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CENTRAL LIMIT THEOREM FOR KERNEL ESTIMATOR OF INVARIANT

DENSITY IN BIFURCATING MARKOV CHAINS MODELS.

S. VALÈRE BITSEKI PENDA AND JEAN-FRANÇOIS DELMAS

Abstract. Bifurcating Markov chains (BMC) are Markov chains indexed by a full binary tree

representing the evolution of a trait along a population where each individual has two children.

Motivated by the functional estimation of the density of the invariant probability measure which
appears as the asymptotic distribution of the trait, we prove the consistence and the Gaussian

fluctuations for a kernel estimator of this density based on late generations. In this setting, it
is interesting to note that the distinction of the three regimes on the ergodic rate identified in

a previous work (for fluctuations of average over large generations) disappears. This result is a

first step to go beyond the threshold condition on the ergodic rate given in previous statistical
papers on functional estimation.

Keywords: Bifurcating Markov chains, bifurcating auto-regressive process, binary trees, fluc-
tuations for tree indexed Markov chain, density estimation.
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1. Introduction

Bifurcating Markov chains (BMC) are a class of stochastic processes indexed by regular binary
tree and which satisfy the branching Markov property (see below for a precise definition). This
model represents the evolution of a trait along a population where each individual has two chil-
dren. The recent study of BMC models was motivated by the understanding of the cell division
mechanism (where the trait of an individual is given by its growth rate). The first model of BMC,
named “symmetric” bifurcating auto-regressive process (BAR), see Section 3.2 for more details in
a Gaussian framework, were introduced by Cowan & Staudte [6] in order to analyze cell lineage
data. In [11], Guyon has studied more general asymmetric BMC to prove statistical evidence of
aging in Escherichia Coli. We refer to [2] for more detailed references on this subject. Recently,
several statistical works have been devoted to the estimation of cell division rates, see Doumic,
Hoffmann, Krell & Roberts [10], Bitseki, Hoffmann & Olivier [4] and Hoffmann & Marguet [13].
Moreover, another studies, such as Doumic, Escobedo & Tournus [9], can be generalized using the
BMC theory (we refer to the conclusion therein).

In this paper, our objective is to study the functional estimation of the density of the invariant
probability measure µ associated to the BMC. For this purpose, we develop a kernel estimation in
the L2(µ) framework under reasonable hypothesis (which are in particular satisfied by the Gaussian
symmetric BAR model from Section 3.2). This approach is in the spirit of the L2(µ) approach
developed [1]. In BMC model, the evolution of the trait along the genealogy of an individual taken
at random is Markovian. Let us assume it is geometrically ergodic with rate α ∈ (−1, 1), with µ is
its invariant measure. In [1], three regimes where identified for the rate of convergence of averages
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over large generations according to the ergodic rate of convergence α with respect to the threshold
1/
√

2. It is interesting, and surprising as well, to note that the distinction of those three regimes
disappears for the rate of convergence when considering the kernel density estimation of the density
of µ, see Theorem 3.6. However, let us mention that some further restriction on the admissible
bandwidths of the kernel estimator are to be taken into account in the super-critical regime (i.e.

α > 1/
√

2), to be precise see Condition (14) which is in force for Theorem 3.6. Furthermore, we
get that estimations using different generations provide asymptotically independent fluctuations,
see Remark 3.9 (see also the form of the asymptotic variance in Theorem 3.17 and Remark 3.18 in
a more general framework); this phenomenon already appear in [7]. The convergence of the kernel
estimator in Theorem 3.6 relies on different type of assumptions:

• Geometric ergodic rate α ∈ (0, 1) of convergence for the evolution of the trait along the
genealogy of an individual taken at random, see Assumption 2.4.

• Regularity (density and integrability conditions) for the evolution kernel P and the initial
distribution of the BMC, see Assumptions 3.1, and 3.2. The former is in the spirit of [1]
(see Assumption 3.11 which is a consequence of Assumption 3.1 as proven in Section 4.1).

• Regularity (isotropic Hölder regularity) of the density of µ with respect to the Lebesgue
measure on S = Rd, see Assumption 3.4 (i).

• Regularity of the kernel function K and on the bandwidth given in Assumption 3.3 and
Assumption 3.4 (ii)-(iii).

• A condition on the bandwidth given in Equation (14) which add a further restriction only

in the super-critical regime α > 1/
√

2.

Eventually, we present some simulations on the kernel estimation of the density of µ. We note
that in statistical studies which have been done in [10, 4, 5], the ergodic rate of convergence is

assumed to be less than 1/2, which is strictly less than the threshold 1/
√

2 for criticality. Moreover,
in the latter works, the authors are interested in the non-asymptotic analysis of the estimators.
Now, with the new perspective given by the present results, see in particular Remark 3.7, we think
that the works in [10, 4, 5] can be extended to the case where the ergodic rate of convergence
belongs to (1/2, 1).

The paper is organized as follows. We introduce the BMC model in Section 2 as well as the L2

ergodic assumption. We define the kernel estimator and state the main results on the estimation of
the density of µ, see Lemma 3.5 (consistency) and Theorem 3.6 (asymptotic normality), in Section
3.1. The proofs of those result rely on a general central limit theorem, see Theorem 3.17 in Section
3.4. In Section 3.2, we illustrate our results by studying the symmetric BAR, and we provide a
numerical study in Section 3.3. The Sections 4-7 are dedicated to the proofs of the main results.

2. Bifurcating Markov chain (BMC)

We denote by N the set of non-negative integers and N∗ = N\{0}. If (E,E) is a measurable space,
then B(E) (resp. Bb(E), resp. B+(E)) denotes the set of (resp. bounded, resp. non-negative)
R-valued measurable functions defined on E. For f ∈ B(E), we set ‖f ‖∞ = sup{|f(x)|, x ∈ E}.
For a finite measure λ on (E,E) and f ∈ B(E) we shall write 〈λ, f〉 for

∫
f(x) dλ(x) whenever this

integral is well defined, and ‖f ‖L2(λ) = 〈λ, f2〉1/2. For n ∈ N∗, the product space En is endowed

with the product σ-field E⊗n. If (E, d) is a metric space, then E will denote its Borel σ-field and
the set Cb(E) (resp. C+(E)) denotes the set of bounded (resp. non-negative) R-valued continuous
functions defined on E.

Let (S,S ) be a measurable space. Let Q be a probability kernel on S ×S , that is: Q(·, A) is
measurable for all A ∈ S , and Q(x, ·) is a probability measure on (S,S ) for all x ∈ S. For any
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f ∈ Bb(S), we set for x ∈ S:

(1) (Qf)(x) =

∫
S

f(y) Q(x, dy).

We define (Qf), or simply Qf , for f ∈ B(S) as soon as the integral (1) is well defined, and we
have Qf ∈ B(S). For n ∈ N, we denote by Qn the n-th iterate of Q defined by Q0 = I, the identity
map on B(S), and Qn+1f = Qn(Qf) for f ∈ Bb(S).

Let P be a probability kernel on S ×S ⊗2, that is: P (·, A) is measurable for all A ∈ S ⊗2, and
P (x, ·) is a probability measure on (S2,S ⊗2) for all x ∈ S. For any g ∈ Bb(S

3) and h ∈ Bb(S
2),

we set for x ∈ S:

(2) (Pg)(x) =

∫
S2

g(x, y, z) P (x, dy,dz) and (Ph)(x) =

∫
S2

h(y, z) P (x, dy,dz).

We define (Pg) (resp. (Ph)), or simply Pg for g ∈ B(S3) (resp. Ph for h ∈ B(S2)), as soon as the
corresponding integral (2) is well defined, and we have that Pg and Ph belong to B(S).

We now introduce some notations related to the regular binary tree. We set T0 = G0 = {∅},
Gk = {0, 1}k and Tk =

⋃
0≤r≤k Gr for k ∈ N∗, and T =

⋃
r∈N Gr. The set Gk corresponds to the

k-th generation, Tk to the tree up to the k-th generation, and T the complete binary tree. For
i ∈ T, we denote by |i| the generation of i (|i| = k if and only if i ∈ Gk) and iA = {ij; j ∈ A}
for A ⊂ T, where ij is the concatenation of the two sequences i, j ∈ T, with the convention that
∅i = i∅ = i.

We recall the definition of bifurcating Markov chain from [11].

Definition 2.1. We say a stochastic process indexed by T, X = (Xi, i ∈ T), is a bifurcating Markov
chain (BMC) on a measurable space (S,S ) with initial probability distribution ν on (S,S ) and
probability kernel P on S ×S ⊗2 if:

- (Initial distribution.) The random variable X∅ is distributed as ν.
- (Branching Markov property.) For any sequence (gi, i ∈ T) of functions belonging to
Bb(S

3), we have for all k ≥ 0,

E
[ ∏
i∈Gk

gi(Xi, Xi0, Xi1)|σ(Xj ; j ∈ Tk)
]

=
∏
i∈Gk

Pgi(Xi).

Let X = (Xi, i ∈ T) be a BMC on a measurable space (S,S ) with initial probability distribution
ν and probability kernel P. We define three probability kernels P0, P1 and Q on S ×S by:

P0(x,A) = P(x,A× S), P1(x,A) = P(x, S ×A) for (x,A) ∈ S ×S , and Q =
1

2
(P0 + P1).

Notice that P0 (resp. P1) is the restriction of the first (resp. second) marginal of P to S. Following
[11], we introduce an auxiliary Markov chain Y = (Yn, n ∈ N) on (S,S ) with Y0 distributed as
X∅ and transition kernel Q. The distribution of Yn corresponds to the distribution of XI , where
I is chosen independently from X and uniformly at random in generation Gn. We shall write Ex
when X∅ = x (i.e. the initial distribution ν is the Dirac mass at x ∈ S).

Remark 2.2. By convention, for f, g ∈ B(S), we define the function f⊗g ∈ B(S2) by (f⊗g)(x, y) =
f(x)g(y) for x, y ∈ S and introduce the notations:

f ⊗sym g =
1

2
(f ⊗ g + g ⊗ f) and f⊗2 = f ⊗ f.

Notice that P(g ⊗sym 1) = Q(g) for g ∈ B+(S). For f ∈ B+(S), as f ⊗ f ≤ f2 ⊗sym 1, we get:

(3) P(f⊗2) = P(f ⊗ f) ≤ P(f2 ⊗sym 1) = Q
(
f2
)
.
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Remark 2.3. If the Markov chain Y is ergodic and if µ denotes its unique invariant probability
measure, then Guyon proves in [11] that, when S is a metric space, for all f ∈ Cb(S),

|An|−1
∑
u∈An

f(Xu) −−−−→
n→∞

〈µ, f〉 in probability, where An ∈ {Gn,Tn}.

One can then see that the study of BMC is strongly related to the knowledge of µ. However, when
it exists, the invariant probability µ is generally not known. The aim of this article is then to
estimate µ and study, under appropriate hypotheses, the fluctuations of the estimators of µ.

We consider the following ergodic properties of Q, which in particular implies that µ is indeed the
unique invariant probability measure for Q. We refer to [8] Section 22 for a detailed account on
L2(µ)-ergodicity (and in particular Definition 22.2.2 on exponentially convergent Markov kernel).

Assumption 2.4 (Geometric ergodicity). The Markov kernel Q has an (unique) invariant prob-
ability measure µ, and Q is L2(µ) exponentially convergent, that is there exists α ∈ (0, 1) and M
finite such that for all f ∈ L2(µ):

(4) ‖Qnf − 〈µ, f〉‖L2(µ) ≤Mαn ‖f ‖L2(µ) for all n ∈ N.

Remark 2.5. By Cauchy-Schwartz we have for f, g ∈ L2(µ):

|P(f ⊗ g)|2 ≤ P(f2 ⊗ 1)P(1⊗ g2) ≤ 4Q(f2)Q(g2),(5)

〈µ,P(f ⊗ g)〉 ≤ 2 ‖f ‖L2(µ) ‖g‖L2(µ) .(6)

3. Main result

3.1. Kernel estimator of the density µ. The purpose of this Section is to study asymptotic
normality of kernel estimators for the density of the stationary measure of a BMC. Assume that
S = Rd, with d ≥ 1, and that the invariant measure µ of the transition kernel Q exists is unique
and has a density, still denoted by µ, with respect to the Lebesgue measure. Our aim is to estimate
the density µ from the observation of the population over the n-th generation Gn of over Tn, that
is up to generation n. For that purpose, assume we observe Xn = (Xu)u∈An

, where An ∈ {Gn,Tn}
i.e. we have 2n+1 − 1 (or 2n) random variables with value in S. We consider an integrable kernel
function K ∈ B(S) such that

∫
S
K(x) dx = 1 and a sequence of positive bandwidths (hn, n ∈ N)

which converges to 0 as n goes to infinity. Then, we can define the estimation of the density of µ
at x ∈ S over individuals An ∈ {Tn,Gn} with kernel K and bandwidth (hn, n ∈ N) as:

(7) µ̂An(x) = |An|−1h−d/2n

∑
u∈An

Khn(x−Xu),

where for h > 0 the rescaled kernel function Kh is given for y ∈ S by:

Kh(y) = h−d/2K(h−1 y).

Those statistics are strongly inspired from [14, 16, 17]. For h > 0 and u ∈ T, we set:

Kh ? µ(x) = Eµ[Kh(x−Xu)] =

∫
S

Kh(x− y)µ(y) dy.

We have the following bias-variance type decomposition of the estimator µ̂An
(x):

(8) µ̂An
(x)− µ(x) = Bhn

(x) + VAn,hn
(x),

where for h > 0 and A ⊂ T finite:

Bh(x) = h−d/2Kh ? µ(x)− µ(x) and VA,h(x) = |A|−1h−d/2
∑
u∈A

(
Kh(x−Xu)−Kh ? µ(x)

)
.
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Our aim is to study the convergence and the asymptotic normality of the estimator µ̂An
(x) of

µ(x). This relies on a series of assumption on the model, that is on P, Q and µ, and on the kernel
function K as well as the bandwidth (hn, n ∈ N).

We first state a series of assumption of the density of the kernel P and the initial distribution ν
with respect to the invariant measure.

Assumption 3.1 (Regularity of P and ν0). We assume that:

(i) There exists an invariant probability measure µ of Q and the transition kernel P has a
density, denoted by p, with respect to the measure µ⊗2, that is, for all x ∈ S:

P(x, dy, dz) = p(x, y, z)µ(dy)µ(dz).

(ii) The following function h defined on S belongs to L2(µ), where:

(9) h(x) =

(∫
S

q(x, y)2 µ(dy)

)1/2

,

with q(x, y) = 2−1
∫
S

(p(x, y, z) + p(x, z, y))µ(dz), the density of Q with respect to µ.

(iii) There exists k1 ≥ 1 such that hk1 ∈ L6(µ), where for k ∈ N∗:

hk = Qk−1h.

(iv) There exists k0 ∈ N, such that the probability measure νQk0 has a bounded density, say ν0,
with respect to µ:

νQk0(dy) = ν0(y)µ(dy) and ‖ν0 ‖∞ < +∞.
On one hand, Conditions (i), (ii) and (iv) can be seen as standard L2 condition for ergodic

Markov chains. On the other hand, even in the simpler symmetric BAR model presented in
Section 3.2, it may happens that h has no finite higher moments (which are used in the proof of
the asymptotic normality to check Lindeberg’s condition using a fourth moment condition, see also
Assumption 3.11). This motivated the introduction of Condition (iii).

