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ARTICLE

Enabling reactive microscopy with MicroMator
Zachary R. Fox 1,2,3,6, Steven Fletcher1,2,6, Achille Fraisse1,2, Chetan Aditya 1,2, Sebastián Sosa-Carrillo1,2,

Julienne Petit4, Sébastien Gilles5, François Bertaux 1,2, Jakob Ruess1,2 & Gregory Batt 1,2✉

Microscopy image analysis has recently made enormous progress both in terms of accuracy

and speed thanks to machine learning methods and improved computational resources. This

greatly facilitates the online adaptation of microscopy experimental plans using real-time

information of the observed systems and their environments. Applications in which reac-

tiveness is needed are multifarious. Here we report MicroMator, an open and flexible soft-

ware for defining and driving reactive microscopy experiments. It provides a Python software

environment and an extensible set of modules that greatly facilitate the definition of events

with triggers and effects interacting with the experiment. We provide a pedagogic example

performing dynamic adaptation of fluorescence illumination on bacteria, and demonstrate

MicroMator’s potential via two challenging case studies in yeast to single-cell control and

single-cell recombination, both requiring real-time tracking and light targeting at the single-

cell level.
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Software for microscopy automation is essential to support
reproducible high-throughput microscopy experiments1.
Samples can now be routinely imaged using complex spatial

and temporal patterns. Yet, in the overwhelming majority of
cases, executions of experiments are still cast in stone at the
beginning, with little to no possibility for human or computer-
driven interventions during the experiments. Applications in
which reactiveness is needed are multifarious. One can for
example think of detecting a loss of focus and triggering an
autofocus routine, of adapting the imaging conditions to time-
changing specificities of the sample, of detecting rare events and
adapting the imaging routine, of detecting moving objects of
interest and following them by moving the stage, or even simply
of sending a message via email or messaging applications upon
the detection of interesting or problematic situations that might
necessitate unplanned human interventions. This situation is all
the more surprising given that image analysis has recently made a
giant leap in terms of accuracy and rapidity thanks to deep
learning methods and software which leverage modern compu-
tational resources2, thus opening the way for implementing ela-
borate protocols. Software empowering microscopy with real-
time adaptation capabilities are needed to exploit the full
potential of automated microscopes.

Several dedicated microscopy software solutions have been
developed for applications requiring real-time analysis. This is
notably the case for the efficient scanning of large and complex
microscopy samples3–7. For applications aiming at controlling in
real-time cellular processes8–14, results are generally obtained
using ad hoc software solutions. In such experiments, the goal is
to perturb biomolecular processes within cells using externally
controlled inputs. These inputs may be chemical9,10,13,15 or
optogenetic8,11,12,14. In their most elaborate form, these experi-
ments aim to perturb or control individual cells as they grow and
divide. Due the complexity that is required to coordinate the
software, hardware, and biological aspects of reactive experi-
ments, very few generic tools have been developed so far to
facilitate them. One notable exception is Pycro-Manager16. This

powerful framework is built on top of Micro-Manager, a widely-
used software17,18 controlling a large range of microscopy hard-
ware. In Pycro-Manager, reactive protocols are built from the
ground up. While this gives maximal flexibility, it also increases
the difficulty to rapidly design experiments, especially for non-
expert users. Moreover, no in-depth case studies demonstrating
its practical applicability—and showing possible limitations—
have been reported so far. One can also mention Python-
Microscope, a free and open-source library that provide Python
support for the high-performance control of arbitrarily complex
and scalable custom microscope systems19. Lastly, Cheetah is a
simple to use Python library to support the development of real-
time cybergenetic control platforms that combines microscopy
imaging and microfluidics control20. In its current state, the
possibilities to programmatically control the microscope appear
limited.

In this paper, we present MicroMator, a software solution
supporting reactive microscopy experiments, provide a pedagogic
example performing dynamic adaptation of fluorescence illumi-
nation on bacteria and demonstrate MicroMator’s potential via
two challenging case studies in yeast that require real-time
tracking and light targeting at the single-cell level.

