N
N

N

HAL

open science

Design-Time Safety Assessment of Robotic Systems
Using Fault Injection Simulation in a Model-Driven
Approach

Garazi Juez Uriagereka, Estibaliz Amparan, Cristina Martinez Martinez,

Jabier Martinez, Aurelien Ibanez, Matteo Morelli, Ansgar Radermacher,

Huascar Espinoza

» To cite this version:

Garazi Juez Uriagereka, Estibaliz Amparan, Cristina Martinez Martinez, Jabier Martinez, Aurelien
Ibanez, et al.. Design-Time Safety Assessment of Robotic Systems Using Fault Injection Simulation
in a Model-Driven Approach. 2019 ACM/IEEE 22nd International Conference on Model Driven
Engineering Languages and Systems Companion (MODELS-C), MORSE workshop, Sep 2019, Munich,
Germany. pp.577-586, 10.1109/MODELS-C.2019.00088 . hal-03261984

HAL Id: hal-03261984
https://hal.science/hal-03261984

Submitted on 16 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03261984
https://hal.archives-ouvertes.fr

Design-Time Safety Assessment of Robotic Systems
Using Fault Injection Simulation in a Model-Driven
Approach

Garazi Juez Uriagereka,
Estibaliz Amparan,
Cristina Martinez Martinez,
Jabier Martinez
Digital Trust Technologies Area (TRUSTECH)
TECNALIA - ICT Division
Derio, Spain
name.firstSurname @tecnalia.com

Abstract—The rapid advancement of autonomy in robotic
systems together with the increasing interaction with humans
in shared workspaces (e.g. collaborative robots), raises pressing
concerns about system safety. In recent years, the need of model-
driven approaches for safety analysis during the design stage
has gained a lot of attention. In this context, simulation-based
fault injection combined with a virtual robot is a promising
practice to complement traditional safety analysis. Fault injection
is used to identify the potential safety hazard scenarios and to
evaluate the controller’s robustness to certain faults. Besides,
it enables a quantitative assessment w.r.t. other techniques that
only give qualitative hints, such as FMEA. Thus, it facilitates the
refinement of safety requirements and the conception of concrete
mitigation actions. This paper presents a tool-supported approach
that leverages models and simulation-assisted fault injection to
assess safety and reliability of robotic systems in the early phases
of design. The feasibility of this method is demonstrated by
applying it to the design of a real-time cartesian impedance
control system in torque mode as a use case scenario.

Index Terms—Safety, robotic systems, fault injection, Rob-
MoSys

I. INTRODUCTION

Through the advance of more complex systems, such as
autonomous robots or automated road vehicles, novel chal-
lenges on dependability assessment arise. This also increases
the amount of potentially hazardous situations, for which
traditional safety and security analysis techniques are not suf-
ficient anymore. In order to manage this new complexity, the
extension of traditional analysis techniques with simulation-
based approaches poses as a promising solution to virtually
validate the safety of the system under analysis. In other
words, an early safety validation of the system can be achieved
by combining model-driven development with simulation-
based technology, which includes fault injection techniques
and a virtual environment (e.g. a virtual robot).

Nowadays, safety is becoming a crucial property of robotic
systems. ISO 12100 [1], ISO [2] 13849 and IEC 62061 [3]
are some of the most accepted safety standards in robotics,

Chateau-Gaillard, France
a.ibanez@akeoplus.com

Aurelien Ibanez
AKEO PLUS

Matteo Morelli,
Ansgar Radermacher,
Huascar Espinoza
CEA, LIST
Laboratory of embedded
and autonomous systems
Gif-sur-Yvette, France
name.surname @cea.fr

covering aspects such as functional safety. Functional safety is
the aspect of safety that aims to avoid unacceptable risks due to
electrical/electronic failures, but also considering that the sys-
tem should be designed to properly handle likely human errors,
and operational/environmental stress. The safety analysis and
validation steps are fundamental aspects to perform the safety
assessment. Some of the commonly used risk assessment
methods are Preliminary Hazard Analysis, Hazard Operability
Analysis, FMEA (Failure Mode and Effects Analysis) [4] and
FTA (Fault Tree Analysis) [5]. Furthermore, simulation-based
fault injection completes these analyses by finding unexpected
hazards (fault forecasting) and verifying the implemented
safety mechanisms. Those techniques require knowing the
effects of certain failures in advance. However, it might be
the case that sometimes is not possible to know the effect of
a certain failure on different levels. To overcome these failure
chain issues, it is necessary to combine the aforementioned
traditional techniques with simulation-based fault injection
approaches.

Model-driven solutions and software component models
can increase software development productivity through auto-
mated generation of code, qualification/certification evidence
and documentation. For instance, iterative investigation and
verification/validation can lower costs by identifying issues
before the real implementation is carried out. Furthermore,
these approaches facilitate the reuse of pre-qualified software
components. Traditionally, safety analysis techniques, which
allow deriving safety requirements and performing safety ver-
ification and validation, rely solely on the skill and expertise of
the safety engineer. Consequently, the task of accomplishing
either a FMEA or FTA remains a manual and time-consuming
activity.