Then, we consider the real valued case, and assume further integrability condition on the density
of P and Q, and the existence of the density of µ with respect to the Lebesgue measure.

Assumption 3.2 (Regularity of µ and integrability conditions). Let S = Rd with d ≥ 1. Assume
that Assumption 3.1 (i) holds.

(i) The invariant measure µ of the transition kernel Q has a density, still denoted by µ, with
respect to the Lebesgue measure.

(ii) The following constants are finite:

C0 = sup
x,y∈Rd

(
µ(x) + q(x, y)µ(y)

)
,(10)

C1 = sup
y,z∈Rd

∫
Rd

dxµ(x)µ(y)µ(z)p(x, y, z),(11)

C2 =

∫
Rd

dxµ(x) sup
z∈Rd

(∫
Rd

dy µ(y)h(y)µ(z)
(
p(x, y, z) + p(x, z, y)

))2

.(12)

Following [15, Theorem 1A] (which we consider in dimension d, see Lemma 4.1 below), we shall
consider the following assumptions. For g ∈ B(Rd), we set ‖g‖p = (

∫
S
|g(y)|p dy)1/p. Then, we

consider condition of the kernel function.

Assumption 3.3 (Regularity of the kernel function and the bandwidths). Let S = Rd with d ≥ 1.
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(i) The kernel function K ∈ B(S) satisfies:

(13) ‖K ‖∞ < +∞, ‖K ‖1 < +∞, ‖K ‖2 < +∞,
∫
S

K(x) dx = 1 and lim
|x|→+∞

|x|K(x) = 0.

(ii) There exists γ ∈ (0, 1/d) such that the bandwidths (hn, n ∈ N) are defined by hn = 2−nγ .

The following regularity assumptions on µ, the kernel function K and the bandwidth sequence
(hn, n ∈ N) will be useful to control de biais term in (8). We follow Tsybakov [18], chapter 1. For
s ∈ R+, let bsc denote its integer part, that is the only integer n ∈ N such that n ≤ s < n+ 1 and
set {s} = s− bsc its fractional part.

Assumption 3.4 (Further regularity on the density µ, the kernel function and the bandwidths).
Suppose that there exists an invariant probability measure µ of Q and that Assumptions 3.2 (i) and
3.3 hold. We assume there exists s > 0 such that the following holds:

(i) The density µ belongs to the (isotropic) Hölder class of order (s, . . . , s) ∈ Rd:
The density µ admits partial derivatives with respect to xj, for all j ∈ {1, . . . d}, up to the
order bsc and there exists a finite constant L > 0 such that for all x = (x1, . . . , xd),∈ Rd,
t ∈ R and j ∈ {1, . . . , d}:∣∣∣∣∣∂bscµ∂x

bsc
j

(x−j , t)−
∂bscµ

∂x
bsc
j

(x)

∣∣∣∣∣ ≤ L|xj − t|{s},
where (x−j , t) denotes the vector x where we have replaced the jth coordinate xj by t, with
the convention ∂0µ/∂x0

j = µ.

(ii) The kernel K is of order (bsc, . . . , bsc) ∈ Nd: We have
∫
Rd |x|sK(x) dx < ∞ and∫

R x
k
j K(x) dxj = 0 for all k ∈ {1, . . . , bsc} and j ∈ {1, . . . , d}.

(iii) Bandwidth control: The bandwidths (hn, n ∈ N) satisfy limn→∞ |Gn|h2s+d
n = 0, that is

γ > 1/(2s+ d).

Notice that Assumption 3.4-(i) implies that µ is at least Hölder continuous as s > 0.

First, we have the following result which provides the consistency of the estimator µ̂An
(x) for x

in the set of continuity of µ. Its proof is given in Section 4.2.

Lemma 3.5 (Convergence of the kernel density estimator). Let X be a BMC with kernel P

and initial distribution ν, K a kernel function and (hn, n ∈ N) a bandwidth sequence such that
Assumptions 2.4 (on the geometric ergodicity), 3.1 (on the regularity of P and of ν), Assumptions
3.2 (on the density of µ and P), Assumptions 3.3 (on the kernel function K and the bandwidths
(hn, n ∈ N)), and Assumptions 3.4 (on the density µ, K and (hn, n ∈ N)) are in force.

Furthermore, if the ergodic rate of convergence α (given in Assumption 2.4) is such that α >

1/
√

2, then assume that the bandwidth rate γ (given in Assumption 3.3 (ii)) is such that:

(14) 2dγ > 2α2.

Then, for x in the set of continuity of µ and An ∈ {Gn,Tn}, we have the following convergence in
probability:

lim
n→∞

µ̂An(x) = µ(x).

We now study the asymptotic normality of the density kernel estimator. The proof of the next
theorem is given in Section 4.3.
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Theorem 3.6 (Asymptotic normality of the kernel density estimator). Under the hypothesis of
Lemma 3.5, we have the following convergence in distribution for x in the set of continuity of µ
and An ∈ {Gn,Tn}:

(15) |An|1/2hd/2n (µ̂An
(x)− µ(x))

(d)

−−−−→
n→∞

G,

where G is a centered Gaussian real-valued random variable with variance ‖K ‖22 µ(x).

Remark 3.7. The bandwidth must be a function of the geometric ergodic rate of convergence via
the relation 2dγ > 2α2 given in Equation (14). Notice this condition is automatically satisfied in

the critical and sub-critical case (α ≤ 1/
√

2) as γ > 0. In the super-critical case (α > 1/
√

2), the
geometric rate of convergence α could be interpreted as a regularity parameter for the bandwidth
selection problems of the estimation of µ(x), just like the regularity of the unknown function µ.
With this new perspective, we think that the results in [5] could be extended to α ∈ (1/2, 1) by
studying an adaptive procedure with respect to the unknown geometric rate of convergence α.

Remark 3.8. We stress that the asymptotic variance is the same for An = Gn and An = Tn. This
is a consequence of the structure of the asymptotic variance σ2 in (24) and (33), and the fact that
limn→∞ |Tn|/|Gn| = 2.

Remark 3.9. Using the structure of the asymptotic variance σ2 in (24) (see also Remark 3.18 or
consider also the functions f`,n = f shift

`,n given by (32) in the proofs of Lemma 3.5 and Theorem 4.3),

it is easy to deduce that the estimators |Gn−`|1/2hd/2n−`(µ̂Gn−`
(x) − µ(x)) are asymptotically inde-

pendent for ` ∈ {0, . . . , k} for any k ∈ N.

3.2. Application to the study of symmetric BAR.

3.2.1. The model. We consider a particular case from [6] of the real-valued bifurcating autoregres-
sive process (BAR), see also [1, Section 4]. More precisely, let a ∈ (−1, 1). We consider the process
X = (Xu, u ∈ T) on S = R where for all u ∈ T:{

Xu0 = aXu + εu0,

Xu1 = aXu + εu1,

with ((εu0, εu1), u ∈ T) an independent sequence of bivariate Gaussian N(0,Γ) random vectors
independent of X∅ with covariance matrix, with σ > 0:

Γ =

(
σ2 0
0 σ2

)
.

Then the process X = (Xu, u ∈ T) is a BMC with transition probability P given by:

P(x, dy, dz) =
1

2πσ2
exp

(
− (y − ax)2 + (z − ax)2

2σ2

)
dydz = Q(x, dy)Q(x, dz),

where the transition kernel Q of the auxiliary Markov chain is defined by:

Q(x, dy) =
1√

2πσ2
exp

(
− (y − ax)2

2σ2

)
dy.

We have Qf(x) = E[f(ax+ σG)] and more generally:

(16) Qnf(x) = E
[
f
(
anx+

√
1− a2n σaG

)]
,
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where G is a standard N(0, 1) Gaussian random variable and σa = σ(1 − a2)−1/2. The kernel Q
admits a unique invariant probability measure µ, which is N(0, σ2

a) and whose density, still denoted
by µ, with respect to the Lebesgue measure is given by:

(17) µ(x) =

√
1− a2

√
2πσ2

exp

(
− (1− a2)x2

2σ2

)
.

The density p (resp. q) of the kernel P (resp. Q) with respect to µ⊗2 (resp. µ) are given by:

(18) p(x, y, z) = q(x, y)q(x, z)

and

q(x, y) =
1√

1− a2
exp

(
− (y − ax)2

2σ2
+

(1− a2)y2

2σ2

)
=

1√
1− a2

e−(a2y2+a2x2−2axy)/2σ2

.

In particular, we have:

µ(x) q(x, y) =
1√

2πσ2
exp

(
− (x− ay)2

2σ2

)
.

3.2.2. Regularity of the model, and verification of the Assumptions. We first check that Assumption
2.4 on the geometric ergodicity holds. Since q is symmetric, the operator Q (in L2(µ)) is a symmetric
integral Hilbert-Schmidt operator. Furthermore its eigenvalues are given by σp(Q) = (an, n ∈ N),
with their algebraic multiplicity being one. So Assumption 2.4 holds with α = |a| as a ∈ (−1, 1).

We check Assumption 3.1 on the regularity of P and ν0. Condition (i) therein holds thanks to
(18). Recall h defined in (9). It is not difficult to check that for x ∈ R:

(19) h(x) = (1− a4)−1/4 exp

(
a2(1− a2)

1 + a2

x2

2σ2

)
,

and thus h ∈ L2(µ) (that is
∫
R2 q(x, y)2 µ(x)µ(y) dxdy < +∞). Thus Condition (ii) holds.

We now consider Condition (iii), that is hk = Qk−1h belongs to L6(µ) for some k ≥ 1. We
deduce from (16) and (19) that there exists a finite constant Ck such that:

hk(x) = Qk−1h(x) = Ck exp

(
a2kx2

2σ2
a(1 + a2k)

)
.

So we deduce that hk belongs to L6(µ) if and only if a2k < 1/5, which is satisfied for k large enough
as a ∈ (−1, 1). Thus, Condition (iii) holds.

Remark 3.10. As we shall see, Assumption 3.1 (iii) (the 6th moment of hk being finite for some
k ∈ N∗) is used to check (21) and (22) from Assumption 3.11, see Section 3.4. So one could ask if
those two inequalities could hold without Condition (iii). In fact, using elementary computations,
it is possible to check the following. For k1 = 1, (21) holds for |a| < 3−1/4 and (22) also holds for
|a| ≤ 0.724 (but (22) fails for |a| ≥ 0.725). (Notice that 2−1/2 < 0.724 < 3−1/4.) For k1 = 2, (21)
holds for |a| < 3−1/6 and (22) also holds for |a| ≤ 0.794 (but (22) fails for |a| ≥ 0.795). So we
see that checking (21) and (22) is rather tricky. This motivated the introduction of the stronger
Condition (iii) from Assumption 3.1.

We now comment on Condition (iv) from Assumption 3.1. Notice that νQk is the probability

distribution of akX∅ + σa
√

1− a2kG, with G a N(0, 1) random variable independent of X∅. So
Condition (iv) holds in particular if ν has compact support (with k0 = 1) or if ν has a density with
respect to the Lebesgue measure, which we still denote by ν, such that ‖dν/dµ‖∞ is finite (with
k0 = 0). Notice that if ν is the Gaussian probability distribution of N(m0, ρ

2
0), then Condition (iv)

holds if and only if ρ0 < σa and m0 ∈ R, or ρ0 = σa and m0 = 0.
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We now check Assumptions 3.2 on the regularity of µ and on the integrability conditions on the
density of P and Q. Condition (i) holds, see (17) for the density of µ with respect to the Lebesgue
measure. We now check that Condition (ii) holds, that is the constants C0, C1 and C2 defined in
(10), (11) and (12) are finite. The fact that C0 is finite is clear. Notice that:

C1 = sup
y,z∈Rd

∫
Rd

dxµ(x)µ(y)µ(z)p(x, y, z) = sup
y,z∈Rd

∫
Rd

dxµ(x)µ(y)µ(z)q(x, y)q(x, z) ≤ C2
0 .

We also have, using Jensen for the second inequality (and the probability measure µ(y)q(x, y) dy):

C2 = 4

∫
Rd

dxµ(x) sup
z∈Rd

(∫
Rd

dy µ(y)h(y)µ(z)q(x, y)q(x, z)

)2

≤ 4C2
0

∫
Rd

dxµ(x)

(∫
Rd

dy µ(y)h(y) q(x, y)

)2

≤ 4C2
0 ‖h‖2L2(µ) .

So, we get that the constants C0, C1 and C2 are finite, and thus Condition (ii) holds.

Since the function µ given in (17) is of class C∞ with all its derivative bounded, we get that the
Hölder type Assumption 3.4 (i) holds (for any s > 0).

Many choices of the kernel function, K, and of the bandwidths parameter γ satisfy Assumption
3.3 and Assumption 3.4 (ii) and (iii). Eventually, as d = 1 and α = |a|, we get that Equation (14)
becomes 2γ > 2a2, which holds a fortiori if 2a2 ≤ 1.

3.3. Numerical studies. In order to illustrate the central limit theorem for the estimator of the
invariant density µ, we simulate n0 = 500 samples of a symmetric BAR X = (X

(a)
u , u ∈ Tn) with

different values of the autoregressive coefficient α = a ∈ (−1, 1). For each sample, we compute the
estimator µ̂An(x) given in (7) and its fluctuation given by

(20) ζn = |An|1/2hd/2n (µ̂An
(x)− µ(x))

for x ∈ R, the average over An ∈ {Gn,Tn}, the Gaussian kernel

K(x) =
1√
2π

e−x
2/2

and the bandwidth hn = 2−nγ with γ ∈ (0, 1). Next, in order to compare theoretical and empirical
results, we plot in the same graphic, see Figures 1 and 2:

• The histogram of ζn and the density of the centered Gaussian distribution with variance
µ(x) ‖K ‖22 = µ(x)(2

√
π)−1 (see Theorem 3.6).

• The empirical cumulative distribution of ζn and the cumulative distribution of the centered
Gaussian distribution with variance µ(x) ‖K ‖22 = µ(x)(2

√
π)−1.

Since the Gaussian kernel is of order s = 2 and the dimension is d = 1, the bandwidth exponent
γ must satisfy the condition γ > 1/5, so that Assumption 3.4-(iii) holds. Moreover, in the super-
critical case, γ must satisfy the supplementary condition 2γ > 2α2, that is γ > 1 + log(α2)/ log(2),
so that (14) holds. In Figure 1, we take α = 0.5 and α = 0.7 (both of them corresponds to the
sub-critical case as 2α2 < 1) and γ = 1/5+10−3. The simulations agree with results from Theorem
3.6. In Figure 2, we take α = 0.9 (super-critical case) and consider γ = 0.696 and γ = 1/5 + 10−3.
In the former case (14) is satisfied as γ = 0.696 > 1+log((0.9)2)/ log(2), and in the latter case (14)
fails. As one can see in the graphics Figure 2, the estimates agree with the theory in the former
case (γ = 0.696), whereas they are poor in the latter case.
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(a) α = 0.5
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(b) α = 0.7

Figure 1. Histogram and empirical cumulative distribution of ζn given in (20)
with x = −1.3, n = 15, An = Gn and γ = 1/5 + 10−3. We consider the (sub-
critical) ergodic rate of convergence: α = 0.5 and α = 0.7.
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(a) γ = 0.696

α = 0.9; x = −1.3; An = G15
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(b) γ = 1/5 + 10−3

Figure 2. Histogram and empirical cumulative distribution of ζn given in (20)
with x = −1.3, n = 15, An = Gn and the ergodic rate α = 0.9 (super-critical
case). We consider the bandwidth exponent γ = 0.696 (which satisfies (14)) for
the two left graphics and γ = 1/5 + 10−3 (which does not satisfy (14)) for the two
right.

