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Abstract

In order to prevent the propagation of human diseases transmitted by mosquitoes (such as dengue
or zika), one possible solution is to act directly on the mosquito population. In this work, we consider
an invasive species (the mosquitoes) and we study two strategies to eradicate the population in the
whole space by a local intervention. The dynamics of the population is modeled through a bistable
reaction diffusion equation in an one dimensional setting and both strategies are based on the same
idea : we act on a moving interval. The action of the first strategy is to kill as many individuals as
we can in this moving interval. The action of the second strategy is to release sterile males in this
moving interval. For both strategies, we manage to generate traveling waves that propagate in the
opposite direction relative to the one of the natural invasive traveling wave. These cases correspond to
succeeding in eradicating the invasive species. Furthermore, for the first strategy, we fully characterize
the minimal size of the interval. All the results are illustrated by numerical simulations.

Keywords: Reaction-diffusion equations; population dynamics; comparison principle.
AMS subject classifications: 35K57, 92D25, 35C07.

1 Introduction

In this article, we focus on two strategies to eradicate a naturally invading species by a local action on a
moving frame. Both strategies are based on the same idea of the "rolling carpet": we act on an interval
and we move this interval with a constant speed from an empty area toward an invaded area. The main
difference between both strategies is the employed action on this moving interval. The first strategy is
quite simple: we kill as many individuals as we can in the interval. The second strategy is more evolved
and consists in using the sterile insect technique, i.e. sterile males are released in the interval. The aim of
this work is to investigate the following questions :

• Do the strategies work ?

• What can be said about the minimal size of the interval ?

• What can be said on the speed of the rolling carpet ?
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1.1 The mathematical models

As explained above, both strategies rely on the same idea. Let v be a population density (which takes into
account or not the sex of the individuals) that we suppose to live in one-dimensional space. The dynamics
of the population is driven by the following reaction-diffusion equation:

∂tv − ∂xxv = g(v). (1)

In order to model an Allee effect (a small density will go to extinction whereas a large number of individuals
in a large space will invade the territory), we assume that the reaction term is bistable and normalizes
such that 0 and 1 are the two stable steady state. Reaction terms will be specified later. We will also
assume that at the initial time, the population is "almost" established in a neighbourhood of −∞ and
"almost" absent in a neighbourhood of +∞: there exists λ0 > 0 such that

∀x > M, (1− e−λ0x) ≤ v(−x, 0) < 1 and 0 < v(x, 0) < e−λ0x. (H0)

Then, it is well known that the solution v adopts the same shape than the traveling wave which connects the
two stable states of g, 0 and 1, with a constant speed cbistable. Moreover, the sign of cbistable is determined
by the sign of

∫ 1
0 g(s)ds (see e.g. [15, Theorem 4.9]). Therefore, if cbistable ≤ 0, the intrinsic dynamics

avoids invasion phenomena by itself. However if cbistable > 0, there exists an invasion phenomenon: the
native population will tend to occupy the whole space. Our work will be done in the setting

∫ 1
0 g(s) ds > 0,

since it concerns strategy to push the population towards −∞.
For both strategies, we act on a moving interval (ct, L + ct) with c < 0. Somehow, the dynamics is

driven by
∂tu− ∂xxu = g(u)1{x<ct, x>L+ct} +Act(x, u)1{ct≤x≤L+ct}.

The aim of this paper is to prove that for well-designed functions Act there exist traveling wave solutions
that connect 0 to 1 with a negative speed c. Such traveling wave solutions satisfy the equation{

− cu′ − u′′ = g(u)1{x<0, x>L} +Act(x, u)1{0<x<L},

u(−∞) = 1, u(+∞) = 0.
(P)

When such a solution u exists with a negative speed c, then this strategy allows to eradicate the species.
Indeed, this traveling wave solution will be a super-solution above v(t = 0), the comparison principle
implies that 0 ≤ v ≤ u(x+ ct). Since, lim

t→+∞
u(x+ ct) = 0 for any x ∈ R, we conclude that the population

v goes to extinction as time grows.

1.1.1 The killing strategy

In this first strategy, we simply consider a population modelled by its density u whose dynamics is governed
by the reaction-diffusion equation

∂tu− ∂xxu = g(u),

with g a "classical" smooth bistable reaction term:

g(0) = g(1) = g(α) = 0,

g′(0) < 0, g′(1) < 0, g′(α) > 0 and
∫ 1

0
g(u)du > 0.

(H1)

Since we have assumed that
∫ 1

0 g(u)du > 0, there exists β ∈ (α, 1) such that∫ β

0
g(u)du = 0. (2)
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We also introduce α1 and α2 such that

α1 < α < α2 and g′(α1) = g′(α2) = 0. (3)

The strategy is quite simple: on the moving interval (ct, L + ct), we kill individuals with a given rate.
Therefore, the reaction term in this interval is replaced by a simple death term −µu. The new dynamics
is driven by the equation

∂tu− ∂xxu = g(u)1{x<ct, x>L+ct} − µ1{ct≤x≤L+ct}u.

In this interval, the individuals die "naturally" and are "killed", hence it is natural to assume that

−µu ≤ g(u). (H2)

Then, as explained above, the goal is to prove the existence of a traveling wave solution of{
− cu′ − u′′ = g(u)1{x<0, x>L} − µ1{0<x<L}u,

u(−∞) = 1, u(+∞) = 0,
(P1)

with c < 0. Since equation (P1) depends on two parameters : the speed c and the size L, we will always
specify both of them.

1.1.2 The sterile males strategy

This strategy is more evolved. The idea is to release artificially sterilized males in the interval (ct, L+ ct).
As we can expect, the main consequence of the releases is the decline of the growth rate. For this
strategy, the equation must take into account the proportion of males m, females f and sterile males mS

: v = f +m+mS . A classical assumption used to simplify the system is to consider that the proportion
of fertile males and females are equivalent (m ∼ f). Therefore, we focus only on the proportion of fertile
females and sterile males. In the case where we suppose that both the females and the sterile males diffuse,
the equations which drive the dynamics reads{

∂tf − f ′′ = g(f,mS)

∂tmS −m′′S = M1{ct<x<L+ct} − µsmS ,
(4)

where M is the constant density of released males in the moving frame. The reaction term g is such that
without any sterile males, the density of the population follows a bistable dynamics:

g(f, 0) satisfies assumption (H1). (H3)

We also assume that as we introduce sterile males, the birth rate decreases

∂g(f,m)

∂m
< 0 and g(f,m) −→

m→+∞
−µf. (H4)

We add a technical assumption and a natural one

g is uniformly continuous with respect to m and g(0,m) = 0. (H5)

In the next section, we provide a specific example of such a function g. We look for traveling wave solutions
with c < 0 of 

− cf ′ − f ′′ = g(f,mS)

− cm′S −m′′S = M1{0<x<L} − µsmS ,

f(−∞) = 1, f(∞) = 0.

(P2)

Since equation (P2) depends on three parameters : the speed c, the size L and the quantity of released
sterile males M, we will always refer to (P2) by specifying these three parameters (c, L,M).
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1.2 Biological motivations

The "rolling carpet" strategies have been already used in the field to eradicate some species of insect,
for instance the tsetse fly in large area [22]. A motivation of this work is to fight against the spreading
of mosquitoes born diseases which cause more than 700 000 deaths annually according the World Health
Organization [1]. Indeed, such insects are the vectors of many lethal diseases as the dengue, Malaria and
others. Both strategies are already used in practice [9, 3].

In this paper, we propose to analyze from a mathematical point of view, these strategies by studying
conditions that make sure the succeed. The first strategy (the killing strategy) is usually achieved by
spreading insecticide. The insecticide has two disadvantages. First, it does not target a specific type of
mosquitoes, nor even mosquito relative other insects (having possible side effect on the whole ecosystem).
Secondly, the mosquitoes may adapt and become more resistant to the insecticide (see e.g. [12]). Therefore
the second strategy seems to be more advantageous and environmental friendly.

One possible model of the reaction term for the mosquito dynamics is the following:

g(f,m) =
C1f

2(1− e−(β1f+β2m))

f2(1− e−(β1f+β2m)) + C2(β1f + β2m)
− µf. (5)

where C1,2, β1,2 and µ are positive constants which depend on several intrinsic constants (such as death
and birth rates at different stage of life, the environmental capacity...). Such reaction term can be obtained
by making a quasi-stationary assumption in the complete model introduced in [19] (see also [2] and the
references therein for a precise derivation of this model). Notice that this reaction term is a simplification
of a more evolved system which takes into account different stages of development of the mosquitoes (egg,
larva, adult...). We also underline that for a suitable choice, relevant from a biological point of view, of
constants C1,2, β1,2 and µ, this reaction term verifies the hypothesis (H3), (H4) and (H5).

Notice that we describe the particular example of mosquitoes but this work can be adapted to other
invasive species and to other frameworks as social sciences (see [6] for example).

1.3 Main results and comments

For both strategies, we prove the existence of a traveling wave with negative speed c < 0. For the first
equation (P1), our main result reads

Theorem 1. Under the assumptions (H1) and (H2), there exists Λ0 > 0 and a decreasing bijection

Λ : ]−∞, 0]→ [Λ0,+∞[

c 7→ Λ(c)
(6)

such that

1. For any speed c ≤ 0 and L < Λ(c), (P1) with parameters (c, L) does not admit a solution. Moreover,
the equation {

− cu′ − u′′ = g(u)1{x<0, x>L}(x)− µ1{0<x<L}

u(−∞) = 1.

verifies u(+∞) = 1.