Results
MicroMator software. In MicroMator, microscopy experiments
are defined by a main image acquisition loop, that serves as a
backbone for the experiment, and by event creation functions that
implement the reactivity of the experiment. Events play a fun-
damental role (Fig. 1). They consist of Triggers and Effects.
Examples of triggers include “at the 10th frame”, “if more than
100 cells are in the field of view”, and “if the fluorescence of the
3rd newborn cell exceeds 100 arb. units”. Examples of effects
include changing a microscope configuration, sending light in the
field of view with a given pattern, actuating a microfluidic pump,
starting an optimization routine, and posting “Warning: focus
lost” or “Ending acquisition” messages on instant messaging

Fig. 1 MicroMator overview. a Modular software architecture. MicroMator consists of a core software that handles user-defined events and of an
extensible set of modules that control various hardware and software aspects of microscopy experiments. It is written in the high-level programming
language Python. It takes as inputs Python files defining events and Micro-Manager configuration files providing positions of interest and an imaging
backbone. b Event-based reactive microscopy workflow. Imaging can be followed by online analysis of the samples. This typically involves segmentation,
tracking, quantification of cell properties, and possibly advanced additional computations. Effects may then be triggered based on the result of the analysis.
These may include the physical actuation of the hardware or the initiation of communications or of additional computations.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29888-z

2 NATURE COMMUNICATIONS |         (2022) 13:2199 | https://doi.org/10.1038/s41467-022-29888-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications


software platforms such as Discord. Naturally, the main acqui-
sition loop itself can be modified by event effects in the course of
the experiment.

MicroMator is written in Python 3, is open-source, and has a
modular design. MicroMator is primarily a command line software
that reads configuration files that define the reactive experiments. A
graphical user interface (GUI) is provided as an alternative to
writing command line calls. It is notably used to define which
configuration files and which options should be used. Specifically, a
MicroMator reactive experiment necessitates two types of config-
uration files. The first one provides the programmatic definition of
the events. It is made of a python file that contains three functions:
an event creator function, a trigger function, and an effect function.
The user can use predefined functions for a few generic problems,
and take inspiration from all the events that are already part of the
code for specific ones. MicroMator also uses Micro-Manager-
generated files that specify the positions of interest in the field of
view (.pos files) and the imaging backbone of the experiment (.acq
files), that is, a default image acquisition sequence with which
MicroMator events will interact. They are obtained using the GUI
of Micro-Manager prior to running the MicroMator experiment.
Supplementary Movie 1 shows the different steps of the
initialization of a MicroMator experiment. By default, events are
created after each image acquisition in the main acquisition loop.
Their triggers are assessed, and their effects are implemented.
Because events can create events, highly complex experiments can
in principle be conceived.

MicroMator has a relatively small core and relies on modules
to implement most of the tasks at hand. For controlling hardware,
MicroMator primarily uses the Python API of Micro-Manager
pymmcore. It can also use other dedicated Python or web-based
APIs provided by vendors, as done for our CellAsic ONIX
microfluidic platform. In addition, various types of analysis can
be performed using dedicated software modules. One can notably
mention image analysis and optimization or real-time control
tasks. Within MicroMator, we have developed two image analysis
modules. The first one, called SegMator, is based on DeLTA21,
which uses U-Net for bright-field cell segmentation, and on
TrackPy22 for cell tracking. U-Net is a convolutional neural
network with a structure that excels at image segmentation23. The
second image analysis module we implemented is based on the
generalist, deep learning-based segmentation method Cellpose24.
Cellpose also uses the U-Net architecture. We use Cellpose to
segment Corynebacteria on agar pads and SegMator/DeLTA to
segment and track yeast cells in microfluidic plates. Moreover,
communication modules can also be used to interface Micro-
Mator with digital distribution platforms such as Discord to track
experiment progress and potential issues. Lastly, MicroMator
leverages Python’s multiprocessing module to perform computa-
tions concurrently and possesses an extensive and customizable
logging system, gathering logs of all modules in a unique file and
fostering reproducible research. Naturally, the set of modules can
be extended by the users to address specific needs. Novel modules
can simply be interfaces with other tools or can be arbitrarily
complex pieces of code. A more detailed description of the
software and the different modules is available in the Supple-
mentary Note 1. A complete example of event definition is
provided in the Supplementary Note 2 for a toy problem. Using
MicroMator necessitates some Python programming skills.
However, we would like to stress that extending a few portions
of code following a predefined architecture and having diverse
examples to take inspiration from, or writing a complete reactive
microscopy program from scratch are two tasks of very different
complexities that involve very different programming skills. This
holds for the initial development of the software and even more
so for its debugging, maintenance, and reuse.