3.4. A general CLT for additive functionals of BMC. The proof of Lemma 3.5 and Theorem
3.6 rely on a general central limit result for additive functionals of BMC. In the spirit of [1],
we introduce the following series of assumptions in a general L2(µ) framework, with increasing

conditions as the geometric ergodic rate α exceed the critical threshold of 1/
√

2. In fact, we believe
that the general framework presented in this section may be used also for others nonparametric
smoothing methods for BMC than the one presented in Section 3.1.

Let X = (Xu, u ∈ T) be a BMC on (S,S ) with initial probability distribution ν, and probability
kernel P. Recall Q is the induced Markov kernel. In the spirit of Assumption 2.4 and Remark 2.5
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in [1], we consider the following hypothesis on asymptotic and non-asymptotic distribution of the
process.

Assumption 3.11 (L2(µ) regularity for the probability kernel P and density of the initial distri-
bution). There exists an invariant probability measure µ of Q and:

(i) There exists k1 ∈ N and a finite constant M such that for all f, g ∈ L2(µ):

(21) ‖P(Qk1f ⊗ Qk1g)‖L2(µ) ≤M ‖f ‖L2(µ) ‖g‖L2(µ),

and for all h ∈ L2(µ), and all m ∈ {0, . . . , k1}:
(22) ‖P

(
QmP(Qk1f ⊗sym Qk1g)⊗sym Qk1h

)
‖
L2(µ)

≤M ‖f ‖L2(µ) ‖g‖L2(µ) ‖h‖L2(µ) .

(ii) There exists k0 ∈ N, such that the probability measure νQk0 has a bounded density, say ν0,
with respect to µ:

νQk0(dy) = ν0(y)µ(dy) and ‖ν0 ‖∞ < +∞.
The next family of three assumptions are related to the sequence of functions which will be

considered.

Assumption 3.12 (Regularity of the approximation functions in the sub-critical regime). Let
(f`,n, n ≥ ` ≥ 0) be a sequence of real-valued measurable functions defined on S such that:

(i) There exists ρ ∈ (0, 1/2) such that supn≥`≥0 2−nρ ‖f`,n‖∞ is finite.

(ii) The constants c2 = supn≥`≥0 ‖f`,n‖L2(µ) and q2 = supn≥`≥0 ‖Q(f2
`,n)‖1/2∞ are finite.

(iii) There exists a sequence (δ`,n, n ≥ ` ≥ 0) of positive numbers such that ∆ = supn≥`≥0 δ`,n
is finite, limn→∞ δ`,n = 0 for all ` ∈ N, and for all n ≥ ` ≥ 0:

〈µ, |f`,n|〉+ |〈µ,P(f`,n⊗2)〉| ≤ δ`,n;

and for all g ∈ B+(S):

(23) ‖P(|f`,n| ⊗sym Qg)‖L2(µ) ≤ δ`,n ‖g‖L2(µ) .

(iv) The following limit exists and is finite:

(24) σ2 = lim
n→∞

n∑
`=0

2−` ‖f`,n ‖2L2(µ) < +∞.

Remark 3.13. We stress that (i) and (ii) of Assumption 3.12 imply the existence of finite constant
C such that for all n ≥ ` ≥ 0:

〈µ, f4
`,n〉 ≤ ‖f`,n‖2∞〈µ, f2

`,n〉 ≤ C c22 22nρ and 〈µ, f6
`,n〉 ≤ C c22 24nρ.

We will use the following notations: for n ∈ N, set fn = (f`,n, ` ∈ N) with the convention that
f`,n = 0 if ` > n; and for k ∈ N∗:

(25) ck(fn) = sup
`≥0
‖f`,n ‖Lk(µ) and qk(fn) = sup

`≥0
‖Q(fk`,n)‖1/k∞ .

In particular, we have c2 = supn≥0 c2(fn) and q2 = supn≥0 q2(fn).

For the critical case, 2α2 = 1, we shall assume Assumption 3.12 as well as the following.

Assumption 3.14 (Regularity of the approximation functions in the critical regime). Keeping
the same notations as in Assumption 3.12, we further assume that:
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(v)

(26) lim
n→∞

n

n∑
`=0

2−`/2 δ`,n = 0.

(vi) For all n ≥ ` ≥ 0:

(27) ‖Q(|f`,n|)‖∞ ≤ δ`,n.
For the super-critical case, 2α2 > 1, we shall assume Assumptions 3.12, 3.14 as well as the

following.

Assumption 3.15 (Regularity of the approximation functions in the super-critical regime). Keep-
ing the same notations as in Assumption 3.14, we further assume that Assumption 2.4 holds with
2α2 > 1 and that:

(28) sup
0≤`≤n

(2α2)n−`δ2
`,n < +∞ and, for all ` ∈ N, lim

n→∞
(2α2)n−`δ2

`,n = 0.

Notice that condition (28) implies (26) as well as ∆ < +∞ and limn→∞ δ`,n = 0 for all ` ∈ N
(see Assumption 3.12 (iii)) when 2α2 > 1.

Following [1], for a finite set A ⊂ T and a function f ∈ B(S), we set:

(29) MA(f) =
∑
i∈A

f(Xi).

We shall be interested in the cases A = Gn (the n-th generation) and A = Tn (the tree up to the
n-th generation). We shall assume that µ is an invariant probability measure of Q. In view of
Remark 2.3, one is interested in the fluctuations of |Gn|−1MGn

(f) around 〈µ, f〉. So, we will use
frequently the following notation:

(30) f̃ = f − 〈µ, f〉 for f ∈ L1(µ).

Let f = (f`, ` ∈ N) be a sequence of elements of L1(µ). We set for n ∈ N:

(31) Nn,∅(f) = |Gn|−1/2
n∑
`=0

MGn−`
(f̃`).

The notation Nn,∅ means that we consider the average from the root ∅ up to the n-th generation.

Remark 3.16. The following two simple cases are frequently used in the literature. Let f ∈ L1(µ)
and consider the sequence f = (f`, ` ∈ N). If f0 = f and f` = 0 for ` ∈ N∗, then we get:

Nn,∅(f) = |Gn|−1/2MGn
(f̃).

If f` = f for ` ∈ N, then we get, as |Tn| = 2n+1 − 1 and |Gn| = 2n:

Nn,∅(f) = |Gn|−1/2MTn
(f̃) =

√
2− 2−n |Tn|−1/2MTn

(f̃).

Thus, we will easily deduce the fluctuations of MTn(f) and MGn(f) from the asymptotics of Nn,∅(f).

The main result of this section is motivated by the decomposition given in (8). It will allow us
to treat the variance term of kernel estimators defined in (7). The proof is given in Section 5 for

the sub-critical case (α ∈ (0, 1/
√

2)), in Section 6 for the critical case (α = 1/
√

2) and in Section

7 for the supercritical case (α ∈ (1/
√

2, 1)), with α the rate defined in Assumption 2.4. Recall
Nn,∅(f) defined in (31).
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Theorem 3.17. Let X be a BMC with kernel P and initial distribution ν, such that Assumption
2.4 (on the geometric ergodic rate α ∈ (0, 1)), Assumption 3.11 (on the regularity of P and of ν)
and Assumption 3.12 (on the approximation functions (f`,n, n ≥ ` ≥ 0)) are in force.

Furthermore, if α = 1/
√

2 then assume that Assumption 3.14 holds; and if α > 1/
√

2 then
assume that Assumption 3.14 and Assumption 3.15 hold. Then, we have the following convergence
in distribution:

Nn,∅(fn)
(d)−−−−→
n→∞

G,

where fn = (f`,n, ` ∈ N) and the convention that f`,n = 0 for ` > n, and with G a centered
Gaussian random variable with finite variance σ2 defined in (24).

Remark 3.18. Assume σ2
` = limn→∞ ‖f`,n ‖2L2(µ) exists for all ` ∈ N; so that σ2 defined in (24) is

also equal to
∑
`∈N 2−`σ2

` . According to additive form of the variance σ2, we deduce that for fixed

k ∈ N, the random variables
(
|Gn|−1/2MGn−`

(f̃`,n), ` ∈ {0, . . . , k}
)

converges in distribution, as n

goes to infinity towards (G`, ` ∈ {0, . . . , k}) which are independent real-valued Gaussian centered
random variables with variance Var(G`) = 2−`σ2

` .

4. Proof of Lemma 3.5 and Theorem 3.6

4.1. Checking Assumptions 3.11, 3.12, 3.14 and 3.15. We shall check that Assumptions 3.1,
3.2 and 3.3, and Equation (14), for the density estimation, implies the more general Assumptions
3.11, 3.12, 3.14 and 3.15.

We check that Assumption 3.1 implies Assumption 3.11 on the L2(µ) regularity for the probabil-
ity kernel P and density of the initial distribution. Notice that Assumption 3.1 (iv) and Assumption
3.11 (ii) coincide. So, it is enough to check that Assumption 3.1 (i)-(iii) implies Assumption 3.11 (i).
Since |Qf | ≤ ‖f ‖L2(µ) h, we deduce that |Qk1f | ≤ ‖f ‖L2(µ) hk1 . We deduce that:

‖P(Qk1f ⊗ Qk1g)‖L2(µ) ≤ ‖f ‖L2(µ) ‖g‖L2(µ) ‖P(hk1⊗2)‖L2(µ) .

Then use (3) to get that ‖P(hk1⊗2)‖L2(µ) ≤ ‖Q
(
h2
k1

)
‖
L2(µ)

≤ ‖h2
k1
‖
L2(µ)

≤ ‖hk1 ‖2L6(µ) < +∞.

This gives (21). Similarly, we have:

‖P
(
QmP(Qk1f ⊗sym Qk1g)⊗sym Qk1h

)
‖
L2(µ)

≤ ‖f ‖L2(µ) ‖g‖L2(µ) ‖h‖L2(µ) ‖P
(
QmP(hk1⊗2)⊗sym hk1

)
‖
L2(µ)

.

On the other hand, using (5), the Hölder inequality and (3), we also have:

‖P
(
QmP(f0⊗2)⊗sym g0

)
‖2
L2(µ)

≤ 4〈µ,Q((QmP(f0⊗2))2)Q(g2
0)〉

≤ 4〈µ,P(f0⊗2)3〉2/3〈µ,Q(g2
0)3〉1/3

≤ 4〈µ, f6
0 〉2/3〈µ, g6

0〉1/3.

Taking f0 = g0 = hk1 gives that ‖P
(
QmP(hk1⊗2)⊗sym hk1

)
‖
L2(µ)

≤ 2 ‖hk1 ‖3L6 < +∞. This gives

(22). Thus, Assumption 3.11 (i) holds.

We suppose that S = Rd and that Assumptions 3.1, 3.2 hold. Let K be a kernel function
satisfying Assumption 3.3 (i) and bandwidths (hn, n ∈ N) satisfying Assumption 3.3 (ii). For
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x ∈ S, we define the sequences of functions (fx` , ` ∈ N) given by:

fx` (y) = Kh`
(x− y) = h

−d/2
` K

(
x− y
h`

)
for y ∈ Rd.

Then, we consider the sequences of functions (f shift
`,n , n ≥ ` ≥ 0), (f id

`,n, n ≥ ` ≥ 0) and (f0
`,n, n ≥

` ≥ 0) defined by:

(32) f shift
`,n = fxn−`, f id

`,n = fxn and f0
`,n = fxn1{`=0}.

Under those hypothesis, we shall check that Assumptions 3.12, 3.14 and 3.15 hold for those three
sequences of functions. We first check that (i-iii) from Assumption 3.12 and (v-vi) from Assumption
3.14. We consider only the sequence (f`,n, n ≥ ` ≥ 0) with f`,n = f shift

`,n , the arguments for the

other two being similar. We have ‖f`,n ‖∞ = h
−d/2
n−` ‖K ‖∞ = 2(n−`)dγ/2 ‖K ‖∞. Thus property (i)

of Assumption 3.12 holds with ρ = dγ/2. We have:

‖f`,n ‖1 = h
d/2
n−` ‖K ‖1 = 2−(n−`)dγ/2 ‖K ‖1 and ‖f`,n ‖2 = ‖K ‖2 .

This gives ‖f`,n ‖2L2(µ) ≤ ‖f`,n ‖
2
2 ‖µ‖∞ ≤ C0 ‖K ‖22 and

‖Q(f2
`,n)‖∞ ≤ ‖f`,n ‖

2
2 sup
x,y∈Rd

q(x, y)µ(y) ≤ C0 ‖K ‖22 .

We conclude that (ii) of Assumption 3.12 holds with c2 = q2 = C
1/2
0 ‖K ‖2. We have 〈µ, |f`,n|〉 ≤

C0 ‖K ‖1 h
d/2
n−` and |〈µ,P(f`,n⊗2)〉| ≤ C1 ‖K ‖21 hdn−`. Furthermore, for all g ∈ B+(Rd), we have

‖P(|f`,n| ⊗sym Qg)‖L2(µ) ≤ C2h
d/2
n−` ‖K ‖1 ‖g‖L2(µ). We also have ‖Q(|f`,n|)‖∞ ≤ C0 ‖K ‖1 h

d/2
n−`.

This implies that (iii) of Assumption 3.12 and (vi) of Assumption 3.14 hold with δ`,n = c h
d/2
n−` =

c2−(n−`)dγ/2 for some finite constant c depending only on C0, C1, C2 and ‖K ‖1. With this choice
of δ`,n, notice that (v) of Assumption 3.14 also holds as dγ < 1.

Recall that dγ < 1. Moreover, if Equation (14) holds,, that is 2dγ > 2α2 where α is the rate
given in Assumption 2.4 (this is restrictive on γ only in the super-critical regime 2α2 > 1), then
Assumption 3.15 also holds with the latter choice of δ`,n.

Eventually we prove (iv) of Assumption 3.12. We recall the following result due to Bochner (see
[15, Theorem 1A] which can be easily extended to any dimension d ≥ 1).

Lemma 4.1. Let (hn, n ∈ N) be a sequence of positive numbers converging to 0 as n goes to
infinity. Let g : Rd → R be a measurable function such that

∫
Rd |g(x)|dx < +∞. Let f : Rd → R

be a measurable function such that ‖f ‖∞ < +∞,
∫
Rd |f(y)| dy < +∞ and lim|x|→+∞ |x|f(x) = 0.

Define

gn(x) = h−dn

∫
Rd

f(h−1
n (x− y))g(y)dy.

Then, we have at every point x of continuity of g,

lim
n→+∞

gn(x) = g(x)

∫
R
f(y)dy.