2. For any speed c ≤ 0 and L > Λ(c), (P1) with parameters (c, L) admits a decreasing solution.

Moreover, when L = Λ(c), if we assume that g is convex in the interval (0, α) then

1. if c is such that −2
√
g′(α) < c ≤ 0, (P1) with parameters (c,Λ(c)) admits a solution. This solution

satisfies u′(Λ(c)) = 0 and α < u(Λ(c)) ≤ β,
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2. if c is such that c ≤ −2
√
g′(α), (P1) with parameters (c,Λ(c)) does not admit a solution. Moreover,

we have that sup
L>Λ(c)

u(L) = α.

For the second strategy, the main result reads

Theorem 2. Under the assumptions (H3), (H4) and (H5), there exists a function

Π : (c, L) ∈ R− × R+∗ 7→ Π(c, L)

such that for any speed c ≤ 0 and size L > 0

1. For any M > Π(c, L), (P2) with parameters (c, L,M) admits a solution,

2. For any M < Π(c, L), (P2) with parameters (c, L,M) does not admit a solution.

Moreover, for a fixed speed c < 0, we have that

lim
L→0

Π(c, L) = +∞ and lim
L→+∞

Π(c, L) > Π∞(c) > 0.

What’s more, for a fixed size L > 0,
lim

c→−∞
Π(c, L) = +∞.

For both strategies, we have succeeded in generating a traveling wave for any (negative) speed which
goes in the opposite sense than the unique "natural" traveling wave. In both cases, the proofs are based on
the construction of a sub-solution φ− and a super-solution φ+ to (P) that are right-ordered (i.e. φ− < φ+).
However, each strategy has its own technical difficulties and therefore, we present each strategy separately.
We introduce all the necessary tools for each strategy in the corresponding sections.
We underline that since the first equation is easier to work with, we have obtained a complete description
of the traveling waves, in particular we know what happens for the critical case L = Λ(c). We also
emphasize that we did not expect to obtain the dichotomy c > −2

√
g′(α) and c ≤ −2

√
g′(α). It relies

on the fact that in a neighbourhood of ±∞, we can understand the equation as an autonomous equation.
Using this, the tails at ±∞ of the traveling waves are unique. Moreover, for c ≤ −2

√
g′(α), there exists

a traveling wave uKPP which connects 0 to α (solution of a Fisher-KPP type equation). With these two
remarks in mind, we prove that for c ≤ −2

√
g′(α), the tails of the traveling waves at +∞ behave like

uKPP. Without the technical assumption g convex into (0, α), we have to proceed case by case. However,
the strategy seems to be robust if we know the existence of traveling waves which connect 0 to α with a
negative speed.
Contrary to the first equation, the second equation is more difficult to work with because it is a fully non-
autonomous system. Indeed, mS has its own dynamics (independent of f) but the sterile males spread
on the whole domain R. Even if we act only on a small part of the domain, this spreading makes the
equation on f fully non-autonomous (even by parts).

1.4 State of the art

Bistable equations to model propagation phenomena with an Allee effect were initially introduced in the
pioneer work [4], where the existence of a traveling wave solution which connects the stable states 0 and
1 is established. Since this work, plenty of works study variations of this problem as [23, 5].
To our knowledge the mathematical study of an action on a small moving interval to eradicate an invasive
population of invasive species has not been addressed. The previous works focused on the specific case
c = 0. In this specific case, the idea is not to eradicate the population but block the front propagation.
One of the first articles which focused on this kind of mathematical question is [11] (see also [14]). In this
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paper, the authors assume that in an interval the reaction term is 0. Using a phase plane analysis, they
prove the existence of a blocking if the size of this interval is large enough. We mention also the papers
[7, 13] where blocking in biological systems is analyzed. In a different setting, a blocking strategy is studied
in [6]. The framework of this article is social sciences. The authors investigate the employment of finite
resources to prevent the invasion of criminal activity. This latter article was adapted by one of its authors
[16] to prevent invasion phenomena in biology. We underline that in [16], even if the author considers
sterile male releases, the article did not take into account the spread of such sterile males. Therefore,
from a mathematical point of view, these models are closer to our first strategy than the second one. The
second strategy with c = 0, i.e. the sterile insect technique used as a barrier to block re-infestation is
studied by two of the authors in [2]. By taking c = 0, we recover the main results of [6], [16] and [2].
Finally, we quote [21, 20] which deal also with the sterile males method to prevent invasion. In these two
articles, the authors focus on an optimal problem. The aim is to optimize the releases of sterile males
along time in order to minimize a cost-function. This cost-function takes advantage of the existence of
traveling wave solutions which drive the solution to 0. The main difference with our work is that we do not
investigate any variation of the releases in time whereas the authors do not consider any spatial structure
on the releases of sterile males.

1.5 Outline of the paper

In section 2, we focus on the killing strategy and we prove Theorem 1. Section 3 is devoted to the sterile
male strategy and the proof of Theorem 2. We present numerical results that illustrate our results in
section 4 for both strategies. The second strategy is simulated for the application that we have introduced
in section 1.2. Finally, we end this article with a conclusion and some perspectives in section 5.

2 Study of the killing strategy

In a first subsection, we introduce all the definitions, tools and intermediate results needed in the proof of
Theorem 1. Subsections 2.2 and 2.3 are devoted to the proof of the first two points of Theorem 1. The
rest of this section focuses on the critical case L = Λ(c).

2.1 Intermediate results

We detail here some definitions and intermediate results needed in the proof of Theorem 1. The proofs of
these results are postponed to subsection 2.4.

We begin by establishing that there exists a set of parameters such that (P1) admits a solution.

Proposition 1. For any speed c < 0, there exists a size L0 such that (P1) admits a solution for parameters
(c, L) with L > L0.

The basic idea is to prove that there exists a sub-solution ψ− and a super-solution ψ+ such that

ψ− ≤ ψ+, ψ−(−∞) = ψ+(−∞) = 1 and ψ−(+∞) = ψ+(+∞) = 0. (7)

Since, the reaction term is singular for x ∈ {0, L}, we recall the definitions of sub- (resp. super-)
solutions (see [14]):

Definition 1 (Sub- and super-solution). A function ψ− ∈ C2(R\ {0, L}) is a sub-solution to (P1) if it
satisfies

−cψ′− − ψ′′− ≤ g(ψ−)1]0,L[c − ψ−1]0,L[ and lim
x→ξ
x<ξ

ψ′−(x) ≤ lim
x→ξ
x>ξ

ψ′−(x) for ξ ∈ {0, L}

(resp. ψ+ is a super solution if it satisfies the reverse inequalities than above).
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Since, in general, the solutions of (P1) might be not unique, we need to select a "proper" solution.
With this in mind, we define a solution as follows:

Definition 2. We define u as a solution of (P1) with parameters (c, L) as the supremum of the sub-
solutions of equation (P1)

i.e. u(x) = sup {ψ−(x), with ψ− a sub-solution of (P1)} .

This solution is well defined according to the construction by the sub- and super-solution technique
(see [17]). We recall that u is the minimal non-trivial solution. In other words, if u is the solution of (P1)
with parameters (c, L) and v is an other solution which satisfies 0 ≤ v ≤ u in R+ then we deduce that
v = 0 or v = u. Then, from any solution of (P1) with parameters (c, L), we can construct a solution of
(P1) with parameters (c, L′) and L′ > L thanks to

Lemma 1. Let (c, L∗) be a set of parameters such that (P1) admits a solution u. Then for any L > L∗,
u is a super-solution to (P1) with the set of parameters (c, L).

The set of solutions are naturally ordered with respect to L. Moreover, all the solutions are decreasing.
We sum up these two last results into the following Proposition:

Proposition 2. The following assertions hold true:

1. Let L1 < L2 be such that there exists u1, u2 two solutions of (P1) with parameters (c, L1) and (c, L2).
Then, we have u2 ≤ u1.

2. If there exists a solution u of (P1) with parameters (c, L) then u is decreasing.

Now that we know that the set of solutions of (P1) (where L is seen as a free parameter) is ordered,
one can introduce

Λ(c) = inf {L > 0, there exists a solution to (P1) with parameters (c, L)} . (8)

In the next proposition, we provide the main properties of Λ.

Proposition 3. The function Λ is well defined for all c < 0. Moreover, the following assertions hold true:

1. There exists Λ0 > 0 such that
Λ0 ≤ inf

c∈]−∞,0]
Λ(c).

2. The function Λ is decreasing with respect to c.

3. lim
c→−∞

Λ(c) = +∞,

4. For L = Λ(c), we distinguish two cases:

Case 1 : There does not exist a decreasing traveling wave which connects 0 and α with speed c.
Then (P1) with parameters (c,Λ(c)) admits a solution u and we have α ≤ u(Λ(c)) ≤ β and
u′(Λ(c)) = 0.

Case 2 : There exists a decreasing traveling wave uTW which connects the unstable state α and the
stable state 0 with speed c, i.e. a solution of{

− cu′TW − u′′TW = g(uTW),

uTW(−∞) = α and uTW(+∞) = 0.
(9)

Then (P1) with parameters (c,Λ(c)) does not admit a solution. Moreover, we have

lim
L→Λ(c)+

uL(L) = α and lim
L→Λ(c)+

u′L(L) = 0.
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We underline that the last assertion will be useful to characterize numerically Λ(c). Notice that the
previous result is more general than Theorem 1. We recover the last statements of Theorem 1 thanks to
the following Corollary

Corollary 1. If g is convex in (0, α) then (P1) with parameters (c,Λ(c)) admits a solution if and only if
−2
√
g′(α) < c ≤ 0.

We notice that it is the only statement where we have used the hypothesis g is convex in (0, α).
Furthermore, we underline that according to [6], if u is a solution of (P1) with parameters (0,Λ(0)), it
follows that

u(Λ(0)) = β and u′(Λ(0)) = 0.

