
HAL Id: hal-03261251
https://hal.science/hal-03261251

Submitted on 15 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

[Re] Speedup Graph Processing by Graph Ordering
Fabrice Lécuyer, Maximilien Danisch, Lionel Tabourier

To cite this version:
Fabrice Lécuyer, Maximilien Danisch, Lionel Tabourier. [Re] Speedup Graph Processing by Graph
Ordering. The ReScience journal, 2021, 7 (1), pp.#3. �10.5281/zenodo.4836230�. �hal-03261251�

https://hal.science/hal-03261251
https://hal.archives-ouvertes.fr

R E S C I E N C E C
Replication / Algorithmics

[Re] Speedup Graph Processing by Graph Ordering

Fabrice Lécuyer1, Maximilien Danisch1, and Lionel Tabourier1, ID
1Sorbonne Université, CNRS, LIP6, F-75005 Paris, France

Edited by
Nicolas P. Rougier ID

Reviewed by
Ozan Caglayan ID

Emmanuel Hadoux ID

Received
26 March 2021

Published
28 May 2021

DOI
10.5281/zenodo.4836230

Abstract Cache systems keep data close to the processor to access it faster than main memory would. Graph
algorithms benefit from this when a cache line contains highly related nodes. Hao Wei extitet al. propose to reorder
the nodes of a graph to optimise the proximity of nodes on a cache line. Their contribution, Gorder, creates such
an ordering with a greedy procedure. In this replication, we implement ten different orderings and measure the
execution time of nine standard graph algorithms on nine real-world datasets. We monitor cache performances
to show that runtime variations are caused by cache management. We confirm that Gorder leads to the fastest
execution in most cases due to cache-miss reductions. Our results show that simpler procedures are yet almost as
efficient and much quicker to compute. This replication validates the initial results but highlights that generating a
complex ordering like Gorder is time-consuming.
A replication of [1].

1 Introduction

In graph algorithmics, various procedures use the same few atomic operations. For in‐
stance, accessing the neighbours of a given node is key to a wide range of problems
such as computing shortest paths, finding connected components, detecting communi‐
ties etc. Making this type of elementary operation fasterwould improve such algorithms
without having to modify their implementation [1]. Cache optimisation can have that
effect: if two variables are often accessed together by algorithms, they should be stored
side‐by‐side in memory so that they are copied together on a cache line. In a graph,
it means reordering the nodes so that neighbours have close‐enough indices. A cache‐
miss happens when data is not available in cache. The processor then has to fetch it in
main memory, which is up to twenty times slower, depending on the machine architec‐
ture. As this cache stall is known to represent a significant share of the computation
time [2, 3], reducing it can lead to important speedups.
This work replicates [1] by Hao Wei et al. which introduces Gorder, a new procedure
to order nodes in a graph, and compares it to other standard orderings using typical
algorithms and datasets as benchmarks. Because of the variety of graph algorithms,
it is impossible to find an ideal ordering, which makes it interesting to propose and
compare different strategies. The authors of the original paper claim an improvement
of 10 to 50% in runtime, due to lower cache‐miss rate.
We were able to replicate most of the experiments and confirm that ordering nodes ac‐
cording to Gorder makes the implementations 10 to 50% faster than without ordering.
Section 2 presents the algorithms, orderings and datasets as well as issues faced during
the replication. Our results are presented in Section 3 and are compared to the origi‐
nal results. Finally, Section 4 discusses the relevance of such an ordering compared to
simpler ordering methods that offer satisfactory performances.

2 Method

The original study [1] was motivated by the observation that cache stall can take up to
70% of the whole computation time, which is supported by the observations reported

Copyright © 2021 F. Lécuyer, M. Danisch and L. Tabourier, released under a Creative Commons Attribution 4.0 International license.
Correspondence should be addressed to Fabrice Lécuyer (fabrice.lecuyer@lip6.fr)
The authors have declared that no competing interests exist.
Code is available at https://github.com/lecfab/rescience-gorder. – SWH swh:1:dir:e318a0ad72f81e2cb2af1ca614d1c171dd3f0909.
Open peer review is available at https://github.com/ReScience/submissions/issues/52.

ReScience C 7.1 (#3) – Lécuyer, Danisch and Tabourier 2021 1

https://orcid.org/0000-0002-9160-8083
https://orcid.org/0000-0002-6972-589X
https://orcid.org/0000-0002-5992-3470
https://orcid.org/0000-0003-4303-7885
https://raw.githubusercontent.com/datourat/Gorder/master/paper.pdf
mailto:fabrice.lecuyer@lip6.fr
https://github.com/lecfab/rescience-gorder
https://archive.softwareheritage.org/swh:1:dir:e318a0ad72f81e2cb2af1ca614d1c171dd3f0909/
https://github.com/ReScience/submissions/issues/52
https://rescience.github.io/

[Re] Speedup Graph Processing by Graph Ordering

NQ BFS DFS SC
C SP PR DS

Kcor
e

Diam
0.0

0.2

0.4

0.6

0.8

1.0

Tim
e c

on
su

m
pt

ion
 ra

tio

Cache stall
CPU execute

(a) Original order

NQ BFS DFS SC
C SP PR DS

Kcor
e

Diam
0.0

0.2

0.4

0.6

0.8

1.0

Tim
e c

on
su

m
pt

ion
 ra

tio

Cache stall
CPU execute

(b) Gorder

Figure 1. CPU execution and cache stall. Original order and Gorder are compared for all algo‐
rithms on sdarc dataset. Grey bars are time spent on CPU operations, black bars represent time
spent waiting for data retrieval. Figure (a) shows the normalised runtimes with the original order,
figure (b) shows the runtimes when the network has been reordered following the Gorder proce‐
dure. While both need about the same CPU time, the latter is significantly faster due to cache
stall reduction. Compare to Figure 1 in [1].