Let x be in the set of continuity of µ. Thanks to Lemma 4.1, we have:

lim
`→∞

‖fx` ‖2L2(µ) = lim
`→∞
〈µ, (fx` )2〉 = µ(x) ‖K ‖22 .
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We deduce that the sequences of functions (f shift
`,n , n ≥ ` ≥ 0), (f id

`,n, n ≥ ` ≥ 0) and (f0
`,n, n ≥ ` ≥

0) satisfy (iv) of Assumption 3.12 with σ2 defined by (24) respectively given by:

(33) (σshift)2 = 2µ(x) ‖K ‖22, (σid)2 = 2µ(x) ‖K ‖22 and (σ0)2 = µ(x) ‖K ‖22 .
4.2. Proof of Lemma 3.5. We begin the proof with An = Tn. We have the following decompo-
sition:

(34) µ̂Tn
(x)− µ(x) =

√
|Gn|

|Tn|hd/2n

Nn,∅(fn) +Bhn
(x),

where fn = (f`,n, ` ∈ N) with the functions f`,n = f id
`,n defined in (32) for n ≥ ` ≥ 0 and f`,n = 0

otherwise; Nn,∅ is defined in (31) with f replaced by fn; and the bias term:

Bhn
(x) =

1

|Tn|hd/2n

n∑
`=0

2n−`〈µ, f`,n〉 − µ(x) = 〈µ, h−dn K(h−1
n (x− ·))〉 − µ(x).

Thanks to Section 4.1, we have under the assumption of Lemma 3.5 that Assumptions 3.11, 3.12,

3.14 and 3.15 hold. Since limn→∞ |Gn|hdn =∞ as γ < 1, we get that limn→∞ |Gn|1/2/|Tn|hd/2n = 0.
Thus, we get, as a direct consequence of Theorem 3.17 the following convergence in probability:

lim
n→∞

√
|Gn|

|Tn|hd/2n

Nn,∅(fn) = 0.

Next, it follows from Lemma 4.1 that limn→∞Bhn
(x) = 0. By considering the functions f`,n = f0

`,n

defined in (32), we similarly get the result for the case An = Gn.

4.3. Proof of Theorem 3.6. The sub-critical case and An = Tn. We keep notations from
the proof of Lemma 3.5. Recall that fn = (f`,n, ` ∈ N) with the functions f`,n = f id

`,n defined in

(32). Using the value of σ = σid in (33), thanks to Theorem 3.17 and the decomposition (34), we
see that to get the asymptotic normality of the estimator (15) it suffices to prove that:

(35) lim
n→∞

|Tn|1/2hd/2n Bhn(x) = 0.

Using that

µ(x− hny)− µ(x) =
d∑
j=1

(µ(x1 − hny1, . . . , xj − hnyj , xj+1, . . . , xd)

− µ(x1 − hny1, . . . , xj−1 − hnyj−1, xj , xj+1, . . . , xd)),

the Taylor expansion and Assumption 3.4, we get that, for some finite constant C > 0,

|Tn|1/2hd/2n Bhn
(x) =

√
|Tn|hdn

∣∣∣ ∫
Rd

h−dn K(h−1
n (x− y))µ(y)dy − µ(x)

∣∣∣
=
√
|Tn|hdn

∣∣∣ ∫
Rd

K(y)(µ(x− hny)− µ(x)) dy
∣∣∣

≤ C
√
|Tn|hdn

d∑
j=1

∫
Rd

K(y)
(hn|yj |)s
bsc! dy

≤ C
√
|Tn|h2s+d

n .

Then Equation (35) follows, since limn→∞ |Gn|s2s+d
n = 0. This ends the proof for An = Tn.
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The sub-critical case and An = Gn. The proof is similar, using instead the functions f`,n = f0
`,n

defined in (32).

The critical and super-critical cases. The proof follows the same lines, using Theorem 3.17
in the critical and super-critical cases and the decomposition (34).

5. Proof of Theorem 3.17 in the sub-critical case (2α2 < 1)

Recall the definition of MA given in (29) and of f̃ = f − 〈µ, f〉 in (30). In order to study

the asymptotics of MGn−`
(f̃) as n goes to infinity and ` is fixed, it is convenient to consider the

contribution of the descendants of the individual i ∈ Tn−` for n ≥ ` ≥ 0:

(36) N `
n,i(f) = |Gn|−1/2MiGn−|i|−`

(f̃),

where iGn−|i|−` = {ij, j ∈ Gn−|i|−`} ⊂ Gn−`. For all k ∈ N such that n ≥ k + `, we have:

MGn−`
(f̃) =

√
|Gn|

∑
i∈Gk

N `
n,i(f) =

√
|Gn| N `

n,∅(f).

Let f = (f`, ` ∈ N) be a sequence of elements of L1(µ). We set for n ∈ N and i ∈ Tn:

(37) Nn,i(f) =

n−|i|∑
`=0

N `
n,i(f`) = |Gn|−1/2

n−|i|∑
`=0

MiGn−|i|−`
(f̃`).

We deduce that
∑
i∈Gk

Nn,i(f) = |Gn|−1/2
∑n−k
`=0 MGn−`

(f̃`). For k = 0, we recover Equation (31).

We consider the notations of Theorem 3.17. Recall that fn = (f`,n, ` ∈ N) with the convention
that f`,n = 0 for ` > n. In the following proofs, we will denote by C any unimportant finite
constant which may vary from line to line (in particular C does not depend on n nor on fn).

Remark 5.1. Recall k0 given in Assumption 3.11 (iii). Recall that from Assumption 3.12 (ii), the
sequence fn is bounded in L2(µ). We have

(38) Nn,∅(fn) = N
[k0]
n,∅ (fn) + |Gn|−1/2

k0−1∑
`=0

MG`
(f̃n−`,n),

where we set:

N
[k0]
n,∅ (fn) = |Gn|−1/2

n−k0∑
`=0

MGn−`
(f̃`,n).

Using the Cauchy-Schwartz inequality, we get

(39) |Gn|−1/2|
k0−1∑
`=0

MG`
(f̃n−`,n)| ≤ Cc2(f)|Gn|−1/2 + |Gn|−1/2

k0−1∑
`=0

MG`
(|fn−`,n|).

Since the sequence fn is bounded in L2(µ) and since k0 is finite, we have, for all ` ∈ {0, . . . , k0−1},
limn→∞ |Gn|−1/2MG`

(|fn−`,n|) = 0 a.s. and then that (used (39))

lim
n→∞

|Gn|−1/2|
k0−1∑
`=0

MG`
(f̃n−`)| = 0 a.s.

Therefore, from (38), the study of Nn,∅(fn) is reduced to that of N
[k0]
n,∅ (fn).
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Let (pn, n ∈ N) be a non-decreasing sequence of elements of N∗ such that, for all λ > 0:

(40) pn < n, lim
n→∞

pn/n = 1 and lim
n→∞

n− pn − λ log(n) = +∞.

When there is no ambiguity, we write p for pn.

Let i, j ∈ T. We write i 4 j if j ∈ iT. We denote by i ∧ j the most recent common ancestor of
i and j, which is defined as the only u ∈ T such that if v ∈ T and v 4 i, v 4 j then v 4 u. We
also define the lexicographic order i ≤ j if either i 4 j or v0 4 i and v1 4 j for v = i ∧ j. Let
X = (Xi, i ∈ T) be a BMC with kernel P and initial measure ν. For i ∈ T, we define the σ-field:

Fi = {Xu;u ∈ T such that u ≤ i}.
By construction, the σ-fields (Fi; i ∈ T) are nested as Fi ⊂ Fj for i ≤ j.

We define for n ∈ N, i ∈ Gn−pn and fn the martingale increments:

(41) ∆n,i(fn) = Nn,i(fn)− E [Nn,i(fn)|Fi] and ∆n(fn) =
∑

i∈Gn−pn

∆n,i(fn).

Thanks to (37), we have:∑
i∈Gn−pn

Nn,i(fn) = |Gn|−1/2

pn∑
`=0

MGn−`
(f̃`,n) = |Gn|−1/2

n∑
k=n−pn

MGk
(f̃n−k,n).

Using the branching Markov property, and (37), we get for i ∈ Gn−pn :

E [Nn,i(fn)|Fi] = E [Nn,i(fn)|Xi] = |Gn|−1/2

pn∑
`=0

EXi

[
MGpn−`

(f̃`,n)
]
.

Assume that n is large enough so that n− pn − 1 ≥ k0. We have:

N
[k0]
n,∅ (f) = ∆n(f) +Rk00 (n) +R1(n),

where ∆n(f) and R1(n) are defined in (41) and:

Rk00 (n) = |Gn|−1/2

n−pn−1∑
k=k0

MGk
(f̃n−k) and R1(n) =

∑
i∈Gn−pn

E [Nn,i(fn)|Fi] .

We have the following result:

Lemma 5.2. Under the assumptions of Theorem 3.17 (2α2 < 1), we have that

lim
n→∞

E
[(
N

[k0]
n,∅ (fn)−∆n(fn)

)2
]

= 0.

Proof. We deduce from Remark 5.5 in [1] that E
[(
N

[k0]
n,∅ (fn)−∆n(fn)

)2
]
≤ a0,n c

2
2 for a sequence

(a0,n, n ∈ N) which converges to 0 and does not depend on the sequences fn. �

We consider the bracket of the martingale ∆n(fn) given by V (n) =
∑
i∈Gn−pn

E
[
∆n,i(fn)2|Fi

]
.

Using (37) and (41), we write:

(42) V (n) = |Gn|−1
∑

i∈Gn−pn

EXi

( pn∑
`=0

MGpn−`
(f̃`,n)

)2
−R2(n) = V1(n) + 2V2(n)−R2(n),
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with:

V1(n) = |Gn|−1
∑

i∈Gn−pn

pn∑
`=0

EXi

[
MGpn−`

(f̃`,n)2
]
,

V2(n) = |Gn|−1
∑

i∈Gn−pn

∑
0≤`<k≤pn

EXi

[
MGpn−`

(f̃`,n)MGpn−k
(f̃k,n)

]
,

R2(n) =
∑

i∈Gn−pn

E [Nn,i(fn)|Xi]
2
.

Lemma 5.3. Under the assumptions of Theorem 3.17 (2α2 < 1), we have that R2(n) converges
in probability towards 0.

Proof. We deduce from Remark 5.7 in [1] that E[|R2(n)|] ≤ Cc22an for a sequence (an, n ∈ N) which
converges to 0 and does not depend on the sequence fn. �

Lemma 5.4. Under the assumptions of Theorem 3.17 (2α2 < 1), we have that V2(n) converges in
probability towards 0.

Proof. First, we have the following preliminary results. Let f ∈ L2(µ) and recall that f̃ = f−〈µ, f〉.
We deduce from 〈µ, f〉 = 〈µ,Qf〉 ≤ ‖Qf ‖∞ ≤ ‖Q(f2)‖1/2∞ that:

(43) ‖Qf̃ ‖∞ ≤ 2 ‖Q(f2)‖1/2∞ and ‖Q(f̃2)‖∞ ≤ 4 ‖Q(f2)‖∞ .

Note that thanks to Assumption 3.12 we have, for all k, `, r ∈ N, and j > 0:

(44) lim
n→∞

|〈µ, f̃k,nQj f̃`,n〉| = 0 and lim
n→∞

|〈µ,P
(
Qrf̃k,n ⊗sym Qj f̃`,n

)
〉| = 0.

Indeed, we have thanks to Assumption 3.12 (iii):

|〈µ, f̃k,nQj f̃`,n〉| ≤ ‖Qf̃`,n ‖∞ 〈µ, |f̃k,n|〉 ≤ 4 ‖Qf2
`,n ‖

1/2

∞ 〈µ, |fk,n|〉 ≤ 4q2 δk,n.

We also have thanks to Assumption 3.12 (iii), for g = Qj−1|f̃`,n| and r = 0:

|〈µ,P
(
Qrf̃k,n ⊗sym Qj f̃`,n

)
〉| ≤ 〈µ,P

(
|f̃k,n| ⊗sym Qg

)
〉

≤ 〈µ,P (1⊗sym Qg)〉〈µ, |fk,n|〉+ ‖P(|fk,n| ⊗sym Qg)‖L2(µ)

≤ 2 ‖g‖L2(µ) δk,n

≤ 2c2 δk,n,

and for r ≥ 1 using (43) and that 〈µ,P(1⊗sym h)〉 = 〈µ, h〉 :

|〈µ,P
(
Qrf̃k,n ⊗sym Qj f̃`,n

)
〉| ≤ 〈µ,P (1⊗sym Qg)〉 ‖Qrf̃k,n ‖∞ ≤ 2 q2 δ`,n.

Then use that for all k ∈ N fixed, we have limn→∞ δk,n = 0 to conclude that (44) holds.

Using (100), we get:

(45) V2(n) = V5(n) + V6(n),
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with

V5(n) = |Gn|−1
∑

i∈Gn−p

∑
0≤`<k≤p

2p−`Qp−k
(
f̃k,nQ

k−`f̃`,n

)
(Xi),

V6(n) = |Gn|−1
∑

i∈Gn−p

∑
0≤`<k<p

p−k−1∑
r=0

2p−`+r Qp−1−(r+k)
(
P
(
Qrf̃k,n ⊗sym Qk−`+rf̃`,n

))
(Xi).

First, we consider the term V6(n). We have:

V6(n) = |Gn−p|−1MGn−p(H6,n),

with

H6,n =
∑

0≤`<k
r≥0

h
(n)
k,`,r 1{r+k<p} and h

(n)
k,`,r = 2r−` Qp−1−(r+k)

(
P
(
Qrf̃k,n ⊗sym Qk−`+rf̃`,n

))
.

Define

(46) H
[n]
6 (fn) =

∑
0≤`<k
r≥0

hk,`,r 1{r+k<p},

with hk,`,r = 2r−`〈µ,P
(
Qrf̃k,n ⊗sym Qk−`+rf̃`,n

)
〉 = 〈µ, h(n)

k,`,r〉.

We set A6,n(fn) = H6,n−H [n]
6 (fn) =

∑
0≤`<k
r≥0

(h
(n)
k,`,r−hk,`,r) 1{r+k<p}, so that from the definition

of V6(n), we get that:

V6(n)−H [n]
6 (fn) = |Gn−p|−1MGn−p(A6,n(fn)).

We now study the second moment of |Gn−p|−1MGn−p(A6,n(fn)). Using (101), we get for n−p ≥ k0:

|Gn−p|−2 E
[
MGn−p

(A6,n(fn))2
]
≤ C |Gn−p|−1

n−p∑
j=0

2j ‖Qj(A6,n(fn))‖2L2(µ) .

We deduce that

‖Qj(A6,n(fn))‖L2(µ) ≤
∑

0≤`<k
r≥0

‖Qjh(n)
k,`,r − hk,`,r ‖L2(µ)

1{r+k<p}

≤ C
∑

0≤`<k
r≥0

2r−` αp−1−(r+k)+j ‖P
(
Qrf̃k,n ⊗sym Qk−`+rf̃`,n

)
‖
L2(µ)

1{r+k<p}

≤ Cc22 αj
∑

0≤`<k
r≥k1

2r−` αp−(r+k)αk−`+2r 1{r+k<p}(47)

+ Cαj
∑

0≤`<k
0≤r≤k1−1

2−` αp−k ‖P
(
Qrf̃k,n ⊗sym Qk−`+rf̃`,n

)
‖
L2(µ)

1{r+k<p},(48)

where we used the triangular inequality for the first inequality; (4) for the second; (21) for
r ≥ k1 and (4) again for the third. The term (48) can be bounded from above using (43) and
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‖P(Qrf̃k,n ⊗sym Qk−`+rf̃`,n)‖L2(µ) ≤ ‖Qf̃`,n ‖∞ ‖P(Qrf̃k,n ⊗sym 1)‖L2(µ) ≤ 2q2 c2 as k > `, and

thus (47) and (48) imply that

‖Qj(A6,n(fn))‖L2(µ) ≤ Cc2(c2 + q2)αj
∑

0≤`<k
r≥0

2r−` αp−(r+k)αk−`+2r 1{r+k<p}

≤ Cc2(c2 + q2)αj ,(49)

where we used that
∑

0≤`<k, r≥0 2r−`αk−`+2r is finite for the last inequality. As
∑∞
j=0(2α2)j is

finite, we deduce that:

(50) E
[(
V6(n)−H [n]

6 (fn)
)2
]

= |Gn−p|−2 E
[
MGn−p

(A6,n(fn))2
]
≤ Cc22(c2 + q2)2 2−(n−p).

