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Abstract: Presently, growing attention is being given to the analysis of the impact of the ambient
temperature on the GaN HEMT performance. The present article is aimed at investigating both
DC and microwave characteristics of a GaN-based HEMT versus the ambient temperature using
measured data, an equivalent-circuit model, and a sensitivity-based analysis. The tested device is a
0.15-pm ultra-short gate-length AlIGaN/GaN HEMT with a gate width of 200 pm. The interdigitated
layout of this device is based on four fingers, each with a length of 50 pm. The scattering parameters
are measured from 45 MHz to 50 GHz with the ambient temperature varied from —40 °C to 150 °C. A
systematic study of the temperature-dependent performance is carried out by means of a sensitivity-
based analysis. The achieved findings show that by the heating the transistor, the DC and microwave
performance are degraded, due to the degradation in the electron transport properties.

Keywords: gallium nitride (GaN); high electron-mobility transistor (HEMT); equivalent-circuit
modeling; microwave frequency; scattering-parameter measurements; temperature

1. Introduction

As well-known, high electron-mobility transistors (HEMTs) based on the aluminum
gallium nitride/gallium nitride (AlGaN/GaN) heterojunction are outstanding candidates
for high-frequency, high-power, and high-temperature applications, owing to the unique
physical properties of the GaN material. Throughout the years, many studies have been
dedicated to the investigation of how the temperature impacts the performance of GaN-
based HEMT devices. To this end, both electro-thermal simulations [1-6] and measurement-
based analysis [7-26] have been developed. Although the electro-thermal device simulation
is undoubtedly a very powerful and costless tool to deeply understand the underlying
physics behind the operation of the transistor in order to improve the device fabrication,
the measurement-based investigation is a step of crucial importance for achieving a reliable
validation of a transistor technology prior to its use in real applications. Typically, measure-
ments are coupled with the extraction of a small-signal equivalent-circuit model, which
can be used as cornerstone for building both large-signal [27-29] and noise [30-32] tran-
sistor models that are essential for a successful design of microwave high-power [33-36]
and low-noise amplifiers [36-38]. Compared to the effective modeling approach based
on using artificial neural networks (ANNSs) [39,40], the equivalent-circuit model allows a
physically meaningful description [41-43], thereby enabling development of a sensitivity-
based investigation.

To gain a comprehensive insight, the present article focuses on the impact of the
ambient temperature (T,) on the behavior of an on-wafer GaN HEMT using DC and
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microwave measurements coupled with a small-signal equivalent-circuit model and a
sensitivity-based analysis. The device under test (DUT) is an ultra-short gate-length
HEMT based on an AlGaN/GaN heterojunction grown on a silicon carbide (SiC) substrate.
The DUT has a gate length of 0.15 um and a gate width of 200 um. The interdigitated
layout consists of four fingers, each being 50-um long. The DC characteristics and the
scattering parameters from 45 MHz to 50 GHz are measured at nine different ambient
temperature conditions by both cooling and heating the device, spanning the —40 °C to
150 °C temperature range. The measured data are used for equivalent-circuit extraction
and sensitivity-based analysis, enabling one to assess the impact of the variation in the
ambient temperature on the transistor performance. Basically, the main goal of this work is
to extend the results of a previous article focused on the same DUT [15] by developing a
sensitivity-based analysis, thus enabling a quantitative and systematic investigation of the
effects of changes in the ambient temperature on the DC and microwave characteristics.
Nevertheless, it should be pointed out that the obtained results are not of general validity,
as they may strongly depend on the selected device and operating bias condition.

The paper is structured with the following sections. Section 2 describes the DUT and
the experimental characterization, Section 3 reports and discusses the achieved findings,
and Section 4 presents the conclusions.

2. Device under Test and Experimental Details

The metal organic chemical vapor deposition (MOCVD) technique is used to grow the
Alg»53Gag 747N/ GaN heterostructure on a 400-um-thick SiC substrate. The schematic cross-
sectional view and the photograph of the tested GaN HEMT are illustrated in Figure 1.
The epitaxial layer structure of the device is made up of a 25-nm-thick undoped (UD)
AlGaN barrier and a 1.5-um-thick UD GaN buffer layer. A 300-nm-thick graded AIN
relaxation layer was grown between the GaN buffer and the SiC substrate. The device was
capped with a 5-nm-tick n+-GaN layer. The evaporation process was employed to create
the source and drain ohmic contacts (Ti/Al/Ni/Au with thicknesses of 12/200/40/100 nm,
respectively) and followed by 30 s of thermal annealing at 900 °C. The Schottky mushroom-
shaped gate was formed through Pt/ Ti/Pt/Au evaporation and the subsequent lift-off
process. Finally, a Si3Ny layer with a thickness of 240 nm was deposited to passivate the
device. The gate length of the tested GaN device is 0.15 um. The interdigitated architecture
of the device is based on the parallel connection of four 50-pum long fingers, resulting in a
total gate width of 200 pm. The source-to-gate distance (Lsg) and the gate-to-drain distance
(Lgp) are 1 pm and 2.85 pm, respectively. The DUT was fabricated at the University of
Lille, France.