Two remarkable challenges exist when developing reusable
robotic systems and software. Firstly, a modular design needs
to be provided. Second, solutions for an early safety as-
sessment are needed, in which model-based safety analysis

and robustness simulations are combined by means of fault
injection. One of the most attractive benefits of applying the
method presented here is the development of composable,
replaceable and reusable safe components.

The contribution of this work is an approach called el-
TUS (Experimental Infrastructure Towards Ubiquitously Safe
Robotic Systems) [6], that is one of the six Integrated Techni-
cal Projects (ITPs) that has been selected from the RobMoSys
first open call. RobMoSys [7] envisions an integrated approach
built on top of the current code-centric robotic platforms, by
applying model-driven methods and tools. RobMoSys focuses
on building an open and sustainable, agile and multi-domain
European robotics software ecosystem.

In this context, one of the main challenges of eITUS
is to assess safety properties of robotic systems employ-
ing simulation-based fault injection techniques. To address
this concern, a simulation-based fault injection framework
is coupled with the robot and environment simulator called
Gazebo [8]. Gazebo consists of a physics engine that utilises
a specific model annotated with robot dynamics and an en-
vironment model. The added value of including robot and
environment models is that it allows quantitatively estimating
the effects of a failure on robot system level.

This paper is structured as follows, Section 2 presents
background information. Then, Section 3 details the approach
and Section 4 explains how the approach was implemented
in the case study. Later on, Section 5 introduces the related
work. Finally, Section 6 presents the conclusions and outlines
future work.

II. BACKGROUND

A. Model-based Design for Safe-Aware
Robotic Systems

Compositional

Model-Driven Development (MDD) is an approach that
allows robotic system developers to shift their focus from im-
plementation to the robotics knowledge space and to promote
efficiency, flexibility and separation of concerns for different
development stakeholders. This reinforces the model-centric
vision stated by the Multi-Annual Roadmap for Robotics
2020 [9], where models are not only used by persons but also
by robots at run-time, e.g. to monitor and be aware of what
they are doing. One key goal of MDD approaches is to be
integrated with available development infrastructures from the
robotics community, such as middleware (e.g. ROS [10]), real-
time control [11], algorithm reuse, and simulation (Gazebo
[8]). However, there is a high price to pay since there is not a
strong integration between MDD and these latter technologies
and even less guidance with respect to ensuring system safety.
This is the focus of the RobMoSys project, which envisions
an open platform to share models, design patterns, tool assets
and methodological knowledge for robotics technologies, and
now in addition eITUS, as an industrial experiment to integrate
safety methods and mechanisms.

SmartSoft [12] combines a service-oriented component-
based approach with Model Driven Software Development.
Its component model is represented by a metamodel called

SmartMARS, which is implemented as a UML profile. The
Domain Specific Language RobotML [13] also proposes an
UML implementation and a toolchain based on Papyrus, with
the added possibility to describe component behaviour at the
same abstraction level as component specifications. RobotML
provides means to define the system architecture, the commu-
nication mechanisms between components and the behaviour
of robotic components that form the system architecture. The
BRICS (Best Practice in Robotics) FP7 EU project [13] also
promotes the Model-Driven Engineering approach in order to
solve robotic software engineering issues. They developed the
BCM metamodel to describe a minimal component model
suitable for code generation for multiple target middlewares
(ROS, OROCOS-RTT). The P-RC2 (Platform for Robot Con-
troller Construction) [14] project also relies on model-based
engineering and component-based design approaches. P-RC2
proposes an architecture, a methodology and a set of tools
to model, implement, validate and deploy robotic controllers.
The feasibility of this design time concept has moreover been
proven in a model-driven controller design tool based on
Eclipse/Papyrus, which in turn is supported by an evolution
of the RobotML metamodel. Components are implemented by
contributors (consortium and community) with domain code
which is middleware-agnostic, and can be deployed using
automatic code generation to widespread middlewares such
as OROCOS for industrial applications.

B. Fault Injection-based Safety Assessment for Robotic Sys-
tems

Out of a mission and safety perspective, it is of interest to
ensure the availability of robotics functions, therefore requiring
a fail-operational design. Traditionally, robotic systems have
been known for being closed and working in controlled
environments. However, autonomous systems in contrast will
have to perform a variety of automated tasks in uncertain
environments. Due to the unpredictability of certain envi-
ronmental conditions, robotics systems need to comply with
strong dependability requirements to deliver a service that can
be trusted. A set of basic definitions of dependability are
introduced by Jean-Claude Laprie. Dependability stands for
“the trustworthiness of a computer system such that reliance
can justifiably be placed on the service it delivers” [15].