We now consider the term V5(n) defined just after (45):

V5(n) = |Gn−p|−1MGn−p
(H5,n),

with

H5,n =
∑

0≤`<k

h
(n)
k,` 1{k≤p} and h

(n)
k,` = 2−` Qp−k

(
f̃k,nQ

k−`f̃`,n

)
.

We consider the constant

(51) H
[n]
5 (fn) =

∑
0≤`<k

hk,`1{k≤p} with hk,` = 2−`〈µ, f̃k,nQk−`f̃`,n〉.

We set A5,n(fn) = H5,n − H [n]
5 (fn) =

∑
0≤`<k(h

(n)
k,` − hk,`) 1{k≤p}, so that from the definition of

V5(n), we get that:

V5(n)−H [n]
5 (fn) = |Gn−p|−1MGn−p(A5,n(fn)).

We now study the second moment of |Gn−p|−1MGn−p(A5,n(fn)). Using (101), we get for n−p ≥ k0:

|Gn−p|−2 E
[
MGn−p(A5,n(fn))2

]
≤ C |Gn−p|−1

n−p∑
j=0

2j ‖Qj(A5,n(fn))‖2L2(µ) .

We also have that:

‖Qj(A5,n(fn))‖L2(µ) ≤
∑

0≤`<k

‖Qjh(n)
k,` − hk,` ‖L2(µ)

1{k≤p}

≤ C
∑

0≤`<k

2−` αp−k+j ‖ f̃k,nQk−`f̃`,n ‖L2(µ) 1{k≤p},(52)

where we used the triangular inequality for the first inequality and (4) for the last. The term

(52) can be bounded from above using ‖ f̃k,nQk−`f̃`,n ‖L2(µ) ≤ ‖ f̃k,n ‖L2(µ) ‖Qk−`f̃`,n ‖∞ ≤ c2 q2 as

k > `. This implies that

‖Qj(A5,n(fn))‖L2(µ) ≤ Cc2q2 α
j .

As
∑∞
j=0(2α2)j is finite, we deduce that:

(53) E
[(
V5(n)−H [n]

5 (fn)
)2
]

= |Gn−p|−2 E
[
MGn−p

(A5,n(fn))2
]
≤ C c2q2 2−(n−p).
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We deduce from (50) and (53), as V2(n) = V5(n) + V6(n) (see (45)), that:

(54) E
[(
V2(n)−H [n]

2 (fn)
)2
]
≤ C

(
c42 + c22 q

2
2

)
2−(n−p), with H

[n]
2 (fn) = H

[n]
6 (fn) +H

[n]
5 (fn).

Since according to (ii) in Assumption 3.12 c2 and q2 are finite, we deduce that limn→∞ V2(n) −
H

[n]
2 (fn) = 0 in probability.

We now check that limn→∞H
[n]
2 (fn) = 0. Using (46) and (51), we get that:

|H [n]
2 (fn)| ≤

∑
k>`≥0

2−`|〈µ, f̃k,nQk−`f̃`,n〉|+
∑
k>`≥0
r≥0

2r−`|〈µ,P
(
Qrf̃k,n ⊗sym Qk−`+rf̃`,n

)
〉|.

Recall the definition of ∆ in Assumption 3.12 (iii). Thanks to (4) and (6) we have:

|〈µ, f̃k,nQk−`f̃`,n〉| ≤ c22 α
k−`,(55)

|〈µ,P
(
Qrf̃k,n ⊗sym Qk−`+rf̃`,n

)
〉| ≤ C c22 α

k−`+2r.

Since
∑

0≤`<k 2−`αk−` +
∑

0≤`<k
r≥0

2r−`αk−`+2r is finite, we deduce from (46), (51), (44) and dom-

inated convergence that limn→∞H
[n]
2 (fn) = 0. This implies that limn→∞ V2(n) = 0 in probabil-

ity. �

Lemma 5.5. Under the assumptions of Theorem 3.17 (2α2 < 1), we have that V (n) converges in
probability towards σ2 defined by (24).

Proof. Using (99), we get:

(56) V1(n) = V3(n) + V4(n),

with

V3(n) = |Gn|−1
∑

i∈Gn−p

p∑
`=0

2p−` Qp−`(f̃2
`,n)(Xi),

V4(n) = |Gn|−1
∑

i∈Gn−p

p−1∑
`=0

p−`−1∑
k=0

2p−`+k Qp−1−(`+k)
(
P
(
Qkf̃`,n⊗2

))
(Xi).

We first consider the term V4(n). We have:

V4(n) = |Gn−p|−1MGn−p
(H4,n),

with:

H4,n =
∑

`≥0, k≥0

h
(n)
`,k 1{`+k<p} and h

(n)
`,k = 2k−` Qp−1−(`+k)

(
P
(
Qkf̃`⊗2

))
.

Define the constant

(57) H
[n]
4 (fn) =

∑
`≥0, k≥0

h`,k 1{`+k<p} with h`,k = 2k−` 〈µ,P
(
Qkf̃`,n⊗2

)
〉.

We set A4,n(fn) = H4,n−H [n]
4 (fn) =

∑
`≥0, k≥0(h

(n)
`,k −h`,k) 1{`+k<p}, so that from the definition

of V4(n), we get that:

V4(n)−H [n]
4 (fn) = |Gn−p|−1MGn−p(A4,n(fn)).
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We now study the second moment of |Gn−p|−1MGn−p
(A4,n(fn)). Using (101), we get for n−p ≥ k0:

|Gn−p|−2 E
[
MGn−p

(A4,n(fn))2
]
≤ C |Gn−p|−1

n−p∑
j=0

2j ‖Qj(A4,n(fn))‖2L2(µ) .

Using (3) and (43), we obtain that for all 0 ≤ k < k1, ‖P(Qkf̃`,n⊗2 ‖L2(µ) ≤ ‖Qf̃2
`,n‖L2(µ) ≤ 4q2

2.

We deduce that:

‖Qj(A4,n(fn))‖L2(µ) ≤
∑

`≥0, k≥0

‖Qjh(n)
`,k − h`,k ‖L2(µ)

1{`+k<p}

≤ C
∑

`≥0, k≥0

2k−` αp−1−(`+k)+j ‖P
(
Qkf̃`,n⊗2

)
‖
L2(µ)

1{`+k<p}

≤ C c22 α
j
∑

`≥0, k≥k1

2k−` αp−(`+k)α2k 1{`+k<p}

+ C αj
∑
`≥0

0≤k<k1

2k−` αp−(`+k) ‖P
(
Qkf̃`,n⊗2

)
‖
L2(µ)

1{`<p}

≤ C (c22 + 4q2
2)αj ,

where we used the triangular inequality for the first inequality;(4) for the second; (21) for k ≥ k1

and (4) again for the third; (3) and (43) for the last. As
∑∞
j=0(2α2)j is finite, we deduce that:

(58) E
[(
V4(n)−H [n]

4 (fn)
)2
]

= |Gn−p|−2 E
[
MGn−p

(A4,n(fn))2
]
≤ C (c22 + q2

2) 2−(n−p).

We now consider the term V3(n) defined just after (56):

V3(n) = |Gn−p|−1MGn−p
(H3,n),

with

H3,n =
∑
`≥0

h
(n)
` 1{`≤p} and h

(n)
` = 2−` Qp−`

(
f̃2
`,n

)
.

We consider the constant

(59) H
[n]
3 (fn) =

∑
`≥0

h` 1{`≤p} with h` = 2−`〈µ, f̃2
`,n〉 = 〈µ, h(n)

` 〉.

We set A3,n(fn) = H3,n − H [n]
3 (fn) =

∑
`≥0(h

(n)
` − h`) 1{`≤p}, so that from the definition of

V3(n), we get that:

(60) V3(n)−H [n]
3 (fn) = |Gn−p|−1MGn−p

(A3,n(fn)).

We now study the second moment of |Gn−p|−1MGn−p(A3,n(fn)). Using (101), we get for n−p ≥ k0:

(61) |Gn−p|−2 E
[
MGn−p(A3,n(fn))2

]
≤ C |Gn−p|−1

n−p∑
j=0

2j ‖Qj(A3,n(fn))‖2L2(µ) .
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Recall ck(fn) and qk(fn) defined in (25). We have that

‖Qj(A3,n(fn))‖L2(µ) ≤
∑
`≥0

‖Qjh(n)
` − h` ‖L2(µ)

1{`≤p}

≤ C
∑
`≥0

2−` ‖Qj+p−`g̃‖L2(µ) 1{`≤p} with g = f̃2
`,n(62)

= 2−p ‖ g̃‖L2(µ) 1{j=0} +

p∑
`=0

2−` ‖Qj+p−`−1Qg̃‖L2(µ) 1{j+p−`>0}

≤ C c24(fn) 2−p1{j=0} + C
∑
`≥0

2−` αj+p−` ‖Qg̃‖L2(µ)

≤ C c24(fn) 2−p1{j=0} + C q2
2(fn)αj ,

where we used the triangular inequality for the first inequality; (4) for the third and (43) for the
last inequality. As

∑∞
j=0(2α2)j is finite, we deduce that:

(63)

E
[(
V3(n)−H [n]

3 (fn)
)2
]

= |Gn−p|−2 E
[
MGn−p

(A3,n(fn))2
]
≤ C c44(fn) 2−n + C q4

2(fn) 2−(n−p).

As V1 = V4 + V3, we deduce from (58) and (63) that:

E
[(
V1(n)−H [n]

1 (fn)
)2
]
≤ C

(
(c42(fn) + q4

2(fn)) 2−(n−p) + c44(fn) 2−n
)
,

with H
[n]
1 (fn) = H

[n]
3 (fn)+H

[n]
4 (fn). Since c44(fn) ≤ c22(fn) c2∞(fn) ≤ Cρ c22(fn) 22nρ with ρ ∈ (0, 1/2)

and some finite constant Cρ according to (i) in Assumption 3.12, and since limn→∞ p/n = 1 so

that 2−n(1−2ρ) ≤ 2−(n−p) (at least for n large enough), we deduce from (ii) in Assumption 3.12
that:

(64) E
[(
V1(n)−H [n]

1 (fn)
)2
]
≤ C

(
c42 + q4

2 + Cρc
2
2

)
2−(n−p)

and thus limn→∞ V1(n)−H [n]
1 (fn) = 0 in probability.

We check that limn→∞H
[n]
1 (fn) = σ2. Recall (see (59) and (57)) that:

H
[n]
3 (fn) =

∑
`≥0

2−`〈µ, f̃2
`,n〉1{`≤p} and |H [n]

4 (fn)| ≤
∑

`≥0, k≥0

2k−` |〈µ,P
(
Qkf̃`,n⊗2

)
〉|.

Thanks to (3) and (4), we have:

|〈µ,P
(
Qkf̃`,n⊗2

)
〉| ≤ ‖Qkf̃`,n ‖

2

L2(µ) ≤ C α2k ‖f`,n ‖2L2(µ) ≤ C α2k c22.

Using Assumption 3.12 (iii), we get that

(65) |〈µ,P(f̃`,n⊗2)〉| ≤ |〈µ,P(f`,n⊗2)〉|+ 〈µ, f`,n〉2 ≤ (1 + ∆)δ`,n.

We deduce from (44) (for k ≥ 1) and the previous upper-bound (for k = 0) and dominated

convergence that limn→∞H
[n]
4 (fn) = 0.

We now prove that limn→∞H
[n]
3 (fn) = σ2. We define σ2

n =
∑n
`=0 2−` ‖f`,n ‖2L2(µ), so that by

Assumption 3.12 (iv), limn→∞ σ2
n = σ2. We have:

|H [n]
3 (fn)− σ2

n| ≤
n∑

`=p+1

2−`〈µ, f2
`,n〉+

p∑
`=0

2−`〈µ, f`,n〉2 ≤ c222−p + ∆

p∑
`=0

2−`δ`,n.
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Then use dominated convergence to deduce that limn→∞ |H [n]
3 (fn) − σ2

n| = 0. This implies that
limn→∞ V1(n) = σ2 in probability.

�

Using (42), we have the following result as a direct consequence of Lemmas 5.3, 5.4 and 5.5.

Lemma 5.6. Under the assumptions of Theorem 3.17 (2α2 < 1), we have that V (n) converges in
probability towards σ2 defined by (24).

We now check the Lindeberg’s condition using a fourth moment condition. We set

(66) R3(n) =
∑

i∈Gn−pn

E
[
∆n,i(fn)4

]
.

Lemma 5.7. Under the assumptions of Theorem 3.17 (2α2 < 1), we get limn→∞R3(n) = 0.

Proof of Lemma 5.7. We have:

R3(n) ≤ 16
∑

i∈Gn−p

E
[
Nn,i(fn)4

]
≤ 16(p+ 1)3

p∑
`=0

∑
i∈Gn−p

E
[
N `
n,i(f̃`,n)4

]
,

where we used that (
∑r
k=0 ak)4 ≤ (r + 1)3

∑r
k=0 a

4
k for the two inequalities (resp. with r = 1 and

r = p) and also Jensen inequality and (41) for the first and (37) for the last. Using (36), we get:

E
[
N `
n,i(f̃`,n)4

]
= |Gn|−2E [hn,`(Xi)] , with hn,`(x) = Ex

[
MGp−`

(f̃`,n)4
]
,

so that:

R3(n) ≤ Cn3

p∑
`=0

∑
i∈Gn−p

|Gn|−2E [hn,`(Xi)] .

Using (101) (with f and n replaced by hn,` and n− p), we get that:

(67) R3(n) ≤ C n3 2−n−p
p∑
`=0

Eµ
[
MGp−`

(f̃`,n)4
]
.

Now we give the main steps to get an upper bound of Eµ
[
MGp−`

(f̃`,n)4
]
. Recall that:

‖ f̃`,n ‖L4(µ) ≤ C c4(fn).

We have:

(68) Eµ
[
MGp−`

(f̃`,n)4
]
≤ C c44(fn) for ` ∈ {p− k1 − 1, . . . , p}.

Now we consider the case 0 ≤ ` ≤ p − k1 − 2. Let the functions ψj,p−`, with 1 ≤ j ≤ 9, from

Lemma 8.3, with f replaced by f̃`,n so that for ` ∈ {0, . . . , p− k1 − 2}

(69) Eµ
[
MGp−`

(f̃`,n)4
]

=

9∑
j=1

〈µ, ψj,p−`〉.