To showcase the full potential of reactive experiments
performed with MicroMator, we designed experiments in which
cellular processes are controlled in real-time. Single-cell stimula-
tions are computed online based on the cell state and/or position,
demonstrating that reactive loops can be implemented at the level
of individual cells. These experiments are inspired by previously-
published studies11,12,14,25 and show how published studies could
be repeated and further extended using generic software.
However, before showing these advanced experiments, we
provide a simple example that illustrates that even very simple
instances of reactive experiments can help to address problems in
practice. A related but even simpler example is provided in
Supplementary Note 2.

Real-time exposure adjustment in bacteria. We consider
microscopy observations of Corynebacterium glutamicum strains.
Corynebacterium glutamicum is a model organism to study
Mycobacterium tuberculosis. Cells of interest are grown on agar
pads over more than 10 h. They express the cell-cycle marker
Wag31 fused to the fluorescent protein mNeonGreen, and the
Nile red lipolytic dye is used to stain membranes. Over several
hours, the red fluorescent dye may migrate or diffuse across the
agar pad, leading to a fluctuating and decreasing fluorescent
signal. Moreover, the intensity of the staining varies with the
different locations on the agar pad and between different agar
pads. These heterogeneities and temporal variations complexify
the analysis of the images: different acquisition settings are nee-
ded for different positions in the agar pad and for different time
points.

To tackle this issue, we use MicroMator along with a reactive
event that adapts the exposure time of the red channel acquisition
at every time point to achieve a targeted fluorescence value
(Fig. 2). The correction is specific to each field of view, so any
number of positions can be acquired, and their respective
exposure corrected during the same experiment. To measure
the intracellular fluorescence, we wrote an analysis module
performing bacteria segmentation in between the time points
using Cellpose, a deep-learning-based generalist algorithm for cell
segmentation24. After every image acquisition, if the mean
fluorescence of the cells is too far from the chosen target, the
exposure time is increased or decreased by a constant value. On
Fig. 2c, we can see that MicroMator maintained the fluorescence
around the chosen target through exposure adjustments. More-
over, exposure adjustments led to a less severe degradation of the
ratio between the cellular fluorescence and the background
fluorescence during the experiment, due to the decreasing
concentration of the dye.

Model predictive control (MPC) of gene expression at the
single-cell level in yeast. For our second application, we use the
EL222 optogenetic system and the mScarletI fluorescent reporter
to engineer light-responsive yeast cells (Fig. 3a). Using real-time
imaging, segmentation, and cell tracking, different cells can be
stimulated differently in the field of view using a digital micro-
mirror device (DMD). Our goal is to implement different MPC
strategies for controlling the expression levels of a protein in a cell
population. We used the SegMator image analysis module to
segment and track cells in the field of view in real-time. Dense
fields of cells can be analyzed in a few seconds and with good
accuracy (Supplementary Note 3 and Movie 2). The cellular
response of our engineered cells was then characterized for dif-
ferent light stimulation profiles. In our experiments, only the
most central part of the cell is targeted for light stimulation. This
erosion of the stimulation region helps improving the precision of
single-cell light stimulations in dense cell regions because of
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illumination bleed-through of DMD systems (see Supplementary
Note 4). Using our capacities to apply different light stimulations
to the different cells in the field of view, we could produce the
data set presented in Fig. 3b, and with more details in Supple-
mentary Fig. 6, in a single experiment. We then developed and
calibrated an “average cell” (deterministic) and a “single cell”
(stochastic) model of light-driven gene expression (Supplemen-
tary Note 5 and Supplementary Figs. 6 and 7). We used a delay to
account for the lag between the stimulation of the cell and the
detection of fluorescence of the reporter. We estimated its value
to be 36 min, corresponding to the estimated maturation time of
mScarlet-I26 and in accordance with the fast kinetics of the EL222
transcription factor27. We also note that as expected the estimated
value for the protein degradation and dilution time is in good
agreement with the estimated cell generation time (Supplemen-
tary Tables 1 and 2).