The safety analysis and validation steps are fundamen-
tal aspects to perform the safety assessment. Some of the
commonly used risk assessment methods are Preliminary
Hazard Analysis, Hazard Operability Analysis, FMEA and
FTA. Furthermore, fault injection simulations complete these
analyses by finding unexpected hazards (fault forecasting) and
verifying the implemented safety mechanisms. Fault injection
is a common technique for validating the effectiveness of fault-
tolerance mechanisms by studying the behaviour of the system
in presence of faults. The effects of software or hardware
faults are emulated by randomly changing code or data at
different software locations. However, with the increasing size
of software in todays complex systems, it is a challenging
task to define specific fault types and locations that can

effectively emulate realistic fault scenarios. Consequently, to
reach dependability at a high safety criticality level, different
methods like fault injection are necessary. Arlat et al. [16]
defined fault injection as a dependability validation technique
that is based on conducting controlled experiments. In detail,
the observation of the system behaviour in the presence of
faults is explicitly induced by the deliberate introduction of
faults into the system. Arlat et al. also proposed an effective
way to characterise a fault injection environment known as the
FARM (Faults, Activation, Readouts, Measurements) environ-
ment model [17]. The FARM model (cf. Fig. 1) is composed
of: (1) the set of Faults to be injected, (2) the set of Activations
exercised during the experiment, (3) the Readouts to define
observers of system behaviour, and (4) the Measures obtained
to evaluate safety properties.

— CONTROLLER

WORKLOAD (A,W)

[
=

Target
System

DATA DATA
COLLECTOR (M) [| ANALYZER (R)

INJECTOR

Fault Listj

Regarding fault injection techniques, researchers and
engineers have created many novel methods to inject
faults [18], which can be implemented at different design
levels and are commonly used to pursue the following
objectives:

Fig. 1. FARM Model

o Understanding a system's behaviour in the presence of
real faults.

« Verification of the fault tolerance mechanisms included
in the target system for removing design faults.

o Forecasting of faulty behaviour of a target system, by
obtaining measurements of the coverage or efficiency and
the latency of fault tolerance mechanisms.

« Exploring the effects of different workloads on the effec-
tiveness of fault tolerance mechanisms.

o Identifying weak links or single points of failures (a
single fault leading to severe consequences) in the design.

Fault injection is traditionally used for emulating hard-

ware faults and consists of various techniques. Depending on
whether faults are injected into a system model or into an
actual physical system prototype, techniques are divided into
hardware-based fault injection, software-based fault injection

or simulation-based fault injection [18]. Hardware-based fault
injection directly injects faults into the real target system
with external equipment, e.g., placing the target system un-
der heavy-ion radiation or by means of pin-level hardware
fault injection. In software-based fault injection, the modified
real software is running on the real target system. At last,
simulation-based fault injection injects faults into a model of
the target system. Those fault models will depend on the level
of abstraction of the modelled system. Each technique has
different advantages and drawbacks as listed in [18]. Usually,
these techniques are combined, for example, by mixing simu-
lation and hardware fault injection. According to Piscitelli et
al. [19], in simulation-based fault injection, the target system
as well as the possible hardware faults are modelled and simu-
lated by a software program, usually called fault simulator. In
order to carry out simulation-based fault injection experiments,
the hardware model or the software state of the target system
is modified, which allows simulating the effect of a hardware
fault in the system. In this way, the system behaviour in the
presence of faults can be analysed during early design phases.
Three of the main advantages of this technique are (i) the
prevention of damage to the target system, (ii) reduced cost
compared to other techniques such as hardware-implemented
fault injection, (iii) higher observability and controllability of
the experiments. The main drawbacks are in terms of fault
representativeness and simulation time. The user should select
an appropriate fault model and represent it accordingly so that
the results of the fault injection simulations are meaningful.
Thus, the fidelity of the results strongly depends on the
accuracy of the models used.

III. THE FAULT INJECTION FRAMEWORK

Among the aforementioned different fault injection tech-
niques, the work presented here focuses on applying the
simulation-based fault injection solution in combination with a
model-driven approach. The eITUS fault injection framework
sets up, configures, executes and analyses the simulation
results. Model-based design combined with a simulation-
based fault injection technique and a virtual robot poses as a
promising solution for an early safety assessment of robotics
systems. The added value of coupling robotics, environment
and controller models is that the maximum time before the
robot gets into a hazardous event can be calculated by means
of simulation. In other words, it allows quantitatively estimat-
ing the relationship of an individual failure to the degree of
misbehaviour on the robot level.

The fault injection framework has been developed to set
up, configure, execute and analyse the obtained simulation
traces. This configuration process includes setting up a vir-
tual environment (e.g., robot environment) and the needed
information to build up the faulty System Model Under Test
(SMUT). All the safety analysis techniques (e.g., FMEA
view) developed for RobMoSys have been integrated in the
Papyrus4Robotics toolchain [20]. Papyrus is an industrial-
grade open source model-based engineering tool. It is based on
standards and supports model-based design in UML, SysML

- e e e ——————
: ifety]
l Engineer I
Component)
Supplier F \s\e' : :
e =
> L RobMoSys ;i\(\"0 | =3 =]
o = |=]
o | === - !
@Q 1 E— n |
63 " Fault Injection (FI) View I
i = I
I
System > i .
Q Buitder critical path k \x\e\i‘s el :
—_— RobMoSys . gﬁ‘ l o l
f— & | I
7 |
. —\/ \\5@(0 [A | ' !
S] Failure Modes and Analysis (FMEA) View |
| I
1 T !
F W | = g - !
Safety \\\?’ l L . e l
Engineer RobMoSys ée‘\'d\ i - T? —_ - (]
—L.__ & I £ E wy J
o i e |
s 1 Twww |
L Fault Tree Analysis (FTA) View]
- e e e e e o el

Fig. 2. Safety Views

and MARTE. The platform uses the UML profile mechanism
to enable the implementation of Domain Specific Modelling
Languages (DSMLs) that assist RobMoSys’ ecosystem of
users in designing robotic systems. Papyrus4Robotics features
a modelling front-end which conforms to the RobMoSys’
foundational principles of separation of roles and concerns.
Fig. 2 illustrates how safety analysis is related to RobMoSys
views and introduces a new role called safety engineer. In
detail, Fig. 2 depicts the relationship between safety engineer-
ing activities and system engineering processes. Moreover, the
three major safety analysis techniques are integrated into the
model-driven development process.