We now look precisely at the terms in (69). We set hk = Qk−1f̃`,n so that for k ∈ N∗:

(70) ‖hk ‖L2(µ) ≤ C αkc2 and ‖hk ‖L4(µ) ≤ C c4(fn).
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We recall the notation f⊗f = f⊗2. We deduce for k ≥ k1+1 from (21) applied with hk = Qk1hk−k1
and for 1 ≤ k ≤ k1 from (3) and (43) that:

(71) ‖P(hk⊗2)‖L2(µ) ≤
{
C α2kc22 for k ≥ k1 + 1,

C q2
2 for k ∈ {1, . . . , k1}.

Upper bound of 〈µ, |ψ1,p−`|〉. We have:

(72) 〈µ, |ψ1,p−`|〉 ≤ C 2p−` 〈µ,Qp−`(f̃4
`,n)〉 ≤ C 2p−` c44(fn).

Upper bound of |〈µ, ψ2,p−`〉|. We set g = (f̃`,n)3. Then we have

|〈µ, ψ2,p−`〉| ≤ C22(p−`)
p−`−1∑
k=0

2−k|〈µ,QkP
(
Qp−`−k−1((f̃`,n)3)⊗sym hp−`−k

)
〉|

= C22(p−`)
p−`−1∑
k=0

2−k|〈µ,P
(
Qp−`−k−1(g̃)⊗sym hp−`−k

)
〉|

≤ C22(p−`)
p−`−1∑
k=0

2−k ‖Qp−`−k−1g̃‖L2(µ) ‖hp−`−k ‖L2(µ)(73)

≤ C22(p−`)
p−`−1∑
k=0

2−k α2(p−k−`) ‖g‖L2(µ) ‖ f̃`,n ‖L2(µ)

≤ C 2p−` c36(fn) c2,

where we used that 〈µ,P(1⊗sym hp−`−k)〉 = 2〈µ,Qhp−`−k〉 = 0 for the equality, (6) for the second
inequality, (4) and (70) for the third.

Upper bound of 〈µ, |ψ3,p−`〉|. Using (6), we easily get:

(74) 〈µ, |ψ3,p−`|〉 ≤ C 22(p−`)
p−`−1∑
k=0

2−k 〈µ,QkP
(
Qp−`−k−1(f̃2

` )⊗2
)
〉.

We deduce from (74), distinguishing according to k = p − ` − 1 (then use (6)) and k ≤ p − ` − 2

(then use |Q(f̃2
`,n)| ≤ 4q2

2, see (43)) that:

(75) 〈µ, |ψ3,p−`|〉 ≤ C 2p−` c44(fn) + C 22(p−`) q2
2c

2
2.

Upper bound of 〈µ, |ψ4,p−`〉|. Using (6) and then (71) with p− `− 1 ≥ k1 + 1, we get:

〈µ, |ψ4,p−`|〉 ≤ C 24(p−`) 〈µ,P
(
|P(hp−`−1⊗2)⊗2 |

)
〉

≤ C 24(p−`) ‖P(hp−`−1⊗2)‖2L2(µ)(76)

≤ C 24(p−`) α4(p−`) c42

≤ C 22(p−`) c42.

Upper bound of 〈µ, |ψ5,p−`〉|. We have:

〈µ, |ψ5,p−`|〉 ≤ C 24(p−`)
p−`−k1−1∑

k=2

k−1∑
r=0

2−r Γ
[5]
k,r + C 24(p−`)

p−`−1∑
k=p−`−k1−2

k−1∑
r=0

2−r Γ
[5]
k,r,
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with
Γ

[5]
k,r = 2−2k〈µ,P

(
Qk−r−1|P(hp−`−k⊗2)|⊗2

)
〉.

Using (6) and then (71), we get:

(77) Γ
[5]
k,r ≤ C 2−2k ‖P(hp−`−k⊗2)‖2L2(µ)

Using (3) and (ii) of Assumption 3.12, we get, for m ∈ {0, . . . , k1−1}, P(Qmf̃`,n⊗2) ≤ QmQ(f̃2
`,n) ≤

4q2
2 and then, for all k ∈ {p− `− k1 − 2, . . . , p− `− 1}, we deduce that

(78) ‖P
(
Qp−`−k−1f̃`,n⊗2

)
‖
L2(µ)

≤ C q2 c2.

Using (21) and (4), we get, for all k ∈ {2, . . . , k − `− k1 − 1},
(79) Γ

[5]
k,r ≤ C 2−2kα4(p−`−k)c42.

From (78) and (79) we deduce that

〈µ, |ψ5,p−`|〉 ≤ C 22(p−`) c22(q2
2 + c22).

Upper bound of 〈µ, |ψ6,p−`|〉. We have:

〈µ, |ψ6,p−`|〉 ≤ C 23(p−`)
p−`−1∑
k=1

k−1∑
r=0

2−r Γ
[6]
k,r,

with

Γ
[6]
k,r = 2−k 〈µ,QrP

(
Qk−r−1|P

(
hp−`−k⊗2

)
| ⊗sym Qp−`−r−1(f̃2

`,n)
)
〉.

Using (6) and then (71), we get:

(80) Γ
[6]
k,r ≤ C 2−k ‖P

(
hp−`−k⊗2

)
‖
L2(µ)

‖Qp−`−r−1(f̃2
`,n)‖

L2(µ)
.

Distinguishing the cases k > p− `−k1−1 and k ≤ p− `−k1−1 and using that ‖Qj(f̃2
`,n)‖

L2(µ)
≤

4q2 min(q2, c2) for all j ∈ N∗ (see (43)), (78) and (71), we get:

Γ
[6]
k,r ≤ C 2−k q2 min(q2, c2) 1{k>p−`−k1−1} + C 2−k α2(p−`−k) c22 q

2
2 1{k≤p−`−k1−1}

From the previous inequality, we conclude that

〈µ, |ψ6,p−`|〉 ≤ C 22(p−`) c22q
2
2.

Upper bound of |〈µ, ψ7,p−`〉|. We have:

(81) |〈µ, ψ7,p−`〉| ≤ C 23(p−`)
p−`−1∑
k=1

k−1∑
r=0

2−r Γ
[7]
k,r,

with

(82) Γ
[7]
k,r = 2−k|〈µ,QrP

(
Qk−r−1P

(
hp−`−k ⊗sym Qp−`−k−1(f̃2

`,n)
)
⊗sym hp−`−r

)
〉|.

When k ≥ p− `− k1, setting g = P
(
Qp−`−k−1f̃`,n ⊗sym Qp−`−k−1f̃2

`,n

)
, we get that:

Γ
[7]
k,r = 2−k|〈µ,P

(
Qk−r−1g ⊗sym hp−`−r

)
〉|

= 2−k|〈µ,P
(
Qk−r−1g̃ ⊗sym hp−`−r

)
〉|

≤ C 2−k ‖Qk−r−1g̃‖L2(µ) ‖hp−`−r ‖L2(µ)(83)
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where we used for 〈µ,P(1 ⊗sym hp−`−r〉 = 0 for the second equality; (6) for the first inequality;
Using (4) twice (for the first and the last inequality), (5) and (ii) of Assumption 3.12 for the second
inequality, we get

‖Qk−r−1g̃‖L2(µ) ≤ Cαk−r‖g‖L2(µ) ≤ Cq2
2α

k−r2nρ and ‖hp−`−r ‖L2(µ) ≤ Cc2αp−`−r.
Using that p− `− k1 ≤ k ≤ p− `− 1 and putting the last inequalities in (83), we deduce that

Γ
[7]
k,r ≤ C c2 q

2
2 2−(p−`)α2(p−`−r) 2nρ.

We now consider k ≤ p− `− k1 − 1. We have:

Γ
[7]
k,r ≤ C 2−k ‖P

(
hp−`−k ⊗sym Qp−`−k−1(f̃2

`,n)
)
‖
L2(µ)

‖hp−`−r ‖L2(µ)

≤ C 2−k ‖hp−`−k−1 ‖L2(µ) ‖Qp−`−k−2(f̃2
`,n)‖

L2(µ)
‖hp−`−r ‖L2(µ)

≤ C 2−k ‖hp−`−k ‖L2(µ) q
2
2 ‖hp−`−r ‖L2(µ)

≤ C 2−k α2(p−`−k) c22 q
2
2,

where we used (6) for the first inequality; (21) for the second; and (70) for the two lasts. We
deduce from (81) that:

|〈µ, ψ7,p−`〉| ≤ C 2p−` 2nρ c2 + C 22(p−`) c22q
2
2.

Upper bound of 〈µ, |ψ8,p−`|〉. We have:

(84) 〈µ, |ψ8,p−`|〉 ≤ C 24(p−`)
p−`−1∑
k=2

k−1∑
r=1

r−1∑
j=0

2−j Γ
[8]
k,r,j ,

with
Γ

[8]
k,r,j ≤ 2−k−r〈µ,QjP

(
|Qr−j−1P

(
hp−`−r⊗2

)
| ⊗sym |Qk−j−1P

(
hp−`−k⊗2

)
|
)
〉.

When k ≥ p− `− k1 and r > p− `− k1, we have, according to (3) and (43):

(85) P
(
hp−`−k⊗2

)
≤ Q(h2

p−`−k) ≤ 4q2
2 and P

(
hp−`−r⊗2

)
≤ Q(h2

p−`−r) ≤ 4q2
2.

Distinguishing the three cases k < p− `− k1, k ≥ p− `− k1 and r > p− `− k1, k ≥ p− `− k1 and
r ≤ p− `− k1, using (6), (71) and (85) (noticing that p− `− r ≥ k1 + 2 if k < p− `− k1), we get:

Γ
[8]
k,r,j ≤ C 2−k−r ‖P

(
hp−`−r⊗2

)
‖
L2(µ)

‖P
(
hp−`−k⊗2

)
‖
L2(µ)

≤


C c42 2−k−r α4(p−`)α−2(k+r) if k < p− `− k1

C c22 q
2
2 2−k−r α2(p−`−r) if k ≥ p− `− k1 and r ≤ p− `− k1

C q4
2 2−k−r if k ≥ p− `− k1 and r > p− `− k1.

(86)

We deduce from (84) that:

〈µ, |ψ8,p−`|〉 ≤ C 22(p−`) (c22 + q2
2

)2
.

Upper bound of 〈µ, |ψ9,p−`|〉. We have:

(87) 〈µ, |ψ9,p−`|〉 ≤ C 24(p−`)
p−`−1∑
k=2

k−1∑
r=1

r−1∑
j=0

2−j Γ
[9]
k,r,j ,

with

Γ
[9]
k,r,j ≤ 2−k−r 〈µ,QjP

(
Qr−j−1|P

(
hp−`−r ⊗sym Qk−r−1P

(
hp−`−k⊗2

))
| ⊗sym |hp−`−j |

)
〉.
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For r ≤ k − k1 − 1, we have r ≤ p− `− k1 − 1 and:

Γ
[9]
k,r,j ≤ C 2−k−r ‖P

(
hp−`−r ⊗sym Qk−r−1P

(
hp−`−k⊗2

))
‖
L2(µ)

‖hp−`−j ‖L2(µ)

≤ C 2−k−r ‖hp−`−r−1 ‖L2(µ) ‖P
(
hp−`−k⊗2

)
‖
L2(µ)

‖hp−`−j ‖L2(µ)(88)

≤
{
C c42 2−k−r α4(p−`)α−2(k+r) if p− `− k > k1

Cc22q
2
2 2−k−rα2(p−`−r) if p− `− k ≤ k1,

(89)

where we used (6) for the first inequality; (21) as p−`−r ≥ k1 +1 and k−r−1 ≥ k1 for the second;
and (70) (two times) and (71) (one time) for the last. For r > k − k1 − 1 and k ≤ p− `− k1 − 1,
we have:

Γ
[9]
k,r,j ≤ C 2−k−r ‖P

(
hp−`−r ⊗sym Qk−r−1P

(
hp−`−k⊗2

))
‖
L2(µ)

‖hp−`−j ‖L2(µ)

≤ C 2−k−r ‖hp−`−r−k1 ‖L2(µ) ‖hp−`−k−k1 ‖
2
L2(µ) ‖hp−`−j ‖L2(µ)(90)

≤ C c42 2−k−r α4(p−`) α−2(r−k),

where we used (6) for the first inequality; (22)1 as p− `−k ≥ k1 +1 for the second; and (70) (three
times) for the last. For r > k − k1 − 1 and k > p− `− k1 − 1, we have:

Γ
[9]
k,r,j ≤ C 2−k−r ‖P

(
hp−`−r ⊗sym Qk−r−1P

(
hp−`−k⊗2

))
‖
L2(µ)

‖hp−`−j ‖L2(µ)

≤ C 2−k−r ‖P
(
|Qp−`−r−1f̃`,n| ⊗sym Qp−`−2

(
Qf̃2

`,n

))
‖
L2(µ)

‖hp−`−j ‖L2(µ)

≤ C q2
2 2−k−r ‖Qp−`−r−1f̃`,n ‖L2(µ) ‖hp−`−j ‖L2(µ)(91)

≤ C 2−k−r q2
2 c

2
2 α

2(p−`)α−r−j ,

where we used (6) for the first inequality, (3) (with f replaced by f̃`,n) for the second, (43) for the
third and (70) (two times) for the last. We then deduce from (87) and the computations thereafter,
that:

〈µ, |ψ9,p−`|〉 ≤ C 22(p−`) c22
(
c22 + q2

2

)
.

In conclusion, we get that:

R3(n) ≤ C n32−n−p

c44(fn) +

p−k1−2∑
`=0

9∑
j=1

〈µ, ψj,p−`〉


≤ C n32−n−p

(
c44(fn) +

p−k1−2∑
`=0

[
2p−`(c44(fn) + c36(fn)c2) + 22(p−`)(c22 + q2

2)2
])

≤ C n3
(

2−n(1−2ρ) + 2(n−p)(c22 + q2
2)
)

(c22 + q2
2),

where, we used (67), (68) and (69) for the first inequality; and c44(fn) ≤ C c22 22nρ and c36(fn) ≤
C c2 22nρ with ρ ∈ (0, 1/2) thanks to Remark 3.13 and (i) from Assumption 3.12 for the last one.
As ρ ∈ (0, 1/2) by Assumption 3.12 (i), we deduce that limn→∞R3(n) = 0. �

1Notice this is the only place in the proof of Theorem 3.17 where we use (22).
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We can now use Theorem 3.2 and Corollary 3.1, p. 58, and the Remark p. 59 from [12] to deduce
from Lemmas 5.6 and 5.7 that ∆n(fn) converges in distribution towards a Gaussian real-valued
random variable with deterministic variance σ2 defined by (24). Using Remark 5.1 and Lemma
5.2, we then deduce Theorem 3.17.

6. Proof of Theorem 3.17 in the critical case (2α2 = 1)

We keep notations from Section 5. We assume that Assumption 2.4 holds with α = 1/
√

2. Let
(f`,n, n ≥ ` ≥ 0) be a sequence of function satisfying Assumptions 3.12 and 3.14. We set f`,n = 0
for ` > n ≥ 0 and fn = (f`,n, ` ∈ N). Recall the definition of ck(f) and qk(f) in (25). Assumption
3.12 (ii) gives that c2 = supn∈N c2(fn) and q2 = supn∈N q2(fn) are finite. Recall from Remark 5.1

that the study of Nn,∅(fn) is reduced to that of N
[k0]
n,∅ (fn).