in Figure 1. This issue has been addressed for specific algorithms such as breadth‐first
search [4]. In [1], the authors use a more general method: they reorganise the data to
draw more benefit from the cache system, regardless of the algorithm or of the exact
hardware specifications.
Gorder clusters nodes that are likely to be accessed simultaneously by any graph algo‐
rithm. More precisely, let us consider a graph G = (V,E) with n = |V | nodes and
m = |E| edges. The proximity of two nodes u and v is measured by a score S(u, v)which
increases if they are neighbours and if they share many common in‐neighbours. The to‐
tal score F is the sum of S(u, v) for all nodes u and v that have close indices. Window
size w is the parameter that defines this closeness. Gorder creates an arrangement π of
the indices to maximise F . We note πu the index of a node u in such an arrangement.
We give a more formal definition in Section 2.3.
The authors prove that finding the optimal ordering π is a NP‐hard problem and propose
a heuristic method with a theoretical approximation bound. They also present practical
optimisations to reduce its time complexity. Finally, they run extensive experiments to
compare their order to other standard orders.
Although the theoretical results of the original paper are important to explain the effi‐
ciency of Gorder, we only focus here on the algorithms and experiments. They provide
an extensive analysis by comparing the runtimes for nine typical algorithms on eight
large datasets with nine possible orderings. The current section describes them all and
presents the replication issues that they imply. It also details the data structures that we
used in this project. All the codes and instructions for this purpose can be found in our
repository1.

2.1 Algorithms
The original paper selects typical graph algorithms to test the different orderings. As
implementation details are not fully documented and as its authors were not able to
provide answers to some of our questions on this topic, we list below the details of our
implementations.

Neighbour query (NQ) — Listing the neighbours of a given node is a standard elementary
operation in graph algorithmics. As defined in [1], this operation must access the out-
neighbours of each node. To ensure that neighbours are put in cache, thus benefiting

1https://github.com/lecfab/rescience-gorder

ReScience C 7.1 (#3) – Lécuyer, Danisch and Tabourier 2021 2

https://github.com/lecfab/rescience-gorder
https://rescience.github.io/

[Re] Speedup Graph Processing by Graph Ordering

from a wise node ordering, an arbitrary operation is made over the set of neighbours.
We compute for each node u the sum of degrees of its neighbours: qu =

∑
v∈Nu

dv.

Breadth and Depth-first search (BFS, DFS) — BFS and DFS are standard graph traversal algo‐
rithms [5]. We adapted them to the data structure detailed in Section 2.2. Note that
neighbours are selected in lexicographic order.

Strongly connected components (SCC) — To cluster nodes of the graph that can be accessed
from one another, we use Tarjan’s algorithm [6], which is a based on DFS.

Shortest paths (SP) — As in the original paper, we use Bellman‐Ford algorithm [5] to com‐
pute theminimum distance from a source node to any other node. The time complexity
after simple optimisations is in O(∆m) where ∆ is the diameter of the graph and m is
the number of edges. As real‐world networks are known to have relatively small diam‐
eters (∆ ≪ n), this algorithm works on massive datasets (see section 2.2). Note that for
unweighted graphs, shortest paths can be computed in linear time and space using a
BFS, but we keep the algorithm suggested in [1] for comparison purposes.

Page rank (PR) — This is the algorithm presented in [7] to rank webpages. It gives a score
to each node according to its importance in the network structure. The original paper
hints at an approximation based on the power iteration method with 100 iterations. We
implement it with a damping factor set to α = 0.85 which is a usual configuration.

Dominating set (DS) — A dominating set is a subset of nodes such that every node of the
graph either belongs to the subset or has a neighbour in it. The implementation is not
described in the original paper so we use a greedy approximation [5]: first, we select the
nodewith themost uncovered neighbours and add it to the dominating set. Second, this
node and all its neighbours are removed from the graph because they are now covered.
The two steps are then repeated among the remaining nodes.

Core decomposition (Kcore) — This graphpealing algorithm [8] recursively removes thenode
of smallest degree until only a core of well‐connected nodes remains. We use a binary
heap structure to keep track of the degrees, leading to a quasi‐linear time complexity.

Diameter (Diam) — Efficient approximations with theoretical bounds exist [9] to compute
the aforementioned diameter ∆. In [1], the authors run 5000 times the shortest paths
algorithm SP from a random node, and output the highest distance obtained. Note that
the accuracy and efficiency of the algorithm are not key here, as the aim is to compare
the performances in terms of computation time of different orderings.

2.2 Datasets and data structure

Size — Eight real‐world datasets are used as benchmarks in the original work [1]. Their
basic features are reported in Table 1. As per usual with real‐world graphs [10], these
graphs are sparse (m ≪ n2) and have small diameter and a skewed degree distribution,
etc. As shown in Table 1, their sizes range from 1.6 million nodes and 30 million edges
to almost 100 million nodes and two billion edges. In order to facilitate further experi‐
ments, we attach the epinion dataset to the repository, a smaller network on which our
code can be tested quickly.

Sources — In the original paper, the sources are provided in the form of URLs where
datasets can be downloaded. These data are available with the links given in Table 1.

ReScience C 7.1 (#3) – Lécuyer, Danisch and Tabourier 2021 3

https://rescience.github.io/

[Re] Speedup Graph Processing by Graph Ordering

Dataset Size (Go) Nodes (106) Edges (106) Source Category
pokec 0.4 1.63 30.6 SNAP1 Social
flickr 0.4 2.30 33.1 Konect2 Social

livejournal 1.0 4.85 69.0 SNAP1 Social
wiki 6.7 13.6 437 Konect2 Web

gplus 7.3 28.9 463 Gong3 Social
pldarc 10 42.9 623 WDC4 Web
twitter 26 61.6 1470 Kaist5 Social
sdarc 34 94.9 1940 WDC4 Web

epinion
(added) 0.005 0.0759 0.509 SNAP1 Social

Table 1. General features of the datasets used in the experiments. The data can be found in the
following websites:
1Stanford Network Analysis Project: http://snap.stanford.edu/data/
2Koblenz Network Collection: http://konect.cc/networks/flickr-growth/ and http://konect.cc/networks/wikipedia_link_en/
3Gong Research Group: http://gonglab.pratt.duke.edu/google-dataset
4Web Data Commons: http://webdatacommons.org/hyperlinkgraph/2012-08/download.html
5Kaist Advanced Networking Laboratory: http://an.kaist.ac.kr/traces/WWW2010.html

Categories — The authors of [1] selected two main categories of real‐world networks: on‐
line social platforms, where a node is a user and a directed edge represents a social
interaction, and web graphs, where a node is a web page and an edge is a hyperlink.

