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1 Introduction
Let us consider the linear regression model

Y = Xβ + ε,

where X ∈ Rn×p is a design matrix, ε ∈ Rn represents a random noise having a symmetric and
continuous distribution with a positive density on Rp (for instance, one may think that ε has iid
N (0, σ2) entries), and β ∈ Rp is an unknown vector of regression coefficients.

Many penalized estimators of β have been broadly studied in literature e.g. LASSO (Chen and
Donoho, 1994; Tibshirani, 1996), SLOPE (Zeng and Figueiredo, 2014; Bogdan et al., 2015), OSCAR
(Bondell and Reich, 2008), Fused LASSO (Tibshirani et al., 2005), Clustered LASSO (She et al.,
2010), generalized LASSO (Tibshirani et al., 2011)... When the loss function is the residual sum
of squares these estimators minimize, with respect to b ∈ Rp, a function of the type: b ∈ Rp 7→
1
2‖y − Xb‖

2
2 + λpen(b). Furthermore, the penalty term "pen" is a polyhedral gauge: a non-negative

convex function which is the maximum of a finite family of linear functions and can be thus expressed
as follows

∀x ∈ Rp,pen(x) := max{0, u′1x, . . . , u′lx}, for some u1, . . . , ul ∈ Rp.

For the above estimators, "pen" is a polyhedral norm which unit ball is a polytope except for generalized
LASSO where the polyhedral gauge pen : b ∈ Rp 7→ ‖Db‖1 is a semi-norm when {0} ( ker(D) and the
unit ball {b ∈ Rp : pen(b) ≤ 1} is an unbounded polyhedron.

The most famous polyhedral penalty term is the `1 norm. This norm promoting sparsity is asso-
ciated to the LASSO estimator and it is well known that this estimator has at most rk(X) non-null
components (Osborne et al., 2000; Tibshirani, 2013). Sparsity consists in appearance of zeros in the
estimator β̂ and is easy to interpret: separation of relevant variables (columns of X associated to
non-null components of β̂) from irrelevant variables (columns of X associated to null components of
β̂). The literature related to penalized least squares estimators is vast and many of these estimators
have interesting and relevant structures as illustrated in Vaiter et al. (2015). For instance, the Fused
LASSO is a sparse and piecewise constant estimator (Tibshirani et al., 2005), the supremum norm
promotes a flat estimator (some components are maximal in absolute value) (Jégou et al., 2012), and

1



SLOPE as well as OSCAR estimators have some clusters; namely some components of these estima-
tors are equal in absolute value (Bondell and Reich, 2008; Figueiredo and Nowak, 2016; Schneider and
Tardivel, 2020).

Even if most of theoretical results of the paper are valid when the penalized least squares estimator
is not uniquely defined, we also discuss the important issue of uniqueness.

1.1 Uniform uniqueness for polyhedral gauge penalty
It is well known that a penalized least squares estimator may have a non-unique minimizer. In statistics
Y is random and thus, there is an issue to provide a condition for uniqueness that is valid for all Y ∈ Rn.
A well known notion for uniform uniqueness (i.e. uniqueness valid for all Y ∈ Rn), first outlined by
Rosset et al. (2004); Dossal (2012), is for the design matrix X to be in general position. Actually,
X being in general position is a sufficient condition for uniform uniqueness of the LASSO estimator
(Tibshirani, 2013). The general position condition was also recently extended as a sufficient condition
for uniform uniqueness of generalized LASSO (Ali and Tibshirani, 2019). For LASSO, Ewald and
Schneider (2020) relaxed the general position condition on X on a necessary and sufficient condition
for uniform uniqueness. Recently, this condition was extended as a necessary and sufficient condition for
uniform uniqueness for penalized least squares estimators where the penalty term is a polyhedral norm
like SLOPE, OSCAR, Fused LASSO, Clustered LASSO... (Schneider and Tardivel, 2020). Moreover,
this last article illustrates that the conditions on uniform uniqueness provide insights on structures
induced by LASSO and SLOPE as well as sign pattern and models for SLOPE identified by these two
estimators. Specifically, we have:

i) The uniform uniqueness does not hold if and only if the row span of X intersects a face of the unit
ball in dual norm (cube [−1, 1]p for LASSO, sign permutahedron for SLOPE) having a dimension
smaller than dim(ker(X)).

ii) Consider the LASSO estimator. A face of the cube F = E1×· · ·×Ep where Ei ∈ {{1}, {−1}, [−1, 1]}
is labeled by a sign vector s ∈ {−1, 0, 1}p (actually s is the barycenter of F ) and there exists
y ∈ Rn such that sign(β̂lasso(y)) = s (i.e. the sign vector s is accessible for LASSO) if and only
if the row span of X intersects F .

The dimension of F is the number of null components of s and thus based on statements i) and ii)
one may notice that under the uniform uniqueness condition, the number of non-null components for
LASSO is smaller than rk(X). This fact corroborates some well known results for LASSO estimator
(Osborne et al., 2000; Tibshirani, 2013). Similar results are available for SLOPE. In particular, under
the uniform uniqueness condition, the number of non-null clusters for SLOPE is smaller than rk(X)
(Schneider and Tardivel, 2020) (a cluster is a set of components equal in absolute value). This statement
corroborates a similar property given in Kremer et al. (2019).

Theorem 1 in this article provides a necessary and sufficient condition for uniform uniqueness of
penalized least squares estimators when the penalty term is a polyhedral gauge. Moreover geometrical
objects involved in this theorem (the row span of X and the subdifferential of pen at 0) provide insights
for the development of the theory of model pattern recovery.

1.2 Model pattern recovery by penalized least squares estimators
Given y ∈ Rn and λ > 0, the set SX,λpen(y) of minimizers of a penalized least squares optimization
problem is defined as follows:

SX,λpen(y) := arg min
b∈Rp

1

2
‖y −Xb‖22 + λpen(b). (1)

Note that SX,λpen(y) defined in (1) is not empty; this fact is clear when pen is a norm. For generalized
LASSO, the existence of a minimizer is proven in Ali and Tibshirani (2019); Dupuis and Vaiter (2019).
Note that, potentially, this set is not a singleton.

2



To clarify the notion of “structure induced by a polyhedral gauge penalty” we are going to introduce
the notion of model pattern.

Definition 1 (Model pattern). Let pen : Rp 7→ R be a polyhedral gauge. We say that x ∈ Rp and
z ∈ Rp have the same model pattern with respect to pen when ∂pen(x) = ∂pen(z), where ∂pen represents
the subdifferential of pen. The structure induced by a polyhedral gauge penalty pen is the set of all
possible model patterns (or, more formally, the quotient space Rp/ ∼pen where ∼pen represents the
equivalence relation for equality of subdifferentials).

For the `1 norm two vectors x, z ∈ Rp have the same model pattern if and only if sign(x) = sign(z).
More generally, two vectors having the same model pattern with respect to a polyhedral gauge penalty
share a specific structure as illustrated on many examples in section 1.6. Given X and Y , we aim at
recovering the model pattern of β; for LASSO this means recovering sign(β).

In this article, Theorem 2 gives a necessary condition (called path condition) for model pattern
recovery by penalized least squares estimators. Later, in section 4, we will introduce penalized esti-
mators relaxing this condition. Beforehand, we are going to summarize and to illustrate well known
necessary conditions for sign recovery by LASSO.

1.2.1 Sign recovery by LASSO

We note β̂lasso an element of SX,λ‖.‖1(Y ) (and we implicitly assume that SX,λ‖.‖1(Y ) is a singleton in
this section). Of course, LASSO estimator depends on X,λ and Y and, when it is relevant, one may
emphasise these dependencies. As mentioned above, the LASSO estimator is a sparse method that
nullifies some of the components with positive probability, entailing that the estimator also performs
so-called variable selection. Instigated by this sparsity property, an abundant literature has arisen
to deal with the recovery of the location of the non-null components of β, or, more specifically, the
recovery of the sign vector of β (Fuchs, 2005; Meinshausen and Bühlmann, 2006; Wainwright, 2009;
Zhao and Yu, 2006; Zou, 2006).

A natural necessary condition for sign recovery by LASSO is for sign(β) to be accessible by the
LASSO, i.e. for a fixed λ > 0, there has to exist y ∈ Rn for which sign(β̂lasso(y)) = sign(β). Otherwise,
Pε(sign(β̂lasso(Y )) = sign(β)) = 0, and sign recovery is clearly impossible. A geometrical characteriza-
tion of accessible sign vectors is given in Sepehri and Harris (2017); Schneider and Tardivel (2020).

When sign(β) is accessible then the probability of sign recovery is not null (as soon as the set
{y ∈ Rn : sign(β̂lasso(y)) = sign(β)} is not Lebesgue negligible). However, the accessibility of sign(β)
by LASSO does not mean that the probability of sign recovery by LASSO is close to 1 even if the non-
null components of β are extremely large. Actually, the irrepresentability condition is necessary for sign
recovery with a probability larger than 1/2 (Wainwright, 2009) and this condition implies accessibility.
More precisely, the irrepresentability condition is satisfied when ‖X ′

I
XI(X

′
IXI)

−1sign(βI)‖∞ ≤ 1 where
I := {i ∈ [p] : βi 6= 0} and I := {i ∈ [p] : βi = 0}. Whereas irrepresentability has been widely studied
as an analytical condition, we suggest on the following example a geometrical interpretation for this
condition.

Example 1. Let X ∈ R2×3 and β ∈ R3 as follows

X :=

(
5/6 1 0
1/3 0 1

)
and β = (β1, 0, 0) where β1 > 0.

Actually, as illustrated on Figure 1, sign(β) = (1, 0, 0) is an accessible sign vector, as there exists y ∈ R2

such that that sign(β̂lasso(y)) = (1, 0, 0) (e.g. by taking y = (1, 1)). On the other hand, sign(β) does
not satisfy the irrepresentability condition (‖X ′

I
XI(X

′
IXI)

−1sign(βI)‖∞ = 30/29 > 1). Consequently,
the probability of sign recovery by LASSO is not null (because sign(β) is accessible) but smaller than
1/2 (because sign(β) does not satisfy the irrepresentability condition). For this example we take λ = 1.
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Figure 1: This figure provides sets {y ∈ R2 : sign(β̂lasso(y)) = (1, 0, 0)} (in green) and {y ∈ R2 :

β̂lasso
1 (y) > 0} (in orange and hatched). Clearly the green set is not negligible with respect to the

Lebesgue measure thus P(sign(β̂lasso(Y )) = (1, 0, 0)) > 0 (it is the probability that Y lies on the green
set). On the other hand, the probability of sign recovery cannot be large. Indeed Xβ lies on the
dotted half-line; in particular Xβ /∈ {y ∈ R2 : sign(β̂lasso(y)) = (1, 0, 0)} therefore P(sign(β̂lasso(Y )) =
sign(β)) ≤ 1/2 since Y = Xβ + ε is centered in Xβ and ε has a symmetric distribution. When β1 is
very large then Xβ, on the dotted half-line, is far from 0. Consequently, Y should lie on the hatched
area with a very large probability namely the event β̂lasso

1 (Y ) > 0 should occur with a probability close
to 1. This last fact will be relevant in section 1.3.1 to illustrate that in this simple example, in contrast
to LASSO, thresholded LASSO can recover sign(β) with a large probability.