In open-loop control, the average cell model is used to
precompute a temporal pattern of light stimulation so that cells
follow a target behavior. This light pattern is then applied to all
cells in the field of view (Fig. 3c and Supplementary Movie 3).
In closed-loop population-based control, the average cell model
and the average of the measured fluorescence of cells are used
by classical state estimators and model predictive controllers to
compute in real-time the appropriate light stimulation to drive
the mean fluorescence to its target (Fig. 3d and Supplementary
Movie 4). Finally, in closed-loop single-cell control, a stochastic
model of gene expression and single-cell fluorescence measure-
ments are used by advanced state estimators and controllers to
compute in real-time the appropriate light stimulations to drive
the fluorescence of each and every cell in the field of view to its
target (Fig. 3e and Supplementary Movie 5). This control
problem is quite challenging and needs to be solved for
hundreds of cells in parallel. Advanced methods for numerical
simulation and state estimation were essential (see Supplemen-
tary Note 5 and Supplementary Fig. 8).

Defining control performance as the time averaged deviation to
target, we found that the single-cell control method leads to a

modest reduction of error of the population-averaged fluores-
cence but to a drastic improvement of the average error of the
single-cell fluorescence (Fig. 3f).

Patterns of recombined yeast cells. For our third application, we
constructed a light-driven artificial recombination system in yeast
and employed different light stimulation strategies to obtain var-
ious structures of recombined cells. We again used the EL222
optogenetic induction system but this time to drive the expression
of the Cre recombinase. The Cre recombinase induces the
expression of a fluorescent reporter, mCerulean, fused to a variant
of the Far1 protein, Far1M, via an amplification step using the
ATAF1 transcription factor (Fig. 4a, b). Far1 is the downstream
effector of the mating pathway, and Far1M has been shown to
arrest growth upon overexpression even in absence of mating
factor28. This strain was designed to exhibit a growth arrest upon
recombination as shown previously29. Firstly, we applied a ring-like
recombination signal. More specifically, every cell that was in the
designated zone at any moment throughout the experiment has
been targeted for recombination (Supplementary Movie 6). As a
result, we did obtain a ring-like pattern of recombined cells
(Fig. 4c). Experimental and biological limitations can be revealed by
the analysis of the tails of the distributions of the recombination
readout (i.e., mCerulean fluorescence) within the cell populations
(Fig. 4c). For example, we found that some cells have been erro-
neously targeted for recombination because of tracking issues, and
that only a few cells have not shown the recombined phenotype at
the end of the experiment despite having being effectively targeted
for recombination (Fig. 4c and Supplementary Fig. 10).