Format — The datasets are directed graphs given as lists of edges. Most algorithms (e.g.
computing shortest paths) have different results depending on whether edges are di‐
rected or not. In order to store large graphs in main memory, an efficient data structure
is needed. Libraries exist for that purpose, but we develop our own light structure to
have better control over the implementation of the algorithms. A list of edges does not
provide quick access to the list of neighbours of a given node, which is the crucial op‐
eration for most of the above graph algorithms. The data is therefore converted into an
adjacency list, where a node points to the list of its neighbours. To store it efficiently,
we use a Compressed Sparse Row format, as described in Figure 2.

(a) Adjacency list (b) Compressed Sparse Row

Figure 2. Graph representations. An adjacency list stores a list of neighbours for each node. In
CSR, all the neighbours are stored in a shared array of size m, and each node has a pointer to its
first neighbour. This is an equivalent but more compact format which allows for faster memory
access.

2.3 Orderings
We list below the different ordering methods considered in the original study and used
as a benchmark for comparison with Gorder.

Original — Datasets are collected in a way that is not random but is rarely reported. As
shown in Section 3, the original orderings perform quite well regarding cache miss.

ReScience C 7.1 (#3) – Lécuyer, Danisch and Tabourier 2021 4

http://snap.stanford.edu/data/
http://konect.cc/networks/flickr-growth/
http://konect.cc/networks/wikipedia_link_en/
http://gonglab.pratt.duke.edu/google-dataset
http://webdatacommons.org/hyperlinkgraph/2012-08/download.html
http://an.kaist.ac.kr/traces/WWW2010.html
https://rescience.github.io/

[Re] Speedup Graph Processing by Graph Ordering

Figure 3. Tuning simulated annealing. The colour represents the energy of the best permutation π
obtained for various parameters on epinion. Number of steps S ranges from n tom logn (logarith‐
mic scale), whichwe consider to be themaximal acceptable time for the heuristic implementation.
Standard energy k ranges from 1/(mn) to mn (logarithmic scale). We observe that a) the higher
S, the lower the resulting energy, b) when k is high, the resulting energy is at a maximum: all
swaps are accepted regardless of their quality which results in a random arrangement, c) any low
value of k has the same result, in particular for k = 0 which corresponds to a local search.

Random (added) — In comparison to [1], we added a random ordering, obtained by shuf‐
fling the indices of nodes. We use it as a non‐favourable benchmark for comparison to
all other orderings.

MinLA and MinLogA — These acronyms stand for minimum linear (respectively logarithmic)
arrangement. The goal is to find an arrangement π of the nodes that minimises a given
“energy” function. The energy E is computed over the set E of edges in the following
way:

EMinLA =
∑

(u,v)∈E

|πu − πv| and EMinLogA =
∑

(u,v)∈E

log |πu − πv|

As both exact optimisations are NP‐hard, a heuristic method is necessary. The authors
of [1] use simulated annealing: random permutations are achieved to decrease the en‐
ergy E , while the temperature goes down which allows less and less modifications. Sim‐
ulated annealing is known to be hard to tune. Our implementation has two parameters:
the number of steps S and the standard energy k. The temperature T decreases linearly
so that, at step s,

T (s) = 1− s/S

At each step, two nodes are picked at random. Swapping their indices in π leads to a
variation e of the total energy E . If e is negative, the swap is registered. Otherwise, it is
registered with a probability p, inspired by statistical physics:

p(e, T) = exp
(
− e

k · T

)
In Figure 3 we test a wide range of values of S and k on epinion. While we cover a
significant fraction of the parameter space, we are not able to find a combination of S
and k that outperforms a simple local search (k = 0, p = 0), where only the favourable
swaps are accepted. Below, we set S = m and k = m/n.

RCM — The Reverse Cuthill–McKee ordering [11] is a Breadth‐First Search where nodes
of small degree are favoured. It is meant to find an arrangement π that reduces the
bandwidth of a sparse graph, given by max(u,v)∈E |πu − πv| with πu the index of node u.

ReScience C 7.1 (#3) – Lécuyer, Danisch and Tabourier 2021 5

https://rescience.github.io/

[Re] Speedup Graph Processing by Graph Ordering

Degsort — As proposed in the original paper, nodes are sorted in descending order of in‐
going degree.

Chdfs —We assume that the children-depth first search traversal mentioned in [1] is a usual
Depth‐First Search algorithm. The first node is chosen at random, then the selection of
children is made following the original order of node indices.

SlashBurn (simplified) — SlashBurn is an iterative process that separates hubs (high‐degree
nodes) from low‐degree nodes connected to hubs. It creates an ordering by iterating
over an array of size n, initially empty. Each iteration divides the array in parts A, B and
C. Part A takes only one node, selected at random among those with highest degree. All
isolated nodes go to part C. Then these nodes are removed from the graphwhich creates
new isolated nodes, and degrees are updated. Part B is filled by the next iteration until
no node remains.
The original SlashBurn algorithm [12] fills part Cwith disconnected components instead
of isolated nodes and puts r hubs in part A, where r is a parameter. As no precise infor‐
mation was given in [1], we implement the simpler version described above instead.

LDG — Linear Deterministic Greedy partitioning [13] creates n
k bins of size k and puts

nodes in the bin where most of their neighbours belong. Larger bins are penalised: a
node u with neighbours Nu is placed in a bin that achieves

argmax
binB

(
1 + |Nu ∩B|

)
×

(
1− |B|

k

)
At the end of the process, each bin contains about k nodes. In [1], the authors choose
k = 64 so that a bin can fit on a cache line. Indeed, common contemporary processors
have L1 caches of a few dozen kilobytes (32kB in our case) made of lines of 64 bytes each.