1.2.2 Other results towards model pattern recovery

Generalized LASSO. By substituting the `1 norm by a polyhedral gauge pen = ‖D.‖1, one constructs an
estimator β̂ ∈ SX,λ‖D.‖1(Y ) where Dβ̂ has some null components. It is a reason why the generalized
LASSO is frequently used for structure recovery. Of course, the structure induced by generalized
LASSO depends on the matrix D.

For instance, when D is a matrix such that Db = (b2 − b1, . . . , bp − bp−1)′ (denoted Dtv below)
then the penalty term ‖D.‖1 promotes neighbor components of β̂ being equal and entailing that this
estimator can recover the jump set: {i ∈ [p − 1] : βi 6= βi+1} (Hütter and Rigollet, 2016). Actually,
articles by (Qian and Jia, 2016; Owrang et al., 2017) provide theoretical properties for jump set re-
covery under an irrepresentability condition.

Model subspace recovery. More generally, for a wide class of penalty terms including polyhedral
gauges, Vaiter et al. (2015) showed that an irrepresentability condition is a sufficient condition for
model subspace recovery by penalized least squares estimators. The notion of model subspace is
related to the notion of model pattern. Specifically, the model subspace of x ∈ Rp is a vector
subspace of Rp perpendicular to ∂pen(x). Thus clearly two vectors having the same model pat-
tern share the same model subspace. For the `1 norm two vectors x, z ∈ Rp have the same model
subspace when supp(x) = supp(z). In the particular case of LASSO, Theorem 6 in Vaiter et al.
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(2015) shows that ‖X ′
I
XI(X

′
IXI)

−1sign(βI)‖∞ < 1 is a sufficient condition for model subspace re-
covery, i.e. the recovery of supp(β). Whereas correct, this statement is not optimal. Indeed when
‖X ′

I
XI(X

′
IXI)

−1sign(βI)‖∞ < 1 it is well known that LASSO actually can recover sign(β) (and a
fortiori supp(β)) (Wainwright, 2009). That is the reason why, in this article, we decided to focus on
the notion of model pattern and not to retain the notion of model subspace from Vaiter et al. (2015).

The path condition as well as the irrepresentability condition can be relaxed using thresholded es-
timators as explained hereafter.

1.3 Model pattern recovery by a thresholded estimator
Theorems 3 and 4 generalize results known for LASSO (see the following subsection) to a wide class
of penalized estimators. Specifically, we prove in this paper that “thresholded” penalized least squares
estimators can recover the model pattern of β under a weaker condition than penalized least squares
estimators (which are not thresholded). Now we introduce the notion of “thresholded” estimator.

Definition 2 ("Thresholded" penalized least squares estimator).
Let pen be a polyhedral gauge, X ∈ Rn×p, y ∈ Rn and λ > 0. Given β̂ ∈ SX,λpen(y), we say that û is
a “thresholded” estimator of β̂ if ∂pen(β̂) ⊂ ∂pen(û).

Definition 2 will be illustrated on many examples in section 4.

1.3.1 Sign recovery by thresholded LASSO

Hereafter, we provide a brief presentation of results known for thresholded LASSO.
Given a threshold τ ≥ 0, we remind that thresholded LASSO β̂lasso,τ is defined as follows

β̂lasso
i

,τ =

{
β̂lasso
i if |β̂lasso

i | > τ,

0 otherwise.
(2)

Note that whatever τ ≥ 0 we have ∂‖.‖1(β̂lasso) ⊂ ∂‖.‖1(β̂lasso,τ ) and thus β̂lasso,τ is a “thresholded”
estimator of β̂lasso in the sense of Definition 2.

It is well known that thresholded LASSO does not have the same statistical properties as LASSO
(Meinshausen and Yu, 2009; Weinstein et al., 2020). Concerning sign recovery, accessibility condition
is a necessary condition for sign recovery by thresholded LASSO. Indeed, Tardivel and Bogdan (2018)
recently proved that if sign(β̂lasso,τ ) = sign(β), then sign(β) is accessible for the LASSO. Moreover,
contrarily to LASSO, thresholded LASSO can recover the sign of β with a large probability under
the accessibility condition (even if the irrepresentability condition is not satisfied) as soon as non-null
components of β are sufficiently large. This nice property for sign recovery by thresholded LASSO
remains true for thresholded basis pursuit (Saligrama and Zhao, 2011; Descloux and Sardy, 2020;
Descloux et al., 2020). In Example 1 when β1 is very large then β̂lasso

1 > 0 occurs with a large
probability and thus thresholded LASSO can recover sign(β) with a probability near to 1 once β̂lasso

1 is
stochastically larger than both |β̂lasso

2 | and |β̂lasso
3 |. In particular, Figure 2 illustrates that thresholded

LASSO can recover the sign of β when β = (20, 0, 0) and ε ∼ N (0, I2). This article generalizes this toy
example and shows that thresholded penalized estimators can recover the model pattern of β under
weaker condition than penalized estimators (which are not thresholded).

1.4 Notations
Hereafter, we give some notations that we are going to use in this article.

• Given a matrix X ∈ Rn×p, X ′ represents the transpose of the matrix X, ker(X) represents the
null space of X: ker(X) := {z ∈ Rp : Xz = 0} and row(X) represents the vector space spanned
by rows of X: row(X) := {X ′z : z ∈ Rn}.
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Figure 2: This figure provides box plots for components β̂1, β̂2 and β̂3 based on 1000 replicates for
LASSO estimator. One may observe that when components for LASSO are filtered out with an appro-
priate threshold (in this example τ = 8) then thresholded LASSO recovers sign(β) almost perfectly.
This is in stark contrast with regular LASSO since Pε(sign(β̂lasso(Y )) = (1, 0, 0)) = 0, 17.

• Given p ∈ N, the notation [p] represents the set of integers {1, . . . , p}.

• The notation ‖.‖0 represents the `0 "norm"; the number of non-null components. Namely, for
x ∈ Rp, ‖x‖0 := |{i ∈ [p] : xi 6= 0}|.

• When it is convenient, the component ith of x ∈ Rp is denoted [x]i.

• Given x ∈ Rp and τ the notation xτ represents the thresholded vector

xτ := (x11(|x1| > τ), . . . , xp1(|xp| > τ)).

• The support of x ∈ Rp is the set: supp(x) := {i ∈ [p] : xi 6= 0}.

• The notation B∞(a, r) represents the ball for the `∞ norm centered in a with radius r.

1.5 Polyhedral gauges, polyhedral norms
Let u1, . . . , ul ∈ Rp. We remind that a polyhedral gauge pen is a function defined by

∀x ∈ Rp,pen(x) = max{0, u′1x, . . . , u′lx}.

By definition a polyhedral gauge is a non-negative convex function (Rockafellar, 1997; Mousavi and
Shen, 2019). A symmetric and positive polyhedral gauge (i.e. pen(x) = pen(−x) and pen(x) = 0 ⇒
x = 0)) is called a polyhedral norm. Hereafter we present some examples of polyhedral norms.

The `1 norm: This polyhedral norm is defined as follows

∀x ∈ Rp, ‖x‖1 =

p∑
i=1

|xi| = max{u′x : u ∈ {−1, 1}p}.

The `∞ norm: Let e1, . . . , ep be the canonical basis in Rp. This polyhedral norm is defined as follows

∀x ∈ Rp, ‖x‖∞ = max{|x1|, . . . , |xp|} = max{e′1x,−e′1x, . . . , e′px,−e′px}.
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The sorted `1 norm: Let w = (w1, . . . , wp) ∈ Rp where w1 > 0 and w1 ≥ · · · ≥ wp ≥ 0. The sorted
`1 norm ‖.‖w is defined as follows:

∀x ∈ Rp, ‖x‖w =

p∑
i=1

wi|x|(i),

where (.) is a permutation on [p] such that |x|(1) ≥ · · · ≥ |x|(p). Note that when weights satisfy
w = (1, . . . , 1) then the sorted `1 norm coincides with the `1 norm and when w = (1, 0, . . . , 0)
then the sorted `1 norm coincides with the `∞ norm. Let Sp be the set of permutations on [p].
The following equality, based on the rearrangement inequality, shows that the sorted `1 norm is
a polyhedral norm

∀x ∈ Rp, ‖x‖w = max

{
p∑
i=1

siwπ(i)xi : s1, . . . , sp ∈ {−1, 1} and π ∈ Sp

}
.

Remark 1. The composition of polyhedral gauge with a linear map is still a polyhedral gauge. For
example, for generalized LASSO, the penalty term is the polyhedral gauge x ∈ Rp 7→ ‖Dx‖1 when
D ∈ Rm×p. Note that, when {0} ( ker(D), this gauge is not a norm but just a semi-norm.

Hereafter we present two matrices D, which are relevant for generalized LASSO (this list is not ex-
haustive).

• Let p ≥ 2 and let Dtv ∈ R(p−1)×p be the first order difference matrix defined as follows

Dtv =


−1 1 0 . . . 0

0 −1 1
. . .

...
...

. . . . . . . . . 0
0 . . . 0 −1 1

 .

• Let p ≥ 3 and let Dtf ∈ R(p−2)×p be the second order difference matrix defined as follows

Dtf =


−1 2 −1 0 . . . 0

0 −1 2 −1
. . .

...
...

. . . . . . . . . . . . 0
0 . . . 0 −1 2 −1

 .

The `1 trend filtering (Kim et al., 2009) is actually a generalized LASSO with the penalty term
being ‖Dtf .‖1.

1.6 Sub-gradients, subdifferentials and model patterns
We remind the reader of the definition on subgradient and subdifferential. The following can be found
for instance in Hiriart-Urruty and Lemarechal (1993):
For a function f : Rp → R, a vector s ∈ Rp is a subgradient of f at x ∈ Rp if

f(z) ≥ f(x) + s′(z − x) ∀z ∈ Rp.

The set of all subgradients of f at x is called the subdifferential of f at x, denoted by ∂f (x).
In this article, we only consider continuous convex functions and thus the set of subgradients is a
non-empty convex set.
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Example 2. The subdifferential of the `1 norm at x ∈ Rp is given by

∂‖.‖1(x) = ∂|.|(x1)× · · · × ∂|.|(xp) where ∂|.|(t) =


{1} if t > 0

[−1, 1] if t = 0

{−1} if t < 0

The subdifferential of the `∞ norm at 0 is the unit ball of the `1 norm and for x ∈ Rp where x 6= 0 this
subdifferential is equal to

∂‖.‖∞(x) =

{
s ∈ Rp : ‖s‖1 = 1 and

{
sixi ≥ 0 if |xi| = ‖x‖∞
0 otherwise

}
.