We finish with a last proposition which characterizes the case L < Λ(c).

Proposition 4. For any L < Λ(c), there does not exists a solution of (P1) with parameters (c, L). Let u
be the solution of {

− cu′ − u′′ = g(u)1{x<0, x>L} − µu1{0<x<L},

u(−∞) = 1

then we have u(+∞) = 1. Moreover, there exists a unique x0 ∈]0, L[ such that u′(x) = 0.

2.2 Proof of the first part of Theorem 1

The first point of Theorem 1 is a direct consequence of the existence of Λ(c), defined by (8), and Proposition
4. The second one follows from the definition of Λ(c) and Lemma 1. The last two points are direct
applications of Proposition 3 and Corollary 1.

Remark. We highlight that the proof works because we define a solution of (P1) as the supremum of
the sub-solutions. The setting of Theorem 1 could be false if we consider another type of definition. For
instance, in [6] the authors construct a solution of{

− u′′ = g(u)1{x<0, x>L} − µu1{0<x<L},

u(−∞) = 1, u(+∞) = 1

(a similar equation than (P1) with parameters (0, L)) which satisfies u(±∞) = 1 for any L > 0. Obviously,
this solution is greater than any minimal solution that decreases to 0 at +∞ (when it does exist).

2.3 Construction of a solution

In this part, we fix c < 0 and we will show the existence of L > 0 such that (P1) with parameters (c, L)
admits a sub-solution and a super-solution that satisfy (7). In a first part, we construct a super-solution,
then we construct a sub-solution, and finally, we conclude to the existence of a solution.

2.3.1 Construction of the super-solution

We split the construction of the super-solution into two lemmas: in the first one we describe the super-
solution on the interval (0, L), in the second one we describe the solution on the interval (L,+∞). As we
will see later on, the super-solution is simply constant equal to 1 on (−∞, 0).

Lemma 2. For any γ > 0, there exists a size L > 0 such that there exists a positive solution v1 of the
following problem 

− cv′1 − v′′1 = −µv1

v1(0) = 1, v1(L) = γ,

v′1(0) ≤ 0, v′1(L) = 0.

(10)
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Proof. According to the limits at L, it is natural to search a solution on the form:

v1(x) =
γ

λ+ − λ−
[λ+e

λ−(x−L) − λ−eλ+(x−L)]

with λ± the negative and the positive roots of r2 + cr − µ. Next, we look for a size L such that the
conditions at 0 are satisfied. We write the expression of v1(0) and v′1(0) as follows:

v1(0) =
γe

cL
2

λ+ − λ−

[
−c sinh(

√
∆L

2
) +
√

∆ cosh(

√
∆L

2
)

]
:=

γ

λ+ − λ−
ψ1

(
L

2

)

and v′1(0) =
2γλ+λ−e

cL
2 sinh(

√
∆L
2 )

λ+ − λ−
:=

2γλ+λ−
λ+ − λ−

ψ2

(
L

2

)
.

where ∆ = c2 + 4µ, ψ1(L) = ecL[−c sinh(
√

∆L) +
√

∆ cosh(
√

∆L)] and ψ2(L) = ecL sinh(
√

∆L). First,
notice that the condition v′1(0) < 0 is trivially satisfied for any L > 0. Remarking that ψ1(0) =

√
∆ and

lim
L→+∞

ψ1(L) = +∞, we conclude to the existence of L > 0 such that (10) admits a solution.

Remark. We underline that we have first fixed the speed c and next the size L which in turn depends on
c. One can remark that as |c| increases, one has that L increases too.

Lemma 3. There exists γ0 ∈]0, α1[ and δ0 > 0 such that the solution of the following ODE{
− cv′2 − v′′2 = g(v2),

v2(L) = γ0, v′2(L) = −δ0
(11)

satisfies
v2(+∞) = 0 and v′2(+∞) = 0.

Proof. The proof follows the application of the stable manifold theorem. Indeed, the equilibrium (0, 0) of{
v′2 = w2,

w′2 = −cw2 − g(v2),

is a saddle point. Moreover, the stable tangent space is generated by the vector
(

1,
|c|−
√
c2+4|g′(0)|

2

)
. The

conclusion follows.

Remark. By a more thorough analysis, we can prove that a sufficient condition is v′2(L) < 0. The
interested reader can follow the last part of the proof of Proposition 2 in the subsection 2.4.2. Since the
proof above is quite simple and sufficient for the content of this section, we chose to present this one.

Proposition 5. There exists a size L > 0 such that there exists a super-solution ψ+ to (P1) with param-
eters (c, L) which satisfies

lim
x→−∞

ψ+(x) = 1 and lim
x→+∞

ψ+(x) = 0.

Proof. First, we take c < 0. Then, we fix γ0 like in Lemma 3. Next, take L > 0 provided by Lemma 2.
Finally, we define

ψ+(x) =


1 for x ∈ (−∞, 0),

v1(x) for x ∈ (0, L),

v2(x) for x ∈ (L,+∞)

(where v1, v2 are provided by Lemmas 2 and 3). It is trivial that ψ+ is a super solution in each interval
(−∞, 0), (0, L) and (L,+∞). We only have to check the compatibility condition of the derivative at {0, L}
which are satisfied according to Lemmas 2 and 3.
The limits at ±∞ hold true by definition of ψ+.
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2.3.2 Construction of a sub-solution

We construct directly a sub-solution since there is no difficulty to obtain it.

Proposition 6. There exists a sub-solution ψ− to (P1) such that

lim
x→−∞

ψ−(x) = 1 and ψ−(x) = 0 for x > 0.

Proof. We construct this sub-solution piecewise. Let χ be the decreasing solution of{
− χ′′ = g(χ),

χ(−∞) = 1, χ(0) = 0.

Such a solution exists since
∫ 1

0 g(u)du > 0. Notice that χ′(0) = −
√

2
∫ 1

0 g(u)du < 0. The construction
is classical and relies on a phase plane analysis as the one developped in [6]. Therefore, we let it for the
interested reader. Next, we extend χ by 0 on R+ in order to provide a sub-solution.

2.3.3 Conclusion : Construction of the solution

We construct a solution from the above sub- and super-solutions.

Proof of Proposition 1. According to Propositions 5 and 6, there exists a sub- and a super-solution that
are well-ordered. By applying the classical technique of sub- and super-solution (see [17]), there exists a
classical solution.

Remark. If we relax the condition at +∞, then the constant function 1 is a trivial super-solution. We
deduce the existence of a solution for any speed c. These solutions do not satisfy automatically the condi-
tions at +∞. The objective of this work is to understand on which conditions on L and c, the limit of the
solution is 0 near +∞.

2.4 Study of the critical case L = Λ(c)

First, we prove that the tail at +∞ is unique. Next, we use this uniqueness property to conclude all the
intermediate remaining properties.

2.4.1 Uniqueness of the tail

Lemma 4. Let c be a fixed speed and two sizes L1, L2 be such that (P1) with parameters (c, L1,2) admits
a solution u1,2. Then, there exists z+,− ∈ R, such that

u1(x+ z−) = u2(x) for x < 0,

u1(x+ z+) = u2(x) for x > max(L1, L2).

Proof of Lemma 4. We only prove that the tail at +∞ is unique. The proof works the same for the other
tail. We adopt the general strategy of the proof of Lemma 4.2.1 in chapter 4 of [8].
Let u, v be two solutions of (P1) with parameters (c, L1) and (c, L2). Let x0 > L be such that u, v(x) < α1

for all x > x0 (where α1 is introduced in (3)). Without loss of generality, one can assume that u(x0) <
v(x0). According to section 2 of [10], there exists k,K, λ−, λ+ > 0 such that

ke−λ+x ≤ u, v(x) ≤ Ke−λ+x for x > L,

(respectively keλ−x ≤ 1− u, v(x) ≤ Keλ−x for x < 0).
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We deduce the existence of τ > 0 such that v(x) < u(x− τ) for all x > x1 with x1 ≥ x0. We introduce

τ∗ = inf {τ > 0, v(x) < u(x− τ) for x > x1} .

We claim that u(· − τ∗) = v. Assume by contradiction that it is not the case. It follows that inf u(· −
τ∗)−v = 0 and v < u(·−τ∗) (otherwise, there exists a contact point between u(·−τ∗) and v which implies
by the maximum principle u(· − τ∗) = v). We deduce that for any ε > 0, there exists δ > 0 such that
v < u(· − (τ∗ − ε)) + δ. Let δ, ε be a such couple which also satisfies

ε < τ∗, v(x1) < u(x1 − τ∗ + ε) and u(x0) + δ < α1. (12)

We introduce
δ∗ = inf {δ > 0, v < u(· − (τ∗ − ε)) + δ for x > x1} .

This infimum exists (since δ is an upper bound) and we claim that δ∗ = 0. Indeed, if δ∗ > 0, we deduce that
lim

x→+∞
u(x−τ∗+ε)+δ∗−v(x) = δ∗ > 0. Hence, by definition of δ∗, we deduce that inf u(·−τ∗+ε)+δ∗−v = 0

is reached at a point x2 ∈]x1,+∞[. On the one hand, at this minimum point, we deduce that

(u(· − τ∗ + ε) + δ∗ − v)′(x2) = 0, −(u(· − τ∗ + ε) + δ∗ − v)′′(x2) ≤ 0,

and 0 < u(x2 + τ∗ − ε) < v(x2) < α1.

On the other hand, since g is strictly decreasing in ]0, α1], we have in one hand

g(u(x2 + τ∗ − ε))− g(v(x2)) > 0

and in an other hand the following contradiction contradiction

−c(u(· − τ∗ + ε) + δ∗ − v)′(x2)− (u(·+ τ∗ − ε) + δ∗ − v)′′(x2) = g(u(x2 + τ∗ − ε))− g(v(x2))

We conclude that δ∗ = 0 which implies the existence of ε > 0 such that u(· − τ∗ + ε) < v for x > x1. This
is in contradiction with the definition of τ∗.

