
HAL Id: hal-03261659
https://hal.science/hal-03261659v1

Submitted on 15 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient parallel edge-centric approach for relaxed graph
pattern matching

Sarra Bouhenni, Saïd Yahiaoui, Nadia Nouali-Taboudjemat, Hamamache
Kheddouci

To cite this version:
Sarra Bouhenni, Saïd Yahiaoui, Nadia Nouali-Taboudjemat, Hamamache Kheddouci. Efficient par-
allel edge-centric approach for relaxed graph pattern matching. Journal of Supercomputing, 2021,
�10.1007/s11227-021-03938-7�. �hal-03261659�

https://hal.science/hal-03261659v1
https://hal.archives-ouvertes.fr

The Journal of Supercomputing manuscript No.
(will be inserted by the editor)

Efficient Parallel Edge-Centric Approach for Relaxed Graph Pattern

Matching

Sarra Bouhenni123∗ · Säıd Yahiaoui2† ·
Nadia Nouali-Taboudjemat2‡ · Hamamache

Kheddouci3§

Received: DD Month YEAR / Accepted: DD Month YEAR

Abstract Prior algorithms on graph simulation for distributed graphs are not scalable enough as

they exhibit heavy message passing. Moreover, they are dependent on the graph partitioning quality

that can be a bottleneck due to the natural skew present in real-world data. As a result, their degree

of parallelism becomes limited. In this paper, we propose an efficient parallel edge-centric approach

for distributed graph pattern matching. We design a novel distributed data structure called ST that

allows a fine-grain parallelism, and hence guarantees linear scalability. Based on ST, we develop a

parallel graph simulation algorithm called PGSim. Furthermore, we propose PDSim, an edge-centric

algorithm that efficiently evaluates dual simulation in parallel. PDSim combines ST and PGSim in

a Split-and-Combine approach to accelerate the computation stages. We prove the effectiveness and

efficiency of these propositions through theoretical guarantees and extensive experiments on massive

graphs. The achieved results confirm that our approach outperforms existing algorithms by more than

an order of magnitude.

Keywords Graph pattern matching · Subgraph matching · Graph simulation · Dual simulation ·
Massive graph · Parallel algorithm

1 Introduction

Graph Pattern Matching (GPM) has been used in many application domains such as software pla-

giarism detection, in-database analytics and search engines [29,34]. It allows finding answers to an

input query graph in a relatively larger data graph. GPM can be answered through different models

that define the matching constraints based on the query graph. Subgraph isomorphism, which is an

NP-Complete problem [17], is the most studied model in this domain. It defines a bijective map-

ping between the query graph vertices and the data graph vertices, such mapping must preserve the

topology of the query graph. Among the most important studies on subgraph isomorphism, we find

Ullman’s algorithm [44], VF2 [5], QuickSI [41], GraphQL [20], SPath [51], Turboiso [19], Boostiso [37,

45] and CFL-Match [2]. In the context of large graphs, various works addressed subgraph isomor-

phism such as [16,35,40,6,38,1,46] that use graph exploration to find the matching results or [43,

50,18,23,24,36,25] that are join-based. However, subgraph isomorphism may be too stringent for

1Ecole nationale Supérieure d’Informatique, BP M68, Oued Smar, 16309, Algerie
∗ cs bouhenni@esi.dz
2 CERIST, Centre de Recherche sur l’Information Scientifique et Technique, Ben Aknoun, 16030, Algérie
‡syahiaoui@cerist.dz · †nnouali@cerist.dz
3Université de Lyon, CNRS, Université Lyon 1, LIRIS, UMR5205, F-69622, France
§ hamamache.kheddouci@univ-lyon1.fr

2 S. Bouhenni et al.

some applications where the subgraphs that should be considered as correct answers may vary from

the ideal model defined by the input pattern. This limitation, i.e., the rigid constraints of subgraph

isomorphism makes it impractical for the current applications of GPM in social networks. Moreover,

subgraph isomorphism may return an exponential number of answers to the same query graph. Actu-

ally, when a query graph is an automorphism (isomorphic to itself), the same subgraph is considered

several times by subgraph isomorphism. This particularity of subgraph isomorphism, if not handled

by the proposed algorithm, not only makes the problem impractical, but it also becomes hard to

analyze the returned subgraphs without an additional step.

In contrast, graph simulation [33] is a flexible model that answers GPM through the relaxation

of the matching constraints imposed by subgraph isomorphism. It requires preserving the child rela-

tionships of input the query graph. Graph simulation returns a single match graph while it can be

evaluated in quadratic time [9]. In addition to that, graph simulation is very flexible which makes it

suitable for the current applications of social networks such as finding communities [8]. Furthermore,

there are other relaxed models that extend graph simulation. For example, dual simulation [30] cap-

tures more topological structures of the query graph compared to graph simulation by imposing the

matching constraints on both child and parent vertices, while being feasible in quadratic time. There

is also strong simulation [30] that reinforces dual simulation by introducing the locality property. In

addition, there are other GPM models that relax further the matching constraints of graph simulation,

e.g. bounded simulation [9] that maps query edges to reachability paths in the data graph, surjective

simulation [42] that extends bounded simulation for multi-labeled graphs, relaxation simulation [15]

that allows child and parent constraints to be substituted with grand-children and grand-parents con-

straints. There is also taxonomy simulation [27] that allows mapping vertices having different labels

based on a taxonomy hierarchy tree of the existing labels. Finally, double simulation [47] extends

bounded simulation with the duality property. A thorough study of all the existing GPM models and

their distributed algorithms can be found in [3].

Nevertheless, even though many works have addressed the problem of GPM for large graphs, the

actual size of data graphs is still challenging. In fact, social networks are generating huge amounts

of data continuously, e.g., Facebook was the largest network with 2.4 billion monthly active users

in June 2019 [7]. These networks cannot fit on the memory of a single machine due to their large

size; hence, they need distributed storage and processing. Among the challenges we encounter in such

distributed environments, there is linear scalability, a key property for distributed graph algorithms.

Yet, prior works addressing relaxed GPM in this context are limited due to the bounded level of

parallelism that can be reached [31,14,12,39,22,28,13].

In this paper, we show that graph simulation and dual simulation can be both efficiently eval-

uated by parallel algorithms that achieve linear scalability. Actually, the different algorithms given

by [14,39,22,28] adopt the vertex-centric paradigm of Pregel [32]. In Pregel, the data graph is seen

as a distributed system where vertices are analogous to computing units that can execute their local

programs in parallel and exchange messages with their neighboring vertices. The algorithm runs in

a series of computations separated by a synchronization barrier and message exchanges. An initial

message consisting of the query graph is sent to all the data vertices that will store their matching

information locally. In each iteration the graph vertices share their matching information or removal

messages with their neighbors that update their local matches accordingly. The distributed algo-

rithm converges when no further messages are exchanged anymore. Nevertheless, the vertex-centric

paradigm is limited because it generally exhibits a heavy message passing. Additionally, the natural

skew present in real-world graphs does not allow for a higher degree of parallelism. Finally, the vertex-

centric paradigm is more suitable for graph algorithms that require data locality. Indeed, data locality

Efficient Parallel Edge-Centric Approach for Relaxed Graph Pattern Matching 3

is important for graph problems where a large neighborhood of a vertex is required to evaluate the

GPM model, e.g. subgraph isomorphism and strong simulation.

Furthermore, the algorithms proposed in [12,28,13] adopt Partial Evaluation in answering graph

simulation queries. In Partial Evaluation, each worker of the distributed system evaluates graph

simulation based only on the data stored locally, then, it communicates with a coordinator machine

that propagates the newly computed matching information among the workers. At the reception

of the matching information of other workers, a worker will update its local matching information

accordingly. If there are any updates, another round of message exchange and computations are carried

out until the algorithm convergence. Depending on the partitioning strategy adopted, some workers

may remain inactive for most of the processing time. Moreover, these works do not provide mechanisms

for parallelizing computations on the same machine, hence, limiting the degree of parallelism that

can be achieved.

These shortcomings motivated our work to propose PGSim and PDSim, two parallel edge-based

algorithms to answer GPM queries in parallel for the two models, respectively. Our main contributions

are summarized as follows.

(1) We introduce ST, a novel distributed data structure for storing the data graph edges which ensures

a high degree of parallelism. ST is composed of basic computing units called STwigs; a set of edges

having the same source or the same destination vertex. ST ensures high scalability due to the

independence between its elements that can be processed in parallel.

(2) We propose PGSim, an edge-centric algorithm for evaluating graph simulation in parallel on

distributed data graphs. To the best of our knowledge, this is the first work on graph simulation

that adopts an edge-centric programming model.

(3) Based on ST and PGSim, we propose PDSim, a fast parallel algorithm for evaluating dual simu-

lation in the same context of massive graphs.

(4) In addition to that, we prove the effectiveness of our approach by giving theoretical guarantees

on the correctness of the different algorithms proposed in this paper.

(5) Furthermore, we propose an implementation of the parallel algorithms on top of the in-memory

distributed system Apache Spark [49].

(6) Finally, we prove the efficiency of PGSim and PDSim through extensive experiments and compare

them to the state-of-the-art vertex-centric approach on different real-world and synthetic data

graphs. The obtained results verified that PGSim and PDSim can be ten times faster than their

vertex-centric counterparts.