Metis (removed) —Metis is a powerful and extensive tool for graph partitioning. A C++ im‐
plementation is available2 but it is not suitable for large graphs: the original paper could
only test it on the three smallest datasets because of its excessive memory consumption.
Since this ordering does not scale, we do not use it in our experiments.

Gorder — Gorder is the orderingmethod introduced in [1], where it is precisely described.
A C++ implementation is available3. As mentioned at the beginning of Section 2, the
authors define the quality function F of an arrangement π by:

F (π) =
∑

0<πu−πv≤w

S(u, v) =
∑

0<πu−πv≤w

(
Ss(u, v) + Sn(u, v)

)
where w is the window size; Ss(u, v) is the number of times u and v coexist in sibling
relationships or their number of common in‐neighbours; Sn(u, v) is thenumber of times
they are in a neighbour relationship, which is either 0, 1 or 2 since both edges (u, v) and
(v, u)may exist.
The greedy algorithm presented in [1] creates the ordering π by recursively inserting the
node that has the highest proximity to nodes presently within the window. Storing the
proximity scores S requires a complex structure called unit heap, made of a linked list
and pointers to different positions. We took the functions provided in the original code
and adapted them to our data structure.
In [1], Figure 8 shows how parameter w is selected. The authors create versions of
Gorder for window sizes ranging from 1 to 8. For each version, they run the PR algo‐
rithm on flickr dataset. The fastest runtime is obtained with w = 5, so they use this
value for subsequent experiments. However, the 8 versions only lead to a small relative
variation of runtime (3%).

2http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
3https://github.com/datourat/Gorder

ReScience C 7.1 (#3) – Lécuyer, Danisch and Tabourier 2021 6

http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
https://github.com/datourat/Gorder
https://rescience.github.io/

[Re] Speedup Graph Processing by Graph Ordering

In Figure 4 we compare a wider range of window sizes, because w could in theory be
anything between 1 and n. We find that setting w between 64 and 2048 gives a further
3% speedup compared to w = 5.

1 4 16 64 28 210 212 214 216 218 220

Window size w for Gorder

17.0

17.5

18.0

18.5

19.0

19.5

Du
ra

tio
n

of
 P

R
on

 fl
ic

kr
 (s

ec
)

Figure 4. Tuning window size. Versions of Gorder obtained for window sizes ranging from w = 1
to w = 220 ≃ 106 are tested in PageRank over flickr (with n ≃ 2 · 106 nodes). Median and 90%
confidence interval are shown for 100 repetitions. The plateau from w = 64 to w = 211 = 2048
gives better results than w = 5. This figure can be compared to Figure 8 in [1]; note that the
absolute runtimes are different because of hardware differences.

The choice of a small w is yet relevant because of two other factors: first, the compu‐
tation of Gorder is faster when the window is narrow, because a candidate node has to
compute its proximity score S with all the nodes of the window. Second, the authors of
the original paper show that their heuristic is a 1

2w ‐approximation of the optimal score:
reducing w makes this bound tighter.
Considering all these remarks and for the purpose of replication, we also use w = 5 in
the following experiments.

3 Results

3.1 Implementation hardware
To deal with bigger datasets and ensure stability, we run the experiments on an isolated
cluster (SGI UV2000 Intel Xeon E5‐4650L @2.6 GHz, 128GB RAM). Each processor has
three levels of cache of respective size 32kB, 256kB and 20MB.
The hardware used in [1] has similar cache and RAM storage but higher clock frequency,
which can explain the differences in runtime (in addition to programming techniques
and optimisation). Note however that these differences should not modify the relative
performance of different orderings.

3.2 Ordering time
Computing an ordering on a large network can be a long process, and some of the or‐
dering methods have limited scalability. As mentioned above, Metis has been removed
from the experiments for this reason. Table 2 reports the duration of the ordering pro‐
cesses. For datasets under a hundredmillion edges, they can all be computed in a couple
of minutes at most, with DegSort and ChDFS orderings requiring less than a second.
When the number of edges rises however, the computation takes hours for MinLA, Min‐
LogA, and Gorder. In the case of MinLA and MinLogA, the number of steps is chosen
arbitrarily as described in Section 2.3. The process could thus be interrupted earlier, at
the cost of a less efficient resulting ordering. As for Gorder, we can see that it does not
scale linearly: the edges processed per second decrease from 380k for pokec to 60k for

ReScience C 7.1 (#3) – Lécuyer, Danisch and Tabourier 2021 7

https://rescience.github.io/

[Re] Speedup Graph Processing by Graph Ordering

sdarc, which requires an almost 9‐hour‐long computation. Using a smaller window size
accelerates the process but slightly worsens the resulting ordering, as seen in Figure 4.

pokec flickr livejournal wiki gplus pldarc twitter sdarc
MinLA 28 27 92 441 539 579 2956 4884

MinLogA 89 64 217 2169 1662 2258 10245 17168
RCM 3 5 10 60 49 63 158 406

DegSort 0.8 0.4 1 5 9 14 30 85
ChDFS 1 0.8 1 3 8 10 54 76

SlashBurn 3 9 16 37 90 189 633 1066
LDG 6 7 13 68 101 144 673 798

Gorder w=5 79 110 118 988 3324 8783 25475 32488
Edges m 31M 33M 69M 437M 463M 623M 1.47G 1.94G

Table 2. Graph ordering time. We indicate the time to compute each ordering in seconds (in bold
font when above 30 minutes). We also indicate the number of edges for each dataset to help
evaluating the scalability of a method. Comparing to Table 9 in [1] is possible for RCM, DegSort,
ChDFS and Gorder because the implementations are alike: it shows that our hardware is 2 to 5
times slower than in [1]. For the other orderings, the implementations are likely too different to
be compared.