Finally, note that for the polyhedral gauge x ∈ Rp 7→ ‖Dx‖1 we have ∂‖D.‖1(x) = D′∂‖.‖1(Dx).

The subdifferential of the sorted `1 norm, not reminded above, has a more complex expression than
subdifferentials of both the `1 and `∞ norms and is given in Dupuis and Tardivel (2021); Schneider
and Tardivel (2020).

Now, we want to illustrate that two vectors x, z ∈ Rp having the same subdifferential with respect
to a polyhedral gauge share a common model pattern.

Model pattern for the `1 norm: The sign vector sign(x) ∈ {−1, 0, 1}p is defined as follows

sign(x) = (sign(x1), . . . , sign(xp)) where sign(t) :=


1 if t > 0

0 if t = 0

−1 if t < 0

Subdifferentials ∂‖.‖1(x) = ∂‖.‖1(z) are equal if and only if sign(x) = sign(z). In words, two vec-
tors having the same subdifferential with respect to the `1 norm share the same sets of positive
components, null components and negative components.

Example: for x = (1.45,−0.38, 1.56, 0,−2.76) then sign(x) = (1,−1, 1, 0,−1).

Model pattern for the `∞ norm: The vector sign∞(x) element of the finite alphabet {−1, ∗, 1}p is
defined as follows

sign∞(0) = (∗, . . . , ∗) and for x 6= 0, ∀i ∈ [p], [sign∞(x)]i :=


1 if xi = ‖x‖∞
∗ if |xi| < ‖x‖∞
−1 if xi = −‖x‖∞

Note that the notation ∗ represents a components which is not maximal (except for x = 0).
Subdifferentials ∂‖.‖∞(x) = ∂‖.‖∞(z) are equal if and only if sign∞(x) = sign∞(z). In words,
two vectors having the same subdifferential with respect to the `∞ norm share the same sets
of positive and maximal (in absolute value) components and negative and maximal (in absolute
value) components.

Example: for x = (1.45, 1.45, 0.56, 0,−1.45) then sign∞(x) = (1, 1, ∗, ∗,−1).

Model pattern when the penalty term is the sorted `1 norm: We say that a vector m ∈ Zp
is a SLOPE model, if either m = 0, or, if for all l ∈ [‖m‖∞], there exists j ∈ [p] such that
|mj | = l. We denote the set of all SLOPE models of dimension p byMp (note that, by definition,
Mp ⊂ [−p : p]p). For example, when p = 2,M2 has 17 elements listed hereafter:

M2 = {(0, 0),±(1, 0),±(0, 1),±(1, 1),±(1,−1),±(2, 1),±(2,−1),±(1, 2),±(1,−2)}.

Moreover, for x ∈ Rp, we define mdl(x) ∈Mp, called a model for SLOPE, through the following.
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1) sign(mdl(x)) = sign(x)

2) |xi| = |xj | =⇒ |mdl(x)i| = |mdl(x)j |
3) |xi| > |xj | =⇒ |mdl(x)i| > |mdl(x)j |

Let w ∈ Rp where w1 > · · · > wp > 0. Then, subdifferentials ∂‖.‖w(x) = ∂‖.‖w(z) are equal if and
only if mdl(x) = mdl(z). In words, two vectors having the same subdifferential with respect to
the sorted `1 norm share 1) the same sign, 2) the same clusters (components equal in absolute
value) and 3) clusters for these two vectors have the same order.

Example: for x = (3.1,−1.2, 0.5, 0, 1.2,−3.1) then mdl(x) = (3,−2, 1, 0, 2,−3).

Model pattern for the polyhedral gauge ‖Dtv.‖1: Let p ≥ 2. The vector jump(x) element of the
finite alphabet {↗,→,↘}p−1 is defined as follows

∀i ∈ [p− 1], jump(x)i :=


↗ if xi+1 > xi

→ if xi+1 = xi

↘ if xi+1 < xi

Subdifferentials ∂‖Dtv.‖1(x) = ∂‖Dtv.‖1(z) are equal if and only if jump(x) = jump(z). Namely,
two vectors x, z having the same subdifferential with respect to the ‖Dtv.‖1 share the same sets
of positive jumps {i ∈ [p − 1] : xi < xi+1} = {i ∈ [p − 1] : zi < zi+1} and negative jumps
{i ∈ [p− 1] : xi > xi+1} = {i ∈ [p− 1] : zi > zi+1}.

Example: for x = (1.45, 1.45, 0.56, 0.56,−0.45, 0.35) then jump(x) = (→,↘,→,↘,↗).

Model pattern for the polyhedral gauge ‖Dtf .‖1: Let p ≥ 3. The vector knot(x) element of the
finite alphabet {l, cx, cv}p−2 is defined as follows

∀i ∈ [2 : p− 1], knot(x)i :=


cx if xi < (xi+1 − xi−1)/2

l if xi = (xi+1 − xi−1)/2

cv if xi > (xi+1 − xi−1)/2

Let us consider the piecewise linear curve Cx := ∪p−1
i=1 [(i, xi), (i+ 1, xi+1)]. Note that [knot(x)]i

is equal to l (resp. cx or cv) when in the neighborhood of i the curve Cx is linear (resp. convex
or concave). Subdifferentials ∂‖Dtf .‖1(x) = ∂‖Dtf .‖1(z) are equal if and only if knot(x) = knot(z).
Namely, two vectors x, z having the same subdifferential with respect to the ‖Dtf .‖1 share the
same sets of convex points: {i ∈ [2 : p− 1] : knot(x)i = cx} and concave points: {i ∈ [2 : p− 1] :
knot(x)i = cv}.

Example: Figure 3 provides an illustration of knot(x) for a particular x.

2 Necessary and sufficient condition for uniform uniqueness
In Theorem 1 we are going to provide a necessary and sufficient condition for uniform uniqueness
of optimization problem (1). Actually, this theorem generalizes to polyhedral gauges Theorem 1 in
Schneider and Tardivel (2020) which only covers the particular case of "pen" being a polyhedral norm.
In particular, Theorem 1 relaxes the coercivity of norm and thus provides a necessary and sufficient
uniqueness for uniform uniqueness of generalized LASSO.

Theorem 1 (Necessary and sufficient condition for uniform uniqueness). Let X ∈ Rn×p and λ > 0.
Let pen be a polyhedral gauge defined as follows: ∀x ∈ Rp,pen(x) = max{u′1x, . . . , u′lx}. Then there
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Figure 3: In this figure the dotted curve represents Cx described above for x = (1, 3, 5, 7, 6, 5, 4, 6, 5).
Moreover, knot(x) = (l, l, cv, l, l, cx, cv).

exists y ∈ Rn for which the minimizer of the function

b ∈ Rp 7→ 1

2
‖y −Xb‖22 + λpen(b), (3)

is not unique (i.e SX,λpen(y) is not a singleton) if and only if row(X) intersects a face of the polytope
B∗ := conv{u1, . . . , ul} whose dimension1 is smaller than dim(ker(X)).

Note that, according to Lemma 2 in the appendix, B∗ is the subdifferential of pen at 0 and in the
particular case where pen is a norm, B∗ is the unit ball of the dual norm.

Several examples where the uniform uniqueness does not occur are given in Schneider and Tardivel
(2020) in the particular case where the penalty term is a polyhedral norm. Hereafter, we provide
an example where the uniform uniqueness does not occur for generalized LASSO. Clearly, for every
y ∈ Rn, the set of generalized LASSO minimizers SX,‖D.‖1(y) is unbounded once ker(X)∩ker(D) 6= {0}
and thus the uniform uniqueness does not occur. Consequently, ker(X) ∩ ker(D) = {0} is a necessary
condition for uniform uniqueness but not a sufficient condition as illustrated on the following example.

Example 3. Let us consider the optimization problem

arg min
b∈Rp

1

2
‖y −Xb‖22 + ‖Db‖1 where X =

(
1 −1 3/4
0 −1 1/4

)
, D =

(
1 −1 0
0 1 −1

)
.

Note that ker(X) ∩ ker(D) = {0} and one may notice the following equality

‖Db‖1 = max{u′Db : u ∈ {−1, 1}2} = max{±(b1 − b3),±(b1 − 2b2 + b3)}.

According to the above equality, B∗ = conv{±(1, 0,−1),±(1,−2, 1)} and clearly (1,−2, 1)′ ∈ row(X).
Consequently, according to Theorem 1, the uniform uniqueness does not occur. Now, for y = (2, 1)′,
let us illustrate that |SX,‖D.‖1(y)| > 1. Let β̂ = (1, 0, 0)′ then β̂ ∈ SX,‖D.‖1(y). Indeed, the following
equality holds

X ′(y −Xβ̂) = (1,−2, 1)′ = D′
(

1
−1

)
∈ ∂‖D.‖1(β̂) = D′∂‖.‖1(Dβ̂) = D′

(
1

[−1, 1]

)
.

Moreover, let β̄ = (1/3, 1/3, 4/3) then Xβ̄ = Xβ̂ and ‖Dβ̄‖1 = ‖Dβ̂‖1 implying thus β̄ ∈ SX,‖D.‖1(y).
Consequently |SX,‖D.‖1(y)| > 1.

1The dimension of a face F is defined as the dimension of the affine hull of F .
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In this example, extremal points of the set of minimizers are β̂ and β̄. More generally, according to
Dupuis and Vaiter (2019), extremal points of SX,‖D.‖1(y) can be explicitly computed. This description
is relevant when the set of minimizers is not a singleton.

Remark 2. When β̂ ∈ SX,pen(y) then X ′(y −Xβ̂) ∈ ∂pen(β̂). Therefore, clearly, row(X) intersects
the set ∂pen(β̂) which is actually a face of the polytope B∗. Indeed, ∂pen(β̂) = conv({ui}i∈I) where
I = {i ∈ [p] : u′iβ̂ = pen(β̂)}. Consequently, when the uniform uniqueness occurs, by Theorem 1 we
have dim(∂pen(β̂)) ≥ dim(ker(X)) or equivalently codim(∂pen(β̂)) ≤ rk(X).

Hereafter we provide some simple formulas for the dimension/codimension of the set ∂pen(x) for
an arbitrary x ∈ Rp. These facts will be relevant for Corollary 1.

The `1 norm: The dimension (resp. codimension) of the set ∂‖.‖1(x) is equal to |{i ∈ [p] : xi = 0}|
(resp. ‖x‖0).

The `∞ norm: When x 6= 0, the dimension (resp. codimension) of the set ∂‖.‖∞(x) is equal to
|{i : [sign∞(x)]i ∈ {−1, 1}}| − 1 (resp. 1 + |{i : [sign∞(x)]i = ∗}|).