The remainder of this paper is organized as follows. Section 2 iterates over related works while

Section 3 is dedicated for defining the problem of relaxed graph pattern matching in addition to the

preliminaries. Next, we introduce PGSim, the parallel edge-centric approach for graph simulation in

Section 4. In Section 5, we propose the parallel edge-centric algorithm for dual simulation. Section 6

gives the implementation details in addition to the results of experimental evaluation of PGSim and

PDSim, whereas Section 7 concludes the paper and gives future directions.

2 Related work

A first algorithm of graph simulation was given in [21]. Later in [9], Fan et al. proposed a quadratic-

time algorithm for the context of labeled data graphs. Incremental graph simulation was addressed

in [11]. Moreover, the problem of top-k queries based on graph simulation was addressed in [10]. How-

ever, these approaches were all centralized, hence cannot be directly employed for massive graphs.

4 S. Bouhenni et al.

Several approaches were proposed during the past decade to answer relaxed GPM on distributed

graphs. Ma et al. proposed in [31] an algorithm that ships to the same worker the connected compo-

nents of the data graph that are stored across different machines. Then, graph simulation is evaluated

in a sequential way on each connected component. Finally, the union of the obtained results for each

connected component is returned as an answer. Clearly, this approach is not scalable since we assume

that a connected component of the data graph can reside on the memory of a single machine, which

cannot always be the case. Fan et al. [12] adopted partial evaluation to find matches of graph sim-

ulation in a distributed graph. An iterative algorithm evaluates graph simulation on every machine

in parallel for the available data vertices while the boundary nodes (vertices having children residing

on a different machine) are unknown and hence kept non evaluated. In the next iteration of the dis-

tributed algorithm, each worker propagates the matching information of its boundary nodes through

a central coordinator so that other machines complete their matching using the newly available data.

In [13], another algorithm that uses partial evaluation was given based on GRAPE, a subgraph-mining

system that adopts partial evaluation as its programming model. However, this approach is not fully

distributed as it involves a coordinator machine that propagates updates made by each work to the

other ones. The drawback of these approaches using partial evaluation is that their performance

heavily depends on an efficient partitioning strategy of the data graph.

On the other hand, a vertex-centric approach, based on Pregel’s programming model, was given

in [14]. Each vertex in the data graph has its matching information saved locally as a match set. After

that, vertices communicate their matching information with their neighbors and also send removal

messages when a vertex does not satisfy graph simulation anymore. The removal messages allow

other vertices to update their match sets accordingly and potentially generate new removal messages.

The distributed algorithm converges when there are no new removals. Based on the same approach,

the authors proposed a vertex-centric algorithm for dual simulation. Moreover, in [22], the authors

adapted the same approach to the context of dynamic evolving graphs. Instead of computing the

match set of graph simulation for every data vertex on each update event received, the algorithm

updates the existing match set upon the addition, update or removal event propagated through

the data graph edges. Another vertex-centric algorithm for evaluating dual simulation on distributed

RDF graphs was given in [39]. Finally, in [28], the authors combined partial evaluation and the vertex-

centric paradigm to evaluate graph simulation for acyclic and cyclic patterns separately. However,

this work addressed only graph patterns having distinct labels, which limits the range of applications

of such proposition.

PGSim uses the distributed data structure ST instead of sequential graph traversal to evaluate

graph simulation. The fine-grain parallelism ensured by ST allows it to handle the problem of skewed

degree distribution present in real-world graphs. The vertex-centric programming algorithms generally

incur heavy message passing even for vertices residing on the same machine, which slows down the

processing of a distributed graph and results into many rounds of computation. In contrast, our

approach uses shared memory abstraction to propagate updates along the different rounds of the

algorithm. Finally, our approach for evaluating dual simulation PDSim splits the computations to

increase the degree of parallelism, resulting to an algorithm faster even than the vertex-centric graph

simulation.

Efficient Parallel Edge-Centric Approach for Relaxed Graph Pattern Matching 5

3 Background

This section introduces basic concepts related to the problem of GPM and particularly graph simu-

lation and dual simulation. Throughout this paper, we consider simple directed and labeled graphs

that are formally defined as follows.

Definition 1 (Directed labeled graph) A directed labeled graph G = (V,E, f) is a simple graph

where:

(1) V is a finite set of all the vertices in G,

(2) E is the set of edges E ⊆ V × V in which (v, v′) denotes an edge from v to v′,

(3) f is a function that maps each vertex v ∈ V to a label value f(v) in Σ, the set of all labels.

Graph simulation defines a mapping relation between two directed labeled graphs. We have a

large graph called data graph G where G = (V,E, f) and a relatively small graph called pattern

(a.k.a. query) graph Q such that Q = (Vq, Eq, fq). Without loss of generality, we assume that Q

is connected, otherwise, the answer of graph simulation is given as the union of the answers to the

different connected components of Q. The formal definition of graph simulation is given below.

Definition 2 (Graph simulation) A data graph G = (V,E, f) matches a pattern graph Q =

(Vq, Eq, fq) via graph simulation, if there exists a binary match relation R ⊆ Vq × V such that:

(1) ∀(u, v) ∈ R, fq(u) = f(v), i.e., u and v have the same label,

(2) ∀u ∈ Vq,∃v ∈ V such that:

(a) (u, v) ∈ R,

(b) ∀(u, u′) ∈ Eq,∃(v, v′) ∈ E such that (u′, v′) ∈ R.

On the other hand, dual simulation imposes matching constraints on both parents and children

of a data vertex. Its formal definition is given below.

Definition 3 (Dual simulation) A data graphG = (V,E, f) matches a pattern graphQ = (Vq, Eq, fq)

via dual simulation, if there exists a binary match relation R ⊆ Vq × V such that:

(1) ∀(u, v) ∈ R, fq(u) = f(v), i.e. u and v have the same label,

(2) ∀u ∈ Vq,∃v ∈ V such that:

(a) (u, v) ∈ R,

(b) ∀(u, u′) ∈ Eq,∃(v, v′) ∈ E such that (u′, v′) ∈ R (child relationship),

(c) ∀(u′′, u) ∈ Eq,∃(v′′, v) ∈ E such that (u′′, v′′) ∈ R (parent relationship).

The answer to the query Q in G w.r.t. graph simulation or dual simulation is called the match

graph, and it is simply the subgraph G′ = (V ′, E′, f ′) of G that maps the vertices of Q to the vertices

of G through the match relation R ⊆ Vq × V ′. Next, we define formally a subgraph and a maximum

match graph.

Definition 4 (Subgraph) A graph G′ = (V ′, E′, f ′) is a subgraph of G = (V,E, f), iff:

(1) V ′ ⊆ V ,

(2) E′ ⊆ E,

(3) For each vertex v in V ′, we have f ′(v) = f(v).

Definition 5 (Maximum match graph) Let G = (V,E, f) be a data graph, Q = (Vq, Eq, fq)

a pattern graph and R ⊆ Vq × V ′ the maximum match relation of Q in G w.r.t. graph simulation (or

dual simulation). The maximum match graph is G′ = (V ′, E′, f ′), a subgraph of G verifying:

6 S. Bouhenni et al.

(1) R maps every vertex v in G′ to a vertex u in Q, i.e., ∀v ∈ V ′,∃u ∈ Vq such that (u, v) ∈ R.

(2) ∀(v, v′) ∈ E′,∃(u, u′) ∈ Eq such (u, v) ∈ R and (u′, v′) ∈ R.

In what follows, we present the two parallel algorithms PGSim and PDSim for evaluating GPM

queries on distributed data graphs based on graph simulation and dual simulation, respectively.

4 Parallel Edge-centric Graph Simulation

A particularity of graph simulation is that it requires availability of only the matching information

from the children of a data vertex to decide whether it is a correct match or not. To illustrate this,

a query graph Q1, a data graph G1 and their match graph Gs w.r.t. graph simulation are given in

Figures 1, 2 and 3, respectively. We use query labels as identifiers only for simplicity purpose. For

example, the query vertex B is mapped to data vertex 6 in the resulting match graph. Moreover,

vertex B has a child vertex C, hence, at least one of the children of vertex 6 should be mapped to

C. Notice that B has also a parent relationship with vertex C, however, this relation is not reflected

in Gs. Such scenario is possible because we only care about the child relationships when answering

queries via graph simulation.

A

B C

Fig. 1: Pattern Q1

A

C B

B

C

C

C A

B

1

4 3

2
5

7

86

9

Fig. 2: Data graph G1

A

C B

B C A
1

4 3

2
5

7

B
6

Fig. 3: Match graph Gs

To design an efficient and scalable algorithm, we consider the fact that only children of a data

vertex are required in graph simulation, which allows us to avoid a sequential traversal of the data

graph. Exploiting this property will decouple the different parts of the data graph and the compu-

tations performed on them, hence, increasing the degree of parallelism. Moreover, the data locality

preserved by the vertex-centric programming model is more important for graph problems where a

large neighborhood of a vertex is required to evaluate the GPM model, e.g. subgraph isomorphism

and strong simulation. Therefore, this paradigm is more suitable for such problems, but is less accu-

rate for the case of graph simulation because the message passing communication adopted causes a

very low speed of computations. Moreover, the vertex-centric paradigm requires message passing even

for vertices residing on the same physical machine even though the exchanged information between

any pair of vertices is directly available if we adopt an edge view. These observations motivated our

proposition of PGSim a parallel, edge-based algorithm that adopts a shared memory abstraction

instead of message passing to evaluate graph simulation on distributed graphs.

In what follows, we introduce the different terminologies and data structures used by our approach.

Then, we present the steps of the parallel algorithm PGSim and give its formal validation.