3.3 Running time
The main purpose of [1] is to measure if the node orderings listed above allow for faster
execution of standard graph algorithms. We compare in Figure 5 the performances of
all the orderings to Gorder. The results are reported for each dataset and algorithm
in the same way as Figure 9 of the original paper. We also propose in supplementary
figure S1 another visualisation of the same results but grouped by ordering instead of
dataset, which emphasises the overall performance of an ordering method.
A first few observations can be made from the raw results of the experiments. As in [1],
we observe that Gorder almost always leads to the fastest execution times. The speed‐up
factor reaches up to 2.5 compared to default for Diameter on sdarc and 3.7 compared to
random for PageRank on wiki, but for the sake of clarity we limit the y‐axis of Figure 5
to a factor 2.
To help making sense of the results, we propose an aggregated visualisation in Figure 6,
where each ordering is ranked according to its performance in comparison to the other
orderings through the 81 series of experiments reported in Figure 5. It shows in particu‐
lar that Gorder is the best ordering method in half of the experiments, and second‐best
in most other cases.
Below, we comment on the performances of the different ordering methods under ex‐
amination.

Original ordering — The experiments show that the default ordering performs better than
more elaborate methods such as MinLA or MinLogA, which have a high computation
overhead as shown in Table 2. It was also observed in [1]. This indicates that the way in
which datasets are constructed tends to give close indices to nodes that are in the same
neighbourhood. In a web graph for instance, if webpages are listed alphabetically by
URL, it is likely that two consecutive nodes have a hyperlink between them since they
belong to the same website.

Poorly performing orderings — The random ordering is always the worst performer except
for 6 experiments where it is second‐worst. It is not surprising as any other ordering
tends to bring neighbouring nodes together, which should improve the algorithm run‐
time. Note however that LDG performs only slightly better than random, and that it is
almost always the slowest in [1] too. In a quarter of the experiments, it is more than
twice as slow as Gorder. These poor results lead to think that either its parameter (the
size of bins k = 64) is not optimal, or that its quality function is not highly correlated to

ReScience C 7.1 (#3) – Lécuyer, Danisch and Tabourier 2021 8

https://rescience.github.io/

[Re] Speedup Graph Processing by Graph Ordering

0.8

1.0

1.2

1.4

1.6

1.8

2.0

4ms 394ms 405ms 1s 3s 10s 13s 26s 33s

NQ

Ordering
Original
Random
MinLA

MinLogA
RCM
InDegSort

ChDFS
SlashBurn
LDG

0.8

1.0

1.2

1.4

1.6

1.8

2.0

35ms 3s 2s 8s 12s 59s 57s 1m 2m

BFS

41ms 3s 2s 9s 16s 73s 88s 2m 3m

DFS

0.8

1.0

1.2

1.4

1.6

1.8

2.0

86ms 7s 6s 20s 36s 3m 3m 7m 8m

SCC

26ms 3s 2s 9s 44s 77s 86s 3m 3m

SP

0.8

1.0

1.2

1.4

1.6

1.8

2.0

145ms 20s 17s 52s 2m 7m 10m 26m 23m

PR

150ms 14s 12s 40s 67s 4m 5m 14m 13m

DS

ep
inio

n
po

kec flic
kr

live
jou

rna
l

wiki
gp

lus
pld

arc
tw

itte
r

sda
rc

0.8

1.0

1.2

1.4

1.6

1.8

2.0

175ms 19s 13s 51s 2m 8m 11m 22m 28m

Kcore

ep
inio

n
po

kec flic
kr

live
jou

rna
l

wiki
gp

lus
pld

arc
tw

itte
r

sda
rc

275ms 38s 27s 1m 7m 14m 15m 34m 32m

Diam

Figure 5. Speedup of Gorder. For each algorithm and each dataset, we display the absolute runtime
for Gorder. Bars represent the relative time of all other orderings compared to this reference.
For readability, the y‐axis is cut above factor 2, but values go as high as 3.7. This figure can be
compared to Figure 9 in [1]. Another visualisation is show in supplementary figure S1.

ReScience C 7.1 (#3) – Lécuyer, Danisch and Tabourier 2021 9

https://rescience.github.io/

[Re] Speedup Graph Processing by Graph Ordering

cache efficiency. MinLA andMinLogA are always faster than LDG but, except for twitter
dataset, they are slower than the original ordering. As reported in Figure 3, we could
not find any parameters with better results than local search, which is not ideal when
the problem has local minima.

Degree-based orderings — Both InDegSort and SlashBurn use the degree of nodes as their
main criterion. The experiments show that they outperform the default orderings, es‐
pecially for larger datasets. For some algorithms such as BFS or NQ, they are less than
20% slower than Gorder. This indicates that cache misses are reduced when nodes of
similar degree are copied together on a cache line. The original paper found similar re‐
sults, though their implementation of SlashBurn did not perform as well; the different
version that we use here (see Section 2.3) may be responsible for this discrepancy.

Orderings outperforming Gorder on specific algorithms —We also notice that some orderings
performparticularlywell on specific algorithms, evenoutperformingGorder. TheChDFS
ordering is the most efficient for DFS algorithm on all datasets. This is due to the close
relation between these two processes: the algorithm explores the graph in the exact
same way as the ordering is created. Likewise, RCM is a variation of a BFS that takes
node degrees into account and it is the most efficient ordering for BFS algorithm.
Both also outperform Gorder for algorithms that are not as visibly related: ChDFS is
up to 10% more efficient for SCC on smaller datasets, and RCM is the most efficient for
Diameter and SP. More generally, Figure 6 shows that these two orders are among the
three fastest ones in 75% of the experiments. The original paper has different results on
that matter: RCM and ChDFS are the best alternatives as well, but they are always 10 to
20% slower than Gorder.