The sorted `1 norm: When w = (w1, . . . , wp) where w1 > · · · > wp > 0, the dimension (resp.
codimension) of the set ∂‖.‖w(x) is equal to p − ‖mdl(x)‖∞ (‖mdl(x)‖∞), where ‖mdl(x)‖∞ is
the number of non-null clusters of x (Schneider and Tardivel, 2020).

The polyhedral gauge ‖D.‖1: When ker(D′) = {0} then dim(∂‖D.‖1(x)) = dim(D′∂‖.‖1(Dx)) =
dim(∂‖.‖1(Dx)) = |{i ∈ [m] : [Dx]i = 0}|. Thus the codimension of ∂‖D.‖1(x) is equal to
p− |{i ∈ [m] : [Dx]i = 0}| = p− (m− ‖Dx‖0) = p−m+ ‖Dx‖0.

• The codimension of the set ∂‖Dtv.‖1(x) is equal to 1 + |{i ∈ [p − 1] : [jump(x)]i ∈ {↗,↘}|
namely the codimension of ∂‖Dtv.‖1(x) is the number of jumps plus 1.

• The codimension of the set ∂‖Dtf .‖1(x) is equal to 2 + |{i ∈ [p − 2] : [knot(x)]i ∈ {cv, cx}|
namely the codimension of ∂‖Dtf .‖1(x) is the number of knots of the vector x plus 2.

Under the uniform uniqueness, when β̂ ∈ SX,pen(y) then codim(∂pen(β̂)) ≤ rk(X). Depending on
the penalty term and as illustrated above, codim(∂pen(β̂)) is related respectively to the number of:
non-null components, non-null clusters, non maximal components, jumps or knots. Especially when
codim(∂pen(β̂)) ≤ rk(X) ≤ n � p these numbers above are small compared to p which means that
β̂ is "sparse". Corollary 1 provides a precise meaning for this notion of "sparsity" for ‖.‖∞ and for
generalized Lasso.

Corollary 1. Let X ∈ Rn×p, λ > 0 and pen be a polyhedral gauge on Rp and let us assume that the
uniform uniqueness holds, i.e. for every y ∈ Rn the set SX,λpen(y) = {β̂} is a singleton.

i) If pen = ‖.‖∞, for every y ∈ Rn we have

|{i ∈ [p] : |β̂i| < ‖β̂‖∞}| ≤ max{rk(X)− 1, 0}.

ii) If pen = ‖D.‖1 where D ∈ Rm×p and ker(D′) = {0}, then for every y ∈ Rn we have

‖Dβ̂‖0 ≤ rk(X) +m− p.

Actually, rk(X) +m− p < 0 implies that ker(X) ∩ ker(D) 6= {0} and thus the uniform uniqueness
assumption is not valid in Corollary 1. Let us provide some examples of Corollary 1.

• For the regular LASSO, when D = Idp, according to Corollary 1 one recovers the well known
fact that LASSO minimizer β̂ satisfies ‖β̂‖0 ≤ rk(X) under uniqueness (Osborne et al., 2000).
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• LetD = Dtv be the first difference matrix. When the uniform uniqueness occurs then the number
of jumps of the unique generalized LASSO minimizer β̂ is smaller than rk(X)− 1 i.e.

|{i ∈ [p− 1] : [jump(β̂)]i ∈ {↗,↘}}| ≤ rk(X)− 1.

• Let D = Dtf be the second difference matrix. When the uniform uniqueness occur then the
number of knots of the unique generalized LASSO minimizer β̂ is smaller than rk(X)− 2, i.e.

|{i ∈ [p− 1] : [knot(β̂)]i ∈ {cx, cv}}| ≤ rk(X)− 2.

Penalized gauges used in practice are symmetric (i.e pen(x) = pen(−x)). Under this assumption
ker(pen) := {x ∈ Rp : pen(x) = 0} is a vector subspace of Rp. Proposition 1 shows that when
dim ker(pen) > n then for every y ∈ Rn the set SX,pen(y) is not bounded. Conversely, according
to Proposition 1 when dim ker(pen) ≤ n then the set of matrices X ∈ Rn×p for which the uniform
uniqueness does not occur is negligible with respect to the Lebesgue measure.

Proposition 1. Let pen be a symmetric polyhedral gauge on Rp and λ > 0.

i) If dim(ker(pen)) > n then for every X ∈ Rn×p we have {0} ( ker(pen) ∩ ker(X) and thus for
every y ∈ Rn the set SX,λpen(y) is unbounded.

ii) Let µ be the Lebesgue measure on Rn×p. If dim(ker(pen)) ≤ n then the following equality holds

µ
({
X ∈ Rn×p : ∃y ∈ Rn with |SX,λpen(y)| > 1

})
= 0.

3 Model pattern recovery

3.1 Necessary condition for model pattern recovery: accessibility
In the following definition we introduce the notion of accessible model. This definition generalizes to
a broad class of penalized estimators the notions of accessible sign vector (Sepehri and Harris, 2017;
Schneider and Tardivel, 2020) and accessible model for SLOPE (Schneider and Tardivel, 2020).

Definition 3 (Accessible model pattern by penalized estimators). Let X ∈ Rn×p, λ > 0 and pen be
a polyhedral gauge. We say that β ∈ Rp has an accessible model pattern with respect to X and λpen,
if there exists y ∈ Rn and β̂ ∈ SX,λpen(y) such that ∂pen(β̂) = ∂pen(β).

Of course, by definition, when γ ∈ Rp is such that ∂pen(γ) = ∂pen(β) then the model of γ is
accessible with respect to X and pen if and only if the model β is accessible with respect to X and
pen. When pen is the `1 norm scaled by a tuning parameter λ > 0, namely pen := λ‖.‖1 then, the
above definition coincides with the notion of accessibility of sign vectors with respect to X. When
pen is the sorted `1 norm, namely pen := ‖.‖w for some w ∈ Rp where w1 > · · · > wp > 0 then, the
above definition coincides with the notion of accessible SLOPE models with respect to X. Proposition
2 provides a geometric and an analytic characterization of accessible models.

Proposition 2 (Characterization of accessible models). Let X ∈ Rn×p and pen : Rp → R be a
polyhedral gauge.

1) Geometric characterization: The model pattern of β ∈ Rp is accessible with respect to X and
λpen if and only if

row(X) ∩ ∂pen(β) 6= ∅.

2) Analytic characterization: The model pattern of β ∈ Rp is accessible with respect to X and λpen
if and only if for every γ ∈ Rp the implication

Xβ = Xγ =⇒ pen(γ) ≥ pen(β)

holds.

Based on Proposition 2, it is clear that the notion of accessible model does not depend on the
tuning parameter λ > 0.
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3.2 Necessary condition for model pattern recovery: path condition
The solution path for a penalized estimator is the function 0 < λ 7→ β̂(λ) where β̂(λ) ∈ SX,λpen(y)
for fixed y ∈ Rn and X ∈ Rn×p (usually SX,λpen(y) is assumed being a singleton). The solution path
for generalized LASSO or OSCAR and Clustered LASSO is studied in, respectively, Tibshirani et al.
(2011); Takahashi and Nomura (2020). Definition 4 is based on the notion of solution path. Note that
Definition 4 does not require uniform uniqueness.

Definition 4 (Path condition). Let pen be a polyhedral gauge, X ∈ Rn×p and β ∈ Rp. We say that
the model of β satisfies the path condition with respect to X and pen when

∃λ > 0,∃β̂ ∈ SX,λpen(Xβ) such that ∂pen(β̂) = ∂pen(β).

For instance, β = 0 satisfies the path condition with respect to X and pen. Indeed, in that case
Xβ = 0 and clearly 0 ∈ SX,λpen(0). In other words, the path condition means that in the noiseless
case when Y = Xβ in the solution path, one may pick a minimizer having the same model pattern as
β.

The path condition is illustrated on Figure 4 in the particular case where X is the 2×3 matrix given
in Example 1 and β = (10, 0, 0)′. The above definition does not provide analytic expression for checking

Figure 4: This figure provides curves of the functions λ > 0 7→ β̂lasso
1 (λ) (black curve), λ > 0 7→ β̂lasso

2 (λ)

(red curve), λ > 0 7→ β̂lasso
3 (λ) (blue curve). Note that sign(β) does not satisfy the path condition.

Indeed sign(β̂lasso(λ)) = (1, 1, 0) when λ ∈ (0, 6.70), sign(β̂lasso(λ)) = (0, 1, 0) when λ ∈ [6.70, 8.33)

and sign(β̂lasso(λ)) = (0, 0, 0) when λ ≥ 8.33. Consequently, for every λ > 0, sign(β̂lasso(λ)) 6= (1, 0, 0).

the path condition but some formulas are given in the literature. For example, when pen = ‖.‖1
Bühlmann and Van de Geer (2011) clearly illustrate that when ‖X ′

I
XI(X

′
IXI)

−1sign(βI)‖∞ > 1 (where
I = supp(β), XI and XI are matrices whose columns are respectively (Xi)i∈I and (Xi)i/∈I) the path
condition does not hold whereas when ‖X ′

I
XI(X

′
IXI)

−1sign(βI)‖∞ < 1 then the path condition holds.
Thus, the well known “irrepresentability condition” for LASSO can be thought of as an analytical
shortcut for checking the path condition. Actually, Figure 4 confirms this fact. Indeed in the above
example, we have ‖X ′

I
XI(X

′
IXI)

−1sign(βI)‖∞ = 30/29 > 1 and based on Figure 4 one may observe
that the path condition does not hold for β. This article does not aim at providing analytical shortcuts
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for checking the path condition (we refer to Vaiter et al. (2015) for interested reader). Actually we
want to show that

a) The path condition is necessary for model recovery by penalized estimator (see Theorem 2).

b) "Thresholded" penalized estimator recovers the model of β under much weaker condition than
the path condition (see section 4).

Theorem 2. Let Y = Xβ + ε where X ∈ Rn×p, β ∈ Rp and ε has a symmetric distribution (i.e the
distribution of ε coincides with the distribution of −ε). Let pen be a polyhedral gauge. If β does not
satisfy the path condition with respect to X and pen then the following inequality holds

P(∃λ0 > 0 ∃β̂ ∈ SX,λ0pen(Y ) such that ∂pen(β̂) = ∂pen(β)) ≤ 1/2.

According to Theorem 2, when the path condition does not hold for the LASSO (for example, when
‖X ′

I
XI(X

′
IXI)

−1sign(βI)‖∞ > 1) then the following inequality is true

P(∃λ > 0 ∃β̂ ∈ SX,λ‖.‖1(Y ) such that sign(β̂) = sign(β)) ≤ 1/2.

This result is more accurate than the one given in Theorem 2 in Wainwright (2009) which, for a given
λ > 0, provides the inequality P(sign(β̂lasso(λ)) = sign(β)) ≤ 1/2.

