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IRIF
Paris, France

petrisan@irif.fr

Ralph Sarkis

ENS de Lyon
Lyon, France

ralph.sarkis@ens-lyon.fr

Motivated by recent work on weak distributive laws and their applications to coalgebraic seman-

tics, we investigate the algebraic nature of semialgebras for a monad. These are algebras for the

underlying functor of the monad subject to the associativity axiom alone — the unit axiom from the

definition of an Eilenberg–Moore algebras is dropped. We prove that if the underlying category has

coproducts, then semialgebras for a monad M are in fact the Eilenberg–Moore algebras for a suitable

monad structure on the functor id+M, which we call the semifree monad Ms. We also provide con-

crete algebraic presentations for semialgebras for the maybe monad, the semigroup monad and the

finite distribution monad.

A second contribution is characterizing the weak distributive laws of the form MT ⇒ T M as

strong distributive laws MsT ⇒ TMs subject to an additional condition.

1 Introduction

Distributive laws [3] are a standard approach to composing monads. A distributive law of the monad

M over the monad T is a natural transformation λ : MT ⇒ T M satisfying four axioms that stipulate its

interactions with the units and the multiplications of the two monads. Unfortunately, such laws do not

exist in several instances relevant for the semantics of programming languages and for the composition of

computational effects. For example, there is no distributive law of the finite distribution monad (used for

modeling probabilistic choice) over the powerset monad (used for modeling non-determinism), see [21,

22]. Similarly, there is no distributive law of the powerset monad over itself [14]. The absence of such

laws renders it difficult to reason in a compositional way about systems combining non-determinism

and probabilistic choice, as emphasized in a series of works in domain theory [12, 17] or in coalgebraic

semantics [5, 7, 16].

Recently, weaker notions of distributive laws have been considered [4,8,19]. In particular, Garner [8]

introduces a notion of weak distributive law λ : MT ⇒ T M in which he drops the axiom related to the

unit of the monad M, while maintaining the three other axioms. He proves that weak distributive laws

correspond under mild assumptions to a suitable notion of weak liftings of the monad T to the Eilenberg–

Moore algebras of M. The main example in loc. cit. is a canonical weak distributive law of the ultrafilter

monad over the powerset monad. The corresponding weak lifting of the powerset monad is the Vietoris

monad on the category of compact Hausdorff spaces.

In [9], the same techniques were employed to find a canonical weak distributive law of the finite

distribution monad D over the powerset monad P . The corresponding weak lifting of the powerset

is the convex powerset monad on the category of convex algebras — the Eilenberg–Moore algebras

for D . This weak distributive law enables a neat compositional approach to the coalgebraic semantics of

systems featuring both non-determinism and probabilistic choice. This line of work was further extended

to a continuous setting in [10] where a weak distributive law of the Vietoris monad over itself was given.

Furthermore, [6] provides a weak distributive law between the powerset monad and the left-semimodule

monad.

http://dx.doi.org/10.4204/EPTCS.351.14
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One of the technical ingredients in Garner’s paper was to use the fact that a weak distributive law

λ : MT ⇒ T M induces a lifting of the monad T to the category of semialgebras for the monad M, where

a semialgebra is a morphism a : MX → X satisfying only the associativity axiom from the standard

definition of an Eilenberg–Moore algebra. The weak lifting of the monad T is then obtained by splitting

a certain idempotent in the category of semialgebras for M.

For example, the weak law of [9] corresponds to a lifting of P to the category of semialgebras for

the monad D , which we refer to as convex semialgebras. A natural question arising in these examples is

what are concrete descriptions of semialgebras. Even if it may seem surprising at first, dropping the unit

axiom alone does not considerably impair the structure given by operations and equations.

Let us illustrate this with a simpler example, namely the semialgebras for the maybe monad — which

maps X to X + 1 where 1 = {⋆}. All the details will be given in Section 5. First, recall that algebras

for the maybe monad are pointed sets. Indeed, such an algebra is a map a : X + 1→ X satisfying the

usual unit axiom (a◦ηX = idX ) and an associativity axiom. Already the unit axiom entails that the first

component of a is the identity on X , hence to give an algebra structure a amounts to give one point

• : 1→ X .