Fig. 3 shows the main fault injection building blocks and the
flow of models to perform safety assessment during simulation
in early design phases of the V-cycle. The framework operates
as follows. First, a workload generator generates the functional
inputs to be applied to the SMUT. The workload generator
consists of:

(i) selecting the SMUT,

(i1) choosing the robot type -Robot selection- and the envi-
ronment scenario -Operational Situation Selection- from
a catalogue, and

(iii) configuring fault injection experiments, i.e. creating the
fault list and choosing read-outs or observation points
(signal monitors).

Then, a fault injector uses both, the fault list and a fault
model library implemented as C++ code templates, to create
the saboteurs and generate as many test cases as the engineer
needs. Saboteurs are extra components added as part of the

model-based design for the sole purpose of Fault Injection
experiments. Fault models are characterised by a type (e.g.,
frozen, stuck at 0, delay, invert, oscillation or random), target
location, injection triggering (e.g., scenario position or time
driven), and duration. In order to create a faulty SMUT, the
fault injector injects an additional saboteur model block per
fault entry from the fault list. Moreover, the injected block is
filled with information coming from a fault model template
library.

The SMUT (Papyrus4Robotics model) is extended with
extra blocks called saboteurs. They reproduce a certain faulty
behaviour of different components such as a sensor or an
electronic control unit. Adding signal injectors or saboteurs
at the inputs of the components together with read-out blocks
or monitors at the outputs, establishes a viable solution to
conduct complex fault injection campaigns. Fault models can
thereby be selected by identifying potential prototypical failure
modes (e.g., too high, too low or too late). Briefly speaking,
the following information is considered:

o Where should the faults be injected?

o What is the most appropriate fault model representing the
functional failure modes?

o How should the faults be triggered within the system?
o Where should the fault effect be observed?

By comparing a fault free simulation (golden SMUT) versus
faulty ones (faulty SMUTSs), tests can be automated and results
obtained. The results of the simulation experiments complete
the safety analysis and help dimensioning the safety concept
by considering the system's fault tolerant time intervals. Thus,

v o

o | o mmmmmem e mmm e mmmm——m————=== 1
"Fault Injection View o :
] L
Isafety Workload Generator : 1 :
lengineer 1 : 1
. - 1 [}
gromree e > System Model Selection Stepl: Set ||| : i
v | Up |1 !
-1 { : : ! | GAZEBO !
b 1 Step lI: Robotics Scenario Configurator | {1 § H
3 Qperational Robot i e e !
2 Situation ~——» . T 1brary of kobots, |
@ . Selection 1y Operational Scenarios |
5! Selectio [. |
o 1 N 3D Environment 1
=1 Step llI: FI Experiments Configurator : : :
@
=] I
2 o i
&l r [1
1 A Fault List I e ittt H
g Generation i : | : !
2! = L ik
% rmmmmmamy] : | o= '.l‘ -1 g 101
5 Fault List : 1 : »° * | :
H 1 - L I |
=N] L - [}
g i StepIV: Faultinjector 1 : = b 0 ‘/f :]
g Fault = L—._i' = B : 1 Model Actuator Models : :
& Fault Library gaiee - [~ -1 T 1
gi Injection ~® ' : ————————————————————————— oy
e e e it 10
E ! Faulty : : : i
=5 L I 1!
g ¥ b Generated Code 1
i StepV: Controller/Monitor B Run Golden —t—i— 1 : :
Golden Results + : : :_ 1o
-1 ------------- Run n Faulty —|—|—' _________________________ :
Faulty Results 1 : 1
s — L T J

|

I = ~ -
: Robotics Dynamics Library for Sensor and
1

Fig. 3. The Fault Injection Framework

it assists in determining the required level of fault tolerance
(e.g., redundancy or graceful degradation), identifying hazards
(e.g., robot does not turn when it should) and ranking the
failure modes with respect to fault occurrence.

Once a fault free version of the SMUT (golden) and at least
one faulty SMUT are available, the simulation environment
is invoked through the monitor. The Monitor not only runs
experiments under the pre-configured environment scenario,
but also compares and analyses the collected data. Regarding
fault injection approaches, the solution developed in terms
of the eITUS approach stands for a simulation-based fault
injection framework for an early safety assessment. Combining
simulation-based fault injection approaches and the inclusion
of Gazebo for robot dynamics and environment simulation
with the RobMoSys design platform, is one of the main goals
of eITUS. Furthermore, Fault Injection can be applied for
dimensioning monitoring functions by determining a system's
maximum response time before a hazardous event occurs.
The results of the simulation experiments will complete or
verify the safety analysis and help dimensioning the safety
mechanisms regarding the maximum tolerable time assigned to
the safety monitor, which must handle the situation before the
hazard occurs. Moreover, this approach will allow for an early
dependability validation of the function and its fault tolerance.