Secondly, we tried to create islets of recombined cells. To this
end, we dynamically searched for cells that were far from any
previously-targeted cell, and targeted these cells for recombina-
tion. To maximize the chances that the chosen cells do
recombine, we tracked each chosen cell and targeted it repeatedly
with light stimulations (Supplementary Movie 7). Our strategy
was effective in creating isolated micro-colonies of recombined
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Fig. 3 Control gene expression at the single cell level in yeast. a The red fluorescent protein mScarletI is placed under the control of the light-responsive
transcription factor EL222. b To efficiently characterize cell responses to light stimulations, cells in the field of view are partitioned in three groups, each
group being stimulated with a different temporal profile. Bright-field images are segmented and cells are tracked. Then, based on their groups, cells are
stimulated during the appropriate time with eroded masks (see Supplementary Fig. 5). Therefore, characterization experiments are run in parallel thanks to
the DMD and our capacity to segment and track cells in real time. The temporal evolution of the mean mScarletI fluorescence of the cells in the three
groups is shown with envelopes indicating one standard deviation. Single-cell trajectories and replicates are provided in Supplementary Fig. 6. c Open-loop
control experiment in which a model of the response of the cell population is used to precompute a light stimulation profile that drives the cell population to
the target behavior. The application of the light profile leads to significant deviations from the target of the individual cell trajectories. d Closed-loop control
experiment in which the same model is used jointly with real-time observations of the population state to decide which light profile to apply to all cells,
using a receding horizon strategy. e A stochastic model of individual cell response is used jointly with single-cell observations to decide which light profile
to apply to each cell. f The different strategies have similar performances to drive the mean fluorescence to its target, but the single-cell feedback strategy
is significantly better to drive individual cells to their target profiles. Box plots indicate the lower quartile, the median, and the upper quartile of the target
error, with the whiskers corresponding to 1.5 interquartile ranges. Each control experiment was replicated two times.
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cells (Fig. 4d). Analysis of the lineage trees of targeted cells and
non-targeted cells showed that recombined cells have a slow
growth phenotype, even if growth arrest of recombined cells was
not complete. The addition of a positive feedback loop on ATAF1
expression can lead to a stronger growth arrest, at the cost of a
slightly higher level of spontaneous recombination29. Previous
works demonstrating optogenetically-driven recombination use
static masks for light targeting25,29. Obtaining single-cell resolu-
tion as demonstrated in Fig. 4d necessitates real-time image
analysis and the use of reactive software.

Discussion
We presented MicroMator together with one simple and two
challenging applications. Altogether, these applications illustrate
the genericity of MicroMator. Moreover, the latter two applica-
tions go beyond the state of the art and demonstrate how this
software can help using automated microscopy platforms to their
full potential. We demonstrated that protein expression can be
controlled at the single cell level in dense fields of cells. This
requires one to jointly address two challenges, namely obtaining
sufficiently precise single-cell stimulations with DMDs and
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segmenting and tracking cells with sufficient accuracy over
extended durations. We also demonstrated that cell recombina-
tion can be triggered at the single-cell level, enabling single-cell
resolution patterns. In comparison with Pycro-Manager, Micro-
Mator uses the Micro-Manager GUI to create a main acquisition
backbone for the experiment and reactive events are then used to
enhance or even dynamically modify this initial plan. Events are
created by default as separated threads and an extended logging
system gathers messages from all modules that might be running
in parallel. This structure provides robustness to real-time
issues and facilitates error identification, two critical aspects for
developing long and complex experiments.

MicroMator can be used to implement highly complex
experiments. Yet, we foresee that reactiveness in microscopy will
primarily be used to enhance and automate classical experiments.
Examples of simple use cases abound: triggering autofocus only
when needed, dynamically adjusting the imaging condition to the
signal strength, identifying novel regions of interest, or following
the course of experiments via easily accessible online services
(e.g., warning messages sent on Discord), to provide but a few
examples. Thanks to its modular nature and to its use of a simple
but powerful event system, MicroMator capacities can be con-
veniently expanded to drive novel hardware or perform a wide
range of analyses. MicroMator is a relatively simple software
extension that significantly empowers laboratory equipment that
is present in most quantitative biology laboratory worldwide.

Methods
Software. MicroMator is an open-source software. It contains a core part and an
extensible list of modules. The MicroMator core manages the user-specified events
and also the metadata and logging system. The current list of modules includes a
Microscope Controller module, two Image Analysis modules, a MPC module, and
a Discord Bot module. The Microscope Controller module is an interface with the
Python wrapper for Micro-Manager17,18 pymmcore. The Image Analysis module
SegMator uses the DeLTA deep learning method to segment yeast cells from
bright-field images. It also uses an efficient algorithm for cell tracking. We also
propose a second Image Analysis module, based on Cellpose. The MPC module
implements state estimation and MPC routines for deterministic and stochastic
systems, at either the population or single-cell level. The Discord Bot module uses a
web app running on the microscope’s computer and connected to the Discord
communication system.