n*GaN (5 nm) Cap

2-DEG
UD GaN (1.5 pm) Buffer
AIN (300 nm) Relaxation layer

(@) (b)

Figure 1. (a) Schematic drawing of the epitaxial structure and (b) photograph of the tested 0.15 um
x (4 x 50) um GaN HEMT.

The microwave experiments consist of DC and S-parameters measured from 45 MHz
to 50 GHz at nine different ambient temperatures: —40 °C, —25°C, 0°C, 25 °C, 50 °C, 75 °C,
100 °C, 125 °C, and 150 °C. The analysis is performed using the DC characteristics and the
S-parameters at a bias point in the saturation region: V4s = 15 and Vg5 = —5 V. The device
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parameters were measured with a thermal probe station connected to an HP8510C vector
network analyzer (VNA) and with the aid of commercially available software to guarantee
that the data are free of human error. The DC and frequency-dependent measurements were
performed at each temperature after the sample reached uniform steady-state temperature.
Figure 2 shows the measurement process, model extraction, and sensitivity-based analysis.

IC-CAP Platform 0.15 pmx(4x50) pm GaN HEMT DC Parameter

=

-<: Optimizations -
________________ Y

On-wafer Temperature
Dependent DC and S-
Parameters Measurements

Extrinsic Elements
Extraction =

¥

Extrinsic Elements
De-embedding

)

Intrinsic Elements
Extraction

|_.| SISA[EUY A)ADISUIS |-—|

Joje[nuig §qV

S-Parameter Model Extraction Simulation Validation

Figure 2. The flow diagram of the measurement process, model extraction, and sensitivity-based
analysis for the tested on-wafer GaN HEMT.

3. Experimental Results and Systematic Analysis

The systematic sensitivity-based analysis at the selected bias voltages is accomplished
using the dimensionless relative sensitivity of each parameter (RSP) with respect to T,,
which is calculated by normalizing the relative change in P to the relative change in T:

AP TuO _ (P_PO) TaO

RSP =—" -9 —
PO AT, PO (Ta - TaO)

)

where Py is the value of the selected parameter P at the reference temperature (T,g) of
25°C.

The remainder of this section is divided into two subsections: the first part is fo-
cused on the impact of the ambient temperature on the DC characteristics, whereas the
second part is dedicated to the effects of the variations in the ambient temperature on the
microwave performance.

3.1. Sensitivity-Based Analysis of DC Characteristics

The DC output characteristics for the tested GaN HEMT at Vgs = —4 Vand —5 V under
different temperature conditions are illustrated in Figure 3. As can be clearly observed,
I4s is considerably reduced with increasing temperature. This might be attributed to the
degradation in the carrier transport properties as a consequence of the enhancement of
the phonon-scattering processes at higher temperatures. Analogously, the reduction in
I4s at higher temperatures can be observed by plotting the DC transcharacteristics of the
studied device at V45 = 15 V (see Figure 4). Similar fashion of degradation can be seen
in the transconductance by plotting the gm-Vgs curves at Vg5 = 15 V (see Figure 5a). As
a matter of the fact, by heating the device, the transconductance is significantly reduced.
However, it should be underlined that a higher temperature leads to a wider and flatter
curve of g, versus Vgs, thus implying a better linearity. Over the years, many studies have
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been devoted at improving the flatness of g versus Vg, in order to yield to an improved
transistor linearity and then to a more linear power amplifier [44,45]. For the sake of
completeness, the behavior of gn, is plotted also as a function of I44 (see Figure 5b). At the
selected bias point: Vgs =15V and Vgs = =5V, both I3 and gn, are significantly degraded
when the temperature is raised, as illustrated in Figure 6a. The interesting feature found
in the gm — Vs curves of Figure 5a is that, by heating the device, the peak value of g, is
not only greatly reduced but also shifted toward less negative values of Vgs. As shown in
Figure 6b, the value of Vg at which the peak in g occurs (Vgn) is increased from —5.2V
at —40 °C to —4.8 V at 150 °C. It is worth noting that also the threshold voltage (Vy,) shifts
toward less negative values at higher T,. As illustrated in Figure 6b, Vy, is increased from
—6.24Vat —40 °C to —5.64 V at 150 °C.