Efficient Parallel Edge-Centric Approach for Relaxed Graph Pattern Matching 7

4.1 Terminologies and data structures

Graph simulation defines a set of matching constraints that must be respected by each data vertex in

order to be considered as a correct match for a given query vertex. We define a matching constraint

as follows.

Definition 6 (Matching constraint of a vertex) Given a query graph Q = (Vq, Eq, fq), the

matching constraints of a query vertex u ∈ Vq are given as the set of its children in Q. Let C : Vq → 2Vq

be the function that maps a query vertex u ∈ Vq to its constraints C (u) ⊆ Vq. Each edge (u, u′) ∈ Eq
defines a matching constraint u′ for u. Consequently, C maps a vertex with zero children to an empty

set of constraints.

As an example, the set of constraints of query graph Q1 are given as {C (A) = {B,C},
C (B) = {C}, C (C) = {B}}.

Now, let G = (V,E, f) be a data graph, a data vertex v ∈ V is matched to a query vertex

u ∈ Vq, if and only if, f(v) = fq(v) and v respects the matching constraints C (u) of u. We say that

constraints of u are also constraints of its candidates, such that a candidate is a data vertex having

the same label as u. Therefore, a data vertex can have multiple constraints that should be met by its

children, such that each constraint must be met by one or more of its outgoing edges. These edges

sharing the same source vertex are grouped together to form a data structure that we call STwig,

which will be defined next. Moreover, we call ST the set of all STwigs extracted from a data graph.

Definition 7 (STwig) Given a data graph, each vertex in this graph generates an STwig structure.

Every STwig is composed of the set of outgoing edges from this vertex, that we refer to as root. The

destination vertex of each edge is considered a child of this STwig.

An STwig has exactly one root but it can have zero or more children. An empty STwig is an

STwig that has a root but no children, it represents an isolated data vertex or a data vertex with no

children.

The set of STwigs related to our data graph G1 is illustrated in Figure 4. PGSim processes these

STwigs in parallel to evaluate graph simulation.

CA

C B

B

1

4 3

2

B C
3 4

BC
34

BC

B
3

25

B C
2 5

C

C

C

B

5

8
6

9

C

C

B

5
7

86 C

8

9

A

Fig. 4: The set of STwigs extracted from the data graph G1 of Figure 2. The different STwig roots
are colored in gray

Each STwig in the initial ST, which is extracted from the data graph, has its own local context.

A local context is composed of two types of match sets; a local match set and child match set.

Definition 8 (Local match set) Given the STwig t, we define a local match set M(t) as a set of

matches (u, v, b) of the root vertex such that each pair (u, v) ∈ Vq × V is mapped to a Boolean value

b indicating whether the matching is correct or not.

8 S. Bouhenni et al.

Definition 9 (Child match set) Given the STwig t, the child match set, noted Mc(t), is simply

the union of the local matches of the children of t. However, Mc does not include a match flag b,

because we only keep the correct matches.

An STwig with a non empty match set has its root mapped to at least one query vertex. Conse-

quently, an STwig that has an empty match set is not a correct match and therefore can be eliminated

from ST. Intuitively, an empty STwig can only be mapped to query vertices having an empty set of

constraints. Hence, its local match set is initialized but never updated afterward.

Definition 10 (ST) The set of all STwigs of a given data graph are stored in the distributed data

structure ST. Each STwig in ST is mapped to a local context composed of a match set M and a

child match set Mc.

ST is constructed off-line from the initial data graph and then processed in parallel. Furthermore,

the global match set for graph simulation is defined as follows.

Definition 11 (Global match set) Given a query graph Q, and ST, the distributed set of STwigs

extracted from data graph G. We compute the union of all the local match sets in ST w.r.t. C , the

set of constraints of Q. If there is at least one constraint in C that is not present in this union, the

global match set Mg is ∅. Otherwise, it is given as this union.

Since we defined the basic concepts and data structures used by ST, we are now ready to introduce

PGSim in the following section.

4.2 Parallel graph simulation via PGSim

Our approach for evaluating graph simulation in parallel consists of three points. First, a preliminary

phase builds ST off-line by simply grouping the data graph edges that share the same source vertex

together. Moreover, vertices without outgoing edges result into empty STwigs. Next, at the reception

of an input query graph Q, we extract the set of constraints C in a straightforward way, as they

are directly retrieved from the edges of Q. Finally, we compute the global match set w.r.t. graph

simulation based on ST and C .

We give Algorithm PGSim that takes as input ST and C . It is an iterative algorithm that applies

a set of transformations on the initial ST, resulting each time to a new refined data structure that

is closer to the final match graph. Each iteration of PGSim transforms a given STwig by updating

its local match set M in addition to its child match set Mc in parallel. The parallel algorithm

executes two categories of steps (iterations); the initialization step and the computation steps. After

its convergence, PGSim extracts the global match set Mg from the refined ST, also in parallel.

4.2.1 Initialization step

During the initialization (Algorithm InitializeSTwig), we evaluate for each STwig t its local match

set based on the root label and the different children labels only. Each STwig runs a local program in

parallel where it initializes the children match set Mc (Call of Procedure InitMatch in Lines 3–5) and

its local match set M (Call of Procedure InitMatch in Line 6). Initially, M is composed of matches

based only on the label constraint. Then, t verifies for each match in M (a pair (u, v)) whether the

child constraints are respected or not by assigning a true or false value (Call of Procedure GraphSim

in Line 7). The Boolean flag b attached to each pair (u, v) indicates whether this pair passes the child

Efficient Parallel Edge-Centric Approach for Relaxed Graph Pattern Matching 9

Algorithm: PGSim

1 Input: ST, C ;
2 Output: Mg;
3 I ← ∅ ;
4 foreach STwig t in ST do
5 It ← InitializeSTwig(t,C); // Initialize the local match set and child match

set

6 I ← I ∪ It;
7 ST ← Refine(ST) ; // Filter out STwigs with empty match sets

8 while I 6= ∅ do
9 Itmp ← ∅;

10 foreach STwig t in ST do
11 It ← ComputeSTwig(t, I) ; // Evaluate graph simulation locally

12 Itmp ← Itmp ∪ It;
13 I ← Itmp;
14 ST ← Refine(ST) ; // Filter out STwigs with empty match sets

15 Mg ← ExtractMg(ST,C) ; // Extract the global match set

16 return Mg;

Procedure: ExtractMg

1 Input: ST,C ;
2 Output: Mg;
3 Mg ← ∅;
4 foreach STwig t in ST do
5 Mg ←Mg ∪M(t) ; // Mg is initialized by the union of STwigs match sets

6 foreach u in C do
7 if u /∈Mg then
8 return ∅ ; // Every single query vertex must appear at least once in Mg

constraints or not. The matches that do not pass child constraints are collected in I and returned

by the parallel algorithm (Lines 6–12). For now, an STwig root does not know whether its children

satisfy the child constraint themselves or not, so here, I allows us to update the local child match

set Mc. After that, the local match set M must be recomputed based on the new Mc. After the

initialization, Algorithm PGSim reduces the size of ST by invoking Procedure Refine (Line 7) that

removes from ST all the STwigs having an empty local match set.

Procedure InitMatch takes the sets of constraints C and a vertex v and computes the match set

of v based only on the label similarity constraint. The initialization program of an STwig t invokes

this procedure for each local edge to initialize M(t) and Mc(t).

Procedure GraphSim takes both M(t) and Mc(t) in addition to the set of constraints C as input

parameters and verifies for each pair (u, v) in M(t) whether there exist children of t that are matched

to C (u). If at least one constraint in C (u) remains unmatched, (u, v) is mapped to b = false,

otherwise the match flag b is set to true.

In the example of query graph Q1 and data graph G1, PGSim starts by building the initial ST

data structure from G1 where each vertex in G1 results into an STwig. The initial ST contains the

two types of STwig described earlier, i.e. seven non empty STwig and two empty STwig. In the

initialization step, each STwig computes its local match set M and children match set Mc. Then, it

updates M based on Mc which gives the local matches shown in Figure 5. The two empty STwigs

10 S. Bouhenni et al.

Algorithm: InitializeSTwig

1 Input: t,C ;
2 Output: It ;
3 Mc ← ∅;
4 foreach v ∈ t.children do
5 Mc ←Mc∪ InitMatch(C , v) ; // Initialize the child match set

6 Mr ← InitMatch(C , t.root); // Initialize the STwig match set

7 M ← GraphSim(C , Mr, Mc) ; // Evaluate graph simulation for this STwig

8 It ← ∅;
9 foreach (u, v, b) in M do

10 if b = false then
11 M ←M \ (u, v, b) ; // Filter out invalid matches ((u,v) that satisfy only

label similarity)

12 It ← It ∪ (u, v) ; // Collect the set of removed matches in It

13 return It;

Procedure: InitMatch

1 Input: C , v;
2 Output: M ;
3 M ← ∅ ; // Initialize M with an empty set

4 foreach u ∈ C do
/* Iterate over the set of vertices in the query graph, available also in

C */

5 if fq(u) = f(v) then
6 M ←M ∪ (u, v) ; // Add (u, v) to M only if it respects the label

similarity constraint

7 return M ;

Procedure: GraphSim

1 Input: C ,M,Mc;
2 Output: M ′;
3 M ′ ← ∅ ; // Initialize the new match set

4 foreach (u, v) ∈M do
5 b← true ; // Initialize the match flag to true

6 foreach c ∈ C (u) do
7 if ¬(Mc contains c) then
8 b← false ; // Change the match flag to false if v does not satisfy

C (u) anymore

9 M ′ ←M ′ ∪ (u, v, b) ; // Add the updated matching info to M’

10 return M ′ ;

rooted at 8 and 9 are initially mapped to query vertex C during the initialization phase. However,

C has a child constraint that requires a vertex to have at least one of its children matched to query

vertex B, but both STwigs are empty (they do not have any children), hence their initial matches

become invalid (they are colored in red) and therefore will be broadcast and added to I, the global

set of invalid matches for this first iteration of the parallel algorithm.