Clearly, when β satisfies the path condition with respect to X and pen then β is accessible with
respect to X and pen (by taking y = Xβ in the definition of accessibility). In the following section, we
are going to prove that "thresholded" penalized least squares estimators recover the model of β under
the accessibility condition.

4 Necessary and sufficient condition for model recovery by
"thresholded" penalized estimators

Generally speaking, a practitioner performing model pattern recovery has some beliefs on the model
pattern of the unknown parameter β. For instance, if the practitioner thinks that β is sparse and
uses LASSO as an estimator promoting sparsity then it is quite natural for him to threshold small
component of β̂lasso and thus to consider the thresholded LASSO estimator β̂lasso,τ for some threshold
τ ≥ 0. Moreover, theoretically, when the threshold is appropriately selected, thresholded LASSO
allows to recover sign(β) under weaker condition as LASSO (Tardivel and Bogdan, 2018). We aim at
generalizing this nice property of thresholded LASSO to a broad class of penalized estimators. Before
introducing the notion of “thresholded” estimator, let us stress that for any threshold τ ≥ 0, the
inclusion ∂‖.‖1(β̂lasso) ⊂ ∂‖.‖1(β̂lasso,τ ) occurs. This last inclusion is the keystone concept to introduce
the notion of “thresholded” estimator as illustrated hereafter:

a) The estimator β̂ ∈ SX,λ‖.‖∞(Y ) promotes a flat estimation (some components are maximal in
absolute value) then, once |β̂i| < ‖β̂‖∞ and |β̂i| ≈ ‖β̂‖∞, it is quite natural to neglect this
approximation and to consider that “ |β̂i| = ‖β̂‖∞”. Let us call û the estimator taking into
account this approximation and obtained after modifying slightly β̂ then, ∂‖.‖∞(β̂) ⊂ ∂‖.‖∞(û).

b) SLOPE estimator promotes clusters (a cluster is a set of components equal in absolute value)
then, once |β̂slope

j | ≈ |β̂slope
i |, it is quite natural to neglect this approximation and to consider

that “|β̂slope
i | = |β̂slope

j |”. Let us call û the estimator taking into account this approximation and
obtained after modifying slightly β̂slope then, ∂‖.‖w(β̂slope) ⊂ ∂‖.‖w(û).

c) The estimator β̂ ∈ SX,λ‖Dtv.‖1(Y ) promotes neighbor components being equal then, once β̂i ≈
β̂i+1, it is quite natural to neglect this approximation and to consider that “β̂i = β̂i+1”. Let us
call û the estimator taking into account this approximation and obtained after modifying slightly
β̂ then, ∂‖Dtv.‖1(β̂) ⊂ ∂‖Dtv.‖1(û).
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The list of examples described above leads to define the notion of "thresholded" penalized least
squares estimator given in the Introduction in Definition 2.

In Theorem 3 we prove that the accesibility of the model pattern of β with respect to X and pen is
a necessary and sufficient condition for thresholded estimators to recover the model pattern ∂pen(β).
A geometric statement shows that thresholded estimators can recover the model pattern of β as soon
as: 1) the model pattern of β is accessible with respect to X and pen

2) components of β are large enough.

Theorem 3. Let pen be a polyhedral gauge, X ∈ Rn×p and β ∈ Rp.

Necessary condition for model recovery: If the model pattern of β is not accessible with respect
to X and pen then for any y ∈ Rn, λ > 0 and β̂ ∈ SX,λpen(y) we have ∂pen(β̂) 6⊂ ∂pen(β).
Consequently, no "thresholded" estimator can recover the model pattern of β.

Sufficient condition for model recovery (asymptotic): Suppose that the uniform uniqueness holds.

Let ε ∈ Rn and set yk = X(kβ) + ε. If the model pattern of β is accessible with respect to X and
pen then

∃k0 ∈ N such that ∀k ≥ k0,∃τ ≥ 0 where

{
∀u ∈ B∞(β̂(yk), τ), ∂pen(u) ⊂ ∂pen(β),

∃û ∈ B∞(β̂(yk), τ), ∂pen(û) = ∂pen(β) ⊃ ∂pen(β̂(yk)).

Consequently, there exists a "thresholded" penalized least squares estimator û ∈ B∞(β̂(yk), τ) of
β̂(yk) which recovers the model pattern of β. The dimension dim(∂pen(û)) is maximal among
elements of B∞(β̂(yk), τ).

Observe that the sufficient condition given in Theorem 3 remains true when the ball with respect
to the supremum norm is substituted by a ball with respect to another norm. However, we believe
that for the supremum norm the explicit computation of the “thresholded” estimator û is simpler as
illustrated hereafter. For instance, for LASSO, û can be taken as equal to the thresholded LASSO
estimator (2). Consequently, Theorem 3 corroborates Theorem 1 in Tardivel and Bogdan (2018), which
proves that thresholded LASSO recovers the sign pattern of β once the accessibility condition holds.
Similarly as thresholded LASSO, when pen = ‖.‖∞, an estimator û from Theorem 3 can be explicitly
computed as illustrated on Algorithm 1.

Algorithm 1 thresholded penalized least squares estimator when the penalty term is the `∞ norm:

Require: estimation: β̂, threshold τ ≥ 0.
if ‖β̂‖∞ ≤ τ then
û← 0.

else

∀i ∈ [p], ûi ←


‖β̂‖∞ − τ if ‖β̂‖∞ − 2τ ≤ β̂i ≤ ‖β̂‖∞,
−‖β̂‖∞ + τ if − ‖β̂‖∞ ≤ β̂i ≤ −‖β̂‖∞ + 2τ,

β̂i otherwise.

end if
return sign∞(û).

4.1 Necessary and sufficient condition for model recovery by "thresholded"
Generalized LASSO

The generalized LASSO estimator β̂ ∈ SX,λ‖D.‖1(Y ) promotes null components in Dβ̂.
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Thus, when [Dβ̂]i ≈ 0, it is quite natural to neglect this approximation and to consider that
“[Dβ̂]i = 0”. Moreover, one may observe that for any threshold τ ≥ 0 we have

∂‖D.‖1(β̂) = D′∂‖.‖1(Dβ̂) ⊂ D′∂‖.‖1([Dβ̂]τ ).

This last inclusion suggests to recover the model pattern of β by thresholding components of Dβ̂. One
may observe that, given sign(Dβ), one easily recovers ∂‖D.‖1(β). Therefore, hereafter, we focus on the
sign pattern recovery of Dβ. Specifically, Theorem 4 shows that the equality sign(Dβ) = sign([Dβ̂]τ )
occurs for an appropriate threshold τ ≥ 0 if and only if the model pattern of β is accessible with
respect to X and ‖D.‖1.

Theorem 4 (Necessary and sufficient condition for model pattern recovery by generalized LASSO).
Let D ∈ Rm×p, X ∈ Rn×p and β ∈ Rp.

Necessary condition for model pattern recovery: If the model pattern of β is not accessible with
respect to X and ‖D.‖1 then for every y ∈ Rn, λ > 0 and β̂ ∈ SX,λ‖D.‖1(y) the following
statements hold:

i) ∂‖D.‖1(β̂) 6⊂ ∂‖D.‖1(β).

ii) Whatever τ ≥ 0 we have sign([Dβ̂]τ ) 6= sign(Dβ).

Sufficient condition for model pattern recovery (asymptotic): Let us assume that for any y ∈
Rn the set SX,λ‖D.‖1(y) contains a unique minimizer β̂(y). Let ε ∈ Rn and set yk = X(kβ) + ε.
If the model pattern of β is accessible with respect to X and ‖D.‖1 then

iii)
∃k0 ∈ N,∀k ≥ k0,∃τ ≥ 0 such that sign([Dβ̂(yk)]τ ) = sign(Dβ).

iv) Let π be a permutation of Sp such that |[Dβ̂(yk)]π(1)| ≥ |[Dβ̂(yk)]π(2)| ≥ · · · ≥ |[Dβ̂(yk)]π(p)|.
Then the following family of nested subsets contains supp(Dβ):

∃k0 ∈ N such that ∀k ≥ k0, we have supp(Dβ) ∈ {∅, {π(1)}, {π(1), π(2)}, . . . , supp(Dβ̂(yk))}.

Note that the construction of the "thresholded" û given in Theorem 3 is substituted by thresholding
Dβ̂ in Theorem 4 and these two approaches are both useful to recover the model pattern of β. Whereas
Theorem 3, dealing with polyhedral gauges, is more general than Theorem 4, we believe that this last
result is more intuitive for generalized LASSO.

Given β̂ ∈ SX,λ‖D.‖1(y), point iii) suggests to recover the sign of Dβ by thresholding components
of Dβ̂ whereas iv) suggests to recover the support Dβ by constructing a nested family of subsets for
supp(Dβ̂).2 For LASSO, a suggestion for selecting the threshold is given in Tardivel and Bogdan (2018)
and for basis pursuit (basis pursuit can be seen as LASSO with an infinitely small tuning parameter
λ) a methodology for choosing the threshold is given in Descloux and Sardy (2020). Otherwise, in the
particular case where D = Ip, model selection criterion can be useful to recover supp(Dβ) (Pokarowski
et al., 2019).

In this article we provide neither a threshold τ nor a model selection criterion for model recovery.
Instead, our aim is to prove that the fundamental property of the existence of a “thresholded” estimator
recovering the model pattern of β is equivalent to its accessibility (see Theorems 3 and 4). Thus,
“thresholded” estimators are more relevant for model pattern recovery than estimators which are not
thresholded. This is illustrated on numerical experiments in section XXXX.

2Point iv) in Theorem 4 could be rewritten as a “nested” family of model patterns containing the model pattern of β
when k ≥ k0. However, the fact that supp(Dβ) is included in a nested family of subsets seems more intuitive.
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5 Appendix
Let S ∈ Rp be an arbitrary set. Hereafter, we are going to use the following notations:

• The set conv(S) denotes for the convex hull of S; it is the intersection of all convex sets in Rp
containing S.

• The set aff(S) denotes for the affine space spanned by S; it is the intersection of all affine spaces
in Rp containing S.

• The set vect(S) denotes for the vector space spanned by S; it is the intersection of all vector
spaces in Rp containing S. Note that vect(S) = aff(S ∪ {0}).

When E is an affine space and x is an arbitrary element in E, then
−→
E is denoted as the vector space−→

E := {z − x : z ∈ E} where Note that
−→
E does not depend on x ∈ E. The dimension of E equals

dim(
−→
E ). Finally, when E = aff(S), we just write

−→
aff(S) for this vector space.

5.1 Facts about polytopes
We report some basic definitions and facts on polytopes, which we will use throughout the article and,
in particular, in the proofs in subsequent sections. The following can, for instance, be found in the
excellent textbooks by Gruber (2007) and Ziegler (2012).

A set P ⊆ Rp is called a polytope, if it is the convex hull of a finite set of points in Rp, namely,

P = conv({v1, . . . , vk}), where v1, . . . , vk ∈ Rp.