Let us consider now semialgebras a : X + 1→ X for the maybe monad. We no longer have that

a◦ηX = idX , but using the associativity axiom, we can infer that a◦ηX is the first component of a, it is

idempotent, and furthermore, it preserves the point • : 1→ X . We can prove that the semialgebras for

the maybe monad are pointed sets equipped with an idempotent unary operation that preserves the point.

This algebraic theory corresponds to a monad structure on the functor X +X + 1, that is, the coproduct

of the identity functor and the underlying functor of the maybe monad. Perhaps surprisingly, this result

generalizes to arbitrary monads on categories with coproducts.

Contributions. A first contribution of our paper is to unravel the algebraic nature of semialgebras.

Given a monad M on a category C with coproducts, we exhibit a monad structure Ms on the functor id+
M (Theorem 3.3) and we show that the category of Eilenberg–Moore semialgebras for M is isomorphic

to the category of Eilenberg–Moore algebras for Ms (Theorem 3.4). In Section 5 we consider several

examples: the maybe monad, the semigroup monad and the finite distribution monad. In each case we

provide concrete algebraic presentations for the semialgebras.

A second contribution of our paper can be summed up in the slogan “Weak distributive laws are

strong”. Indeed, we can characterize the liftings of the monad T to the category of semialgebras for

M that correspond to weak distributive laws MT ⇒ T M, obtaining a correspondence theorem akin to

that of Beck, Theorem 4.1. Combining this result with the isomorphism between semialgebras for M

and algebras for Ms, we prove a correspondence between weak distributive laws MT ⇒ T M and strong

distributive laws MsT ⇒ T Ms that satisfy an additional constraint (Theorem 4.3).

Related work. A similar question has been addressed in [11] in a 2-dimensional setting. In loc. cit.

left semialgebras for a 2-monad were shown to be the algebras for another 2-monad, which was obtained

using a colax colimit construction, see [11, Proposition 27].

Acknowledgements. We thank Christine Tasson and Martin Hyland for discussion on these topics once

upon a time in the wake of the pandemic when IRIF was still filled with people and thesis were defended

on campus. This work was performed within the framework of the LABEX MILYON (ANR-10-LABX-

0070) of Université de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007)

operated by the French National Research Agency (ANR).
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2 Background

In this section, we present some definitions and results about monads, distributive laws, coproducts and

universal algebra. We assume some familiarity with basic concepts in category theory — [1, 15, 18] are

standard references.

2.1 Monads and Distributive Laws

Definition 2.1. A monad on a category C is a triple comprised of an endofunctor M : C→ C and two

natural transformations η : idC ⇒ M and µ : M2⇒ M called the unit and multiplication respectively

that make (1) and (2) commute. We refer to (2) as the associativity of µ .

M M2 M

M

Mη

µ
idM

ηM

idM

(1)

M3 M2

M2 Mµ

Mµ

µM

µ (2)

Definition 2.2. Let (M,η ,µ) be a monad on C, an M-algebra is a pair (X ,x) consisting of an object X

and morphism x : MX → X in C such that (3) and (4) commute. We refer to (3) as the unit axiom of x

and to (4) as the associativity of x.

X MX

X
idX

ηX

x (3)

M2X MX

MX X

Mx

µX

x

x

(4)

Definition 2.3. Given two M-algebras (X ,x) and (Y,y), an M-algebra homomorphism h : (X ,x)→ (Y,y)
is a morphism h : X →Y in C making (5) commute.

MX MY

X Y

x

Mh

y

h

(5)

For a monad M, the category of M-algebras and their homomorphisms is called the Eilenberg–

Moore category of M and denoted EM(M). We denote UM : EM(M)→ C the forgetful functor sending

an M-algebra (X ,x) to X and a homomorphism to its underlying morphism. A morphism x : MX → X

that satisfies associativity (4) (but not necessarily the unit axiom (3)) is called an M-semialgebra. We

denote EMs(M) the category of M-semialgebras and their homomorphisms (defined as for M-algebras).

We denote UM
s : EMs(M)→ C the forgetful functor sending an M-semialgebra (X ,x) to X and a homo-

morphism to its underlying morphism.