Efficient Parallel Edge-Centric Approach for Relaxed Graph Pattern Matching 11

Procedure: Refine

1 Input: ST ;
2 Output: ST ;
3 foreach STwig t in ST do
4 if M(t) = ∅ then
5 ST ← ST \ t ; // Filter out every member of ST having an empty match set

6 return ST ;

4.2.2 Computation steps

A computation step starts if the set of invalid matches I is not empty. I is composed of the

pairs (u, v) in every local match set M that did not pass the child constraints (Lines 8–13 in Al-

gorithm InitializeSTwig). Consequently, the STwigs having a non empty match set run Algo-

rithm ComputeSTwig in parallel to update their child match sets according to I (Line 3) and reeval-

uate their local constraints for graph simulation based on the new value of Mc (Call of Procedure

GraphSim in Line 4). We also return the set of new invalid matches that should be propagated to

other STwigs in ST (Lines 5–10). If the set of invalid matches I is not empty, another computation

step (Call of Algorithm ComputeSTwig) is triggered to propagate these removals and update the local

match sets accordingly. Afterward, the new invalid matches I are reevaluated (Lines 9–13 in Algo-

rithm PGSim) and the STwigs having only invalid matches are filtered out (Call of Procedure Refine

in Line 14). If there are new invalid matches, we repeat the computations again until yielding to an

empty I. Then, Algorithm PGSim converges, and the global match set Mg is computed based on the

final match set of each remaining STwig in ST (Lines 15–16).

Algorithm: ComputeSTwig

1 Input: t, I ;
2 Output: It ;
3 Mc ←Mc \ I ; // Filter out invalid matches from Mc

4 M ← GraphSim(C , M , Mc) ; // Reevaluate graph simulation based on the new Mc

5 It ← ∅;
6 foreach (u, v, b) in M do
7 if b = false then

/* GraphSim sets match flag b to false when (u, v) is not a correct

match anymore */

8 M ←M \ (u, v, b) ; // Filter out the invalid match

9 It ← It ∪ (u, v) ; // Keep track of the invalidated matches in It

10 return It;

Back to the example of query graph Q1 and data graph G1. At the end of the first iteration, the

two STwigs rooted at 8 and 9 have both empty match sets, consequently, they are eliminated during

the refinement phase of the ST before the next iteration. Since I is not yet empty, a second iteration

of computation starts where each STwig in the refined ST updates its child match set based on the

invalid matches of I. For example, both STwigs rooted at data vertices 6 and 7 are affected by the

previous iteration. Actually, the child constraint for the STwig rooted at 6 is {C}, but since the two

children {8, 9} were filtered out, it eliminates them from its local Mc. Nevertheless, the third child 5

has a valid match, therefore, the local match set remains the same. The same thing applies for the

12 S. Bouhenni et al.

STwig rooted at vertex 7 that updates only its local Mc without changing its local match set (see

the updated ST in Figure 5). At the end of this iteration, I remains empty which announces the end

of the parallel algorithm in only two iterations. The global match set is the union of the local match

sets for the remaining STwigs in ST. Moreover, the resulting match graph composed of the remaining

STwigs in ST, is exactly the same as Gs given in Figure 3.

B

A

C

B

1

4 3

2

B C
3 4

BC
34

BC

B
3

25

B C
2

5

C

C C

B

5

8
6

9

C
9

C
8

C

C

B

57

86

A

1 →A

2 → B

3 → B

4 → C

5 → C

6 →B

7 →A

8 → C

9 → C

Invalid matches I

8 → C

9 → C

Initial ST M(t)

B

A

C

B

1

4 3

2

B C
3 4

BC
34

BC

B
3

25

B C
2

5

CB

56

C

B

57

6

A

Invalid matches I

1 →A

2 → B

3 → B

4 → C

5 → C

6 →B

7 →A

Refined ST M(t)

empty END

Fig. 5: A running example of PGSim on pattern graph Q1 and data graph G1. We illustrate the
initial ST and the different transformations applied by PGSim to get the final match graph w.r.t.
graph simulation. Values of the flag b of each match in M(t) are illustrated by two colors; blue for
true and red for false

4.3 Convergence and Correctness of PGSim

First, we prove the convergence of the proposed algorithm through the following Lemmas.

Lemma 1 The maximum number of super-steps to run PGSim is |E|.

Proof In the worst case, we have a successive elimination of matches one by one, such that only one

match is filtered out in each iteration. A removed match in a given STwig is only propagated to its

children’s STwigs and such removal information can propagate over a path from the first removed

STwig to cross all the edges of G. Therefore, the maximum number of iterations is equal to |E|. ut

Efficient Parallel Edge-Centric Approach for Relaxed Graph Pattern Matching 13

Let ∆O be the maximum out degree of G and Γ be the maximum size of a local match set. We

know that Γ ≤ lq where lq ≤ |Vq| is the highest label frequency in Q.

Lemma 2 The time complexity of Algorithm InitializeSTwig is equal to O(∆O × |Vq|).

Proof The Initialize program of a given STwig t initializes the match set of every child in t in

O(∆O × |Vq|), then it initializes the match set of its root in O(|Vq|). After that, t evaluates graph

simulation in O(|Vq| × Γ). Finally, it takes at most O(Γ) to update M and populate It. Therefore,

the time complexity of Algorithm InitializeSTwig is O(∆O × |Vq|). ut

Lemma 3 The time complexity of Algorithm ComputeSTwig is equal to O(Γ × |Vq|).

Proof The Update program of an STwig t updates Mc in at most O(Γ), then it reevaluates graph

simulation in O(Γ × |Vq|). Finally, it updates M and It in O(Γ). Hence, the time complexity of

Algorithm ComputeSTwig is O(Γ × |Vq|). ut

Theorem 1 Algorithm PGSim for evaluating graph simulation in parallel will terminate with time

complexity O(|V |/P × |Vq|2 × |E|).

Proof The data structure ST has a maximum length equal to |V |. After its construction, it contains

exactly |V | STwigs. After the first iteration it gets smaller in size because the refine procedure can

only remove elements from ST. Algorithm PGSim starts by iterating over ST, the set of STwigs

and updating each STwig in parallel. Given P , the number of processors running in parallel, it will

take O(|V |/P × |Vq| × ∆O) to finish the loop. After that, the second loop runs for at most |E|
iterations (from Lemma 1) such that in each iteration, it takes O(|V |/P) to refine ST in parallel

and O(|V |/P × |Vq| × Γ) to update the STwigs in parallel. The global match set is extracted in

O(|V |/P). Therefore, the time complexity of Algorithm PGSim in an environment with P processors

is O(|V |/P × |E| × |Vq|2). ut

Theorem 2 Algorithm PGSim computes the correct and complete match set w.r.t. graph simulation.

Proof The correctness of PGSim can be verified by the following. (1) the parallel algorithm terminates

(Theorem 1), (2) the parallel algorithm computes the correct matches w.r.t. graph simulation and

(3) the parallel algorithm returns the complete set of matches w.r.t. graph simulation.

To prove the second property, we suppose that at the end of the parallel algorithm, there exists

a match (u, v) ∈ Mg not satisfying the constraints of graph simulation for u ∈ Vq. If (u, v) ∈ Mg,

this means that at the end of PGSim, the STwig rooted at v has u in its local match set M(t).

If (u, v) does not satisfy graph simulation, then, either u and v do not have the same label or v

does not satisfy the set of constraints C (u). However, the first case is impossible because M(t) is

initialized in Procedure InitMatch with only query vertices that share the same label. Moreover, if v

does not satisfy C (u), it should have been already filtered out in the initialization program of t where

we evaluate graph simulation through Procedure GraphSim, or during the following iterations where

the matching constraints are reevaluated at every child’s update. Furthermore, the only operation

performed on the initial match set is removal, thus, M(t) contains correct matches at the end of

PGSim.

One can verify that Mg contains the complete matches w.r.t. graph simulation as follows. Actually,

we are sure that any correct match necessarily belongs to the initial match set of a given t that was

generated by Procedure InitMatch for every single data vertex v in the data graph. Next, we suppose

that PGSim filters out incorrectly a correct match (u, v) from local M(t). For any STwig t ∈ ST ,

14 S. Bouhenni et al.

M(t) is only updated inside Procedure GraphSim and the only removal of (u, v) made happens when

C (u) are not satisfied anymore. Therefore, PGSim returns the complete match set Mg for graph

simulation. ut

5 Parallel Edge-centric Dual Simulation

In this section, we introduce our Split-and-Combine approach to evaluate dual simulation. We also in-

troduce the parallel algorithm used by this approach, dubbed PDSim, and give theoretical guarantees

on its correctness. Dual simulation requires the availability of both the child and parent information

to decide on the matching of any data vertex. In addition, the existing algorithms for dual simulation

(whether centralized or vertex-centric) all process the matching information for incoming and outgo-

ing edges of a data vertex sequentially. However, in the case of high degree vertices, this strategy can

lead to a load imbalance. Therefore, to address this problem, we run the computations related to the

parent constraints and those related to the child constraints in parallel.