2.4.2 Monotonicity results

This section is devoted to the proof of the monotonicity of the solutions introduced in Definition 1.

Proof of Proposition 2. We adopt the strategy of [6]. We prove in a first step that any solution u must
be monotone in R− and (L,+∞). The second step is to prove by contradiction that it is also monotone
in (0, L). Indeed, if it is not monotone, we may construct a super-solution bellow than the non-monotone
solution u and we conclude to the existence of a new non-trivial solution smaller than u.

Step 1. The solution u is monotone in R− and (L,+∞). We will only prove the monotonicity in
R−, the other part follows from similar arguments. We use the ideas of the proof of Lemma 3.6 (c) of [6].
Let δ > 0 be such that u(0) < 1 − δ. Since lim

x→−∞
u(x) = 1, we deduce the existence of R > 0 such that

1− δ < u(x) for all x < −R. It follows that for τ large enough we have that

u(0) ≤ uτ (0) := u(0− τ).

Since uτ is also a solution of (P1) restricted to R−, the maximum principle in unbounded domains implies
that u < uτ . We define

τ∗ := inf {τ > 0, u(x) < uτ (x), ∀x ∈ R−} .
It is clear that τ∗ < R. Next, it suffices to show that τ∗ = 0. Indeed, if τ∗ = 0, then for any x < 0,
τ > 0, we have that u(x) < u(x − τ), i.e. u is decreasing. By contradiction, assume that τ∗ > 0 and let
ξ = inf

x∈[−R,0]
(uτ∗(x)− u(x)). We distinguish two cases:

11



• Case 1 : ξ > 0. In this case, there exists ε ∈]0, τ∗[ such that

inf
x∈[−R,0]

uτ∗−ε(x)− u(x) > 0.

The maximum principle in unbounded domain gives that uτ∗−ε(x)−u(x) ≥ 0 in ]−∞,−R[. It is in
contradiction with the definition of τ∗.

• Case 2 : ξ = 0. In this case, by compactness of [−R, 0], there exists x0 ∈ [−R, 0] such that
uτ∗(x0) = u(x0). The maximum principle implies that uτ∗ = u. We introduce

Rδ = inf {R > 0, u(x) < 1− δ for x ≥ −R}

(remark that since u(0) < 1− δ, we have Rδ < +∞). In the same way, we define

R∗δ = inf {R > 0, uτ∗(x) < 1− δ for x ≥ −R} .

Since u(x) > 1 − δ for all x < Rδ, it follows that uτ∗(Rδ) = u(Rδ − τ∗) > 1 − δ and thus R∗δ > Rδ.
However, this is in contradiction with the equality u = uτ∗ . The claims holds true because

Step 2. The solution u is decreasing in (0, L). Assume by contradiction that u is not decreasing.
We recall that by construction u, is the minimal solution greater than the trivial solution 0.
First, we claim that for any solution, there exists a finite number of xn where u′ changes its sign. Indeed,
if the claim is false, we deduce from the Rolle theorem that there exists x∞ ∈ [0, L] such that u′(x∞) =
u′′(x∞) = 0. But this is impossible since

−µu(x∞) = −cu′(x∞)− u′′(x∞) = 0.

Therefore, we deduce that there exists a finite number of (xn)0≤n≤N such that 0 ≤ x0 ≤ ... ≤ xN ≤ L and
u′(xn + ε) > 0 for any ε small enough. We construct a non-trivial super-solution u from u which satisfies
u ≤ u. This concludes the proof of Proposition 2 since it would imply the existence of a new non-trivial
solution ũ such that 0 ≤ ũ ≤ u < u. That would be in contradiction with the minimality of the solution
u.

Construction of u. Let i ∈ {0, ..., N} be such that u(xi) = inf
k∈{0,...,N}

u(xk). We distinguish 2 cases:

u(xi) ≥ u(L) and u(xi) < u(L).

• Case 1 : u(xi) ≥ u(L). We introduce

y = sup {x ∈ R, u(y) = u(xi)} .

Then we deduce that y ≤ L since u is decreasing in (L,+∞) and u(y) ≥ u(L). Next, we define
piecewise u:

u(x) =


u(x) for x ∈]−∞, xi[,
u(xi) for x ∈ [xi, y],

u(x) for x ∈]y,+∞[.

Since G(u(x), x) = −µu(x) < 0 for x ∈ [xi, y], we deduce that −cu′− u′′−G(u, x) = 0 if x ∈ [xi, y]c

and −cu′ − u′′ −G(u, x) = −G(u(x), x) ≥ 0 if x ∈ [xi, y].
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• Case 2 : u(xi) < u(L). As in the previous case, we introduce

y = sup {x ∈ R, u(y) = u(xi)} .

Then we deduce that y > L since u is decreasing in (L,+∞) and u(xi) ≤ u(L). We define as above

u(x) =


u(x) for x ∈]−∞, xi[,
u(xi) for x ∈ [xi, L],

u(x− L+ y) for x ∈]L,+∞[.

As above, we deduce that for all x ∈ [xi, y], we have G(u(x), x) ≤ 0. We conclude as in the previous
case. Since y > L, we have, thanks to the first part of the proof, that u′(y) < 0. Then the function
u satisfies

lim
x→L−

u′(x) = 0 ≥ lim
x→L+

u′(x) = u′(y).

Therefore, u is a non-trivial super-solution.

2.4.3 Study of Λ(c)

Proof of Proposition 3. The function is well defined since there exists a solution for all c < 0 thanks to
Proposition 1. Next, we prove the assertions 1,2,3 and 4.

Proof of assertion 1 : Existence of an infimum Λ0 > 0. If such an infimum does not exist, we
deduce that there exists a speed c < 0 such that Λ(c) < L0 where L0 is the critical size mentioned in
Theorem 2.6 in [6]. Next, if we denote by u the solution of (P1) with parameters (c, L0

2 ), it follows that u
is a super-solution of the following equation:{

− v′′ = g(v)1]0,L
2

[c − µv1]0,L
2

[ for x ∈ R,

v(−∞) = 1.
(13)

Indeed, a direct computation gives −u′′ − G(u, x) = cu′ ≥ 0. This is in contradiction with [6] (Theorem
2.6) because, from the existence of a such super-solution (which verifies u(−∞) = 1 and u(∞) = 0), we
would deduce the existence of a solution of (13) which tends to 0 as x tends to +∞.

Proof of assertion 2 : Λ is decreasing. Take any speeds c1 < c2 ≤ 0. Let L > Λ(c1) be such
that (P1) with parameters (c1, L) admits a solution u. A straightforward computation shows that u is a
super-solution to (P1) with parameters (c2, L). It follows that Λ(c2) < L for any L > Λ(c1). Passing to
the lower limit, it follows

Λ(c2) ≤ Λ(c1).

Proof of assertion 3. lim
c→−∞

Λ(c) = +∞. We proceed by contradiction and assume that sup Λ(c) < Λ̄

for some positive constant Λ̄. Next, let uc be the solution of (P1) with parameters (c, Λ̄). On one hand,
with a similar analysis than in Proposition 2, we deduce that

uc(0) =
uc(Λ̄)[(|c|+

√
c2 + 4µ)e−

(|c|−
√
c2+4µ)Λ̄
2 − (|c| −

√
c2 + 4µ)e−

(|c|+
√
c2+4µ)Λ̄
2 ]

2
√
c2 + 4µ

−→
c→−∞

uc(Λ̄)

and |u′c(0)| =
8µuc(Λ̄)e

cΛ̄
2 sinh(

√
c2+4µΛ̄

2 )√
c2 + 4µ

−→
c→−∞

0
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where the latter limit holds because

e
cΛ̄
2 sinh(

√
c2 + 4µΛ̄

2
) ≤ 1

2
e
cΛ̄
2

(
1−
√

1+4 µ

c2

)
=

1

2
exp

 2µΛ̄

c(1 +
√

1 + 4 µ
c2

)

 .

On the other hand, since

u′c(Λ̄)2 = −2

∫ uc(Λ̄)

0
g(u)du+ c

∫ ∞
Λ̄

u′c(y)2dy,

it follows that uc(Λ̄) ≤ β (where β is introduced in (3)). We deduce that

u′c(0)2 = 2

∫ 1

uc(0)
g(v)dv + 2|c|

∫ 0

−∞
u′c(x)2dx ≥ 2 min

u∈(0,β)

∫ 1

u
g(v)dv > 0,

which implies the following contradiction

0 < |u′c(0)| −→
c→−∞

0.

Proof of assertion 4. Study of the case (c,Λ(c)). Let uL be a solution of (P1) with parameters
(c, L). Let ṽ be the solution of the following ODE{

− cṽ′ − ṽ′′ = g(ṽ),

ṽ(L) = uL(L), ṽ′(L) = u′L(L).

We underline that ṽ decreases in ]L,+∞[ and ṽ(∞) = 0. If ṽ is decreasing in the whole domain R, we
would deduce that either ṽ diverges to +∞ or ṽ converges as x → −∞ to a zero of g greater than 0 :
either α or 1. Notice that the last case is impossible. Otherwise, we can construct a super-solution to
(P1) with parameters (0, 0) by considering min(1, ṽ(· − x1)) where x1 is such that ṽ(x1) = 1. This last
super-solution is in contradiction with the main result of [6]. Then, it is clear that ṽ(−∞) < 1 therefore,
we have to consider the case ṽ(−∞) = α. If ṽ(−∞) = α, it would imply the existence of a traveling wave
of speed c connecting 0 and α, that is a solution of{

− u′′TW − cu′TW = g(uTW),

u(−∞) = α, u(+∞) = 0.