IV. CASE STUDY: CARTESIAN IMPEDANCE CONTROL
SYSTEM IN TORQUE MODE

The eITUS approach is applied to an industrial collaborative
robot. Especially, a real-time Cartesian impedance Control
System in torque mode is introduced as a use case scenario.
The aim of this case study is to demonstrate the benefits of the
eITUS outcomes, which have been focused on collaborative
robotics, a field strongly relying on dependability and safety.
More precisely, a prototype application of a collaborative
robotics solution has been developed that includes a robotic
arm manipulator. This case study has been developed fol-
lowing the approach of RobMoSys, where the complexity of
robotic development is reduced by composing components
and separating tasks that are executed at different levels of
abstraction and by different roles, focusing on the safety
related functionalities developed as part of the eITUS project
via a safety analysis.

Fig. 4 complements the concept depicted in Fig. 3 by
introducing the general eITUS process in the context of the
described case study. Before starting the fault injection exper-
iments, the golden system model, which represents a model
without any faults in place, and its corresponding simulations,
must be created.

Create Generate

g
Modular and
role-based
design

Run

Golden Golden

Golden Code

Model Code

generation

Simulation
—————

Safety Architecture Refinement

Create
Faulty
Model

Configure
Robotics
Scenario

Perform
FMEA

Generate
Faulty Code

analysis and
robustness
simulation

s 4 Pt [E e 1 it

W O ST

Component TR -
Parameters "

Fig. 5. Configuration of Components

To start with, a component supplier manages the design and
configuration of components as depicted in Fig. 5. Thereafter,
a system builder designs the global architecture by assembling
components and adjusting settings (cf. Fig. 6). After that, the
controller code is generated, and the simulations are run in
Gazebo.

Once the components and the system are designed, the
safety engineer starts the FMEA process, which can be per-
formed in a compositional way. First, FMEAs are carried out
at component level. Then, the FMEA is developed at system
level and the safety requirements are defined (cf. Fig. 7). Each
failure mode set during this process will be represented as one
fault model library in the configuration of the faulty system. In
order to prevent a failure mode, a preventive action or safety
requirement is defined by the safety engineer. These safety
requirements will be the basis for the pass/fail criteria of the
fault injection experiments.

Fig. 6. Torque Control System modelled in Papyrus4Robotics

The safety engineer specifies the safety requirements re-
lated to the controller via the safety requirements table. For
example, as applies to this case study, “The velocity of the
Robot arm must not be greater than 0.25 m/s”. The safety
requirements are those requirements that are defined for the
purpose of risk reduction.

After performing the traditional model-based safety analy-
sis, fault injection experiments can be specifically set up to
redefine and validate the aforementioned FMEA. Sometimes
this process might also be known as Robustness Simulation.
The safety engineer starts by selecting the system model and
the robotics scenario, which includes the operational situation
and the robot. After that, it is important to define the fault
injection policy, which is referred to as the fault list. The
golden model is extended with the different faults leading to
the creation of the faulty controller (cf. Fig. 8).

B C D

ESFCore: :AbstractSElement:... Causes Local Effects

A

Name
0 ' No sensor/encoder measu... No sensorfencoder measurement in joint 1x
1 £ No sensor/encoder measu... No sensorfencoder measurement in joint 1y
2 ' No sensor/encoder measu... No sensorfencoder measurement in joint 1z
3 © Internal wrong position ca... Internal wrong position calculation (stuckat0)
4 © Internal wrong position ca... Internal wrong position calculation. Too High value.
5 © Internal wrong position ca... Internal wrong position calculation. Too Low value.
[} © Internal wrong position ca... Internal wrong position calculation. Out of range value.
7 © Internal wrong position ca... Internal wrong position calculation. Early value.
8 © Internal wrong position ca... Internal wrong position calculation. Late value.
9 € Wrong constants value set Wrong constants value set
10 £ Wrong output value calcul... Wrong output value calculated
11 © Wrong output value calcul... Wrong output value calculated
12 & Motion control omission Motion control omission
13 & Motion control comission Motion control comission
14 < Early Motion control Early Motion control
15 © Late Motion Control Late Motion Control
16 Too High Value motion co... Too High Value motion control
17 (£ Too Low Value motion con... Too Low Value motion control

N/A Random Hardware failure No sensor value

NfA Random Hardware failure No Sensor Value

N/A Random Hardware failure No Sensor Value

N/A Software error or Random Hardware fail... Unwanted trajectory generator
N/A Software error or Random Hardware fail Unwanted trajectory generator
N/A Software error or Random Hardware fail... Unwanted trajectory generator
N/A Software error or Random Hardware fail Unwanted trajectory generator
N/A Software error or Random Hardware fail... Unwanted trajectory generator
N/A Software error or Random Hardware fail Unwanted trajectory generator
N/A Software error Instability torque value
N/A Memory failure (bit flip) Instability or Oscillation
N/A External interactions (Dynamic Perturbati... Disturbances

N/A Software error or Random Hardware fail Unwanted motor speed
N/A Software error or Random Hardware fail... Unwanted motor speed
N/A Software error or Random Hardware fail Unwanted motor speed
N/A Software error or Random Hardware fail... Unwanted motor speed
N/A Software error or Random Hardware fail Unwanted motor speed
N/A Software error or Random Hardware fail... Unwanted motor speed

Fig. 7. Torque Control: FMEA view

P’ What falure mode leads to
aviolation of th iated
safety requirement?