Compute ST1
STwigs by children

Compute ST2
STwigs by parents

Evaluate child matching and parent matching for ST1 and ST2 in parallel

ST = Combine refined ST1 and ST2

𝑀 = 𝑀1 ∩𝑀2
I = M1⊕M2

Broadcast I to all workers

Update Mc and Mp based on I
Update M based on Mc and Mp
I = removed matches from M

Broadcast I to all workers

For each
STwig in ST

For each
STwig in ST

For each
STwig in STi

Fig. 6: The split-and-combine approach for parallel dual simulation

5.1 A split-and-combine approach for parallel dual simulation

The split-and-Combine approach considers dual simulation as a set of constraints of two types: parent-

based and child-based constraints. This separation allows generating two types of STwigs, the first

type is the same as the STwig we have seen in PGSim, while the second type is based on the parents

of a data vertex v, i.e. each data vertex results into an STwig that groups the edges having v as their

destination. In the same way, the empty parent based STwigs have only a root and represent vertices

with zero parents in the data graph. This phase is referred to as the Split phase. Figure 6 illustrates

the different steps of computation followed by Algorithm PDSim for parallel dual simulation.

Algorithm PDSim takes as input the two distributed data structures ST1 and ST2, that were

constructed before the Split phase (performed only once for each data graph off-line). The first ST

contains the STwigs based on child relationship and the second one is built based on the parent

relationship.

Efficient Parallel Edge-Centric Approach for Relaxed Graph Pattern Matching 15

During the Split phase, we execute Algorithm PGSim on ST1 using C1, the child constraints of

the input query (Line 3), while a modified version of PGSim that checks the parent constraints C2

is executed on ST2 (Line 4). We note that, here PGSim returns the refined ST without computing

the global match set. At the end of this phase, the two refined data structures will have only edges

of the data graph respecting the child constraints and parent constraints separately. However, dual

simulation requires that the two types of constraints are met by these edges at the same time, hence,

we call Algorithm Combine that takes as input ST1 and ST2 to find the match set M of each STwig

w.r.t. dual simulation (Line 5).

Algorithm Combine groups the matching information of children Mc and parents Mp of a given

STwig. It also computes a next local match set M by eliminating matches that do not satisfy dual

simulation (Line 3). The match set M of a given STwig t is computed as the intersection of the match

sets M1 and M2 for t in ST1 and ST2, respectively (Lines 4–8). Indeed, a data vertex is said to be a

match of a given query vertex u w.r.t. dual simulation if and only if it satisfies the label constraint

and both child constraints C1(u) and parent constraints C2(u). In addition to that, the filtered out

matches are stored in I and returned by the parallel algorithm.

Nevertheless, the evaluation of dual simulation does not stop here. Actually, the same removal

process that we have seen in PGSim must be triggered after each update made to a local match set

M in the combined ST to propagate the removed matches across the other STwigs. Therefore, the

same routine will be executed such that the set of removed matches I is broadcast at the end of

every iteration and dual simulation is reevaluated again (based on both Mc and Mp) for each STwig

affected by this removal until I becomes empty (Lines 6–13 of Algorithm PDSim). Consequently,

Algorithm PDSim converges with the correct final match graph. The global match set Mg is then

computed in the same way as the match set of graph simulation (Lines 14–15).

Algorithm: PDSim

1 Input: ST1, ST2, C1, C2;
2 Output: Mg;
3 ST1 ← PGSim(ST1, C1) ; // Evaluate child-based constraints C1

4 ST2 ← PGSim(ST2, C2) ; // Evaluate parent-based constraints C2

5 (ST, I)← Combine(ST1, ST2,C1,C2) ; // For each STwig, combine its two match

sets

6 ST ← Refine(ST) ; // Filter out STwigs in ST having empty match sets

7 while I 6= ∅ do
8 Itmp ← ∅;
9 foreach STwig t in ST do

10 It ← ComputeSTwig(t, I) ; // Dual simulation is evaluated instead of graph

simulation

11 Itmp ← Itmp ∪ It;
12 I ← Itmp;
13 ST ← Refine(ST) ; // Filter out STwigs in ST having empty match sets

14 Mg ← ExtractMg(ST,C1 ∪ C2) ; // Get the global match set Mg w.r.t. dual

simulation

15 return Mg;

The Split-and-Combine approach increases the degree of parallelism because first, we process the

two distributed data structures ST1 and ST2 in parallel, which prunes out invalid matches as early

as possible. After that, the remaining computations are also performed in parallel on a much smaller

ST.

16 S. Bouhenni et al.

Algorithm: Combine

1 Input: ST1, ST2,C1,C2 ;
2 Output: I, ST ;
3 ST ← fullOuterJoin(ST1, ST2) ; // Combine the two STs based on the STwig root

vertex

4 I ← ∅ ; // Initialize the set of invalid matches

5 foreach t in ST do
6 M(t)←M1(t) ∩M2(t) ; // Combine the two match sets using intersection

7 I ← I ∪ (M1(t)⊕M2(t)) ; // Invalid matches are the ones appearing in only

one match set

8 return (ST, I)

To illustrate the execution steps of PDSim, we use the same data graph G1 and query graph

Q1. The two graphs Gs1 of Figure 7 and Gs2 of Figure 8 represent ST1 and ST2, respectively. Let

us take the STwig rooted at 6, it has a non-empty local match set M1 = {(B, 6)} in ST1 but that

match set M2 is empty in ST2. Intuitively, the local match set of this STwig, named M , should be

empty after calling Algorithm Combine because it does not respect the constraints of dual simulation.

Indeed, M is given as the intersection between M1 and M2. We should inform the other STwigs of the

combined ST about the removal of the match (B, 6). The set of removed matches I contains elements

that do not appear in both M1 and M2, i.e. M1 ⊕M2. Indeed, the local match set of STwig rooted

at 6 becomes empty. The remaining iterations of Algorithm PDSim eliminates the STwig rooted at

vertex 7. Next, the STwigs rooted at data vertices 5 and 2 will be filtered out one after another. The

remaining STwigs form the final match graph given in Figure 9.

A

C B

B C A
1

4 3

2
5

7

B
6

Fig. 7: Gs1 resulting from ST1

A

B C

A

C B

B

C

C

C A

B

1

4 3

2
5

7

86

9

A

C B

B C A
1

4 3

2
5

7

B
6

A

C B

B C A
1

4 3

2
5

7

A

C B

1

4 3

A

C B

B C A
1

4 3

2
5

7

B
6

Fig. 8: Gs2 resulting from ST2

A

B C

A

C B

B

C

C

C A

B

1

4 3

2
5

7

86

9

A

C B

B C A
1

4 3

2
5

7

B
6

A

C B

B C A
1

4 3

2
5

7

A

C B

1

4 3

A

C B

B C A
1

4 3

2
5

7

B
6

Fig. 9: Match graph Gd

5.2 Convergence and Correctness of PDSim

We give Theorem 3 and Theorem 4 that prove the convergence and correctness of Algorithm PDSim,

respectively.

Theorem 3 Algorithm PDSim will terminate with a time complexity O(|V |/P × |Vq|2 × |E|).

Proof PDSim takes the same time complexity to process ST1 and ST2, which results into O(|V |/P ×
|E| × |Vq|2). After that the combine method takes O(|V |/P) to combine ST1 and ST2, the remaining

steps for dual simulation take at most O(|V |/P × |E| × |Vq|2) to converge (similar to the evaluation

Efficient Parallel Edge-Centric Approach for Relaxed Graph Pattern Matching 17

of graph simulation). Moreover, the global match set is extracted in at most O(V/P). Consequently,

the time complexity of Algorithm PDSim is O(|V |/P × |E| × |Vq|2). ut

Theorem 4 Algorithm PDSim returns the correct and complete match set w.r.t. dual simulation.

Proof The correctness of PDSim is ensured by the following properties. (1) The parallel algorithm will

terminate (Theorem 3), (2) the parallel algorithm returns the correct match set of dual simulation,

(3) the algorithm returns the complete set of matches of dual simulation.

First, we suppose that at the end of the algorithm, there exists an incorrect match (u, v) in the

returned match set Mg. If (u, v) is an incorrect match, then either the two vertices have different

labels or v does not satisfy some of the constraints in C1(u) or C2(u). The first case cannot occur

because every local match set is initialized with query vertices having similar labels and Mg is formed

by the union of these local matches. Moreover, the local match set M of the STwig rooted at v

in ST is initialized by the intersection of M1 (only matches satisfying C1) and M2 (only matches

satisfying C2). Moreover, the next iterations of the parallel algorithm always remove the members

of M not satisfying dual simulation. Furthermore, the only operations performed on M are removal

operations, which ensures that invalid matches cannot be added to M during this stage, hence, the

initial supposition is not valid. Therefore, Algorithm PGSim returns the correct matches w.r.t. dual

simulation.