Therefore, we split the proof into two parts: the case where there does not exists a traveling wave uTW

solution of (9), and the one where there exists such a traveling wave.

Part 1 : There does not exist a decreasing solution to (9). We deduce that ṽ is not strictly decreasing
in R. It follows that ṽ′ changes its sign. We denote by x1 = sup {x < L, ṽ′(x) > 0}

Finally, we introduce
ϕ(x) = ṽ(x+ x1).

We notice that 0 is a local maximum thus ϕ′(0) = 0 and ϕ′′(0) < 0. One has∫ ϕ(0)

0
g(u)du = c

∫ ∞
0

ϕ′(x)2dx. (14)

Notice that for c < 0 since the right hand side of (14) is strictly negative, we deduce that ϕ(0) < β. We
also have that ϕ′′(0) < 0 and we deduce that ϕ(0) > α. From this function ϕ, we construct a minimal
solution. Let uL(x) := ϕ(x − L) be such that uL(L) = ϕ(0) := ϕ0. We notice that u′L(L) = 0. From
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this function which satisfies (P1) with parameters (c, L) in ]L,+∞[, we construct a solution of (P1) in the
whole domain R by considering L as a free parameter. First, we extend the solution in [0, L]:

uL(x) = ϕ0e
|c|(x−L)

2

[
cosh

(√
c2 + 4µ

2
(x− L)

)
+

c√
c2 + 4µ

sinh

(√
c2 + 4µ

2
(x− L)

)]
.

We deduce that

uL(0) =ϕ0e
−|c|L

2

[
cosh

(√
c2 + 4µL

2

)
+

|c|√
c2 + 4µ

sinh

(√
c2 + 4µL

2

)]
,

u′L(0+) =
c

2
u(0)− ϕ0

√
c2 + 4µ

2
e
−|c|L

2

[
sinh

(√
c2 + 4µL

2

)
+

|c|√
c2 + 4µ

cosh

(√
c2 + 4µL

2

)]
.

Next, we extend the solution to ]−∞, 0[. According to the uniqueness (up to a translation) of the solution
of (P1) in ] −∞, 0[, we deduce that the solution is fully determined by the value uL(0). Moreover, the
derivatives must match at 0, therefore, we deduce that

u′L(0+) = −

√
2

∫ 1

uL(0)
g(u)du+ 2|c|

∫ 0

−∞
u′L(x)2dx. (15)

The idea is to prove that there exists a size L∗ such that (15) has a solution.
On one hand, we notice that the left hand side is 0 for L = 0 whereas the right hand side is strictly
negative. On the other hand, let L1 be such that uL1(0) = 1 (such a size exists since u0(0) < 1 and
uL(0) →

L→+∞
+∞). By noticing that the left hand side verifies lim

L→L1

u′L1
(0+) < 0 whereas the right hand

side verifies lim
L→L1

−
√

2
∫ 1
uL(0) g(u)du+ 2|c|

∫ 0
−∞ u

′
L(x)2dx = 0, we conclude that a size L∗ which satisfies

(15) does exist.
The case c = 0 is already treated in [6].

Second, we claim that the above solution u∗ is the greatest solution of (P1) with speed c: for any
solution u of (P1) with parameter (c, L) then we have

L∗ ≤ L and u ≤ u∗

(with equality if and only if L = L∗). Indeed, from uniqueness of the tail (Lemma 4), we claim that
there does not exist solutions bigger than the one above. Indeed, if such a solution w of (P1) exists with
parameters (c, L′∗) such that L′∗ < L∗, then, we deduce that u∗(L∗) < w(L∗). Moreover by Lemma 4,
there exists r1, τ1 > 0 such that

∀x > r1, u∗(x) = w(x− τ1).

The Cauchy Lipschitz Theorem, implies that for all x > L′∗, w(x) = ϕ(x − τ2) for some τ2 > 0. Since
ϕ′′(0) < 0 and L′∗ < L∗, we conclude that w is increasing in an open subset included in (L′∗, L∗). It is in
contradiction with Proposition 2. We conclude that L∗ = Λ(c) and this closes the proof of the first part.

Part 2 : There exists a decreasing traveling wave solution to (9). The first step is to prove that
there exists a size L > 0 and some x0 ∈ R such that (P1) with parameters (c, L) admits a solution which
satisfies

u(L) = uTW(x0) and u′(L) = u′TW(x0).

It will follow that for any size L such that (P1) admits a solution uL, then uL is comparable to uTW in a
neighbourhood of +∞.
Construction of the solution. Let κ ∈ (0, 1) and xκ ∈ R be such that uTW(xκ) = κα. We also define
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σκ = u′TW (xκ). The goal is to find a size L such that (P1) with parameters (c, L) admits a solution uL
which verifies uL(L) = κα and u′L(L) = σκ. If such a solution exists, it is defined by uTW for x > L.
Starting from uTW, we reconstruct uL in ]0, L[: we have

uL(x) = e
|c|(x−L)

2

[
κα cosh

(√
c2 + 4µ(x− L)

2

)
− (2σκ + |c|κα)√

c2 + 4µ
sinh

(√
c2 + 4µ(x− L)

2

)]
,

u′L(x) =
|c|
2
uL(x)

+

√
c2 + 4µ

2
e
|c|(x−L)

2

[
κα sinh

(√
c2 + 4µ(x− L)

2

)
− (2σκ + |c|κα)√

c2 + 4µ
cosh

(√
c2 + 4µ(x− L)

2

)]
.

The limit x→ 0+ leads to

uL(0+) = e
cL
2

[
κα cosh

(√
c2 + 4µL

2

)
+

(2σκ + |c|κα)√
c2 + 4µ

sinh

(√
c2 + 4µL

2

)]
,

u′L(0+) = e
cL
2

[(
σκ(

|c|√
c2 + 4µ

− 1)− καµ√
c2 + 4µ

)
sinh

(√
c2 + 4µL

2

)
− σκ cosh

(√
c2 + 4µL

2

)]
.

On the other hand, let u−∞ be the tail of any nonincreasing solution of (P1) with a speed c. We deduce
that the value u−∞(0) determines u′−∞(0−) by the following identity:

u′−∞(0−) = −

√
2

∫ 1

u−∞(0−)
g(u)du+ 2|c|

∫ 0

−∞
u′−∞(x)2dx.

Since if a solution exists, it is C1 and it must satisfy

u−∞(0−) = uL(0+) and u′−∞(0−) = u′L(0+).

Therefore, we look for L > 0 such that

u′L(0) = −

√
2

∫ 1

uL(0)
g(u)du+ 2|c|

∫ 0

−∞
u′−∞(x)2dx. (16)

On one hand, we claim that if L = 0 then there holds

−

√
2

∫ 1

κα
g(u)du+ 2|c|

∫ 0

−∞
u′−∞(x)2dx < σκ < 0.

Indeed, if it is not the case, there exists a point x0 < 0 and x1 ∈ R such that u−∞(x0) = uTW(x0 + x1)
and u′−∞(x0) = u′TW(x0 + x1) (see the phase portrait in Figure 1). It would imply that u−∞(−∞) = α:
a contradiction.

On the other hand, there exists L1 > 0 such that uL1(0) = 1 (since uL(0) −→
L→+∞

+∞). For a such size

L1, the right-hand side of (16) is 0 whereas the left hand side is strictly negative.
We conclude that for any κ ∈ (0, 1), there exists a size Lκ such that (P1) with parameters (c, Lκ)

admits a solution which verifies

uLκ(Lκ) = κα and u′(Lκ) = σκ.

We have proved that Λ(c) > 0 (Assertion 1). We have also proved that any solution behaves like
uTW in a neighbourhood of +∞. It is clear that there does not exist a solution which satisfies u(L) > α
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Figure 1: Phase portrait of u−∞ and uTW.
Since both solutions are decreasing, if u′−∞(0) < u′TW(0) then both curves intersect : a contradiction.

(otherwise u behaves like uTW and u(L) > maxuTW : a contradiction). We deduce that α = sup
L>Λ(c)

u(L).

Moreover, since all the solutions are ordered (thanks to Proposition 2), we deduce that Lκ →
κ→1

Λ(c). It
follows that

lim
L→Λ(c), L>Λ(c)

u(L) = α and lim
L→Λ(c),L>Λ(c)

u′(L) = 0.

Remark. From the last part of the previous proof, we deduce that if there exists a traveling wave solution
of (9), then there exists a non-trivial minimal solution of{

− cu′ − u′′ = g(u)1{x<0, x>Λ(c)} − µu1{0<x<Λ(c)},

u(−∞) = 1

and satisfies u(x) = α for all x ≥ Λ(c). (here, by minimal we mean that if there exists a solution v of the
above system such that 0 < v ≤ u then v = u).

We conclude this subsection with the proof of Corollary 1.

Proof of Corollary 1. It is a direct application of 3. Proposition 3 and Theorem 4.10 in [15]. This last
result tells us that such a traveling wave exists if and only if |c| ≥ 2

√
g′(α). Indeed, since g′′(α) > 0, we

deduce that this traveling wave exists and is solution of{
− cu′KPP − u′′KPP = g(uKPP)

uKPP(−∞) = α, uKPP(+∞) = 0.

The stable state 0 invades the unstable state α with a speed c. Since uKPP ∈ (0, α), we deduce that the
reaction term may be understood as a Fisher-KPP type reaction term.