3.4 Comparison to the original paper
Our purpose here is to detect if there are significant discrepancies in performance be‐
tween the original paper and our replication study.
Figure 6 presents an aggregate view of the results grouped by ordering method. For
each series of experiments (i.e. a given algorithm applied to a given dataset), we rank
ordering methods from best to worst performance. The figures report how many times
each ordering has been ranked in each position. For instance Gorder is ranked first in
40 of our 81 replication series.

Results for Gorder — In both the original study and our replication, Gorder ranks first over‐
all. This shows that this ordering is the best choice overall. However, our study shows
that Gorder is outperformed by different orderings in half of the experiments, while it
is only outranked once in the original paper. Figure 6b thus leads us to think of Gorder
as the perfect choice whereas Figure 6a establishes RCM and ChDFS as relevant chal‐
lengers, with 24 and 16 first places respectively. This difference between the two papers
is probably due to implementations: in our replication, ChDFS uses exactly the DFS al‐
gorithm. In particular, the nodes are visited in the same order, which leads to a quick
execution of DFS. The original paper likely prevents this mechanism, for instance by
shuffling the nodes at each step of the search.

Ranking of other orders — The three best orderings are evidently the same in both studies,
but there are some nuances for the other ones. First, this visualisation does not always
allow for exact ranking: in Figure 6b, InDegSort has more second and third places than
SlashBurn but fewer fourth and fifth places. There is no obvious way of deciding which
is better, while Figure 6a clearly indicates InDegSort. The same issue happens between
Original and MinLogA: we can say that their rank in [1] is equal.
The last nuance comes for the slowest orderings: in our study, LDG is only better than
Random while MinLA competes with MinLogA and Original. In [1] on the other hand,
LDG is better than MinLA overall. Still, the limit at factor 1.5 makes the ranking unreli‐
able for slowest orderings which can explain this difference.

ReScience C 7.1 (#3) – Lécuyer, Danisch and Tabourier 2021 10

https://rescience.github.io/

[Re] Speedup Graph Processing by Graph Ordering

Gord
er

RCM
ChD

FS

InD
eg

So
rt

Sla
shB

urn

Orig
ina

l

MinL
og

A
MinL

A
LD

G

Ran
do

m

0
10

20
30

40
50

60
70

80

 0

10

20

30

40

50

60

70

80

(a) Rankings in our 81 experiments (9 algorithms
times 9 datasets). Random ordering was added and
Metis was ignored.

Gord
er

RCM
ChD

FS

InD
eg

So
rt

Sla
shB

urn

Orig
ina

l

MinL
og

A
MinL

A
LD

G
 0

10

20

30

40

50

60

70

(b) Rankings in [1] (72 experiments as epinion is omit‐
ted). Rankings are inferred from Figure 9 of [1]: val‐
ues above the factor 1.5 limit are considered equal.

Figure 6. Rankings of ordering methods. For each series of experiments, we rank the runtime
performance of the orderings. This figure shows howmany times an ordering ranks best (thickest,
lightest bar), second‐best, …, to worst (thinnest, darkest bar).

In the end, both studies rank the orderings in a very similar way.

Limits of visualisation — The aggregate view of Figure 6 induces several approximations.
First of all, there are 72 experiments in the original study and 81 experiments in ours,
which adds epinion dataset. This extra dataset is much smaller than the others and all
its results in Figure 5 range in a 40% factor, to be compared with more than 200% for
the biggest datasets. Yet, the ranking of ordering methods on epinion is consistent with
other datasets.
The original study does not test random orderings. This does not disturb the results
as this method ranks last in most experiments. Similarly, our study omits Metis so we
ignore it in Figure 6b as well. Moreover, the original paper hides precise information
when a runtime exceeds 1.5 times the runtime of Gorder. We consider that all orderings
above this bound are equal.
The main issue is that this visualisation only shows the rank and hides the extent of
runtime variations. This information is only visible in Figure 5, where a rift separates
two categories: faster orders with Gorder, RCM, ChDFS, InDegSort and SlashBurn, from
slower orders with the other ones. However, Figure 6 is useful to grade ordering meth‐
ods. If original ordering is taken as a limit between faster and slower orders, we find
the same gap again.

ReScience C 7.1 (#3) – Lécuyer, Danisch and Tabourier 2021 11

https://rescience.github.io/

[Re] Speedup Graph Processing by Graph Ordering

Order L1‐ref (109) L1‐mr L3‐ref (109) L3‐r Cache‐mr
Original 29 15.9 % 2.8 9.8 % 2.5 %
Random 30 20.2 % 4.1 13.6 % 3.6 %
MinLA 29 16.2 % 3.3 11.4 % 2.5 %

MinLogA 28 15.9 % 3.1 10.7 % 2.5 %
RCM 30 11.5 % 1.8 5.9 % 1.6 %

InDegSort 28 14.7 % 2.5 9.1 % 2.2 %
ChDFS 29 12.8 % 2.1 7.2 % 1.8 %

SlashBurn 28 14.8 % 2.6 9.3 % 2.2 %
LDG 30 19.2 % 3.7 12.4 % 3.2 %

Gorder 28 10.3 % 1.4 5.0 % 1.7 %

(a) On flickr dataset.
Order L1‐ref (109) L1‐mr L3‐ref (109) L3‐r Cache‐mr

Original 1885 19.0 % 303 16.0 % 6.8 %
Random 1886 23.4 % 397 21.0 % 9.0 %
MinLA 1893 21.2 % 341 18.0 % 7.1 %

MinLogA 1885 20.7 % 330 17.5 % 6.9 %
RCM 1885 11.0 % 139 7.4 % 3.7 %

InDegSort 1779 15.0 % 198 11.1 % 6.0 %
ChDFS 1863 11.8 % 153 8.2 % 4.3 %

SlashBurn 1784 15.3 % 203 11.4 % 6.0 %
LDG 1886 22.9 % 387 20.5 % 8.8 %

Gorder 1816 9.3% 104 5.7 % 3.1 %

(b) On sdarc dataset.