Lemma 6.1. Under the assumptions of Theorem 3.17 (2α2 = 1), we get limn→∞ E[Rk00 (n)2] = 0.

Proof. Assume n− p ≥ k0. We write:

Rk00 (n) = |Gn|−1/2

n−p−1∑
k=k0

∑
i∈Gk0

MiGk−k0
(f̃n−k,n).

We have that
∑
i∈Gk0

E[MiGk−k0
(f̃n−k,n)2] = E[MGk0

(hk,n)], where:

hk,n(x) = Ex[MGk−k0
(f̃n−k,n)2].

We deduce from (101), that E[MGk0
(hk,n)] ≤ C〈µ, hk,n〉. We have also that:

〈µ, hk,n〉 = Eµ[MGk−k0
(f̃n−k,n)2] ≤ C 2k

k∑
`=0

2` ‖Q`f̃n−k,n ‖
2

L2(µ)

≤ C 2k c22(fn)

k∑
`=0

2`α2`

≤ Ck 2k c22(fn),

where we used (101) for the first inequality (notice one can take k0 = 0 in this case as we consider
the expectation Eµ), (4) in the second, and 2α2 < 1 in the last. We deduce that:

(92) E[Rk00 (n)2]1/2 ≤ |Gn|−1/2

n−p−1∑
k=k0

(
2k0E

[
MGk0

(hk,n)
])1/2 ≤ C c2 n

1/2 2−p/2.

As limn→∞ p/n = 1, we get limn→∞ n 2−p = 0 and this ends the proof using (92). �

Lemma 6.2. Under the assumptions of Theorem 3.17 (2α2 = 1), we get limn→∞ E[R1(n)2] = 0.

Proof. Notice that (27) implies that:

(93) ‖Qf̃`,n ‖L2(µ) ≤ ‖Qf`,n ‖L2(µ) ≤ ‖Q(|f`,n|)‖L2(µ) ≤ δ`,n.

We deduce that for k ∈ N:

(94) ‖Qkf̃`,n ‖L2(µ) ≤ αk−1δ`,n1{k≥1} + c21{k=0}.
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We set for p ≥ ` ≥ 0, n− p ≥ k0 and j ∈ Gk0 :

R1,j(`, n) =
∑

i∈jGn−p−k0

E
[
N `
n,i(f`,n)|Fi

]
,

so that R1(n) =
∑p
`=0

∑
j∈Gk0

R1,j(`, n). We have for i ∈ Gn−p:
(95)

|Gn|1/2E
[
N `
n,i(f`,n)|Fi

]
= E

[
MiGp−`

(f̃`,n)|Xi

]
= EXi

[
MGp−`

(f̃`,n)
]

= |Gp−`|Qp−`f̃`,n(Xi),

where we used definition (36) of N `
n,i for the first equality, the Markov property of X for the second

and (98) for the third. Using (95), we get for j ∈ Gk0 :

R1,j(`, n) = |Gn|−1/2 |Gp−`|MjGn−p−k0
(Qp−`f̃`).

We deduce from the Markov property of X that E[R1,j(`, n)2|Fj ] = 2−n+2(p−`) h`,n(Xj) with

h`,n(x) = Ex
[
MGn−p−k0

(Qp−`f̃`)
2
]
. Using (101), we get:∑

j∈Gk0

E[R1,j(`, n)2] = 2−n+2(p−`) E
[
MGk0

(h`,n)
]
≤ C2−n+2(p−`) 〈µ, h`,n〉.

Using (101), we have:

〈µ, h`,n〉 = Eµ
[
MGn−p−k0

(Qp−`f̃`,n)2
]
≤ C 2n−p

n−p−k0∑
k=0

2k ‖QkQp−`f̃`,n ‖
2

L2(µ) .

Using (4) and (94), the latter inequality implies that:

〈µ, h`,n〉 ≤ C 2n−p
n−p−k0∑
k=0

2k ‖QkQp−`f̃`,n ‖
2

L2(µ)

≤ C 2n−pα2(p−`)
n−p−k0∑
k=0

2kα2k−2 ‖Qf̃`,n ‖
2

L2(µ) 1{k+p−`≥1} + C 2n−p ‖f`,n ‖2L2(µ) 1{`=p}

≤ C (n− p) 2n−2p+` δ2
`,n + C 2n−pc221{`=p}.

Using the following inequality,

E
[
R1(n)2

]1/2 ≤ p∑
`=0

2k0
∑
j∈Gk0

E
[
R1,j(`, n)2

]1/2

,

we have

E[R1(n)2]1/2 ≤ C
p∑
`=0

(
(n− p)2−` δ2

`,n + 1{`=p}2
−pc22

)1/2
≤ C

(
2−p/2c2 +

√
n

n∑
`=0

2−`/2 δ`,n

)
.

Then use (26) to conclude. �

Lemma 6.3. Under the assumptions of Theorem 3.17 (2α2 = 1), we get limn→∞ E[R2(n)] = 0.
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Proof. Using (98), we have:

E [R2(n)] = |Gn|−1
∑

i∈Gn−p

E

E[ p∑
`=0

MiGp−`
(f̃`,n)|Xi

]2


= |Gn|−1
∑

i∈Gn−p

E

( p∑
`=0

EXi

[
MGp−`

(f̃`,n)
])2


= |Gn|−1 |Gn−p|Qn−p〈ν,

(( p∑
`=0

|Gp−`|Qp−`f̃`,n
)2
)
〉.

Next, using (iii) from Assumption 3.11 and (94), we deduce that:

E [R2(n)] ≤ C2−p

(
p∑
`=0

|Gp−`| ‖Qp−`f̃`,n ‖L2(µ)

)2

≤ C c22 2−p + C

(
p−1∑
`=0

2−`/2δ`,n

)2

.

Now, the result follows using the fact that limn→ p =∞ and the dominated convergence theorem.
�

We now consider the limit of V2(n).

Lemma 6.4. Under the assumptions of Theorem 3.17 (2α2 = 1), we get limn→∞ V2(n) = 0 in
probability.

Proof. To prove that limn→∞ V2(n) = 0 in probability, we give a closer look at the proof of (54).

Using 2α2 = 1, we get that the upper bound in (50) can be replaced by Cc22(f) (c2(f) + q2(f))
2

(n−
p)2−(n−p) and the upper bound in (53) can be replaced by Cc22(f)q2

2(f) (n − p)2−(n−p). As V2 =
V6 + V5, we deduce that (compare with (54)):

E
[(
V2(n)−H [n]

2 (fn)
)2
]
≤ C

(
c42(fn) + c22(fn) q2

2(fn)
)

(n− p) 2−(n−p)

≤ C
(
c42 + c22 q

2
2

)
(n− p) 2−(n−p),

with H
[n]
2 (fn) = H

[n]
5 (fn)+H

[n]
6 (fn). Since according to (ii) in Assumption, 3.12 c2 and q2 are finite,

we deduce that limn→∞ V2(n)−H [n]
2 (fn) = 0 in probability. We now check that limn→∞H

[n]
2 (fn) =

0. From (51), we get that |H [n]
5 (fn)| ≤ ∑k>`≥0 2−`|〈µ, f̃k,nQk−`f̃`,n〉|, and using (44) and (55)

which are a consequence of Assumption 3.12, and the fact that
∑
k>`≥0 2−`αk−` is finite, we get

by dominated convergence that limn→∞H
[n]
5 (fn) = 0.

Using (46), we get that:

(96) |H [n]
6 (fn)| ≤

∑
k>`≥0

p−k−1∑
r=0

2r−`|〈µ,P
(
Qrf̃k,n ⊗sym Qk−`+rf̃`,n

)
〉|.
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Using (6) and (27) (or more precisely (93)) , we obtain:

|H [n]
6 (fn)| ≤

∑
k>`≥0

p−k−1∑
r=0

2r−` ‖Qrf̃k,n ‖L2(µ) ‖Qk−`+rf̃`,n ‖L2(µ)

≤
∑
k>`≥0

p−k−1∑
r=0

2r−`αk−`+2rc2 ‖Qf̃`,n ‖L2(µ)

≤ n
n∑
`=0

2−`δ`,n.

Then, use (26) to conclude. �

Lemma 6.5. Under the assumptions of Theorem 3.17 (2α2 = 1), we get limn→∞ V1(n) = σ2 in
probability.

Proof. To prove that limn→∞ V1(n) = σ2 in probability, we give a closer look at the proof of (64).
Using 2α2 = 1, we get that the upper bound in (58) can be replaced by C

(
c42 + q4

2

)
(n− p)2−(n−p)

and the upper bound in (63) can then be replaced by C c44(fn)n2−n. As V1 = V4 + V3, using (i)
from Assumption 3.12, we deduce that (compare with (64)):

E
[(
V1(n)−H [n]

1 (fn)
)2
]
≤ C

(
c42 + q4

2

)
(n− p) 2−(n−p) + C c44(fn)n22−n

≤ C
(
c42 + q4

2

)
(n− p) 2−(n−p) + C n2−n(1−2ρ),

with H
[n]
1 (fn) = H

[n]
4 (fn) +H

[n]
3 (fn). This implies that limn→∞ V1(n)−H [n]

1 (fn) = 0 in probability.

See the proof of Lemma 5.6 to get that limn→∞H
[n]
3 (fn) = σ2. Recall (57) for the definition of

H
[n]
4 (f). We have:

|H [n]
4 (fn)| ≤

∑
`≥0; k≥0

2k−`|〈µ,P
(
Qkf̃`,n⊗2

)
〉|1{`+k<p}

≤
∑

`≥0; k≥1

2k−`α2k ‖Q|f̃`,n|‖∞ 1{`+k<p} +

p−1∑
`=0

2−`|〈µ,P(f̃`,n⊗2)〉|

≤ Cn
n∑
`=0

2−`δ`,n + C(1 + ∆)

n∑
`=0

2−`δ`,n.

Thanks to (26) from Assumption 3.14, we get limn→∞H
[n]
4 (fn) = 0, and thus limn→∞H

[n]
1 (fn) =

σ2. This finishes the proof. �

As a conclusion of Lemmas 6.3, 6.4 and 6.5 and since V (n) = V1(n)+2V2(n)−R2(n) (see (42)),
we deduce that limn→∞ V (n) = σ2 in probability.

We now check the Lindeberg condition using a fourth moment condition. Recall R3(n) =∑
i∈Gn−pn

E
[
∆n,i(fn)4

]
defined in (66).

Lemma 6.6. Under the assumptions of Theorem 3.17 (2α2 = 1), we get limn→∞R3(n)= 0.

Proof. Following line by line the proof of Lemma 5.7 with the same notations and taking α = 1/
√

2,
we get that concerning |〈µ, ψi,p−`〉| or 〈µ, |ψi,p−`|〉, the bounds for i ∈ {1, 3, 4} are the same; the
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bounds for i ∈ {2, 5, 6} have an extra (p−`) term, the bounds for i ∈ {7, 8, 9} have an extra (p−`)2

term. This leads to:

R3(n) ≤ C n5
(

2−nc44(fn) + 2−nc36(fn) c2 + 2−(n−p) c22(c22 + q2
2)
)
.

Then conclude as in the proof of Lemma 5.7. �

Then, we end the proof of Theorem 3.17 with 2α2 = 1 by arguing as in the (end of the) proof
of Theorem 3.17 with 2α2 < 1.

7. Proof of Theorem 3.17 in the super-critical case (2α2 > 1)

We assume α ∈ (1/
√

2, 1). We follow line by line the proof of Theorem 3.17 in Section 6

with α > 1/
√

2 instead of α = 1/
√

2, and use notations from Sections 5. We recall that c2 =
sup{c2(fn), n ∈ N} and q2 = supn∈N q2(fn) are finite thanks to Assumption 3.12 (ii). We will
denote C any unimportant finite constant which may vary line to line, independent on n and fn.
Let (pn, n ∈ N) be an increasing sequence of elements of N such that (40) holds. When there is no
ambiguity, we write p for pn.

Lemma 7.1. Under the assumptions of Theorem 3.17 (2α2 > 1), we get limn→∞ E[Rk00 (n)2] = 0.

Proof. Mimicking the proof of Lemma 6.1, we get, as limn→∞ p/n = 1:

lim
n→∞

E[Rk00 (n)2] ≤ C lim
n→∞

c22(fn)(2α2)n−p 2−p ≤ Cc22 lim
n→∞

(2α2)n−p 2−p = 0.

�

Lemma 7.2. Under the assumptions of Theorem 3.17 (2α2 > 1), we get limn→∞ E[R1(n)2] = 0.

Proof. Following the proof of Lemma 6.2 with α2 > 1/2, we get:

E[R1(n)2]1/2 ≤ C
p∑
`=0

(
2−` (2α2)n−`δ2

`,n + 1{`=p}2
−pc22

)1/2
≤ C

(
2−p/2c2 +

n∑
`=0

2−`/2 (2α2)(n−`)/2δ`,n

)
.

Then use (28) and dominated convergence theorem to conclude. �

From Lemmas 7.1 and 7.2, it follows that

lim
n→∞

E[(N
[k0]
n,∅ (fn)−∆n(fn))2] = 0.

Lemma 7.3. Under the assumptions of Theorem 3.17 (2α2 > 1), we get limn→∞ E[R2(n)] = 0.

Proof. Following the proof of Lemma 6.3, we get

E[R2(n)] ≤ Cc222−p + (

n∑
`=0

2−`/2(2α2)(p−`)/2δ`,n)2.

Then use (28), 2α2 > 1 and dominated convergence theorem to conclude. �

We now consider the limit of V2(n).

Lemma 7.4. Under the assumptions of Theorem 3.17 (2α2 > 1), we get limn→∞ V2(n) = 0 in
probability.
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Proof. Using with α > 1/
√

2, we get that the upper-bound in (53) can be replaced by Cc22q
2
2 α

2(n−p).
We get that for r ≥ k1:

‖P(Qrf̃k,n ⊗sym Qk−`+rf̃`,n)‖L2(µ) ≤ Cα2r+k−`δk,nδ`,n ≤ C(2α2)−n 2(`+k)/2α2(r+k),

where we used Assumption 3.14 (vi) for the first inequality and Assumption 3.15 for the second.
Thus the bound (47) can be replaced by C (2α2)−(n−p)αj . The term (48) is handled as in the proof
of Lemma 6.4. This gives that (49) can be replaced by C αj . Therefore the upper bound in (50)

can be replaced by C α2(n−p). As V2 = V6 +V5, we deduce that E[(V2(n)−H [n]
2 (fn))2] ≤ Cα2(n−p).

(Compare with (54) and replace f by fn.) It follows that limn→∞ V2(n)−H [n]
2 (fn) = 0 in probability.

As in the proof of Lemma 6.4 we also have limn→∞H
[n]
5 (fn) = 0. Using (6) and (93) , we deduce

from (96) and Assumption 3.15 that:

|H [n]
6 (fn)| ≤ C

∑
0≤`<k≤p

2−`αk−`δ`,n + C
∑

0≤`<k≤p

p−k−1∑
r=1

2r−`δk,nδ`,nα
2r+k−`

≤ C
∑

0≤`<k≤p

2−`αk−`(2α2)−(n−`)/2 + C
∑

0≤`<k≤n

(2α2)−(n−p)2−(`+k)/2

≤ C (2α2)−(n−p).