2.4.4 Characterization of the case L < Λ(c)

Proof of Proposition 4. Let L < Λ(c) be such that the solution u of{
− cu′ − u′′ = g(u)1{x<0, x>Λ(c)} − µu1{0<x<Λ(c)},

u(−∞) = 1

does not satisfies u(∞) = 0. We will also denote by u∞ the solution of (P1) with parameters (c,Λ(c) + ε)
with ε a small parameter that we will fix later on.
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First, we prove that u is increasing in [L,+∞[. Assume, by contradiction, that there exists x ∈ [L,+∞[
such that u′(x) < 0. We define x0 = inf {x > L, u′(x) < 0}. The point x0 exists by hypothesis and
satisfies u(x0) ≥ u(L) > u∞(Λ(c) + ε) according to Proposition 2 (and for ε small enough). Without lost
of generality, we may assume ε small enough such that u′(x0) < u′∞(Λ(c) + ε) < 0. Next, we introduce
x1 = inf {x > x0, u′(x) > 0} such that u is decreasing in (x0, x1). We claim that x1 = +∞.
Indeed, if x1 < +∞, since u(x1) is a local minimum, we deduce that

u′(x1) = 0, g(u(x1)) = −u′′(x1) < 0 ⇒ u(x1) ∈ (0, α).

Using again that u′(x1) = 0, we conclude, thanks to a phase portrait analysis (see Figure 2), the existence
of y ∈]x0, x1[ and z0 > Λ(c) such that u(y) = u∞(z0 + y) and u′(y) = u′∞(z0 + y). In this phase portrait,
it is quite clear that if u′ < 0 only on an interval. The desired contradiction follows. The existence of this
contact point between the two curves (u, u′) and (u∞, u

′
∞) implies the following contradiction : u(x)→ 0

as x→ +∞.

Figure 2: Existence of y ∈]x0, x1[ and z0 > Λ(c) such that u(y) = u∞(z0 + y) and u′(y) = u′∞(z0 + y)

It follows that u′ < 0 in (L,+∞). Since u is bounded, we deduce that u converges either to α or to 0.
Since L < Λ(c), u converges to α (by definition of Λ(c)). Therefore, we have u(x) > α and u′(x) < 0 for
all x > L. We deduce that

−u′′(x) = cu′(x) + g(u(x)) > 0.

Thus, u is a decreasing concave function which converges as x tends to +∞. This is a contradiction. We
conclude that u′(x) ≥ 0 for all x ∈ [L,+∞[.

Next, we prove that u converges to 1. The solution is bounded by the maximum principle and from
the previous part of the proof, the solution is increasing for x > L. Hence, it converges to a 0 of g. Since
u(L) > α, we conclude that u converges to 1.

It remains to prove that u′ = 0 admits only one solution. If it admits two solutions, they are necessary
in (0, L). Then, one can construct a super-solution u of (P1) with parameters (c, L) such that u ≤ u.
Indeed, assume that u′ changes its sign at least twice. Since u′(0) < 0 and u′(L) > 0, we deduce that
there exists x0, x1 ∈ (0, L) such that

x0 < x1, u′(x0,1) = 0 and u′′(x0,1) > 0.

Moreover, without loss of generality we may assume that

1. there does not exist any other point in (x0, x1) that satisfies such conditions,

2. u(x0) ≥ u(x1).
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We define x2 = sup {x ∈ [x0, x1], u(x) = u(x0)}. According to the convexity of the curves, we deduce
that u′(x2) ≤ 0 and u(x) > u(x0) for any x ∈ (x0, x2). Next, we define

u(x) =


u(x) for x < x0,

u(x0) for x ∈ [x0, x2],

u(x) for x > x2.

Following the same computations as in the proof of Proposition 2, u is a super-solution of (P1). Moreover,
u ≤ u. This is in contradiction with the minimality of the solution u. Therefore, we deduce that u changes
its sign only once.

3 The sterile male release strategy

This section is organized as follow: first we introduce some theoretical intermediate results and definitions.
The next subsection is devoted to the proof of the properties of mS . Indeed, the dynamics of the sterile
males is independent of the one of the females (notice that the contrary is obviously false). Next, we prove
the existence of a solution and the properties of this solution.

3.1 Intermediate results

First, we introduce the main tool : a simple comparison principle for the system (P2). Since (mS 7→
g(f,mS)) is decreasing, we conclude to the following comparison principle:

Proposition 7 (Comparison principle for (P2)). Let (f1,m1) and (f2,m2) satisfying{
∂tf1 − cf ′1 − f ′′1 − g(f1,m1) ≤ 0,

∂tm1 − cm′1 −m′′1 − gM (m1) ≥ 0,
and

{
∂tf2 − cf ′2 − f ′′2 − g(f2,m2) ≥ 0,

∂tm2 − cm′2 −m′′2 − gM (m2) ≤ 0,

and
f1(t = 0) ≤ f2(t = 0) and m2(t = 0) ≤ m1(t = 0).

Then for all t ≥ 0, we have
f1(t) ≤ f2(t) and m2(t) ≤ m1(t).

It illustrates the intuition: the more sterile males are released, the less efficiently females reproduce.
From this comparison principle, we construct solutions to (P2) which satisfy f(−∞) = 1 (the stable
non-trivial equilibrium) and f(+∞) = 0. We begin by providing a complete description of mS .

Proposition 8. For any parameters (L, c,M) ∈ R+∗ × R− × R+∗, there exists a weak-solution mS to

−cm′S −m′′S + µsmS = M1(0,L). (17)

Moreover, the following assertions hold true:

1. mS ∈ H1(R) ∩ C1(R),

2. 0 ≤ mS ≤ M
µs
,

3. for all x ∈ R

mS(x) = ML

∫
R

sinc(Lξ2 )e2iπξx+iπL

2[4π2ξ2 + 2πicξ + µs]
dξ

(
with sinc(y) =

sin(y)

y

)
, (18)
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4. lim
x→±∞

mS(x) = 0,

5. there exists x0 ∈ (0, L) such that mS is increasing in (−∞, x0) and decreasing in (x0,+∞).

Now, we have a full description of mS , we state

Proposition 9. For any c ≤ 0 and L > 0, there exists a parameter M such that (P2) with parameters
(c,M, L) admits a solution f .

As for the killing strategy, the idea is to build a super-solution ψ+ and a sub-solution ψ− that are well
ordered (ψ− ≤ ψ+). We will construct these sub and super-solutions such that for ε small enough, there
holds

ψ+(∞) = 0, ψ−|R+ = 0, ψ+(−∞) = 1 and ψ−(−∞) > 1− ε.

To play the an equivalent role as Λ(c) in the previous problem, we introduce

Π(c, L) = inf {M > 0, (P2) with parameters (c, L,M) admits a solution} .

We prove some properties of Π(c, L):

Proposition 10. The function Π is well defined. Moreover, for a fixed speed c ≤ 0, the function L 7→
Π(c, L) is decreasing and satisfies

lim
L→0

Π(c, L) = +∞ and lim
L→+∞

Π(c, L) = Π∞(c) > 0.

Finally, for any fixed size L > 0, there holds

lim
c→−∞

Π(c, L) = +∞.

To prove Proposition 10, we will use a corollary of Propositions 7 and 8:

Corollary 2. Let (c, L1,M1) and (c, L2,M2) be two sets of positive parameters such that (P2) admits two
solutions (m1

S , f1) and (m2
S , f2) and such that

M1 ≤ M2 and L1 ≤ L2.

Then we have
m1
S ≤ m2

S and f2 ≤ f1.

3.2 Proof of Theorem 2

Theorem 2 is a direct application of Propositions 9 and 10.

3.3 Study of the sterile male density

Proof of Proposition 8. We prove each of the points of Proposition 8.
Proof of 1. If we study the variational form associated to (17), it follows∫

R

(
(m′S)2 + µsm

2
S −

c

2

(
m2
S

)′)
dx =

∫ L

0
MmSdx.

The right hand side is a continuous application from H1(R) to R. The bilinearity of the application

a(u, v) =

∫
R
u′v′ + µsuv +

c

2
(uv)′ dx
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is straightforward. Since H1(R) = H1
0 (R), we deduce that

∫
R
(
u2
)′
dx = 0 and it follows

min(1, µs)‖u‖H1(R) ≤ a(u, u).

We conclude, thanks to the Lax-Milgram Theorem, the existence of mS ∈ H1(R) solution of (17) with
parameters (c, L,M). Moreover, by elliptic regularity, we deduce that mS ∈ C1(R).

Proof of 2. By remarking that 0 is a solution and that M
µs

is a supersolution. We deduce thanks to
the weak maximum principle that

0 < mS <
M

µs
.

Proof of 3. According to 1., we have mS ∈ L2(R). If we perform a Fourier transform, it follows:

2πicξm̂s + 4π2ξ2m̂s + µsm̂s =
ML sinc(Lξ2 )eiπL

2

where we have adopted the following definitions :

f̂(ξ) =

∫
R
f(x)e−2iπxξdx.

We deduce that

m̂S(ξ) =
ML sinc(Lξ2 )eiπL

2[4π2ξ2 + 2πicξ + µs]
.

Since inf
ξ∈R
|4π2ξ2 + 2πicξ+ µs| ≥ inf

ξ∈R
4π2ξ2 + µs > 0, we deduce that m̂S ∈ L1(R)∩L2(R) and we conclude

that

mS(z) = ML

∫
R

sinc(Lξ2 )e2iπξz+iπL

2[4π2ξ2 − 2πicξ + µs]
dξ.

Proof of 4. By noticing that m̂s ∈ L1(R), we conclude that mS(x) −→
x→±∞

0.