Table 3. Cache statistics measured for PageRank algorithm. L1‐ref (references): number of times
a piece of data was required by the processor and searched in level 1 of cache. L1‐mr (miss‐rate):
proportion of data that was not found in L1. L3‐ref: number of references to the third (lowest)
level of cache after data was not found in levels 1 and 2. L3‐r (ratio): proportion of data that was
not found in L1 nor L2, then searched in L3. Cache‐mr: proportion of data that was not found in
cache (L1, L2 or L3) and had to be retrieved in main memory. Compare to Tables 3 and 4 in [1].

3.5 Cache miss
A cache miss is a state of an execution when the data requested by the processor is not
found in the cache memory. The program has to fetch the data in further cache levels
or in main memory, which causes delays. Gorder capitalises on the intuition that if we
cluster nodes that are frequently accessed together, higher levels of cachewill holdmore
relevant data and thus make algorithms run faster.
To prove that Gorder speedup is due to cache optimisation, we compute the proportion
of the total computation time spent in data retrieval. We use Unix perftools with the
wrapper ocperf. It provides various hardware metrics such as the number of CPU cycles,
branch predictions, cache misses…4 Depending on the machine architecture, different
metrics are available.
Table 3, just like the Tables 3 and 4 of the original paper, shows the cache‐miss rates
at different levels. The first column is the total number of L1‐references which is the
number of times a piece of data was required by the processor. A proportion of this
data is not found (second column) and requested in intermediate levels of cache, until
reaching L3 (third and fourth columns). The remaining data (last column) has to be
retrieved in main memory. Note that each further level of cache roughly implies an
additional factor 4 latency.
We observe that first‐level cache references are similar for all orderings: the algorithms

4See https://perf.wiki.kernel.org. We select the following counters: the total time task-clock, cpu-cycles, L1-dcache-
loads and L1-load-misses to measure the efficiency of the first layer of data cache (we are not interested in
instruction cache here), LLC-loads and LLC-load-misses to measure the efficiency of the last cache layer, and
metrics specifically designed to measure the impact of cachemisses such as cycles-l1d-pending or cycles-l3-miss
in the cycle‐activity category.

ReScience C 7.1 (#3) – Lécuyer, Danisch and Tabourier 2021 12

https://perf.wiki.kernel.org
https://rescience.github.io/

[Re] Speedup Graph Processing by Graph Ordering

run in the exact same way so they need to access the same amount of data, regardless
of the arrangement of nodes. However, the miss‐rate in L1 reveals important variations:
withGorder, only 10%of the data is not directly available in L1, while it reaches 20%with
Random or LDG orders. The percentage of data requested in L3 is even more scattered,
from 5% with Gorder to 20% with Random or LDG on sdarc. Finally, all the orderings
have a low cache‐miss rate (between 1.6 and 3.6%) on flickr and RCM has the smallest.
The gap is more striking on sdarc where Random and LDG have 9% of cache‐miss, three
times as much as Gorder. This ratio is the proportion of data that had to be retrieved in
main memory (RAM), which is about 60 times slower than the L1 cache5.
In general, the ranking for cache‐miss rates matches the ranking for runtime shown in
Figure 6a. Gorder has the best results and RCM and ChDFS are close behind. MinLA,
MinLogA and Original orders have high cache‐miss rates for all levels. This shows that
the speedup is indeed due to cache‐miss reduction. When compared to Original order,
Gorder reduces cache‐miss rates to speed up the algorithms. Figure 1 shows that the
total runtime is reduced by 15 to 50% on sdarc, but the CPU execution time is almost
identical: it is the factor 3 reduction on cache stall that makes the algorithm faster.

4 Discussion

Our experiments replicate the ones proposed in [1] but some aspects are not discussed
in sufficient detail in the original paper to allow for immediate replication. For instance,
the algorithmsNQandDS only have a succinct description, whichmay explainwhy their
performances reported in our Figure 1 do not align perfectly with Figure 1 of [1]. Simi‐
larly, we were not able to tune the simulated annealing procedure correctly, which ques‐
tions the relevance of our experiments with MinLA and MinLogA. Nonetheless, most of
these technical issues have been solved or circumvented thanks to the answers of Hao
Wei to our questions.
Above all, this study replicates the main observation of the original paper: Gorder re‐
duces cache latency significantly and is the best performer among all the orderingmeth‐
ods under study, as shown in Figure 6. Its consistent efficiency on all algorithms and
datasets suggests that it could speed up other graph algorithms as well.
The only important difference with the original paper is that RCM and ChDFS follow
closely behindGorder and even outperform it in half of the experiments. They are based
on straightforward graph searches, which are simple to program and very quick to exe‐
cute, as reported in Table 2. On the other hand, computing Gorder requires a complex
procedure and a lot of time. It has been pointed out in [14] that this high overhead time
can only be amortised if algorithms are run thousands of times. In the case where net‐
works evolve and require constant recomputation of the node ordering, Gorder needs
to be adapted to integrate the modifications without running the whole process again.
A parallel version of Gorder could reduce this problem.
Beyond algorithm speed‐up, the contribution of HaoWei et al. is an efficient framework
that could be applied for other purposes. For example, graph compression also benefits
from orderings that cluster nodes with high proximity [15]. Gorder could be an input for
such existing methods. It would also be interesting to investigate how different types of
real‐world datasets [16] behave when a new ordering is applied.

5 Conclusion

The replication of paper [1] shows that Gorder is an efficient cache optimisation for
various standard algorithms. We confirm its superiority for networks ranging from 30
million to 2 billion edges, and the hardware measurement tools prove that this is due
to reduced cache stall. However, orders such as DFS are among the best performers,
and they are much simpler to design. Indeed, the computation of Gorder does not scale

5At 4GHz, a cycle is 1c = 1/(4 · 109)s = 0.25ns, so latency is 4c = 1ns for L1 and 42c+ 51ns ≃ 62ns for
RAM. Values are taken from https://www.7-cpu.com/cpu/Skylake.html.