The dimension dim(P ) of a polytope is given as the dimension of aff(P ), the affine subspace spanned
by P . A face F of P is any subset F ⊆ P that satisfies

F = {x ∈ P : a′x = b}, where P ⊆ {x ∈ Rp : a′x ≤ b},

for some a ∈ Rp and b ∈ R. Such an inequality a′x ≤ b is called a valid inequality of P . Note
that F = ∅ and F = P are faces of P and that any face F is again a polytope. A non-empty face
where F 6= P is called proper. A point x0 ∈ P lies in relint(P ), the relative interior of P , if x0 is
not contained in a proper face of P . We now list a number of useful facts about polytopes involving
the above definitions, which are used throughout the article. These properties can either be found
explicitly or as a straightforward consequence of properties listed in the above mentioned references.

Lemma 1. Let P ∈ Rp be a polytope given by P = conv({v1, . . . , vk}), where v1, . . . , vk ∈ Rp×k. The
following properties hold.

1) If F and F̃ are faces of P , then so is F ∩ F̃ .

2) Let L be an affine line contained in the affine span of P . If L ∩ relint(P ) 6= ∅ then L intersects
a proper face of P .
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5.2 Facts about polyhedral gauges
Lemma 2, useful to prove Theorem 1, reminds some well known facts on subdifferential in the particular
case where the convex function is the maximum of a finite family of linear functions (see e.g. Hiriart-
Urruty and Lemarechal (1993) for some related results).

Lemma 2. Let φ be a convex function defined as follows

∀x ∈ Rp, φ(x) := max{u′1x, . . . , u′lx}, for some u1, . . . , ul ∈ Rp.

Let us remind that B∗ := conv({u1, . . . , ul}).
i) Let I(x) = {i ∈ [l] : u′ix = φ(x)} for x ∈ Rp. Then

∂φ(x) = conv({ui}i∈I(x)) = {s ∈ B∗ : s′x = pen(x)}.

ii) If F is a face of B∗ then F = ∂φ(x) for some x ∈ Rp

Proof. i) The following equality is well known (see e.g. Hiriart-Urruty and Lemarechal (1993))

∂φ(x) = conv({ui}i∈I(x)).

If i ∈ I(x), then, by definition of I(x), u′ix = φ(x), therefore ui ∈ {s ∈ B∗ : s′x = φ(x)}. Finally,
because {s ∈ B∗ : s′x = φ(x)} is a convex set, one may deduce that

conv({ui}i∈I(x)) ⊂ {s ∈ B∗ : s′x = φ(x)}.

Conversely, let s ∈ B∗ such that s /∈ conv({ui}i∈I(x)). Therefore s =
∑l
i=1 αiui where u1 ≥ 0, . . . , ul ≥

0,
∑l
i=1 αi = 1 and αi0 > 0 for some i0 /∈ I(x) (since s /∈ conv({ui}i∈I(x))). Since ∀i ∈ [l], u′ix ≤ φ(x)

and u′i0x < φ(x), the following equality occurs:

s′x =

l∑
i=1

αiu
′
ix < φ(x).

Consequently s /∈ {s ∈ B∗ : s′x = φ(x)} and thus the following inclusion occurs

{s ∈ B∗ : s′x = φ(x)} ⊂ conv({ui}i∈I(x)).

ii) Let F := {s ∈ B∗ : a′s = b} be a face of B∗, where a′s ≤ b is a valid inequality for all s ∈ B∗.
Let us prove that ∂φ(a) = F . According to i) we obtain ∂φ(a) = {s ∈ B∗ : s′a = φ(a)}. Moreover,
by definition, for every i ∈ [l] we have u′ia ≤ φ(a) and thus the inequality a′s ≤ φ(a) is valid for all
s ∈ B∗. Finally, because two supporting hyperplanes having the same normal vector coincide we may
deduce that φ(a) = b and thus ∂φ(a) = F .

Before finally showing Theorem 1, the following lemma states that the fitted values are unique over
all solutions of the penalized problem for a given y. It is a generalization of Lemma 1 in Tibshirani
(2013), who proves this fact for the special case of the LASSO.

Lemma 3. Let X ∈ Rn×p, y ∈ Rn and pen be a polyhedral gauge. Then Xβ̂ = Xβ̃ and pen(β̂) =

pen(β̃) for all β̂, β̃ ∈ SX,pen(y).

Proof. Assume that Xβ̂ 6= Xβ̃ for some β̂, β̃ ∈ SX,pen(y) and let β̌ = (β̂ + β̃)/2. Because the function
µ ∈ Rn 7→ ‖y − µ‖22 is strictly convex, one may deduce that

‖y −Xβ̌‖22 <
1

2
‖y −Xβ̂‖22 +

1

2
‖y −Xβ̃‖22.

Consequently,

1

2
‖y −Xβ̌‖22 + ‖β̌‖ < 1

2

(
1

2
‖y −Xβ̂‖22 + pen(β̂) +

1

2
‖y −Xβ̃‖22 + pen(β̃)

)
,

which contradicts both β̂ and β̃ being minimizers. Finally, Xβ̂ = Xβ̃ clearly implies pen(β̂) =
pen(β̃).
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5.3 Proof of Theorem 1
In this proof the notation h⊥ denotes for the hyperplane {x ∈ Rp : h′x = 0}.

Proof. ( ⇐= ) Assume that there exists a face F = ∂pen(β̂) of B∗ = conv{u1, . . . , ul} that intersects
row(X) and satisfies dim(F ) < dim(ker(X)). By Lemma 2, every face of B∗ can be written as ∂pen(β̂)

for a particular point β̂. Then we may pick z ∈ Rn with X ′z ∈ F , which exists by assumption, and
fix y = Xβ̂ + λz. Then β̂ ∈ SX,λpen(y) due to the following equality

1

λ
X ′(y −Xβ̂) = X ′z ∈ ∂pen(β̂).

Note that, according to Lemma 2, ∂pen(β̂) = conv{ui}i∈I where I := {i ∈ [l] : u′iβ̂ = pen(β̂)} (and
thus u′iβ̂ < pen(β̂) when i /∈ I). We now construct β̃ ∈ SX,λpen(y) different from β̂. To construct β̃ it
suffices to pick h ∈ ker(X) where h 6= 0 such that u′ih = 0 for all i ∈ I.
First case:
Let 0 ∈ aff{ui}i∈I (thus aff{ui}i∈I = vect{ui}i∈I). Then dim(F ) = dim(aff{ui}i∈I) = dim(vect{ui}i∈I) <
dim(ker(X)) implying thus {0} ( ker(X)∩ (vect{ui}i∈I)⊥ and consequently one may pick h ∈ ker(X)
where h 6= 0 for which u′ih = 0 for all i ∈ I.
Second case:
Let 0 /∈ aff{ui}i∈I and let v = X ′z. Then, by construction, v ∈ row(X) ∩ conv{ui}i∈I and note
that v 6= 0. Consequently, we have ker(X) = row(X)⊥ ⊂ v⊥ and (vect{ui}i∈I)⊥ ⊂ v⊥. Because the
following inequality holds

dim(vect{ui}i∈I) = dim(aff{ui}i∈I) + 1 ≤ dim(ker(X)),

then dim(ker(X)) + dim((vect{ui}i∈I)⊥) ≥ p. Consequently, if ker(X) ∩ (vect{ui}i∈I)⊥ = {0} then
ker(X) + (vect{ui}i∈I)⊥ = Rp which is not possible since both ker(X) ⊂ v⊥ and (vect{ui}i∈I)⊥ ⊂ v⊥.
Consequently {0} ( ker(X)∩ (vect{ui}i∈I)⊥ and thus one may pick h ∈ ker(X) where h 6= 0 such that
u′ih = 0 for all i ∈ I.
Up to scale h, one may assume that h 6= 0 is small enough so that u′i(β̂ + h) < pen(β̂) once i /∈ I.
Therefore, the following equality occurs

pen(β̂ + h) = max{u′1(β̂ + h), . . . , u′l(β̂ + h)} = max{u′i(β̂ + h)}i∈I = pen(β̂).

Consequently, by taking β̃ = β̂ + h we clearly obtain that β̃ ∈ SX,λpen(y) with β̃ 6= β̂.

( =⇒ ) Let us assume that there exists y ∈ Rn and β̂, β̃ ∈ SX,λpen(y) with β 6= β̃. We then have

1

λ
X ′(y −Xβ̂) ∈ ∂pen(β̂) and

1

λ
X ′(y −Xβ̃) ∈ ∂pen(β̃).

According to Lemma 3, Xβ̂ = Xβ̃, thus 1
λX
′(y−Xβ̂) = 1

λX
′(y−Xβ̃). Consequently, one may deduce

that row(X) intersects the face ∂pen(β̂)∩∂pen(β̃). Let F ∗ = conv{ui}i∈I∗ be a face of ∂pen(β̂)∩∂pen(β̃)
of smallest dimension among faces intersecting row(X). By the minimality of dim(F ∗), row(X) in-
tersects the relative interior of F ∗, namely there exists z ∈ Rn such that X ′z lies on F ∗ but not on
a proper face of F ∗. Now, we are going to show that if dim(F ∗) = dim(aff{ui}i∈I∗) ≥ dim(ker(X))
then row(X) intersects a proper face of F ∗ leading to a contradiction.

Indeed, let h = β̂ − β̃ 6= 0. Clearly, h ∈ ker(X). Moreover, because pen(β̂) = pen(β̃) (according
to Lemma 3) and because ui ∈ ∂pen(β̂) ∩ ∂pen(β̃) for every i ∈ I∗, then, according to Lemma 2, the
following equality holds

∀i ∈ I∗, u′ih = u′iβ̂ − u′iβ̃ = pen(β̂)− pen(β̃) = 0.
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Therefore h ∈ (vect{ui}i∈I∗)⊥ ∩ ker(X). Let us assume that dim(aff{ui}i∈I∗) ≥ dim(ker(X)). Then
the following inequality holds

p = dim(row(X)) + dim(ker(X)) ≤ dim(row(X)) + dim(aff{ui}i∈I∗).

If row(X) ∩
−→
aff{ui}i∈I∗ = {0} then row(X) +

−→
aff{ui}i∈I∗ = Rp. However, the last equality cannot

hold since row(X) = ker(X)⊥ ⊂ h⊥ and
−→
aff{ui}i∈I∗ ⊂ vect{ui}i∈I∗ ⊂ h⊥. Consequently, there exists

0 6= v ∈ row(X) ∩
−→
aff{ui}i∈I∗ .

The affine line L := {X ′z + tv : t ∈ R} ⊂ row(X) intersects the relative interior of F ∗ (at t = 0) and
lies in aff(F ∗), so L intersects the border of F ∗. Finally, one may deduce that row(X) intersects a
proper face of F ∗ which gives a contradiction.