Next, we suppose that there exists a correct match (u, v) such that (u, v) is not part of the returned

match set Mg. A match (u, v) is considered correct if and only if fq(u) = f(u), and v satisfies the child

constraints C1(u) and parent constraints C2(u). Since we proved the correctness of Algorithm PGSim

in Theorem 2, then a correct match is necessarily part of both M1(v) and M2(v). Therefore, if such

match exists, then it has been filtered out during the combine phase or removal iterations following it

in PDSim. However, the only removals made from the local match set M(v) happen after evaluating

dual simulation based on the updated child and parent match sets. Hence, Algorithm PGSim returns

the complete matches w.r.t. dual simulation. ut

6 Experimental evaluation

In this section, we evaluate the performance of the proposed parallel edge-centric algorithms and

compare them to the vertex-centric one. First, we give details on the distributed implementation of

ST, PGSim and PDSim. Then, we present the data sets used during the different experiments and

give their characteristics. Next, we give the cluster configuration used and the environment in which

these experiments were carried out. Finally, we present the different sets of experiments and discuss

their results.

6.1 Distributed implementation of PGSim and PDSim

We implemented the distributed data structure ST on top of Apache Spark [49]. Apache Spark

is an in-memory data processing framework that offers a distributed computation model based on

Resilient Distributed Datasets (RDDs). An RDD is a distributed data structure that can be processed

in parallel by applying a transformation on each element of the RDD. The immutability of Spark

RDDs guarantees their resilience. If an RDD is lost while the distributed algorithm is running, it will

be directly recomputed based on the set of operations that generated it first, hence allowing Spark to

be fault-tolerant while avoiding costly I/O operations except for loading the initial RDD. ST inherits

18 S. Bouhenni et al.

the properties of Spark RDDs, which makes it a distributed data structure for in-memory processing

on a computing cluster. PGSim is implemented as a series of successive RDD transformations applied

to the initial ST. Moreover, we implemented the Split-and-Combine approach of PDSim on top of

Spark, using RDDs.

6.2 Experimental data sets

In addition to the synthetic graphs generated by the R-MAT model [4], we use four real-world datasets

from SNAP Library [26]. Characteristics of these graphs are given in Table 1. Unless expressly stated

otherwise, the number of distinct labels is fixed to |Σ| = 500.

Table 1: Characteristics of the data graphs used in the different experiments

Dataset (G) |V | |E|
Epinions 75,879 508,837
Amazon0601 403,394 3,387,388
WebGoogle 875,713 5,105,039
LiveJournal 4,847,571 68,993,773
Synthetic up to 3,504,383 up to 83,886,080

6.3 Experimental setup

We executed our experiments on a Spark cluster composed of 10 nodes with 32GB memory and 16

cores for each; one node plays the role of the master while the remaining nodes are considered as

workers.

To extract patterns of small size from the data graph, we implemented an algorithm that takes two

input parameters that are |Vq|; the size of the subgraph, and its density α such that |Eq| = |Vq|α. The

default value of α is set to α = 1.2 in all our experiments. This algorithm executes a BFS traversal

starting from a random vertex in the data graph, collects vertices randomly based on a fixed value

of average out degree dO computed such that α = 1.2. Then, it extracts the subgraph connecting

these vertices and adds up edges to match the input parameters. We used this algorithm to extract

50 different patterns randomly for each value of |Vq|.
Furthermore, the R-Mat model [4] is used to generate synthetic data graphs. The generator takes

as an input |V |, |E| and |Σ| such that |Σ| is the number of distinct labels. We fix |E| = 20× |V | for

all the synthetic graphs generated in these experiments.

6.4 Experimental results

In this section, we present and discuss the results of performance evaluation for PGSim and PDSim in

comparison to the state-of-the-art vertex-centric algorithm (VC-GSim) proposed in [14]. We have im-

plemented VC-GSim on top of GraphX [48], a graph processing system that offers an implementation

of Pregel [32] on top of Apache Spark.

Efficient Parallel Edge-Centric Approach for Relaxed Graph Pattern Matching 19

4 8 12 16 20
|Vq|

400

600

800

1000

1200

1400

Re
sp

on
se

 ti
m

e
(m

s)

Epinions

PGSim
PDSim
VC-GSim

(a) Varying |Vq | (Epinions)

1 2 3 4 5 6 7
d

400

600

800

1000

1200

1400

1600

Re
sp

on
se

 ti
m

e
(m

s)

Epinions

PGSim
PDSim
VC-GSim

(b) Varying d (Epinions)

200 300 400 500 600 700 800 900
| |

1000

2000

3000

4000

Re
sp

on
se

 ti
m

e
(m

s)

Epinions

PGSim
PDSim
VC-GSim

(c) Varying |Σ| (Epinions)

4 8 12 16 20
|Vq|

500

1000

1500

2000

2500

Re
sp

on
se

 ti
m

e
(m

s)

Amazon0601

PGSim
PDSim
VC-GSim

(d) Varying |Vq | (Amazon0601)

1 2 3 4 5 6 7
d

500

1000

1500

2000

2500

Re
sp

on
se

 ti
m

e
(m

s)

Amazon0601

PGSim
PDSim
VC-GSim

(e) Varying d (Amazon0601)

200 300 400 500 600 700 800 900
| |

1000

2000

3000

4000

Re
sp

on
se

 ti
m

e
(m

s)

Amazon0601

PGSim
PDSim
VC-GSim

(f) Varying |Σ| (Amazon0601)

4 8 12 16 20
|Vq|

1000

2000

3000

4000

Re
sp

on
se

 ti
m

e
(m

s)

WebGoogle

PGSim
PDSim
VC-GSim

(g) Varying |Vq | (WebGoogle)

1 2 3 4 5 6 7
d

1000

2000

3000

4000

Re
sp

on
se

 ti
m

e
(m

s)

WebGoogle

PGSim
PDSim
VC-GSim

(h) Varying d (WebGoogle)

200 300 400 500 600 700 800 900
| |

1000

2000

3000

4000

5000

6000

Re
sp

on
se

 ti
m

e
(m

s)

WebGoogle

PGSim
PDSim
VC-GSim

(i) Varying |Σ| (WebGoogle)

4 8 12 16 20
|Vq|

0

5000

10000

15000

20000

25000

Re
sp

on
se

 ti
m

e
(m

s)

LiveJournal

PGSim
PDSim
VC-GSim

(j) Varying |Vq | (LiveJournal)

1 2 3 4 5 6 7
d

0

5000

10000

15000

20000

25000

Re
sp

on
se

 ti
m

e
(m

s)

LiveJournal

PGSim
PDSim
VC-GSim

(k) Varying d (LiveJournal)

200 300 400 500 600 700 800 900
| |

0

5000

10000

15000

20000

25000

Re
sp

on
se

 ti
m

e
(m

s)

LiveJournal

PGSim
PDSim
VC-GSim

(l) Varying |Σ| (LiveJournal)

Fig. 10: Performance evaluation of the parallel algorithms PGSim and PDSim in comparison to the
vertex-centric one VC-GSim when varying the graph parameters: query graph size |Vq|, query graph
diameter d and the number of distinct labels |Σ|

0 1 2 3
|V| (x 106)

103

104

Re
sp

on
se

 ti
m

e
(m

s)

PGSim
PDSim
VC-GSim

(a) Response time (ms) w.r.t. |V |

0 1 2 3
|V| (x 106)

101

102

103

104

#
 m

at
ch

es

Graph simulation
Dual simulation

(b) Number of matches w.r.t. |V |

Fig. 11: Weak scaling of the parallel algorithms. Note: the Y axis is on log scale

20 S. Bouhenni et al.

16 32 48 64 80 96 112 128
cores

1000

1500

2000

2500

3000

3500

Re
sp

on
se

 ti
m

e
(m

s)

9

10

11

12

13

Sp
ee

du
p

PGSimtime

PDSimtime

PGSimspeedup

PDSimspeedup

(a) Epinions

16 32 48 64 80 96 112 128
cores

1000

1500

2000

2500

3000

3500

4000

Re
sp

on
se

 ti
m

e
(m

s)

9

10

11

12

13

Sp
ee

du
p

PGSimtime

PDSimtime

PGSimspeedup

PDSimspeedup

(b) Amazon0601

16 32 48 64 80 96 112 128
cores

1000

2000

3000

4000

Re
sp

on
se

 ti
m

e
(m

s)

8

9

10

11

12

13

14

Sp
ee

du
p

PGSimtime

PDSimtime

PGSimspeedup

PDSimspeedup

(c) WebGoogle

16 32 48 64 80 96 112 128
cores

2000

4000

6000

8000

10000

12000

Re
sp

on
se

 ti
m

e
(m

s)

8

10

12

14

16

Sp
ee

du
p

PGSimtime

PDSimtime

PGSimspeedup

PDSimspeedup

(d) LiveJournal

16 32 48 64 80 96 112 128
cores

2000

4000

6000

8000

10000

Re
sp

on
se

 ti
m

e
(m

s)

8

10

12

14

16

Sp
ee

du
p

PGSimtime

PDSimtime

PGSimspeedup

PDSimspeedup

(e) Synthetic graph, scale = 21

16 32 48 64 80 96 112 128
cores

2500

5000

7500

10000

12500

15000

17500

Re
sp

on
se

 ti
m

e
(m

s)

6

8

10

12

14

16

18

Sp
ee

du
p

PGSimtime

PDSimtime

PGSimspeedup

PDSimspeedup

(f) Synthetic graph, scale = 22

Fig. 12: Strong scaling of the parallel algorithms PGSim and PDSim

6.4.1 Varying the graph parameters

In this set of experiments, we evaluate the impact of three different parameters, |Vq|; the size of query

graph, d; the diameter of the query graph and |Σ|; the number of distinct labels in the data graph,

on the performance of PGSim and PDSim. The results are given in Figure 10.