Genetic constructions and strains. For bacterial experiments, we used a Cor-
ynebacterium glutamicum strain carrying a plasmid expressing Wag31(Cgl2150)
fused C-terminally to mNeonGreen, under control of PgntK promoter and con-
structed as in Sogues et al.30. For yeast experiments, all plasmids and strains were
constructed using the Yeast Tool Kit, a modular cloning framework for yeast
synthetic biology31, the S. cerevisiae strain BY4741 (Euroscarf), and the EL222
optogenetic system27. The light responsive strain (IB44) harbors a constitutively
expressed EL222 light-responsive transcription factor (NLS-VP16AD-EL222) and
an EL222-responsive promoter (5xBS-CYC180pr) driving the expression of the
mScarletI protein. The IB44 strain genotype is MATa his3Δ1 leu2Δ0::5xBS-
CYC180pr-mScarletI-Leu2 met15Δ0 ura3Δ::NLS-VP16AD-EL222-URA3. The
recombining strain (IB237) harbors a constitutively expressed EL222 light-
responsive transcription factor (NLS-VP16AD-EL222) floxed between two LoxP
sites that upon recombination expresses the ATAF1 transcription factor. This
factor expresses (pATAF1_4x) in turn the mCerulean fluorescent protein fused to a
constitutively active Far1 protein (FAR1M_mCerulean). Lastly, the strain also
harbors the Cre recombinase placed under the control of an EL222-responsive
promoter (5BS-Gal1pr). The IB237 strain genotype is MATa his3Δ1::pATAF1_4x-
FAR1M_mCerulean-tDIT1-HIS3 leu2Δ::5BS-Gal1pr-CRE-tENO1-LEU2 met15Δ0
ura3Δ:: pTDH3-LoxP-NLS-VP16AD-EL222-tENO1-LoxP-ATAF1-tTDH1-URA3.
Lastly, we also used the IB84 strain as a constitutive 3-color strain to characterize
DMD precision. The genotype of this strain is MATa his3Δ1 leu2Δ0::pTDH3-
mCerulean-tTDH1-pTDH3-NeonGreen-tTDH1-pTDH3-mScarlet-tTDH1-LEU2
met15Δ0 ura3Δ:: NLS-VP16AD-EL222-URA3. mCerulean, mNeonGreen, and
mScarletI genes have been synthesized from IDT. We used sequences from Rizzo
and Piston32 for mCerulean and from Argüello-Miranda et al.33 for mNeonGreen
and mScarlet-I, and codon-optimized them for yeast using IDT codon optimizer
software. Note that for mScarletI the sequence was modified to avoid a NotI
restriction site by point mutation prior to optimization.

Culture preparation. Bacterial cells were grown in brain-heart infusion (BHI) for
6–8 h, then pelleted at 5200 × g at room temperature and inoculated into CGXII
media34 supplemented with 4% sucrose and kanamycin (25 µg/mL) for overnight
growth. The following day the culture was diluted to OD600 of about 1 and grown
for about 1.5 h to a required OD600 of about 2. For each sample, 100 µL of culture
were pelleted, washed with fresh media, and concentrated to an OD600 of 3 for
imaging. Yeast cells were grown at 30 °C in synthetic medium (SD) consisting of
2% glucose, low fluorescence yeast nitrogen base (Formedium CYN6510), and
complete supplement mixture of amino acids and nucleotides (Formedium
DCS0019). For each experiment, cells were grown overnight in SC media at 30 °C,
then diluted 50 times and grown for 4–5 h before being loaded in microfluidic
plates.