Proof of 5. Thanks to 4., we deduce that mS takes its maximum at some point x0 ∈ R. Since the
reaction term is positive only in (0, L), the weak maximum principle implies that x0 ∈ (0, L).
Next, we prove by contradiction that mS is monotonous on (−∞, x0) and on (x0,+∞). If it is not the case
in (−∞, x0) (the other case is treated with the same method), since mS(x) →

x→−∞
0, we deduce that there

exists x1 ∈ (−∞, x0) such that m′S(x1) = 0 and −m′′S(x1) > 0 (in a weak sense). Since mS(x0) = maxmS

and m′S(x1 + ε) < 0, it follows the existence of x2 ∈ (x1, x0) such that m′S(x2) = 0 and −m′′S(x2) < 0 (in
a weak sense). Regarding the sign of the reaction term, is follows that 0 < x1 and x2 < 0. Recalling that
x1 < x2 < x0, it follows the desired contradiction.

3.4 Construction of the solution f

We adopt the same strategy to construct the sub and the super-solutions as for equation (P1). First, we
begin with a super-solution constructed by parts, next, we focus on the subsolution.
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3.4.1 Construction of a super-solution

First, we fix a size L > 0 and c ≤ 0. We split the domain into three parts : R−, (0, L∗) and (L∗,+∞) with
L∗ ≥ L an arbitrary size of interval. The density of released mosquitoes M at each position of the interval
(0, L) is a free parameter. Next, we introduce, for u ∈ R+

gsuper(u, x) =


g(u, 0) for x ≤ 0,

− µ

2
u for 0 ≤ x ≤ L∗,

g(u, 0) for for x > L∗.

(19)

We claim the following result:

Lemma 5. For any L > 0, there exists M0 > 0 such that for any M > M0, we have g(u, x) ≤ gsuper(u, x)
for all x ∈ R and u ≥ 0.

Proof. The assertions holds true for x < 0 and x > L∗. For x ∈]0, L∗[, it suffices to remark that for a
fixed value L∗, as M increases min

x∈(0,L∗)
mS(x) increases (see (18)). The conclusion follows by remarking

that g(u, x) converges locally uniformly to −µu as M→ +∞.

The two following Lemmas are similar to Lemmas 2 and 3. The proofs are identical, therefore we do
not provide them.

Lemma 6. There exists γ0 > 0 and δ0 > 0 such that the solution of the following ODE{
− cv′2 − v′′2 = gsuper(v2, x),

v2(L∗) = γ0, v′2(L∗) = −δ0
(20)

satisfies
v2(+∞) = 0 and v′2(+∞) = 0.

Lemma 7. There exists a size L∗ > 0 such that there exists a solution v1 of the following problem
− cv′1 − v′′1 = −µ

2
v1

v1(0) = 1, v1(L∗) = γ0,

v′1(0) ≤ 0, v′1(L∗) = 0.

(21)

We conclude with the construction of the super-solution:

Lemma 8. For any speed c ≤ 0, size L > 0, there exists M > 0 such that (P2) with parameters (c, L,M)
admits a super-solution ψ+ which satisfies

ψ+(−∞) = 1 and ψ+(+∞) = 0.

Proof. Let c ≤ 0 be a fixed parameter. Let γ0 and δ0 be given by Lemma 6. Next, thanks to Lemma
7, we deduce the existence of L∗ such that the conclusion of Lemma 7 holds true. Then, according to
Lemma 5, there exists a value of M large enough such that it is sufficient to construct a super-solution of
the equation

−cψ′+ − ψ′′+ = gsuper(ψ+, x) (22)

to obtain a super-solution of −cu′ − u′′ = g(u,mS(x)). The function

ψ+(x) =


1 for x < 0,

v1(x) for 0 ≤ x ≤ L∗,
v2(x) for x > L∗,

(where the function v1 and v2 are provided by Lemmas 6 and 7) is a super-solution of (22). Since
lim

x→−∞
ψ+(x) = 1 and lim

x→+∞
ψ+(x) = lim

x→+∞
v2(x) = 0, the conclusion follows.
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3.4.2 Construction of a sub-solution

Since (P2) is fully non-autonomous, the construction of the sub-solution is more tricky than the one for
(P1). First, we introduce the following result:

Lemma 9. There exists m0 > 0 such that for all m ∈ [0,m0], the application (f 7→ g(f,m)) is bistable in
the following sense:

∃αm, εm > 0 such that αm < 1− εm,
g(0,m) = g(αm,m) = g(1− εm,m) = 0,

g(f,m) < 0 for 0 < f < αm,

and g(f,m) > 0 for αm < f < 1− εm.

Moreover, m0 can be taken small enough such that αm is an unstable equilibrium and 1 − εm is a stable
equilibrium with ∫ 1−εm

0
g(f,m)df > 0.

Proof. Remarking that (f 7→ g(f, 0)) is a bistable reaction term and noticing that (m 7→ g(F,m)) is
uniformly continuous with g(0,m) = 0 for any m > 0 (assumption (H4)), we deduce that there exists
m0 > 0, such that the conclusion is true.

Remark that αm → α and 1− εm → 1 as m→ 0. Therefore, without loss of generality we may assume
m0 small enough such that

∂g

∂f
(f, 0) < 0 for any f ∈]1− εm, 1[. (23)

Let m ∈]0,m0[ be fixed and ψ− be the solution of

− ψ′′− = g(ψ−,m) in R−,

ψ−(0) = 0, lim
x→0
x<0

ψ′−(0) = −2

√∫ 1−εm

0
g(u,m)du,

ψ− = 0 in R+.

(24)

A classical portrait phase analysis tells us that ψ−(−∞) = 1−εm and ψ′− ≤ 0. We claim that a translation
of ψ− is an admissible sub-solution.

Lemma 10. There exists x0 < 0 such that φ−(x) = ψ−(x− x0) is a sub-solution of (P2).

Proof. We define x0 = sup {x < 0, mS(x) < m} (such a x0 exists thanks to Proposition 8). Since
φ−|{x>x0} = 0, we focus on x < x0:

−cψ′− − ψ′′− − g(ψ−,mS(x)) = −cψ′− + g(ψ−,m)− g(ψ−,mS(x)).

First we remark that mS(x) < m implies g(ψ−,m) − g(ψ−,mS(x)) < 0 (thanks to (H4)). Second, it is
clear that −cψ′− < 0. We conclude that

−cψ′− − ψ′′− − g(ψ−,mS(x)) ≤ 0,

Since the lim
x→x0

x<x0

ψ−(x)′ < 0 = lim
x→x0

x>x0

ψ′−(x), ψ− is a subsolution of (P2).
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3.4.3 Conclusion: Construction of a solution

Proof of Proposition 9. From the sub and the super-solutions established in Lemmas 8 and 10, it follows
the existence of a solution f of (P2) with parameters (c, L,M) which satisfies:

lim
x→+∞

f(x) = 0 and 1− εm ≤ lim
x→−∞

f(x) ≤ 1.

We claim that lim
x→−∞

f(x) = 1. We distinguish two cases :

lim inf
x→−∞

f(x) = lim sup
x→−∞

f(x) or lim inf
x→−∞

f(x) < lim sup
x→−∞

f(x).

Case 1. In this case, if f converges, it is to a zero of g(·, 0). Moreover, this root must belong to [1−εm, 1].
It follows that this root is 1. We conclude that

lim
x→−∞

f(x) = 1.

Case 2. In this case, we deduce that f ′ changes its sign in a neighbourhood of −∞. Let (yn)n∈N be a
decreasing sequence such that yn → −∞, f(yn) is a local minimum of f and |f(yn)− lim sup

x→−∞
f(x)| >

1
2 |lim inf
x→−∞

f(x)− lim sup
x→−∞

f(x)| := δ. Since f(yn) is a local minimum, we deduce that

f ′(yn) = 0 and g(f(yn),mS(yn)) = −f ′′(yn) ≤ 0.

Moreover, since 1− εm ≤ lim inf f(yn) ≤ 1− δ, we deduce that

lim inf g(f(yn),mS(yn)) = lim inf g(f(yn), 0) > 0.

We have a contradiction, this case is impossible.

We conclude that f(x) −→
x→−∞

1 and the solution verifies all the desired properties.

3.5 Study of Π(L, c)

Proof of Proposition 10. We split the proof into 3 parts: first we prove that Π is well defined, next we
prove that it is decreasing, finally, we study the limit L→ +∞.

Proof that Π is well defined. Since for any size L > 0 and speed c ≤ 0, a solution to (P2) exists for
M large enough, we deduce that Π(c, L) is well defined.

Proof that Π is decreasing with respect to L. Let two sizes of interval L1 and L2 be such that L1 < L2.
Let M > 0 be such that (P2) with parameters (c, L1,M) admits a solution f1. Finally, we introduce m1

S

and m2
S as the two associated (with respect to Li) distributions of sterile males. We claim that f1 is a

super-solution to (P2) with parameters (c, L2,M). Indeed, since L2 > L1, we deduce thanks to (18) that
m1
S < m2

S . By recalling that m 7→ g(f,m) is decreasing, it follows that

−c(f1)′ − (f1)′′ − g(f1,m2
S) = g(f1,m1

S)− g(f1,m2
S) > 0.
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By the method of the sub and super-solution presented above, we deduce that (P2) with parameters
(c, L2,M) admits a solution. Passing to the infimum, we conclude that

Π(c, L1) ≥ Π(c, L2).

Proof that lim
L→0

Π(c, L) = +∞. Assume by contradiction that it is not the case. Let Π0 be the

supremum of Π in a neighborhood of L = 0. Let mL
S be the distribution of sterile males associated with

parameters (c, L,Π0) and fL the associated solution of (P2). We introduce m0 such that (f 7→ g(f,m0))

is bistable and sign
(∫ 1−εm0

0 g(u,m0)du
)

= sign
(∫ 1−εm0

0 g(u, 0)du
)
> 0. According to (18), we have

mL
S(x) −→

L→0
0 uniformly therefore, we assume that L is small enough such that mL

S < m0. We claim that
fL is a super-solution of

−cu′ − u′′ = g(u,m0). (25)

Indeed, according to (H4), it follows that

−cf ′L − f ′′L − g(fL,m0) = g(fL,mS)− g(fL,m0) > 0.