Distributive laws between two monads, introduced in [3], are the category theoretic tool for compos-

ing monads and for representing that the corresponding algebraic structures interact in a suitable way via

distributivity axioms.

Definition 2.4. Let (M,ηM
,µM) and (T,ηT

,µT ) be two monads, a natural transformation λ : MT⇒ T M

is called a (monad) distributive law of M over T if it makes the following diagrams commute.

T

MT T M

ηMT TηM

λ

(6)

M

MT T M

MηT ηT M

λ

(7)
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MMT MT M T MM

MT T M
λ

µMT

Mλ λM

T µM (8)

MTT T MT T T M

MT T M
λ

MµT

λT T λ

µT M (9)

In [4, 19], the authors investigated weaker notions of monad distributive laws motivated by work on

weak entwining operators. More recently, Garner [8] used one of them to exhibit the Vietoris monad on

the category of compact Hausdorff spaces as a weak lifting of the powerset monad. In the sequel, we

adopt the terminology and definitions of [8].

Definition 2.5. A weak distributive law of M over T is a natural transformation λ : MT ⇒ T M making

(7), (8) and (9) commute (but not necessarily (6)).

Definition 2.6. A lifting of T to EM(M) is a monad (T̃ , η̃ , µ̃) on EM(M) such that the functor, unit and

multiplication commute with the forgetful functor UM, i.e., the following equations hold.

UM ◦ T̃ = T ◦UM UMη̃ = ηTUM UM µ̃ = µTUM

A lifting of T to EMs(M) is a monad (T̃ , η̃ , µ̃) satisfying UM
s T̃ = TUM

s , UM
s η̃ = ηTUM

s and UM
s µ̃ =

µTUM
s .

A standard result that goes back to the work of Beck is the correspondence between distributive laws

and liftings to Eilenberg–Moore categories. We recall below the transformation of a law into a lifting

and its inverse as we will later use them in the weak setting.

Proposition 2.7. Distributive laws λ : MT ⇒ T M are in correspondence with liftings of T to EM(M).

Proof. Given a distributive law λ : MT ⇒ T M, we construct a lifting T̃ sending (X ,x) to (T X ,Tx◦λX ).
Its action on morphisms is determined by the equation UM ◦ T̃ = T ◦UM, it must send f to T f . Given

a lifting (T̃ , η̃ , µ̃), we construct a distributive law whose components are λX = T̃ µM
X ◦MT ηM

X where

T̃ µM
X : MT MX → T MX is the image of the free algebra µM

X : MMX →MX under the functor T̃ .

Remark 2.8. There is a slight abuse of notation when writing T̃ µM
X . To avoid any ambiguity, we will

reserve writing T̃ a only in the situations when a is an algebra or semialgebra structure, but not when a is

a morphism of algebras. Notice that if f is a morphism of algebras, then the morphism T̃ ( f ) is carried

by T f , since T̃ is a lifting. In this situation we simply write T f instead of T̃ ( f ).

2.2 Coproducts

We recall here the definition of coproducts in order to present our notation and useful equations.

Definition 2.9. Let X and Y be objects of C, the coproduct of X and Y is an object X +Y and morphisms

inlX+Y : X → X +Y and inrX+Y : Y → X +Y such that for any pair of morphisms kX : X → K and

kY : Y → K, there is a unique mediating morphism ! : X +Y → K making (10) commute.

X X +Y Y

K

inl
X+Y

inr
X+Y

!
kY kY

(10)

We may omit the superscripts on inl and inr when the codomain is clear from context. We denote [kX ,kY ]
the unique morphism X +Y → K satisfying [kX ,kY ]◦ inl = kX and [kX ,kY ]◦ inr = kY . Given morphisms
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f : X → X ′ and g : Y →Y ′, we denote f +g := [inlX
′+Y ′ ◦ f , inrX ′+Y ′ ◦g]. In the rest of the paper, we will

often use the following easily derivable identities.

h◦ [kX ,kY ] = [h◦ kX ,h◦ kY ] (11)

[kX ′ ,kY ′ ]◦ ( f +g) = [kX ′ ◦ f ,kY ′ ◦g] (12)

( f +g)◦ inlX+Y = inlX
′+Y ′ ◦ f (13)

( f +g)◦ inrX+Y = inrX
′+Y ′ ◦g (14)

When C has all coproducts, the category of endofunctors on C also does and coproducts are taken

pointwise. Namely, given functors F,G : C→ C, F +G sends an object X to FX +GX and a morphism

f to F f +G f . Moreover, we have

inlF+G
X = inlFX+GX and inrF+G

X = inrFX+GX
.

