

, . . . , Cxl is a partition of Rp.

• Relative interior normal cones of a polytope provides a partition (see e.g. Ewald page 17).
Consequently, ri(NB∗(∂pen(x1))), . . . , ri(NB∗(∂pen(xl))) is also a partition of Rp.

Because Cxi ⊂ ri(NB∗(∂pen(xi))) partitions given above coincide. Consequently, for all i ∈ [l], we have
Cxi = ri(NB∗(∂pen(xi))). Finally, for all x ∈ Rp we have x ∈ Cxi for some i ∈ [l] and thus

Cx = Cxi = ri(NB∗(∂pen(xi))) = ri(NB∗(∂pen(x))).
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