First, we discuss the average response time when varying |Vq|. As we can see, the obtained results

prove the superiority of our approach. PGSim is faster than VC-GSim for the four real datasets

Epinions, Amazon0601, WebGoogle and LiveJournal. The improvement in response time achieved

becomes more significant when the size of the data graph increases. Indeed, PGSim is ten times

faster than the vertex-centric version for LiveJournal. Moreover, PGSim is sensitive to the size of

the query graph as it increases in a linear curve with respect to |Vq|. On the other hand, the parallel

algorithm PDSim for evaluating dual simulation behaves slower than VC-GSim for Epinions, which

can be explained by the fact that dual simulation requires more computations to prune out invalid

matches compared to graph simulation. However, it takes a shorter time to process queries from the

other data sets. Actually, PDSim is very scalable when varying the size of query graphs or when

varying the size of datasets, for a massive graph like LiveJournal, PDSim’s response time is closer to

that of PGSim.

Next, we evaluate the behavior of PGSim and PDSim compared to VC-GSim with respect to the

diameter of pattern graphs d, using the same data sets. For small to average graphs, we notice that

the response time is not affected by d. However, for LiveJournal, the response time increases slightly

w.r.t. this parameter, since the larger d gets, the more iterations are required to filter out all the

invalid matches. PGSim is the least sensitive to the variations in d.

Finally, the number of distinct labels of the data graph |Σ| is an important parameter that affects

generally the size of the initial candidates set. We vary |Σ| from 200 to 900 for the four real-world data

sets. Here, the same query graphs are used with |Vq| = 9. Moreover, we use the same generated Σ on

Efficient Parallel Edge-Centric Approach for Relaxed Graph Pattern Matching 21

both data graphs and query graphs for each experiment. We evaluate graph simulation with PGSim

and VC-GSim, dual simulation with PDSim and note the average response time. The response time

decreases when increasing |Σ|, this is a normally expected behavior for PGSim and PDSim as we

use a refinement right after the first iteration of the algorithm to prune out all the data vertices not

having a label that exists in the query graph. The number of invalid matches increases when the data

graph has a large set of distinct labels and inversely. On the other hand, the change in response time

for VC-GSim is slow and the algorithm takes longer time to evaluate graph simulation in the different

data sets.

6.4.2 Weak scaling experiment

In this set of experiments, we evaluate the weak scalability of PGSim and PDSim. This type of

experiments consists of fixing the number of workers/cores of the cluster and increasing the size of

the problem, which is the data graph G in our case. We generate synthetic data graphs of different

sizes by varying the scale of the R-Mat model from 13 to 22 (resulting to |V | that varies from 213 to

222). We report the average response time for running graph simulation and dual simulation over 50

instances of queries having the same size (|Vq| = 9). The results of comparing PGSim and PDSim to

VC-GSim are given in Figure 11a.

PGSim outperforms VC-GSim by one order of magnitude. We can see how the difference in

response time between the two algorithms gets larger when the size of the data graph increases.

For the first data graph having only 7.7k vertices, the two algorithms are very close with 600 ms

while PDSim evaluates dual simulation for the same data graph in one second. Nevertheless, when

increasing the size of data graphs, PGSim takes only 1.4 seconds to process the largest synthetic

graph containing 3.5M vertices and 83.9M edges, while VC-GSim takes 42.6 seconds to get the same

result.

Moreover, we can see in Figure 11b, the difference between the number of matches returned by

graph simulation and dual simulation. PDSim prunes out a big part of the matches returned by graph

simulation, which happens during the combine phase along with the remaining iterations that allow

the parallel algorithm to converge to the correct match set. Even with these additional computations

performed by PDSim, our approach for evaluating dual simulation outperforms significantly VC-

GSim when increasing |V |. Indeed, it only takes 7.5 seconds to process the largest synthetic graph.

Consequently, this set of experiments proves the scalability of our parallel algorithms.

6.4.3 Strong scaling experiment

We test the strong scalability of PGSim and PDSim by fixing the problem size (fixing the data graph)

and varying the number of cores in the cluster. We report the average response time and speedup

when evaluating graph simulation and dual simulation, respectively, on 50 instances of query graphs

having the same size (|Vq| = 9). We run this set of experiments on the four real-world data sets in

addition to synthetic graphs of different size. Figure 12 presents the obtained results.

PGSim scales very well with the number of cores. Indeed, the algorithm speedup increases linearly

when increasing the number of cores for all the data graphs. We notice that the larger the data graph

size, the higher speedups can be achieved. Indeed, the highest speedups of 16 and 18 are achieved

by PGSim and PDSim, respectively, on the synthetic graph having the largest size (|V | = 3.5M

and |E| = 83.9M). Nevertheless, for remaining data graphs, the speedup curve starts flattening after

some point due to reaching a maximum level of parallelism. For example, for the three data sets

22 S. Bouhenni et al.

Epinions (Figure 12a), Amazon0601 (Figure 12a) and WebGoogle (Figure 12a), the speedup of the

two algorithms increases very fast when adding up 16 to 32 cores. After that, the speedup increases

very slowly even when doubling the number of cores used.

The different experiments presented in this section prove the strong scalability of the distributed

data structure ST and the two parallel algorithms PGSim and PDSim.

7 Conclusions

In this paper, we proposed PGSim, an efficient parallel edge-centric approach for evaluating graph

simulation on distributed graphs. PGSim relies on the distributed data structure ST that groups

the edges of the data graph and allows reaching higher degrees of parallelism while avoiding locality

issues generally present in the vertex-centric graph algorithms. Moreover, we proposed PDSim, a Split-

and-Combine approach for evaluating dual simulation based on ST and PGSim. We have provided

theoretical guarantees on the correctness and the convergence of PGSim and PDSim. Moreover, the

experimental results proved that the two propositions outperform the vertex-centric graph simulation

by more than an order of magnitude. For future research, an interesting direction is proposing parallel

algorithms for relaxed GPM in multi-labeled graphs. Another important challenge is addressing highly

dynamic graphs; an important question would be whether or not the distributed data structure ST

will maintain the same performance when update events arrive at high frequency.

Acknowledgements This work was supported by the Franco-Algerian program PHC Tassili BiGreen n◦18 MDU

111 and by the DGRSDT grant FNRSDT N◦253. The experiments presented in this work were carried out using

the High Performance Computing Platform IBNBADIS provided by the Research Center on Scientific and Technical

Information – CERIST (Algeria).

References

1. Bhattarai, B., Liu, H., Huang, H.H.: Ceci: Compact embedding cluster index for scalable subgraph matching. In:

Proceedings of the 2019 International Conference on Management of Data, pp. 1447–1462. ACM, Amsterdam,

Netherlands (2019)

2. Bi, F., Chang, L., Lin, X., Qin, L., Zhang, W.: Efficient subgraph matching by postponing cartesian products. In:

Proceedings of the 2016 International Conference on Management of Data, pp. 1199–1214. ACM, San Francisco,

California, USA (2016)

3. Bouhenni, S., Yahiaoui, S., Nouali-Taboudjemat, N., Kheddouci, H.: A survey on distributed graph pattern match-

ing in massive graphs. ACM Computing Surveys 54(2) (2021). DOI 10.1145/3439724

4. Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-mat: A recursive model for graph mining. In: Proceedings of the 2004

SIAM International Conference on Data Mining, pp. 442–446. SIAM (2004)

5. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: An improved algorithm for matching large graphs. Proceedings

of the 3rd IAPR Workshop on Graph-Based Representations in Pattern Recognition 219(2), 149–159 (2001).

DOI 10.1.1.101.5342

6. Csun, S., Luo, Q.: Parallelizing recursive backtracking based subgraph matching on a single machine. In: 2018

IEEE 24th International Conference on Parallel and Distributed Systems (ICPADS), pp. 1–9. IEEE, Singapore,

Singapore (2018)

7. Dustin, W.S.: Social media statistics 2020: Top networks by the numbers. https://dustinstout.com/social-media-

statistics/ (2019). Accessed: 2021-03-01

8. Fan, W.: Graph pattern matching revised for social network analysis. In: Proceedings of the 15th International

Conference on Database Theory, ICDT ’12, p. 8–21. Association for Computing Machinery, New York, NY, USA

(2012). DOI 10.1145/2274576.2274578. URL https://doi.org/10.1145/2274576.2274578

9. Fan, W., Li, J., Ma, S., Tang, N., Wu, Y., Wu, Y.: Graph Pattern Matching: From Intractable to Polynomial Time.

Proceedings of the VLDB Endowment 3(1-2), 264–275 (2010). DOI 10.14778/1920841.1920878

10. Fan, W., Wang, X., Wu, Y.: Diversified top-k graph pattern matching. Proceedings of the VLDB Endowment

6(13), 1510–1521 (2013)

Efficient Parallel Edge-Centric Approach for Relaxed Graph Pattern Matching 23

11. Fan, W., Wang, X., Wu, Y.: Incremental graph pattern matching. ACM Trans. Database Syst. 38(3) (2013).

DOI 10.1145/2489791. URL https://doi.org/10.1145/2489791

12. Fan, W., Wang, X., Wu, Y., Deng, D.: Distributed graph simulation: Impossibility and possibility. Proceedings of

the VLDB Endowment 7(12), 1083–1094 (2014). DOI 10.14778/2732977.2732983

13. Fan, W., Yu, W., Xu, J., Zhou, J., Luo, X., Yin, Q., Lu, P., Cao, Y., Xu, R.: Parallelizing sequential graph

computations. ACM Transactions on Database Systems (TODS) 43(4), 1–39 (2018)