Hence, thanks to Lemma 10, we deduce the existence of a traveling wave solution of (25) which connects
the two stable states 0 and 1 − εm0 . Moreover, this traveling wave has a negative speed c which is in
contradiction with [4] (since

∫ 1−εm0
0 g(u,m0)du > 0 by hypothesis).

Proof that lim
L→+∞

Π(c, L) = Π∞(c) > 0. The proof works the same as the above : By contradiction, if

we assume lim
L→+∞

Π(c, L) = 0, one can deduce the existence of a traveling wave of a bistable equation with

a negative speed which connects the two stable states. Moreover, this bistable equation can be chosen
such that the only traveling wave that connects these two stable states has a positive speed (see [4]): a
contradiction. We let the details to the reader.

Proof that lim
c→−∞

Π(c, L) = +∞. The proof works the same as the above proof : by contradiction. If
the conclusion is false for a size L > 0, it follows that there exists M0 > 0 such that for any negative speed
c, Π(c, L) < M0. Next, the dominated convergence theorem applied to (18) implies that ‖mS‖∞ → 0 as
c → −∞. Let m0 be the parameter provided by Lemma 9, c < 0 such that Π(c, L) < M0 and mS < m0.
We conclude by remarking that (P2) with parameters (c, L,M0) admits a solution u and such a solution
is a super-solution of

−cf ′ − f ′′ = g(f,m0).

This gives the existence of a traveling wave solution with a negative speed to the equation{
∂tf − f ′′ = g(f,m0),

f(−∞) = 1− εm0 , f(+∞) = 0.

By taking m0 small enough such that
∫ 1−εm0

0 g(u,m0)du > 0 the contradiction follows.

4 Numerical illustrations

First, we detail the numerical schemes. We discretize a parabolic version of (P) and we let the time
increases until the numerical solution reaches a numerical equilibrium. This equilibrium is assumed to be
achieved if the error between two large times is small enough (i.e. a Cauchy criteria). We use an interval
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large enough to consider that the derivatives of the stable states at the boundaries are 0. Therefore, we
implement (P) with Neumann boundary conditions:{

∂tu− c∂xu− ∂xxu = g(u)1(0,L) +Act(x, u)1(0,L)c ,

∂νxu = 0.
(26)

In a first subsection, we present a numerical illustration of Theorem 1 for the function

g(u) = u(1− u)(u− α).

This classical bistable reaction term verifies (H1), (H2) and g is convex in (0, α). For the computation
of Λ(c) for (P1), we use a dichotomy method : We fix a speed c and let two sizes of intervals L− < L+

be such that (P1) admits a solution for parameters (c, L+) and does not admit a solution for parameter
(c, L−). Next, we solve numerically (P1) with parameters (c, L−+L+

2 ). If the solution invades the territory,
we replace L+ by L−+L+

2 and if the solution does not invade the territory, we replace L− by L−+L+

2 . We
underline that the sign of the derivative at L provides a suitable invasion criterion.

For the second strategy, we provide a simulation of (26) with g which satisfies (5) with different sets
of parameters (c, L,M). Since we do not have a precise invasion criterion as above, we only provide the
critical size that ensures invasion for a fixed speed c and a constant number of released sterile mosquitoes
M.

4.1 The killing strategy for the "classical" bistable reaction term

We perform the numerical investigation of Λ(c) for different values of c between cmin and cmax. The
numerical parameters are fixed as follow :

xmin xmax Lmin Lmax α dx dt cmin cmax

-75 75 2 39 1
4 0.03 0.5 0 2.2

Figure 3 represents the dependence of Λ(c) with respect to |c|. Figure 4 presents the numerical
simulations of (P1) with parameters (1,Λ(1)) (for the orange curve) and (1,Λ(1) − 10−4) (for the blue
curve). Notice that the value Λ(c) used here is the one presented in Figure 3. We recover that the (P1)
with parameters (c, L) admits a solution if and only if L > Λ(c). Finally, Figure 5 presents the numerical
computations of g(u(Λ(c)) (with Λ(c) obtained numerically). We recover that for L close to Λ(c), we have
u(Λ(c)) close to α for |c| ≥

√
3

2 .

Figure 3: Numerical computa-
tion of Λ(c) with respect to |c|

Figure 4: Numerical results of
(P1) with parameters (1,Λ(1))
(orange curve) and (1,Λ(1) −
10−4) (blue curve)

Figure 5: Numerical compu-
tation of g(u(Λ(c)) with re-
spect to |c|
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Figure 6: Numerical simulations of the proportion of females subject to the dynamics of (27) with param-
eters M = 20000, c = −0.05 varying the size L of the released interval : Left, L = 17.4 ; Right, L = 17.49.
Using the dichotomy method, we have obtained the minimal size of interval that ensures invasion for a
such set of parameters (c,M).

4.2 A biological investigation : the Aedes albopictus

For the numerical illustration of this strategy, we present a numerical simulation of the parabolic system
modeling specifically the mosquitoes case introduced in [18]. First, we recall the system introduced in
Chapter 9 of [18] and the spatially version developed in [2]. The considered system reads

∂tf −D∂xxf =
rνEKbτf

2(1− eτf+γsmS )

bτf2(1− eτf+γsmS ) +K(νE + µE)(τf + γsmS)
− µF f

∂tmS −D∂xxmS = M1(−ct,L−ct) − µSmS ,

f(t = 0) = F1{x<a}, mS = M1(0,L),

(27)

where a is a positive constant and F is the non-trivial stable equilibrium of g(·, 0). We refer to [18, 2] for
a derivation of the model and the explanation of the meaning of the constants. But we provide typical
values of the constants:

r νE K b τ γs µF µS
0.49 0.7 1440 10 0.41 1 0.04 0.1

For such a choice of parameters, the reaction term g(·, 0) is bistable and one can apply Theorem 2.
Moreover, we notice that the equilibria F (the non-trivial stable one) and F ′ (the unstable one) of g(·, 0)
are such that

0 < F ′ << F.

The aim of the numerical investigation is to illustrate the fact that the generated traveling wave eradicates
the natural invasive mosquitoes wave. As above, we solve numerically (27) by a semi-implicit scheme in
a large space interval (large enough to consider that the boundary conditions are of Neumann types).
For a fixed number of released mosquitoes (M = 20000) and a fixed speed c (c = −0.05), we manage to
compute numerically the optimal size of released by a dichotomy method. We present this result in Figure
6. Indeed, Figure 6 represents the number of females depending on position x and time t. The red lines
represent the moving interval where we release the mosquitoes : (−ct, L − ct). We observe that in the
first case (L = 17.4), the interval is too small and the population does not go to extinction whereas in the
second case (L = 17.49), the population of females goes to extinction. In this second case, we succeed in
generating a traveling wave solution of (P2).
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Homogeneous released Heterogeneous released

Figure 7: Comparison of homogeneous released with a heterogeneous released that need less sterile males.
In the heterogeneous case, the first strip represents the moving interval (−ct, 2L∗

3 − ct) and the second
strip stands for (2L∗

3 − ct,
7L∗

6 − ct).

5 Conclusions and perspectives

In conclusion, we study the existence of a traveling wave with negative speed to eradicate a population for
both strategies. For the first strategy, this traveling wave exists if and only if the size of the interval where
we act is large enough. We also manage to have a full description of the critical case. From a practical
point of view, this is an interesting result. Indeed, since killing individuals has a cost, by maximizing the
speed, we minimize the duration of the treatment and therefore we minimize the cost of the strategy.
For the sterile male strategy, the picture is different. For any size of interval, if we release enough sterile
males M, there exists a traveling wave solution. For this strategy, its cost may be defined by the quantity
N of sterile males needed to be produced/released at each time:

N = L×M.

Therefore, a perspective of this work is to optimize this number: giving a speed c ≤ 0, how to minimize
N . The aim is to find Λ(c) that satisfies

min
L>0

L×Π(c, L) = Λ(c)×Π(c,Λ(c)).

For the same purpose (i.e. minimize the cost of production), an other idea is to consider heterogeneous
distributions of released of sterile males. For instance, we can model the release of sterile males by a
piecewise constant function. The question is can we generate an eradication traveling wave as above but
releasing less mosquitoes ?
A first numerical investigation provides a positive answer. Indeed, we can take advantage that we expect
f(x = L) < f(x = 0). Therefore, it is not necessary to release as many individuals in the area x close to
L than in the area x close to 0. This is why, we compare the numerical simulations provided after the two
following distributions of release:

M1(0,L∗)(x) and M1(0, 2L∗
3

)(x) +
M

2
1( 2L∗

3
, 7L∗

6
)(x)

(where L∗ is the minimal numerical size that ensures the extinction of the population for M and a speed c
introduced in section 4). The two numerical results are presented in Figure 7. In both cases, we succeed
in eradicating the invasive species.

If we compute the number of released sterile males at each step for each strategy, it follows

Nhomogeneous = ML∗ and Nheterogeneous =
11ML∗

12
.
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We conclude that less sterile males are needed for the heterogeneous releases. A deeper study of this
strategy can be a good approach in order to minimize the total cost of production of sterile males.

Another perspective is to focus on a problem which is closer to the reality: the same problem in a
domain Ω ⊂ R2. Without specifying it, we have used plenty of times that localized area where we act
separates R into two disconnected areas. It is obvious that it can be false for higher dimension. Therefore,
we expect new difficulties coming from this fact.
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