

Medical Imaging Research Laboratory

www.creatis.insa-lyon.fr

Multispectral Endoscopic Setup for Real Time Pathology Detection

Charly Caredda¹, Bruno Montcel¹, Raphaël Sablong¹

¹Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, Lyon, France

Introduction

	Tissue detection (a) (b)	Tissue characterization (c)		
Camera	RGB (distal end)	HSI (proximal end) [2-4]		
Acquisition time	$\approx 33ms$	> 1 <i>s</i>		
Field of view	Extended	Reduced		
Spectral resolution	Low	High		
Lesion damage identification	Visual appreciation of the practitioner	Spectral analysis		

(a) White light endoscopy. (b) NBI endoscopy [1]. (c) Hyperspectral (HIS) endoscopy (Tumor identification) [2]

There is a need to provide quantitative or semi-quantitative indicators to the practitioner to assist them during a tissue detection examination using flexible tube endoscopes

Semi-quantitative indicators

Physiological parameters estimation

Results

			Blood vessel		Hypoxic lesion		Healthy	
			Surf.	Depth	Surf.	Depth	tissue	
ooxic lesion lesion (2mm) od vessel	С _{ньт} (µMol/L)	Reference	2500	2500	87.1	87.1	87.1	
		Estimation	1064	110	114	74	101	
		Reference	95	95	8	8	74.6	
ssei (zmm)	SatO ₂ (%)	Surface estimation	98	47	0	60	58	
		Depth estimation	97	98	71	90	93	

Discussion and Conclusion

Proof of concept for pathological tissue detection in flexible tube endoscopy

- Multispectral endoscope
- Real time processing
- Semi-quantitative representation for the identification of superficial and deep tissue lesions

Possible discrimination between healthy tissue, surface blood vessel and hypoxic lesion

Contact: charly.caredda@creatis.insa-lyon.fr

Perspectives

- Improve light injection into the endoscope
- Improve the estimation model
- Evaluate the estimation model with an optical phantom

[1] K. Gono et al. (2004) J. Biomed. Opt. 9(3) 568-577 [2] R. Kumashiro et al. (2016) Anticancer research 36:3925-32 [3] R. T. Kester et al. (2011) J. Biomed. Opt. 16(5) 056005 [4] B. Regeling et al. (2016) Sensors 16, 1288 [5] Q. Fang et al. (2009) Opt. Express, 17(22)