Since H
[n]
2 (fn) = H

[n]
5 (fn) + H

[n]
6 (fn), it follows that limn→∞ |H [n]

2 (fn)| = 0. We deduce that
limn→∞ V2(n) = 0 in probability. �

Lemma 7.5. Under the assumptions of Theorem 3.17 (2α2 > 1), we get limn→∞ V1(n) = σ2 in
probability.

Proof. We follow the proof of Lemma 6.5 with α > 1/
√

2 and use the same trick as in the proof of
Lemma 7.4 based on Assumption 3.15. We get, with the details left to the reader:

E[(V4(n)−H [n]
4 (fn))2] ≤ Cα2(n−p).
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We set g`,n = f̃2
`,n. From (62), we have for j ∈ {0, . . . , n− p}:

‖Qj(A3,n(fn))‖L2(µ) ≤ C
p∑
`=0

2−` ‖Qp−`g̃`,n ‖L2(µ) 1{j=0} + C

p∑
`=0

2−` ‖Qj+p−`g̃`,n ‖L2(µ) 1{j≥1}

= C 2−p ‖g̃p,n‖L2(µ)1{j=0} + C

p−1∑
`=0

2−` ‖Qp−`−1(Qg̃`,n)‖L2(µ) 1{j=0}

+ C

p∑
`=0

2−` ‖Qj+p−`−1(Qg̃`,n)‖L2(µ) 1{j≥1}

≤ C 2−p ‖f2
`,n‖L2(µ) 1{j=0} + C

p−1∑
`=0

2−`αp−`−1‖Qg̃`,n‖L2(µ)1{j=0}

+ C

p∑
`=0

2−`αj+p−`−1‖Qg̃`,n‖L2(µ)1{j≥1}

≤ C 2−p ‖f`,n‖2L4(µ) 1{j=0} + C (q2
2 + c22)

p∑
`=0

2−`αj+p−`

≤ Cc22) 2−p 2nρ 1{j=0} + C (q2
2 + c22)αj+p,

where we used Remark 3.13, (ii) of Assumption 3.12, (4) and (43). From the latter inequality, we
get using (60) and (61):

E[(V3(n)−H [n]
3 (fn))2] ≤ C(2−(1−2ρ)n + α2n).

The latter inequalities imply that limn→∞ E[(V1(n)−H [n]
1 (fn))2] = 0, with H

[n]
1 (fn) = H

[n]
4 (fn) +

H
[n]
3 (fn). From the proof of Lemma 5.6 we have limn→∞H

[n]
3 (fn) = σ2. Next, we have

|H [n]
4 (fn)| ≤

∑
`≥0, k≥0

2k−`|〈µ,P
(
Qkf̃`,n⊗2

)
〉|1{`+k<p}

≤ C
∑

`≥0, k≥1

2k−`α2k ‖Q|f̃`,n|‖
2

∞ 1{`+k<p} + C

p−1∑
`=0

2−`|〈µ,P(f̃`,n⊗2)〉|

≤ C
∑

`≥0, k≥1

2k−`α2k(2α2)−(n−`) 1{`+k<p} + C(1 + ∆)

p−1∑
`=0

2−`(2α2)−(n−`)/2

≤ C (2α2)−(n−p) + C(1 + ∆) (2α2)−n/2,

where we used (57) and the definition of h`,k therein for the first inequality; (6) for the second;
Assumption 3.12 (iii), Assumption 3.14 (vi), (65) and Assumption 3.15 (twice) for the third. We

deduce that limn→∞ |H [n]
4 (fn)| = 0. This ends the proof. �

We now check the Lindeberg condition. For that purpose, we have the following result.

Lemma 7.6. Under the assumptions of Theorem 3.17 (2α2 > 1), we have limn→∞R3(n) = 0.

Proof. From (67), (68) and (69), we have

R3(n) ≤ Cn32−n−pc44(fn) + n32−n−p
p∑
`=0

9∑
j=1

〈µ, ψj,p−`〉.
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Now, we will bound above each term in the latter sum. For that purpose, we will follow
line by line the proof of Lemma 5.7 and we will intensively use (27) and (93). We will also
use the fact that for all nonnegative sequence (a`, ` ∈ N) such that

∑
`≥0 a` < ∞, the sequence

(
∑n
`=0 a`(2α

2)n−`δ2
`,n, n ∈ N) is bounded as a consequence of the first part of (28) from Assumption

3.15. (Notice that by the second part of (28) and the dominated convergence theorem, the latter
sequence converges towards 0; but we shall not need this.). Recall from Assumption 3.12 that
ρ ∈ (0, 1/2).

The term n32−n−pc44(fn). From the first inequality in Remark 3.13, we have

n32−n−pc44(fn) ≤ C n32−(1−2ρ)n−p.

The term n32−n−p
∑p−3
`=0 〈µ, |ψ1,p−`|〉. Using (72) and Remark 3.13, we get:

n32−n−p
p∑
`=0

〈µ, |ψ1,p−`|〉 ≤ Cc22n32−(1−2ρ)n.

The term n32−n−p
∑p−3
`=0 |〈µ, ψ2,p−`〉|. Distinguishing the case k = p− `− 1 and k ≤ p− `− 2

in (73) and using Remark 3.13 and (27), we get:

|〈µ, ψ2,p−`〉| ≤ C 2p−`22nρ + C (2α)2(p−`)22nρδ2
`,n.

This implies that

n32−n−p
p−3∑
`=0

〈µ, |ψ2,p−`|〉 ≤ C n32−n(1−2ρ)

p−3∑
`=0

2−` + C n32−n(1−2ρ)

p−3∑
`=0

2−` (2α2)p−`δ2
`,n

≤ C n32−n(1−2ρ).

The term n32−n−p
∑p−3
`=0 〈µ, |ψ3,p−`|〉. From (75) we have

n32−n−p
p∑
`=0

〈µ, |ψ3,p−`|〉 ≤ C n32−(1−2ρ)n + C n32−n+p

The term n32−n−p
∑p−3
`=0 〈µ, |ψ4,p−`|〉. From (76) we have

〈µ, |ψ4,p−`|〉 ≤ C 22(p−`)((2α2)p−`δ2
`,n)2 ≤ C 22(p−`)

and thus

n32−n−p
p−3∑
`=0

〈µ, |ψ4,p−`|〉 ≤ C n32−n+p.

The term n32−n−p
∑p−3
`=0 〈µ, |ψ5,p−`|〉. From (77) and distinguishing the case k > p− `− k1− 1

(and then using (ii) of Assumption 3.12) and k ≤ p − ` − 1 (and then using (21), (4) with Qf̃`,n
instead of f , (27) and (28) of Assumption 3.15), we get 〈µ, |ψ5,p−`|〉 ≤ C22(p−`) and thus

n32−n−p
p−3∑
`=0

〈µ, |ψ5,p−`|〉 ≤ Cn32−n+p.



CLT FOR KERNEL DENSITY ESTIMATOR OF BMC 37

The term n32−n−p
∑p−3
`=0 〈µ, |ψ6,p−`|〉. Very similarly, from (80), we have

n32−n−p
p−3∑
`=0

〈µ, |ψ6,p−`|〉 ≤ Cn32−n+p.

The term n32−n−p
∑p−3
`=0 |〈µ, ψ7,p−`〉|. We set gk,n = P

(
hp−`−k ⊗sym Qp−`−k−1(f̃2

`,n)
)
. Using

that 〈µ,P(1⊗sym hp−`−r〉 = 0, (82) and (6), we obtain

Γ
[7]
k,r = 2−k|〈µ,P(Qk−r−1(g̃k,n)⊗sym Qp−`−r−1(f̃`,n))〉|
≤ C2−k ‖Qk−r−1(g̃k,n)‖L2(µ) ‖Qp−`−2−r(Qf̃`,n)‖L2(µ) .(97)

For k ≥ p− `− k1 − 1, we have

Γ
[7]
k,r ≤ C 2−k ‖Qk−r−1(g̃k,n)‖L2(µ) ‖Qp−`−2−r(Qf̃`,n)‖L2(µ) ≤ C 2−(p−`)α2(p−`−r)δ2

`,n22ρn,

where we used (4), (93) and the following inequalities:

‖P(f̃`,n ⊗sym (f̃2
`,n))‖

L2(µ)
≤ C δ`,n22nρ

which is a consequence of (i) and (iii) of Assumption 3.12, (27) from Assumption 3.14 and

‖P(|f`,n| ⊗sym f2
`,n)‖

L2(µ)
≤ C ‖Q(|f`,n|3)1/3Q(|f`,n|3)2/3 ‖L2(µ) =C ‖Q(|f`,n|3)‖L2(µ) ≤ Cδ`,n22nρ,

and

‖P(Qp−`−k−1f̃`,n ⊗sym (Qp−`−k−1f̃2
`,n))‖

L2(µ)
≤ C q2

2 δ`,n for all k ≤ p− `− k − 2.

which is a consequence of (ii) of Assumption 3.12, (27) from Assumption 3.14. Next, for k ≤
p − ` − k1 − 2, using (97) for the first inequality, (4) and (93) twice (for the second and the last
inequality) and (ii) of Assumption 3.12 for the third inequality, we obtain:

Γ
[7]
k,r ≤ C 2−k ‖Qk−r−1(g̃k,n)‖L2(µ) ‖Qp−`−2−r(Qf̃`,n)‖L2(µ)

≤ C 2−kαk−r‖gk,n‖L2(µ)α
p−`−rδ`,n

≤ C 2−kαk−r+(p−`−r) δ`,n ‖Qp−`−k−1(Qf̃`,n)‖L2(µ) ‖Q(f̃2
`,n)‖∞

≤ C 2−kα2(p−`−r)δ2
`,n.

Thanks to Assumption 3.15, it follows from the foregoing that

|〈µ, ψ7,p−`〉| ≤ C23(p−`)
p−`−1∑
k=1

k−1∑
r=0

2−rΓ
[7]
k,r ≤ C22(p−`)(α2(p−`)δ2

`,n22nρ + (2α2)p−`δ2
`,n),

and thus, we obtain

n32−n−p
p−3∑
`=0

|〈µ, ψ7,p−`〉| ≤ Cn3(2−(1−2ρ)n + 2−n+p).

The term n32−n−p
∑p−3
`=0 〈µ, |ψ8,p−`|〉. From (86) we have,

Γ
[8]
k,r,j ≤ C 2−k−rα4(p−`)α−2(k+r)δ4

`,n 1{k≤p−`−k1−2}

+ C 2−k−rα2(p−`−r)δ2
`,n 1{k≥p−`−k1−1; r≤p−`−k1−2} + C 22(p−`) 1{k≥p−`−k1−1; r≥p−`−k1−1},
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where we use (21), (4) and (93) for the cases k ≤ p−`−k1−2 and {k ≥ p−`−k1−1; r ≤ p−`−k1−2},
and we used in addition (78) for the case {k ≥ p− `− k1 − 1; r ≥ p− `− k1 − 1}. From (84), the
latter inequality implies that

n32−n−p
p−3∑
`=0

〈µ, |ψ8,p−`|〉 ≤ C n32−n+p.

The term n32−n−p
∑p−3
`=0 〈µ, |ψ9,p−`|〉. From (88), (90) and (91), using (4), (93) and (78), we

obtain

Γ
[9]
k,r,j ≤ C 2−k−rα4(p−`)α−2(k+r)δ4

`,n 1{k≤p−`−k1−1} + C 2−k−r α2(p−`) δ2
`,n α

−r−j 1{k≥p−`−k1}.

Using (87), it then follows that

n32−n−p
p−3∑
`=0

〈µ, |ψ9,p−`|〉 ≤ Cn32−n+p.

From the previous bounds, we deduce that limn→∞R3(n) = 0. �

Finally, arguing as in the (end of the) proof of Theorem 3.17 (sub-critical case), we end the
proof of Theorem 3.17 in the super-critical case.

8. Appendix

In this section, we recall useful results on BMC which are recalled in [1].

Lemma 8.1. Let f, g ∈ B(S), x ∈ S and n ≥ m ≥ 0. Assuming that all the quantities below are
well defined, we have:

Ex [MGn(f)] = |Gn|Qnf(x) = 2n Qnf(x),(98)

Ex
[
MGn

(f)2
]

= 2n Qn(f2)(x) +

n−1∑
k=0

2n+k Qn−k−1
(
P
(
Qkf ⊗ Qkf

))
(x),(99)

Ex [MGn(f)MGm(g)] = 2nQm
(
gQn−mf

)
(x)(100)

+

m−1∑
k=0

2n+k Qm−k−1
(
P
(
Qkg ⊗sym Qn−m+kf

))
(x).

Lemma 8.2. Let X be a BMC with kernel P and initial distribution ν such that (iii) from Assump-
tion 3.11 (with k0 ∈ N) is in force. There exists a finite constant C, such that for all f ∈ B+(S)
all n ≥ k0, we have:

(101) |Gn|−1E[MGn(f)] ≤ C ‖f ‖L1(µ) and |Gn|−1E
[
MGn(f)2

]
≤ C

n∑
k=0

2k ‖Qkf ‖2L2(µ) .

We also give some bounds on Ex
[
MGn

(f)4
]
, see the proof of Theorem 2.1 in [3]. We will use

the notation:

g⊗2 = g ⊗ g.
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Lemma 8.3. There exists a finite constant C such that for all f ∈ B(S),n ∈ N and ν a probability
measure on S, assuming that all the quantities below are well defined, there exist functions ψj,n
for 1 ≤ j ≤ 9 such that:

Eν
[
MGn

(f)4
]

=

9∑
j=1

〈ν, ψj,n〉,

and, with hk = Qk−1(f) and (notice that either |ψj | or |〈ν, ψj〉| is bounded), writing νg = 〈ν, g〉:

|ψ1,n| ≤ C 2nQn(f4),

|νψ2,n| ≤ C 22n
n−1∑
k=0

2−k|νQkP
(
Qn−k−1(f3)⊗sym hn−k

)
|,

|ψ3,n| ≤ C22n
n−1∑
k=0

2−k QkP
(
Qn−k−1(f2)⊗2

)
,

|ψ4,n| ≤ C 24n P
(
|P(hn−1⊗2)⊗2 |

)
,

|ψ5,n| ≤ C 24n
n−1∑
k=2

k−1∑
r=0

2−2k−rQrP
(
Qk−r−1|P(hn−k⊗2)|⊗2

)
,

|ψ6,n| ≤ C 23n
n−1∑
k=1

k−1∑
r=0

2−k−rQr|P
(
Qk−r−1P

(
hn−k⊗2

)
⊗sym Qn−r−1(f2)

)
|,

|νψ7,n| ≤ C 23n
n−1∑
k=1

k−1∑
r=0

2−k−r|νQrP
(
Qk−r−1P

(
hn−k ⊗sym Qn−k−1(f2)

)
⊗sym hn−r

)
|,

|ψ8,n| ≤ C 24n
n−1∑
k=2

k−1∑
r=1

r−1∑
j=0

2−k−r−jQjP
(
|Qr−j−1P

(
hn−r⊗2

)
| ⊗sym |Qk−j−1P

(
hn−k⊗2

)
|
)
,

|ψ9,n| ≤ C 24n
n−1∑
k=2

k−1∑
r=1

r−1∑
j=0

2−k−r−jQj |P
(
Qr−j−1|P

(
hn−r ⊗sym Qk−r−1P

(
hn−k⊗2

))
⊗sym hn−j

)
|.
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