Fig. 8. Fault Injection View: Creation of the Fault List

This configuration process includes the definition of fault
locations (Where to inject the fault?), fault injection times
(When to trigger the fault?), fault durations (For how long the
fault is present in the system?) and the fault model (How does
the component fail?). The original system model is modified
though the fault injector script according to the fault list. The
fault list is used to produce a faulty model only in terms of
reproducible and prearranged fault models. As illustrated in
Fig. 9 fault models are characterised by a type (for example,
omission, frozen, delay, invert, oscillation or random), target
location, injection triggering (time driven), and duration. All
this allows to:

« Exhaustively explore all possible behaviours of a system
architecture with respect to some safety property of
interest (e.g., the pre-defined safety requirement “The
velocity of the Robot arm must not be greater than 0.25
m/s”).

« Simulate the behaviour of system architectures early in
the development process to explore potential hazards.

Afterwards, the read-out or observation points (signal mon-
itors) are chosen and created. These blocks hold the infor-

Fig. 9. Fault Injection View: configuration of a fault

mation concerning the safety requirements or the pass/fail
criterion of the tests, which will be used to compute and
finalise the results (cf. Fig. 10). For instance, read-outs need
to be logged in order to check what failure modes or fault
models violate the aforementioned safety requirement: “The
velocity of the Robot arm must not be greater than 0.25 m/s”.

To aid model-based safety analysis and fault injection
simulations, the original or golden system model must be
extended by means of the fault list. Then, the generated code
is instrumented through the fault injector script according to
the fault list. For that, Xtend technology is used!. Out of
these extended or faulty models the deployed code is to be
generated, and the simulations are run.

To create the faulty code, the fault injector inserts an
additional saboteur model block per fault entry from the fault
list together with the associated fault models which are coded
as templates in a fault library.

Once the faulty code is generated, steps 8 and 9 must be
accomplished. The results of the fault injection experiments
can be visually seen in the fault injection simulation results

Xtend: https://www.eclipse.org/xtend/

rropersen o Model Wekiston - Befrermom @ Donumenissoe. S rooe B ew

ot |pdones | Do Poipad “i0d sraaTs T et

Stuck@0 violates the
safety requirement.

Veelodity greater than 0.25 my/s.

Fault Target: Encoder

Fig. 10. Simulation Results View

Golden Faulty

Fig. 11. Golden versus faulty in Gazebo.

view (cf. Fig. 10) or in the Gazebo simulation environment
(cf. Fig. 11).

After analysing the effect of different failure modes in the
system, Fig. 10 illustrates how the stuck at O fault model
(failure mode: no encoder measurement in axis X) violates
the established safety requirement (velocity greater than 0.25
m/s) leading to a hazard. As a consequence, the architecture
needs to be redefined (for example, by applying a 2-out-
of-3 architecture for the encoder or including a plausibility
check for the sensor) so that this failure mode is controlled
to avoid the hazard to occur. Once the implementation of the
elITUS Case Study has been performed, the Goal-Question-
Metric approach (GQM) [21] has been used to evaluate the
effectiveness of the proposed technologies. This approach
defines a measurement model on three levels: conceptual level
(Goal), operational level (Question) and Quantitative level
(Metric).

eITUS benchmarking has been driven by the project goals:
(i) demonstrate a gain for design efficiency of robotics sys-
tems by reducing safety assurance effort, and (ii) help to

demonstrate a remarkable impact in the robotics community by
increasing the interoperability of RobMoSys technologies with
deployment and simulation technologies. These goals have
been then decomposed in technical questions and questions
in turn have been broken down into metrics.

The achievement of these goals has been assessed by
comparing elTUS-supported practice regarding the current
state of practice, in terms of metric measurements in the
elTUS solution and expert estimations. The main results of the
assessment provide an estimation of the potential savings with
the eITUS solution. For example, the effort for reusing safety
validation artefacts per component or the effort required in
understanding safety-related decisions have notably decreased.
For more information on detailed metrics please refer to the
deliverable D2.2 of the eITUS project [22].

V. RELATED WORK

Fault injection has been applied for evaluating and vali-
dating the dependability of safety-critical systems in different
safety-critical domains [23] [18]. Functional safety standards
such as IEC 61508 [24] mandate the use of this technique
during different design phases, while the automotive functional
safety standard ISO 26262 [25] highly recommends its usage
in phases such as system or hardware development.