ReScience C 7.1 (#3) – Lécuyer, Danisch and Tabourier 2021 13

https://www.7-cpu.com/cpu/Skylake.html
https://rescience.github.io/

[Re] Speedup Graph Processing by Graph Ordering

linearly, which makes it very time‐consuming for bigger graphs. It is then a matter of
balance between this long overhead time and the substantial speedup for subsequent
graph algorithms.

Acknowledgements
Wewarmly thank HaoWei for replying to our questions about the original paper, which
settled several technical hesitations relative to the implementation.
This work is funded by the ANR (French National Agency of Research) partly by the
LiMass JCJC project (under grant ANR‐19‐CE23‐0010) and partly by the ANR FiT LabCom.

References

1. H. Wei, J. X. Yu, C. Lu, and X. Lin. “Speedup Graph Processing by Graph Ordering.” In: SIGMOD. 2016. DOI:
10.1145/2882903.2915220.

2. A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood. “DBMSs on a modern processor: where does time go?” In:
VLDB. 1999.

3. J. Cieslewicz and K. Ross. “Database Optimizations for Modern Hardware.” In: Proceedings of the IEEE (2008).
4. M. Then, M. Kaufmann, F. Chirigati, T.-A. Hoang-Vu, K. Pham, A. Kemper, T. Neumann, and H. T. Vo. “The

More the Merrier: Efficient Multi-Source Graph Traversal.” In: Proceedings of the VLDB Endowment (2014). DOI:
10.14778/2735496.2735507.

5. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms. MIT press, 2009.
6. R. Tarjan. “Depth-First Search and Linear Graph Algorithms.” In: SICOMP (1972). DOI: 10.1137/0201010.
7. L. Page, S. Brin, R. Motwani, and T. Winograd. “The PageRank citation ranking: Bringing order to the web.” In:

Stanford InfoLab (1999).
8. V. Batagelj and M. Zaversnik. “An O(m) algorithm for cores decomposition of networks.” In: arXiv (2003).
9. D. G. Corneil, F. F. Dragan, and E. Köhler. “On the power of BFS to determine a graph’s diameter.” In: Networks

(2003). DOI: https://doi.org/10.1002/net.10098.
10. M. Latapy and C. Magnien. “Measuring Fundamental Properties of Real-World Complex Networks.” In: arXiv

(2006).
11. E. Cuthill and J. McKee. “Reducing the Bandwidth of Sparse Symmetric Matrices.” In: ACM. 1969.
12. Y. Lim, U. Kang, and C. Faloutsos. “SlashBurn: Graph Compression andMining beyond Caveman Communities.”

In: TKDE (2014). DOI: 10.1109/TKDE.2014.2320716.
13. I. Stanton and G. Kliot. “Streaming graph partitioning for large distributed graphs.” In: ACM SIGKDD. 2012.
14. V. Balaji and B. Lucia. “When is Graph Reordering an Optimization?” In: IEEE IISWC. 2018.
15. P. Boldi and S. Vigna. “The webgraph framework I: compression techniques.” In: WWW. 2004.
16. R. Milo, S. Itzkovitz, N. Kashtan, R. Levitt, S. Shen-Orr, I. Ayzenshtat, M. Sheffer, and U. Alon. “Superfamilies of

Evolved and Designed Networks.” In: Science (2004). DOI: 10.1126/science.1089167.

ReScience C 7.1 (#3) – Lécuyer, Danisch and Tabourier 2021 14

http://bit.ly/LiMass
http://fit.complexnetworks.fr
https://oadoi.org/10.1145/2882903.2915220
https://oadoi.org/10.14778/2735496.2735507
https://oadoi.org/10.1137/0201010
https://oadoi.org/https://doi.org/10.1002/net.10098
https://oadoi.org/10.1109/TKDE.2014.2320716
https://oadoi.org/10.1126/science.1089167
https://rescience.github.io/

[Re] Speedup Graph Processing by Graph Ordering

Supplementary material

0.8

1.0

1.2

1.4

1.6

1.8

2.0
NQ

Dataset
epinion
pokec
flickr

livejournal
wiki
gplus

pldarc
twitter
sdarc

0.8

1.0

1.2

1.4

1.6

1.8

2.0
BFS DFS

0.8

1.0

1.2

1.4

1.6

1.8

2.0
SCC SP

0.8

1.0

1.2

1.4

1.6

1.8

2.0
PR DS

Orig
ina

l

Ran
do

m
MinL

A

MinL
og

A
RCM

InD
eg

So
rt

ChD
FS

Sla
shB

urn LD
G

0.8

1.0

1.2

1.4

1.6

1.8

2.0
Kcore

Orig
ina

l

Ran
do

m
MinL

A

MinL
og

A
RCM

InD
eg

So
rt

ChD
FS

Sla
shB

urn LD
G

Diam

Figure S1. Speedup of Gorder grouped by ordering. For each algorithm and each ordering, bars
represent the relative duration on each dataset compared to Gorder, taken as a reference. For
readability, the y‐axis is cut above factor 2. This figure displays the same information as Figure 5
but groups bars by ordering instead of dataset.

ReScience C 7.1 (#3) – Lécuyer, Danisch and Tabourier 2021 15

https://rescience.github.io/

	Introduction
	Method
	Algorithms
	Neighbour query (NQ)
	Breadth and Depth-first search (BFS, DFS)
	Strongly connected components (SCC)
	Shortest paths (SP)
	Page rank (PR)
	Dominating set (DS)
	Core decomposition (Kcore)
	Diameter (Diam)

	Datasets and data structure
	Size
	Sources
	Categories
	Format

	Orderings
	Original
	Random (added)
	MinLA and MinLogA
	RCM
	Degsort
	Chdfs
	SlashBurn (simplified)
	LDG
	Metis (removed)
	Gorder

	Results
	Implementation hardware
	Ordering time
	Running time
	Original ordering
	Poorly performing orderings
	Degree-based orderings
	Orderings outperforming Gorder on specific algorithms

	Comparison to the original paper
	Results for Gorder
	Ranking of other orders
	Limits of visualisation

	Cache miss

	Discussion
	Conclusion