5.4 Proof of Corollary 1
Proof. Because β̂ is a minimizer, then 1

λX
′(y − Xβ̂) ∈ ∂pen(β̂). Thus, clearly row(X) intersects the

face of ∂pen(β̂). Consequently, according to Theorem 1 we have dim(∂pen(β̂)) ≥ dim(ker(X)).

i) pen = ‖.‖∞. If rk(X) = 0, then X is the null matrix. Thus SX,λpen(y) = {0} and consequently
|{i ∈ [p] : |β̂i| < ‖β̂‖∞}| = 0. Now suppose that rk(X) ≥ 1. Then

dim(∂‖.‖∞(β̂)) ≥ dim(ker(X)),

⇔ p− dim(∂‖.‖∞(β̂))︸ ︷︷ ︸
=codim(∂‖.‖∞ (β̂))

≤ p− dim(ker(X))︸ ︷︷ ︸
=rk(X)

,

⇔ |{i ∈ [p] : |β̂i| < ‖β̂‖∞}| ≤ rk(X)− 1.

ii) pen = ‖D.‖1. Then the following equivalence holds

dim(∂‖D.‖1(β̂)) ≥ dim(ker(X)),

⇔ dim(D′∂‖.‖1(Dβ̂)) ≥ dim(ker(X)),

⇔ m− ‖Dβ̂‖0 ≥ p− rk(X),

⇔ ‖Dβ̂‖0 ≤ rk(X) +m− p.

Proof of Proposition 1
Lemma 4. Let pen be a symmetric polyhedral gauge defined by

∀x ∈ Rp,pen(x) = max{u′1x, . . . , u′lx}.

Let F be a face of B∗ = conv({u1, . . . , ul}). If 0 ∈ F then F = B∗

Proof. According to Lemma 2, there exists x ∈ Rp such that F = ∂pen(x). If 0 ∈ F then pen reaches
its minimum at x and thus 0 = pen(0) ≥ pen(x) ≥ 0. Consequently, x ∈ ker(pen) therefore whatever
i ∈ [l] we have u′ix ≤ 0 and by symmetry (since pen(x) = pen(−x)) we also have −u′ix ≤ 0 implying
thus x ∈ vect({ui}1≤i≤l)⊥. By definition of pen and since u′ix = 0 the following equality occurs

∀z ∈ Rp,pen(z) ≥ u′iz = pen(x) + u′i(z − x)

Consequently, whatever i ∈ [l] we have, ui ∈ ∂pen(x). Since ∂pen(x) is a convex set one may deduce
that B∗ ⊂ F . Finally, according to Lemma 2, F ⊂ B∗ and thus F = B∗.
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Proof of Proposition 1. i) Let X ∈ Rn×p. Then dim(ker(X)) ≥ p−n, therefore when dim(ker(pen)) >

n we have {0} ( ker(pen) ∩ ker(X). Consequently, for any β̂ ∈ SX,λpen(y) we have β̂ + (ker(pen) ∩
ker(X)) ⊂ SX,λpen(y). Therefore, SX,λpen(y) is unbounded.

ii) Let u1, . . . , ul ∈ Rp and let us set

∀x ∈ Rp,pen(x) = max{u′1x, . . . , u′lx}.

Since pen is symmetric then the following equivalences occur

h ∈ ker(pen)⇔ ∀i ∈ [l], u′ih = 0⇔ vect({ui}1≤i≤l)⊥.

Because for every x ∈ Rp,pen(x) ≥ pen(0) = 0 then 0 ∈ B∗ = conv({ui}1≤i≤l). Thus dim(B∗) =
dim(aff{ui}i∈[l]) = dim(vect{ui}i∈[l]) = p − dim(ker(pen)). The uniform uniqueness does not hold if
and only if row(X) intersects a face F of B∗ such that dim(F ) < dim(ker(X)). When dim(ker(pen)) ≤
n then dim(B∗) ≥ p − n ≥ dim(ker(X)). Consequently, a face F intersected by row(X) where
dim(F ) < dim(ker(X)) is a proper face of B∗ and thus, according to Lemma 4, 0 /∈ F (thus row(X)
which contains 0 does not trivially intersects F ). Finally, the conclusion of this proof is exactly similar
as the proof of Proposition 1 in Schneider and Tardivel (2020).

Proof of Proposition 2
The following lemma generalizes Proposition 4.1 from Gilbert (2017) that is stated for the `1-norm to
an arbitrary norm. This lemma is used in the proof of Proposition 2.

Lemma 5. Let s ∈ Rp and φ be a convex function on Rp. The vector space row(X) intersects ∂φ(s)
if and only if the following holds.

∀b ∈ Rp Xb = Xs =⇒ φ(b) ≥ φ(s) (4)

Proof. Consider the function fs : Rp → {0,∞} given by

fs(b) =

{
0 Xb = Xs

∞ else.

Then (4) holds for b if and only if s is a minimizer of the function b 7→ φ(b) + fs(b). Since we have
∂fs(b) = row(X) whenever Xb = Xs, we can deduce that the implication (4) occurs if and only if

0 ∈ row(X) + ∂φ(s) ⇐⇒ row(X) ∩ ∂φ(s) 6= ∅.

Proof of Proposition 2. ( =⇒ ) When the model pattern ∂pen(β) of β is accessible with respect to X
and λpen then, there exists y ∈ Rn and β̂ ∈ SX,λpen(y) such that ∂pen(β̂) = ∂pen(β). Because β̂ is a
minimizer then 1

λX
′(y −Xβ̂) ∈ ∂pen(β̂). Consequently, by setting z = (y −Xβ̂)/λ, one may deduce

that X ′z ∈ ∂pen(β) ∩ row(X) (geometric characterization). Or, equivalently, by Lemma 5, whenever
Xγ = Xβ, we have pen(γ) ≥ pen(β) (analytic characterization).

( ⇐= ) If row(X) intersects the face ∂pen(β) (geometric characterization) or, equivalently by the
Lemma 5, if Xγ = Xβ implies pen(γ) ≥ pen(β) (analytic characterization), then there exists z ∈ Rn
such that X ′z ∈ ∂pen(β).Set y = Xβ+λz. Then β ∈ SX,λpen(y) implies that ∂pen(β) is accessible with
respect to X and λpen.
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Proof of Theorem 2
Lemma 6. Let X ∈ Rn×p and β ∈ Rn. The following set is empty or is convex

Vβ := {y ∈ Rn : ∃λ > 0 ∃β̂ ∈ SX,λpen(y) such that ∂pen(β̂) = ∂pen(β)}.

Note that once a vector y ∈ Rn lies in the set Vβ , in the solution path (see (4)) there is a tuning
parameter λ > 0 and a minimizer β̂ ∈ SX,λpen(y) such that ∂pen(β̂) = ∂pen(β).

Proof. Let us assume that Vβ 6= ∅. Let y, ỹ ∈ Vβ . Then there exist λ > 0 and λ̃ > 0 such that
β̂ ∈ SX,λpen(y) and β̃ ∈ SX,λ̃pen(ỹ) where ∂pen(β̂) = ∂pen(β̃) = ∂pen(β). Consequently, the following
expression occurs

X ′(y −Xβ̂) ∈ λ∂pen(β) and X ′(ỹ −Xβ̃) ∈ λ̃∂pen(β).

Let y̌ = αy+(1−α)ỹ, λ̌ = αλ+(1−α)λ̃ and β̌ = αβ̂+(1−α)β̃ and let us prove that y̌ ∈ Vβ . Because
∂pen(β) is a convex set then ∂pen(β̌) = ∂pen(β) and one may deduce the following equality

X ′
(
y̌ −X(β̌)

)
= αX ′(y −Xβ̂) + (1− α)X ′(ỹ −Xβ̃) ∈ (λα+ λ̃(1− α))∂pen(β) = λ̌∂pen(β̌).

Consequently β̌ ∈ SX,λ̌pen(y̌) and since ∂pen(β̌) = ∂pen(β), one may deduce that (αy + (1− α)ỹ) ∈ Vβ
which implies that Vβ is a convex set.

Proof of Theorem 2. Clearly, by definition of the set Vβ , we have

Xβ /∈ Vβ = {y ∈ Rn : ∃λ > 0 ∃β̂ ∈ SX,λpen(y) such that ∂pen(β̂) = ∂pen(β)}.

Consequently, because Vβ is convex (or empty), one may deduce that the following event always holds
{Xβ + ε /∈ Vβ} ∪ {Xβ − ε /∈ Vβ} for any observation of ε ∈ Rp. When Vβ = ∅, this equality is clear.
Otherwise, when Vβ is a non empty convex set, if {Xβ + ε ∈ Vβ} ∩ {Xβ − ε ∈ Vβ} then, by convexity,
one may deduce that Xβ ∈ Vβ leading to a contradiction. Consequently,

1 = P({Xβ + ε /∈ Vβ} ∪ {Xβ − ε /∈ Vβ})
≤ P({Xβ + ε /∈ Vβ}) + P({Xβ − ε /∈ Vβ}) = 2P({Xβ + ε /∈ Vβ}).

Consequently

1/2 ≥ P({Xβ + ε ∈ Vβ}) = P(∃λ > 0 ∃β̂ ∈ SX,λpen(Y ) such that ∂pen(β̂) = ∂pen(β)).

5.5 Proof of Theorems 3 and 4
5.5.1 Necessary conditions of Theorems 3 and 4

Proof: Necessary condition of Theorem 3. Let us assume that ∂pen(β̂) ⊂ ∂pen(β). Because β̂ ∈ SX,λpen(y)

then 1
λX
′(y −Xβ̂) ∈ ∂pen(β̂) ⊂ ∂pen(β) and consequently, row(X) intersects ∂pen(β). Therefore, ac-

cording to Proposition 2, ∂pen(β) is accessible with respect to X and pen leading to a contradiction.

Lemma 7 is useful to prove that in Theorem 4, i) implies ii).

Lemma 7. Let x ∈ Rp and τ ≥ 0 then ∂‖.‖1(x) ⊂ ∂‖.‖1(xτ ).

Proof. When p = 1, clearly ∂|.|(x) = ∂|.|(x
τ ) once xxτ > 0 and ∂|.|(x) ⊂ ∂|.|(x

τ ) once xxτ = 0. Now,
when p ≥ 1, since the subdifferential of the `1 norm is a Cartesian product of subdifferentials for the
absolute value, the following equality holds

∂‖.‖1(x) = ∂|.|(x1)× · · · × ∂|.|(xp) ⊂ ∂|.|(xτ1)× · · · × ∂|.|(xτp) = ∂‖.‖1(xτ ).

22



Proof: Necessary condition of Theorem 4. i) is straightforward from the proof of the necessary condi-
tion given in Theorem 3 by taking pen = ‖D.‖1.