Juez et al. [26] presented a Simulink approach combined
with a simulation-based fault injection technique and Vin-
ter et al. [27] introduced some model-based approaches as
FISCADE (A Fault Injection Tool For SCADE Models) fault
injection tool that together with SCADE (Safety-Critical Ap-
plication Development Environment) automatically replaces
original operators with faulty operators. However, this tool
does not consider the dynamics of the system. This topic is
interesting when critical parameters such as Fault Tolerance

Time Interval (FTTI) are calculated, which are directly related
with the controllability of the system.

Until recently, relatively little attention had been paid
to safety and fault injection in the robotics community.
Alemzadeh et al. [28] used a systems-theoretic hazard anal-
ysis technique (STPA) to identify the potential safety hazard
scenarios and their contributing causes in RAVEN II, an open-
source telerobotic surgical platform. Then, software-based
fault injection was applied in order to measure the resilience
of systems to the identified hazard scenarios by automatically
inserting faults into different parts of the software. In the last
decade model-based approaches have become prominent. In
contrast to traditional methods, model-based techniques try to
derive relationships between causes and consequences from
some sort of model of the system. Once a product architecture
model annotated with specific safety-related information has
been derived, product safety analyses and assessment are
performed with the support of a model-based tool. This topic
of interest is broadly tackled in the literature. For example,
HIP-HOPS [29] and Component Fault Trees [30] automat-
ically generate traditional safety artefacts such as FTA out
of extended system models (e.g., SysML, EAST-ADL and
Matlab/Simulink).

AMASS [31] addressed different model-based safety and
dependability analyses, for example, Sophia [32], Safety Ar-
chitect [33], ConcertoFLA [34], and Medini Analyze [35].
Unfortunately, such solutions have not been so often applied
in the robotics domain. Yakymets et al. [36] propose a
methodology and associated framework for safety assessment
of robotic systems during early phases of development. To do
so, they follow a model-driven engineering approach to imple-
ment a preliminary safety assessment by using a quantitative
and qualitative FTA. The used domain specific language is
RobotML (an earlier robotic modeling language supported by
a Papyrus customisation) and the framework includes facilities
to automatically generate or manually construct fault trees
and to make semantic connections with formal verification
and FTA tools. However, the integration with simulation-based
fault injection approaches is not tackled.

VI. CONCLUSION AND FUTURE WORK

The ability of early identifying possible hazardous situations
remains a contentious issue in the dependability community.
The limitations of traditional safety analysis together with the
risk of finding design issues in late stages make fault injection
simulations an attractive solution. Moreover, the availability of
tools is a key issue in order to leverage fault injection for the
development of robotics system where safety plays a vital role.

Following a model-driven development approach and com-
bining it with simulation-based fault injections and a virtual
robot, poses as a promising practice to identify the potential
safety hazard scenarios and to evaluate the controller’s ro-
bustness to certain faults. We have presented the eITUS tool-
assisted solution to perform fault injection campaigns in the
context of RobMoSys.

For future development, a higher degree of automation
between the different safety artefacts would be beneficial.
Besides, on the path towards autonomous robots, the frame-
work presented here could further be utilised to simulate error
injections by generating erroneous patterns, such as flipped
images from image sensors. By doing so, these input tests
can evaluate the residual risk arising from real-life situations
that could trigger a hazardous behaviour of the system when
integrated in a robot. Moreover, extensions to consider not
only safety but security could be investigated.

ACKNOWLEDGMENT

This work has been funded by the eITUS project (Ex-
perimental Infrastructure Towards Ubiquitously Safe Robotic
Systems using RobMoSys). The eITUS Integrated Technical
Project has received funding from the European Union’s Hori-
zon 2020 Research and Innovation Programme under grant
agreement No. 732410, in the form of financial support to
third parties of the RobMoSys Project.

REFERENCES

[1] “ISO 12100: Safety of machinery — General principles for design — Risk
assessment and risk reduction,” Standard, 2010.

[2] “ISO 12100: Safety of machinery — Safety-related parts of control
systems,” Standard, 2015.

[3] “IEC62061: Safety of machinery - Functional safety of safety-related
electrical, electronic and programmable electronic control systems,”
Standard, 2005.

[4] “IEC 60812: Analysis techniques for system reliability procedure for
failure mode and effects analysis (FMEA),” 2006.

[5] “IEC standard 61025 fault tree analysis,” 2006.

[6] “eITUS, Experimental Infrastructure Towards Ubiquitously Safe Robotic
Systems using Robmosys,” https://robmosys.eu/e-itus/.

[71 “Robmosys, composable models and software for robotics systems,”
https://robmosys.eu/.

[8] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in /JEEE RSJ International Confer-
ence on Intelligent Robots and Systems, Sendai, Japan, Sep 2004, pp.
2149-2154.

[91 “Robotics 2020, multi-annual roadmap for robotics in europe, call 2
ICT24 (2015) Horizon 2020, 2015.”

[10] “Robot operating system (ROS),” http://www.ros.org/.

[11] “The open robot control software =~ (OROCOS) project,
http://www.orocos.org/ open source computer vision library (openCV),”
http://opencv.org/.