Microscopy setup, agar pads, microfluidics, and imaging. Images were taken
under a Leica DMi8 inverted microscope (Leica Microsystems) with a ×63 oil-
immersion objective (HC PL APO), an LTM200 V3 scanning stage, and an sCMOS
camera Zyla 4.2 (ANDOR). Bright-field images were acquired using a 12 V LED
light source from Leica Microsystems. Fluorescence images were acquired using a
pE-4000 light source from CoolLED and the following filter cubes: EX:436/20 nm
DM:455 nm EM:480/40 nm (CFP), EX:500/20 nm DM:515 nm EM:535/30 nm
(YFP), and EX:546/10 nm DM:560 nm EM:585/40 nm (RHOD) from Leica
Microsystems. Light stimulation was performed using the pE-4000 light source
using the 435 nm filter, a light intensity of 20%, and the CFP filter cube. Spatially-
resolved illuminations were obtained thanks to a digital mirror device (DMD)
reflecting the light of a pE-4000 light source. We used a MOSAIC3 DMD from
ANDOR. The device is used both for targeted fluorescence imaging and for
optogenetic stimulations. For C. glutamicum, Nile Red (Sigma-Aldrich) was added
to the culture (2 µg/ml final concentration) for membrane staining, just prior to
placing cells on pads. We used 2% agarose pads prepared with the corresponding
growth medium and covered with a glass coverslip. A hole was cut into the pad to
enable oxygen supply required for growth. To grow yeast cells in monolayers, a
CellASIC ONIX2 system (Merck) was used together with the Y04C CellASIC
microfluidic plates. Media flow was maintained by a 7.5 kPa pressure gradient. The
media was the same as for pre-culture. The temperature was maintained at 30 °C by
an opaque environmental box and a temperature controller 2000-2, both from
PECON (Supplementary Fig. 9). The microscope was operated using MicroMator.
The computer running the microscopy platform and MicroMator is equipped with
a CPU made of 2 10-core processors (Intel Xeon E5-2640 V4, 2.4–3.4 Ghz), with a
Nvidia Quadro M4000 GPU, and with 64 GB of RAM (DDR4 ECC).

Image analysis. C. glutamicum images have been segmented in real time with an
analysis module using the generalist, deep-learning-based segmentation method
Cellpose24. S. cerevisiae images have been segmented in real-time with an analysis
module called SegMator using the deep-learning-based tool DeLTA21.Cell tracking
was also implemented in SegMator and has been solved using TrackPy22. Our yeast
applications necessitate good segmentation and tracking performance. The neural
network used by DeLTA has been trained offline and its online performance is
documented in the Supplementary Note 3. In all cases, the fluorescence of a cell is
defined as the mean pixel intensity of the cell.

Model predictive control of gene expression. To compare single-cell and
population control strategies, we developed stochastic and deterministic models of
gene expression. Both have been calibrated with respect to the dataset presented in
Fig. 3b and Supplementary Fig. 6. For population control, we used the deterministic
model, assumed Gaussian measurement noise, and used a Kalman filter for state
estimation. Each model assumes a deterministic delay between the time the light
signal is applied and the time protein production is effective. For MPC, fluores-
cence measurements were taken every 6 min and we considered receding time
horizons of 24 min. The controller explores the set of light stimulation profiles in
which a 1000 ms light stimulation is either applied or not for each measurement
time interval, and selects the profile minimizing mean square deviations. For
tracking purposes, brightfield measurements were taken every 3 min. For single-cell
control, we used the stochastic model and simulated the cell behavior using a finite
state projection approximation. For each and every cell, state estimation is per-
formed using a Bayesian approach which conditions the probability distribution for
each cell on the most recent measurement, and light stimulation profiles are
selected using the approach outlined above and the expected absolute deviation as
selection criterion. More information is provided in Supplementary Note 5.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Raw and processed data for Supplementary Fig. 1 (tutorial) and Fig. 2, and for Figs. 3c–e,
4c–d and Supplementary Fig. 5 are freely available on zenodo repositories: https://doi.
org/10.5281/zenodo.5761545 (23GB) and https://doi.org/10.5281/zenodo.4616659
(45GB). Source data is available as a Source Data file.
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Code availability
The MicroMator software, together with event definitions for representative experiments
(Figs. 2c, 3e and Supplementary Fig. 5), can be found online: https://gitlab.inria.fr/InBio/
Public/micromator. Data analysis code for experiments (Figs. 3e, 4d, and Supplementary
Fig. 5), as well as a tutorial example (Supplementary Note 5) and a tutorial movie
(Supplementary Movie 1), can be found at the same place.
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