Let us prove that i) ⇒ ii). Indeed, if sign([Dβ̂]τ ) = sign(Dβ) for some τ ≥ 0 then according to
Lemma 7 the following inclusion occurs

∂‖D.‖1(β̂) = D′∂‖.‖1(Dβ̂) ⊂ D′∂‖.‖1([Dβ̂]τ ) = D′∂‖.‖1(Dβ) = ∂‖D.‖1(β).

Consequently i) does not hold which achieves the proof.

Sufficient conditions of Theorems 3 and 4

Lemmas 8 and 9 are useful to prove that both in Theorems 3 and 4, asymptotically, β̂(yk)/k converges
to β when k tends to +∞.

First, before to provide these lemmas, we remind that given a closed convex set C ⊂ Rp and x ∈ C
the asymptotic cone is the following set (Hiriart-Urruty and Lemarechal, 1993):

C∞ := {d ∈ Rp : x+ td ∈ C ∀t > 0}.

Moreover, the following statements hold

• The set C∞ does not depend on x ∈ C.

• Given C and K two closed convex sets where C ∩K 6= ∅ then (C ∩K)∞ = C∞ ∩K∞.

• A closed convex set C is compact if and only if C∞ = {0}

Lemma 8. Let pen be a polyhedral gauge on Rp, X ∈ Rn×p, b ∈ col(X), K1 ≥ 0 and K2 ≥ 0. If
ker(X) ∩ ker(pen) = {0} then the set C := {u ∈ Rp : pen(u) ≤ K1 and ‖Xu− b‖2 ≤ K2} is compact.

Proof. Clearly C is a closed and convex set. To prove that C is compact, it is enough to show that
the asymptotic cone of C is {0}. Let Cpen := {u ∈ Rp : pen(u) ≤ K1} and CX := {u ∈ Rp :
‖Xu − b‖2 ≤ K2} then, the asymptotic cones of Cpen and CX are respectively Cpen

∞ = ker(pen) and
CX∞ = ker(X). Therefore C∞ = (Cpen ∩ CX)∞ = Cpen

∞ ∩ CX∞ = ker(pen) ∩ ker(X). Consequently, if
ker(pen) ∩ ker(X) = {0} then C∞ = {0} and thus C is compact.

Lemma 9. Let X ∈ Rn×p, λ > 0, pen be a polyhedral gauge on Rp and let us assume that for
every y ∈ Rn the set SX,λpen(y) has a unique minimizer β̂(y). Let β ∈ Rp and let ε ∈ Rn and set
yk = X(kβ) + ε. If β is accessible with respect to X and pen then

lim
k→+∞

β̂(yk)/k = β.

Proof. Because β̂(yk) is a minimizer of SX,λpen(yk) then the following inequality occurs

1

2
‖yk −Xβ̂(yk)‖22 + λpen(β̂(yk)) ≤ 1

2
‖yk −X(kβ)‖22 + λpen(kβ).

Since yk −X(kβ) = ε one may deduce the following inequalities

λpen(β̂(yk)) ≤ 1

2
‖ε‖22 + λpen(kβ),

⇒ pen(β̂(yk)/k) ≤ ‖ε‖
2
2

2λk
+ pen(β),

⇒ lim sup
k→+∞

pen(β̂(yk)/k) ≤ pen(β). (5)
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Consequently, the sequence
(
pen(β(yk)/k)

)
k∈N∗ is bounded. In addition, the Cauchy-Schwarz inequal-

ity gives the following implications

1

2
‖ε+X(kβ)−Xβ̂(yk)‖22 + λpen(β̂(yk)) ≤ 1

2
‖ε‖22 + λpen(kβ),

⇒ −‖ε‖2‖X(kβ)−Xβ̂(yk)‖2 +
1

2
‖X(kβ)−Xβ̂(yk)‖22 + λpen(β̂(yk)) ≤ λpen(kβ),

⇒ −‖ε‖2
k

∥∥∥∥∥X
(
β̂(yk)

k
− β

)∥∥∥∥∥
2

+
1

2

∥∥∥∥∥X
(
β̂(yk)

k
− β

)∥∥∥∥∥
2

2

+
1

k
λpen

(
β̂(yk)

k

)
≤ λpen(β)

k
. (6)

Let l ∈ [0,+∞] be the superior limit of the following sequence(∥∥∥X (β̂(yk)/k − β
)∥∥∥

2

)
k∈N∗

. (7)

According to (5) and (6) the following inequality occurs

lim sup
k→+∞

λpen(β)− λpen(β(yk)/k)

k
= 0 ≥

{
l2/2 if l < +∞
+∞ if l = +∞

.

Consequently, l = 0 and thus sequence (7) is also bounded.
Due to the uniform uniqueness we have ker(pen) ∩ ker(X) = {0} and thus, according to Lemma

8, the sequence ((β̂(yk)/k)k∈N∗ is bounded. Therefore, to prove that limk→+∞ β̂(yk)/k = β it is
sufficient to show that β is the unique limit point of this sequence. Let us extract a subsequence
(β̂(yφ(k))/φ(k))k∈N∗ converging to γ ∈ Rp (where φ : N∗ → N∗ is an increasing function). By (5) one
may deduce that pen(γ) ≤ pen(β). Moreover by (6) one may deduce the following limit

lim
k→+∞

∥∥∥∥∥X
(
β̂(yφ(k)

φ(k)
− β

)∥∥∥∥∥
2

2

= ‖X(γ − β)‖22 = 0 (since other terms of (6) converge to 0).

Finally γ satisfies the following equality and inequality

Xγ = Xβ and pen(γ) ≤ pen(β).

Let us show that the unique element satisfying the above equality and inequality is γ = β. Because the
model pattern of β is accessible then there exists z ∈ Rn such thatX ′z ∈ ∂pen(β). Let y = Xβ+λz then
β ∈ SX,λpen(y). Consequently, if there exists γ 6= β such that Xβ = Xγ and pen(γ) ≤ pen(β) then,
one may deduce that γ ∈ SX,λpen(y) and thus SX,λpen(y) is not a singleton leading to a contradiction.
Consequently, γ = β and thus

lim
k→+∞

β̂(yk)

k
= β.

Proof: Sufficient condition of Theorem 4. iii) Let q := min{|[Dβ]i| : i ∈ supp(Dβ)} > 0. Because
β̂(yk)/k converges to β when k tends to +∞ then 1

kDβ̂(yk) tends to Dβ and consequently the following
inequality holds

∃k0 ∈ N such that ∀k ≥ k0,

∥∥∥∥1

k
Dβ̂(yk)−Dβ

∥∥∥∥
∞
< q/2.

Let τ = qk/2 and let us show that sign([Dβ(yk)]τ ) = sign(Dβ) once k ≥ k0.
When i /∈ supp(Dβ) then

∀k ≥ k0,

∣∣∣∣1k [Dβ̂(yk)]i

∣∣∣∣ < q/2⇒ ∀k ≥ k0,
∣∣∣[Dβ̂(yk)]i

∣∣∣ < τ ⇒ ∀k ≥ k0, sign([Dβ̂(yk)]τi ) = sign([Dβ]i) = 0
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When [Dβ]i > 0 (thus [Dβ]i ≥ q) then

∀k ≥ k0,

∣∣∣∣1k [Dβ̂(yk)]i − [Dβ]i

∣∣∣∣ < q/2 ⇒ [Dβ̂(yk)]i > k([Dβ]i − q/2) ≥ τ

⇒ sign([Dβ̂r]τi ) = sign([Dβ]i]) = 1.

When [Dβ]i < 0 (thus [Dβ]i ≤ −q) then

∀k ≥ k0,

∣∣∣∣1k [Dβ̂(yk)]i − [Dβ]i

∣∣∣∣ < q/2 ⇒ [Dβ̂(yk)]i < k([Dβ]i + q/2) ≤ −τ

⇒ sign([Dβ̂r]τi ) = sign([Dβ]i]) = −1.

iv) Let us remind that π be a permutation of Sp such that |[Dβ̂(yk)]π(1)| ≥ |[Dβ̂(yk)]π(2)| ≥ · · · ≥
|[Dβ̂(yk)]π(p)|. Clearly, for every τ ≥ 0 the support of [Dβ̂(yk)]τ lies onto the following family of nested
subsets:

supp([Dβ̂(yk)]τ ) ∈ {∅, {π(1)}, {π(1), π(2)}, . . . , supp(Dβ̂(yk))}.

Consequently, if iii) occurs, i.e. if sign([Dβ̂(yk)]τ ) = sign(Dβ) for some threshold τ then supp([Dβ̂(yk)]τ ) =
supp(Dβ) and consequently, the support of Dβ lies into the family of nested subsets

supp(Dβ) ∈ {∅, {π(1)}, {π(1), π(2)}, . . . , supp(Dβ̂(yk))}.

Proof of the sufficient condition for Theorem 3 is based on Lemma 9 and on Lemma 10 given
hereafter.

Lemma 10. Let pen be a polyhedral gauge defined by ∀x ∈ Rp,pen(x) = max{u′ix, . . . , u′lx} and
β ∈ Rp. Then, there exists τ > 0 depending on β such that

∀z ∈ B∞(β, τ), ∂pen(z) ⊂ ∂pen(β). (8)

Proof. Let I := {i ∈ [l] : u′iβ = pen(x)} then, according to Lemma... ∂pen(β) = conv{ui}i∈I . Because
the following inequalities are true

∀i /∈ I, u′iβ < pen(β),

then by continuity of linear functions and by continuity of pen, one may pick τ > 0 small enough such
that

∀z ∈ B∞(β, τ),∀i /∈ I, u′iz < pen(z).

Consequently, whatever z ∈ B∞(β, τ) we have J := {i ∈ [l] : u′iz = pen(z)} ⊂ I and thus

∂pen(z) = conv{ui}i∈J ⊂ conv{ui}i∈I = ∂pen(β).

Proof: Sufficient condition of Theorem 3. According to Lemma 10 there exists τ0 > 0 such that what-
ever z ∈ B∞(β, τ0) we have ∂pen(z) ⊂ ∂pen(β). According to Lemma 9 for β̂(yk)/k converges to β
when k tends to +∞. Consequently,

∃k0 ∈ N such that ∀k ≥ k0, ‖β̂(yk)/k − β‖∞ < τ0/2.

Consequently, for k ≥ k0 we have{
∀u ∈ B∞(β̂(yk)/k, τ0/2), ∂pen(u) ⊂ ∂pen(β)

∃û ∈ B∞(β̂(yk)/k, τ0/2), ∂pen(û) = ∂pen(β)
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Since, whatever t > 0 and whatever x ∈ Rp we have ∂pen(x) = ∂pen(tx) then, one may deduce that{
∀u ∈ B∞(β̂(yk), kτ0/2), ∂pen(u) ⊂ ∂pen(β)

∃û ∈ B∞(β̂(yk), kτ0/2), ∂pen(û) = ∂pen(β)

Consequently, one achieves the proof by taking τ = kτ0/2.
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