[12] C. Schlegel, A. Steck, and A. Lotz, Model-Driven Software Development
in Robotics: Communication Patterns as Key for a Robotics Component
Model, 01 2011, pp. 119-150.

H. Bruyninckx, M. Klotzbiicher, N. Hochgeschwender, G. Kraetzschmar,

L. Gherardi, and D. Brugali, “The BRICS Component Model: A Model-

based Development Paradigm for Complex Robotics Software Systems,”

in Proceedings of the 28th Annual ACM Symposium on Applied Com-

puting, ser. SAC *13, 2013, pp. 1758-1764.

B. Milville, B. Gradoussoff, and B. Moriniére, “P-RC2: Platform for

robot controller construction,” in 11th National Conference on Software

and Hardware Architectures for Robots Control & Quatriemes Journées

Architectures Logicielles pour la Robotique Autonome, les Systéemes

Cyber-Physiques et les Systémes Auto-Adaptables (SHARC 2016), Brest,

FR, 2016.

[15] J. C. Laprie, A. Avizienis, and H. Kopetz, Eds., Dependability: Basic
Concepts and Terminology. Berlin, Heidelberg: Springer-Verlag, 1992.

[16] J. Arlat, A. Costes, Y. Y. Crouzet, J.-c. Laprie, and D. Powell, “Fault
injection and dependability evaluation of fault-tolerant systems,” /EEE
Transactions on Computers, vol. 42, 02 1970.

[17] J. Arlat, A. Costes, Y. Crouzet, J. C. Laprie, and D. Powell, “Fault
injection and dependability evaluation of fault-tolerant systems,” IEEE
Trans. Comput., vol. 42, no. 8, pp. 913-923, Aug. 1993. [Online].
Available: https://doi.org/10.1109/12.238482

[13]

[14]

(18]

(19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]

[31]
[32]

[33]

[34]

[35]
[36]

H. Ziade, R. Ayoubi, and R. Velazco, “A survey on fault injection
techniques,” Int. Arab J. Inf. Technol., vol. 1, pp. 171-186, 01 2004.
R. Piscitelli, S. Bhasin, and F. Regazzoni, “Fault attacks, injection tech-
niques and tools for simulation,” in 2015 10th International Conference
on Design Technology of Integrated Systems in Nanoscale Era (DTIS),
April 2015, pp. 1-6.

“Papyrus4robotics,” https://robmosys.eu/wiki/baseline:environment_
tools:papyrus4robotics.

R. Solingen and E. Berghout, “The goal/question/metric method: A
practical guide for quality improvement of software development,” 01
1999.

“D2.2 eITUS demonstrator,” https://robmosys.eu/e-itus/.

A. Benso and P. Prinetto, Fault Injection Techniques and Tools for
Embedded Systems Reliability Evaluation, 1st ed. Springer Publishing
Company, Incorporated, 2010.

“IEC 61508: Functional safety of electrical/electronic/programmable
electronic safety-related systems (E/E/PE, or E/E/PES),” https://www.
iec.ch/functionalsafety/explained/.

“ISO 26262 road vehicles- functional safety.”

G. Juez, E. A. Calonge, R. Lattarulo, A. Ruiz, J. Pérez, and H. Es-
pinoza, “Early safety assessment of automotive systems using sabo-
tage simulation-based fault injection framework,” in SAFECOMP 2017,
Trento, Italy, September 13-15, 2017, Proceedings, ser. Lecture Notes
in Computer Science, vol. 10488. Springer, 2017, pp. 255-269.

J. Vinter, L. Bromander, P. Raistrick, and H. Edler, “FISCADE - a fault
injection tool for SCADE models,” 07 2007, pp. 1 - 9.

H. Alemzadeh, D. Chen, A. Lewis, Z. Kalbarczyk, and R. K.
Iyer, “Systems-theoretic safety assessment of robotic telesurgical
systems,” CoRR, vol. abs/1504.07135, 2015. [Online]. Available:
http://arxiv.org/abs/1504.07135

“HIP-HOPs,” http://hip-hops.eu/.

B. Kaiser, D. Schneider, R. Adler, D. Domis, F. Mhrle, A. Berres,
M. Zeller, K. Hfig, and M. Rothfelder, “Advances in component fault
trees,” 06 2018.

“AMASS ECSEL project,” https://www.amass-ecsel.eu/.

D. Cancila, F. Terrier, F. Belmonte, H. Dubois, H. Espinoza, S. Grard,
and A. Cuccuru, “SOPHIA: a modeling language for model-based safety
engineering,” 2009.

“Safety architect tool by ALLA4ATEC,” https://www.all4tec.net/
safety-architect.

B. Gallina, Z. Haider, A. Carlsson, S. Mazzini, and S. Puri,
“Multi-concern dependability-centered assurance for space systems via
concertoFLA,” in 23rd International Conference on Reliable Software
Technologies - Ada-Europe 2018, vol. 10873, June 2018. [Online].
Available: http://www.es.mdh.se/publications/5059-

“Medini Analyze,” http://www.medini.eu.

N. Yakymets, S. Dhouib, H. Jaber, and A. Lanusse, ‘“Model-driven
safety assessment of robotic systems,” 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 1137-1142, 2013.