14. Fard, A., Nisar, M.U., Ramaswamy, L., Miller, J.A., Saltz, M.: A distributed vertex-centric approach for pattern

matching in massive graphs. In: 2013 IEEE International Conference on Big Data, pp. 403–411. IEEE, Santa Clara,

CA, USA (2013). DOI 10.1109/BigData.2013.6691601

15. Gao, J., Liu, P., Kang, X., Zhang, L., Wang, J.: Prs: parallel relaxation simulation for massive graphs. The

Computer Journal 59(6), 848–860 (2016)

16. Gao, J., Zhou, C., Zhou, J., Yu, J.X.: Continuous pattern detection over billion-edge graph using distributed

framework. In: 2014 IEEE 30th International Conference on Data Engineering, pp. 556–567. IEEE, Chicago, IL,

USA (2014)

17. Garey, M.R., Johnson, D.S.: Computers and intractability: a guide to np-completeness (1979)

18. Gurajada, S., Seufert, S., Miliaraki, I., Theobald, M.: Triad: a distributed shared-nothing rdf engine based on

asynchronous message passing. In: Proceedings of the 2014 ACM SIGMOD international conference on Management

of data, pp. 289–300. ACM, Utah USA (2014)

19. Han, W.S., Lee, J., Lee, J.H.: Turboiso: Towards ultrafast and robust subgraph isomorphism search in large

graph databases. In: Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data,

SIGMOD ’13, pp. 337–348. Association for Computing Machinery, New York, New York, USA (2013). DOI

10.1145/2463676.2465300. URL https://doi.org/10.1145/2463676.2465300

20. He, H., Singh, A.K.: Graphs-at-a-time: Query language and access methods for graph databases. In: Proceedings of

the 2008 ACM SIGMOD International Conference on Management of Data, SIGMOD ’08, pp. 405–418. Association

for Computing Machinery, Vancouver, Canada (2008). DOI 10.1145/1376616.1376660

21. Henzinger, M.R., Henzinger, T.A., Kopke, P.W.: Computing simulations on finite and infinite graphs. In: Proceed-

ings of IEEE 36th Annual Foundations of Computer Science, pp. 453–462. IEEE, USA (1995)

22. Kao, J.S., Chou, J.: Distributed incremental pattern matching on streaming graphs. In: Proceedings of the ACM

Workshop on High Performance Graph Processing, HPGP ’16, p. 43–50. Association for Computing Machinery,

Kyoto, Japan (2016). DOI 10.1145/2915516.2915519. URL https://doi.org/10.1145/2915516.2915519

23. Lai, L., Qin, L., Lin, X., Chang, L.: Scalable subgraph enumeration in mapreduce. Proceedings of the VLDB

Endowment 8(10), 974–985 (2015)

24. Lai, L., Qin, L., Lin, X., Zhang, Y., Chang, L., Yang, S.: Scalable distributed subgraph enumeration. Proceedings

of the VLDB Endowment 10(3), 217–228 (2016)

25. Lai, L., Qing, Z., Yang, Z., Jin, X., Lai, Z., Wang, R., Hao, K., Lin, X., Qin, L., Zhang, W., et al.: Distributed

subgraph matching on timely dataflow. Proceedings of the VLDB Endowment 12(10), 1099–1112 (2019)

26. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection (2014). URL

http://snap.stanford.edu/data

27. Li, J., Cao, Y., Ma, S.: Relaxing graph pattern matching with explanations. In: Proceedings of the 2017 ACM on

Conference on Information and Knowledge Management, pp. 1677–1686. ACM, Singapore Singapore (2017)

28. Li, J., Li, J., Wang, X.: A vertex-centric graph simulation algorithm for large graphs. In: Z. Xu, X. Gao, Q. Miao,

Y. Zhang, J. Bu (eds.) Big Data, pp. 238–254. Springer, Singapore (2018)

29. Liu, C., Chen, C., Han, J., Yu, P.S.: Gplag: Detection of software plagiarism by program dependence graph

analysis. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, KDD ’06, pp. 872–881. Association for Computing Machinery, New York, NY, USA (2006). DOI

10.1145/1150402.1150522. URL https://doi.org/10.1145/1150402.1150522

30. Ma, S., Cao, Y., Fan, W., Huai, J., Wo, T.: Capturing topology in graph pattern matching. Proceedings of the

VLDB Endowment 5(4), 310–321 (2011)

31. Ma, S., Cao, Y., Huai, J., Wo, T.: Distributed graph pattern matching. In: Proceedings of the 21st International

Conference on World Wide Web, WWW ’12, pp. 949–958. Association for Computing Machinery, Lyon, France

(2012). DOI 10.1145/2187836.2187963. URL https://doi.org/10.1145/2187836.2187963

32. Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I., Leiser, N., Czajkowski, G.: Pregel: a system for

large-scale graph processing. In: Proceedings of the 2010 ACM SIGMOD International Conference on Management

of data, pp. 135–146 (2010)

33. Milner, R.: Communication and concurrency, vol. 84. Prentice hall Englewood Cliffs (1989)

34. Ogaard, K., Roy, H., Kase, S., Nagi, R., Sambhoos, K., Sudit, M.: Discovering patterns in social networks with graph

matching algorithms. In: A.M. Greenberg, W.G. Kennedy, N.D. Bos (eds.) Social Computing, Behavioral-Cultural

Modeling and Prediction, pp. 341–349. Springer, Berlin, Heidelberg (2013)

24 S. Bouhenni et al.

35. Peng, P., Zou, L., Özsu, M.T., Chen, L., Zhao, D.: Processing sparql queries over distributed rdf graphs. The

VLDB Journal 25(2), 243–268 (2016)

36. Qiao, M., Zhang, H., Cheng, H.: Subgraph matching: on compression and computation. Proceedings of the VLDB

Endowment 11(2), 176–188 (2017)

37. Ren, X., Wang, J.: Exploiting vertex relationships in speeding up subgraph isomorphism over large graphs. Pro-

ceedings of the VLDB Endowment 8(5), 617–628 (2015)

38. Reza, T., Ripeanu, M., Tripoul, N., Sanders, G., Pearce, R.: Prunejuice: Pruning trillion-edge graphs to a precise

pattern-matching solution. In: SC18: International Conference for High Performance Computing, Networking,

Storage and Analysis, pp. 265–281. IEEE, Dallas, Texas, USA (2018). DOI 10.1109/SC.2018.00024

39. Schätzle, A., Przyjaciel-Zablocki, M., Berberich, T., Lausen, G.: S2x: Graph-parallel querying of rdf with graphx.

In: F. Wang, G. Luo, C. Weng, A. Khan, P. Mitra, C. Yu (eds.) Biomedical Data Management and Graph Online

Querying, pp. 155–168. Springer International Publishing, Cham (2016)

40. Serafini, M., De Francisci Morales, G., Siganos, G.: Qfrag: Distributed graph search via subgraph isomorphism. In:

Proceedings of the 2017 Symposium on Cloud Computing, pp. 214–228. ACM, Santa Clara, CA (2017)

41. Shang, H., Zhang, Y., Lin, X., Yu, J.X.: Taming verification hardness: an efficient algorithm for testing subgraph

isomorphism. Proceedings of the VLDB Endowment 1(1), 364–375 (2008)

42. Shemshadi, A., Sheng, Q.Z., Qin, Y.: Efficient pattern matching for graphs with multi-labeled nodes. Knowledge-

Based Systems 109, 256–265 (2016)

43. Sun, Z., Wang, H., Wang, H., Shao, B., Li, J.: Efficient subgraph matching on billion node graphs. Proceedings of

the VLDB Endowment 5(9), 788–799 (2012)

44. Ullmann, J.R.: An Algorithm for Subgraph Isomorphism. Journal of the ACM 23(1), 31–42 (1976). DOI

10.1145/321921.321925

45. Wang, J., Ren, X., Anirban, S., Wu, X.W.: Correct filtering for subgraph isomorphism search in compressed

vertex-labeled graphs. Information Sciences 482, 363–373 (2019)

46. Wang, Z., Gu, R., Hu, W., Yuan, C., Huang, Y.: Benu: Distributed subgraph enumeration with backtracking-based

framework. In: 2019 IEEE 35th International Conference on Data Engineering (ICDE), pp. 136–147. IEEE, Macao,

Macao (2019)

47. Wu, X., Theodoratos, D., Skoutas, D., Lan, M.: Leveraging double simulation to efficiently evaluate hybrid patterns

on data graphs. In: Z. Huang, W. Beek, H. Wang, R. Zhou, Y. Zhang (eds.) Web Information Systems Engineering

– WISE 2020, pp. 255–269. Springer International Publishing, Cham (2020)

48. Xin, R.S., Gonzalez, J.E., Franklin, M.J., Stoica, I.: Graphx: A resilient distributed graph system on spark. In:

First international workshop on graph data management experiences and systems, pp. 1–6. ACM, New York, USA

(2013)

49. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I., et al.: Spark: Cluster computing with working

sets. HotCloud 10(10-10), 95 (2010)

50. Zeng, K., Yang, J., Wang, H., Shao, B., Wang, Z.: A distributed graph engine for web scale rdf data. Proceedings

of the VLDB Endowment 6(4), 265–276 (2013)

51. Zhao, P., Han, J.: On graph query optimization in large networks. Proceedings of the VLDB Endowment 3(1-2),

340–351 (2010)