600 -
Temp (°C)
500 Vgs=-4V — 40
— 25
400 ; i
E ‘ —— 50
f v —75
E— 300 - — —— 100
0 g — 125
S 200 4 - — 150
Vgs=l:_5V
100 -
-_/
0 T V T T T T L
0 3 6 9 12 15

Vds (V)

Figure 3. DC output characteristics of the studied GaN HEMT at Vgs = —4 V and —5 V under
different temperature conditions.

At Vgg = 15V

Temp (°C)
800 - — 40
— 25
—0
—~ 600 - 50
§ — 75
=z — 100
£ 400 1 — 125
» —— 150
©
200
0 T T
-8 -7 -6 -5 -4 -3
Vgs (V)

Figure 4. DC transcharacteristics of the studied GaN HEMT at V45 = 15 V under different tempera-
ture conditions.

Using Equation (1), the relative sensitivities of Igs, gm, Vgm, and Vg, with respect to
T, are calculated and reported in Figure 7. As can be observed, RSlys, RSgm, RSVy,, and
RSng are negative for the studied device, as a consequence of the fact that an increase in
Ta leads to a reduction in the values of I35 gm, Vi, and Vgnm.
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Figure 5. DC transconductance of the studied GaN HEMT at V44 = 15 V under different temperature conditions. The data
are reported as a function of (a) Vgs and (b) Iys.
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Figure 6. Temperature dependence of the DC parameters of the studied GaN HEMT: (a) I3s and gm at Vg, =15V and Vg =
—5V; (b) Vi, and Vg (i.e.,Vgs at which g, shows its peak value) at Vg =15 V.
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Figure 7. Temperature dependence of the relative sensitivities of the DC parameters of the studied GaN HEMT: (a) RSl
and RSgm at Vgg =15V and Vgs = =5 V; (b) RSVy, and RSVgp at Vg =15 V.

3.2. Sensitivity-Based Analysis of Small-Signal Parameters and RF Figures of Merit

The equivalent-circuit model in Figure 8 was used to model the measured S-parameters
of the studied device. The equivalent-circuit parameters (ECPs) were extracted as described
in [15], using the well-known “cold” pinch-off approach that has been widely and success-
fully applied to the GaN technology over the years [46-50]. The effect of T, on the measured
S-parameters at the selected bias point is shown in Figure 9. It should be highlighted that
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as the carrier transport properties deteriorate with increasing T,, the low-frequency magni-
tude of Sy is reduced. This is in line with the degradation of the DC gy, at higher T, (see
Figure 5). As can be observed, the tested device is affected by the kink effect in Sy;. As
well-known, the GaN HEMT technology is prone to be affected by this phenomenon, owing
to the relatively high transconductance [51-54]. In accordance with this, the observed kink
effect in Sy, is more pronounced at lower T,, due to the higher gm. The DC parameters,
ECPs, intrinsic input and feedback time constants (i.e., Tgs = RgsCgs and Tod = Rgngd),
the unity current gain cut-off frequency (f;), and the maximum frequency of oscillation
(fmax) are reported at 25 °C in Table 1. The three intrinsic time constants (Tm, Tgs, and
Tgd), which emerge from the inertia of the intrinsic transistor in reacting to rapid signal
changes, are meant to represent the intrinsic non-quasi-static (NQS) effects, which play a
more significant role at higher frequencies. The values of f; and fyax are obtained from
the frequency-dependent behavior of the measured short-circuit current gain (hy;) and
maximum stable/available gain (MSG/MAG), respectively (see Figure 10).

-
Lg Rg I ng Rgd Intrinsic Sectigle La
A | g . L

i
3
I
|
|
|
|
|
|
|
|
£
]
I

So AY

Figure 8. The equivalent-circuit model for the GaN HEMT under investigation.

Temp (°C) Temp (°C)
s —w

j——-25 —— .25
25
— 50 — 50
—— 75 — 75
l—100 —100
—125 —125
——150 —— 150

25

Kink in S22

> N

(a) (b)

Figure 9. Measured S-parameters of the studied GaN HEMT at V4; = 15 V and Vg5 = —5 V under
different temperature conditions: (a) Sy1, Sp1, (b) S12, and Sp,.

Similarly, to what was done for the DC parameters, the relative sensitivities of the
other parameters in Table 1 are calculated using equation 1 and then shown in Figure 11.
Because of their low dependence on the temperature, the relative sensitivities of the
extrinsic capacitances and inductances are almost nil, as depicted in Figure 11a,b. It can
be observed in Figure 11c—e that the relative sensitivities of the extrinsic and intrinsic
resistances are positive, reflecting the fact that the resistive contributions increase at higher
temperatures. Figure 11f illustrates that unlike the resistances, the transconductance has a
negative relative sensitivity, as this parameter is degraded when heating the device.
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Table 1. Analyzed parameters for the studied GaN HEMTs at 25 °C for the bias condition of
Vgs=15Vand Vg = =5 V.

Parameters Value Parameters Value
Iqs (MA) 44 Cgs (fF) 154
gm (mS) 54 Cgd (fF) 28
Vi (V) —6 Cqs (fF) 121
Vgm (V) —5.1 Rgs () 1.7
Cpg (fF) 50 Req (Q2) 11.3
Cpq (fF) 86 Rys (Q) 225
Lg (pH) 141 gmo (MS) 63
Ls (pH) 1.8 Tm (PS) 3.0
Lg (pH) 63 Tgs (PS) 1.6
Rg () 2.7 Tod (Ps) 2.0
Rs (QY) 3.0 ft (GHz) 47.3
Rq (OY) 5.8 fmax (GHz) 97
50+ AtVgs=15Vand Vgs=-5V
g 40 - —e—ho1
[0) —a&— MSG/MAG
<
= 30-
(O]
2
- 204
% fi=47.3 GHz
—~ -20 dB/dec line
m
T 104 frax= 97 GHz
S
0
0 dB line
0.1 1 10 100

Frequency (GHz)

Figure 10. Behavior of the magnitude of the hy; and MAG/MSG versus the frequency of the studied
GaN HEMT at Vg4 =15V, Vgs = =5V, and T, = 25 °C.

Asillustrated in Figure 11d, the relative sensitivity of Cgs is negative, while the relative
sensitivities of Cgq and Cys are positive. Figure 11g shows that the relative sensitivities of
the intrinsic time constants are positive, indicating that they increase when the temperature
is raised. This finding implies that the NQS effects occur at lower frequencies when the
device is heated. As can be observed in Figure 11f, the relative sensitivities of f; and fax are
negative, implying lower operating frequencies at higher temperatures. Figure 11h shows
that the relative sensitivities of the magnitude of Sp; and hy; at 45 MHz are negative, in
line with the reduction of the transconductance at higher temperatures, while the stability
factor (K) shows a positive temperature sensitivity as illustrated at 1 GHz.

For the tested device, a good agreement between measured and simulated S-parameters
was achieved. As an example, Figure 12 depicts the comparison between measurements
and S-parameter simulations at two different T, for the tested GaN HEMT at the selected
bias condition. The simulations are obtained using the equivalent-circuit model depicted
in Figure 8 by means of the commercial microwave simulation software advanced de-
sign system (ADS). The small-signal ECPs extracted for different T, from the measured
S-parameters are used as inputs to the schematic.
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Figure 11. The relative sensitivities of the analyzed parameters versus ambient temperature for the studied GaN HEMT:
(a) RSCpg and RSCy,q4; (b) RSLg, RSLs, and RSLy; (¢) RSRg, RSRs, and RSRy; (d) RSCys, RSCgg, and RSCys; (€) RSRgs, RSRgy,
and RSRyg; (f) RSgmo, RSft, and RSfmax; (8) RSTm, RStgs, and RStgd; (h) RSSy; and RShy; at 45 MHz and RSK at 1 GHz The
illustrated bias points for intrinsic parameters and RF figures of merits is: Vg =15V and Vgs = =5 V.
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50°C 50°C H\

Sa21

(a) (b)

125C_ 125°C/_\ \

\
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Figure 12. Measured (solid black lines) and simulated (dashed red lines) S-parameters from 45 MHz
to 50 GHz for the studied GaN HEMT at 50 °C (a,b) and 125 °C (c,d). The illustrated bias point is:
Vgs=15Vand Vg = =5 V.

4. Conclusions

We have reported an experimental investigation on the impact of the ambient tempera-
ture on the DC and microwave performance of a transistor based on an ultra-short 0.15-pm
GaN HEMT technology. Measurements have been coupled with an equivalent-circuit
model and a sensitivity-based study to assess the thermal effects on device performance
over the wide temperature range going from —40 °C to 150 °C. The relative sensitivity
was used as the evaluation indicator for this study because it enables investigation of the
effects of the ambient temperature on the device performance in a quantitative, systematic,
and simple way. The measurement-based findings show that both DC and microwave
performance of the studied device are remarkably degraded with increasing temperature.
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