2.3 Universal Algebra

Here, we introduce just enough universal algebra to make use of the link between algebraic theories and

monads in Section 5 — [2] is a longer gentle introduction to these notions.

Definition 2.10. An algebraic signature is a set Σ of operation symbols along with arities in N, we

denote f : n ∈ Σ for an n-ary operation symbol f in Σ. Given a set X , one constructs the set of Σ-terms

with variables in X , denoted TΣ(X) by iterating operations symbols:

∀x ∈ X , x ∈ TΣ(X)

∀t1, . . . , tn ∈ TΣ(X), f : n ∈ Σ, f (t1, . . . , tn) ∈ TΣ(X).

An equation over Σ is a pair of Σ-terms over a set of indeterminate variables which we usually denote

with an equality sign (e.g.: s = t for s, t ∈ TΣ(X) and X is the set of variables). An algebraic theory is a

tuple (Σ,E) of a signature Σ and a set E of equations over Σ.

Given an algebraic theory (Σ,E), a (Σ,E)-algebra is a set A along with operations f A : An→ A for

all f : n ∈ Σ (with the convention A0 = 1) such that the pairs of terms in E are always equal when the

operation symbols and variables are instantiated in A.1

Given two (Σ,E)-algebras A and B, a homomorphism between them is a map h : A→ B commuting

with all operations in Σ, that is, ∀ f : n ∈ Σ,h◦ f A = f B ◦hn.2 The category of (Σ,E)-algebras and their

homomorphisms is denoted A(Σ,E).

We say that (Σ,E) is an algebraic presentation for a monad (M,η ,µ) if A(Σ,E)∼= EM(M).

3 Semifree Monad

In a 2-categorical setting, Hyland and Tasson gave an explicit construction showing that the category

of the so called left-semi algebras of a 2-monad is monadic over the base category [11]. This heavily

relied on the 2-categorical structure, particularly on the existence of some colax colimit. In this section,

we will show a similar result for semialgebras in a 1-categorical setting assuming only the existence of

coproducts.

In the sequel, let C be a category with all coproducts and (M,η ,µ) be a monad on C. We will

define a monad Ms and prove that EMs(M)∼= EM(Ms). We call Ms the semifree monad on M because

1The operation symbol f is always instantiated by f A and a variable can be instantiated by any element of A. For instance,

suppose (A, f A
,gA) is a (Σ,E)-algebra and f (x,g(y)) = g(y) is an equation in E, then for any a,b ∈ A, f A(a,gA(b)) = gA(b).

2We write hn for coordinatewise application of the map h to vectors in An, i.e., hn(a1, . . . ,an) = (h(a1), . . . ,h(an)).
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of the similarity with the definition of the algebraically free monad on a functor [13]. The functor Ms

is idC + M, that is, the coproduct of idC and M. The unit is η s := inlid+M and the multiplication is

µs := [idid+M, inrid+M ◦µ ◦M[η , idM ]], in a diagram:

MsMs

idC +M M(idC +M)

idC +M M MM

id

inr µ

M[η ,id]

inl inr

µs

Let us show that (Ms
,η s

,µs) is a monad.

Lemma 3.1. The following diagram commutes.

Ms MsMs Ms

Ms

Msη s

µs

idMs

η sMs

idMs

(15)

Proof. First, we show the left hand side commutes using the identities (11)-(14) and the left of (1).

µs ◦Msη s = µs ◦ (inlid+M +Minlid+M)

= [idid+M ◦ inl
id+M

, inrid+M ◦µ ◦M[η , idM]◦Minlid+M] by (12)

= [inlid+M
, inrid+M ◦µ ◦Mη ] by [η , idM]◦ inlid+M = η

= [inlid+M
, inrid+M] by (1)

= idid+M

Next, we show the right hand side commutes.

µs ◦η sMs = [idid+M, inrid+M ◦µ ◦M[η , idM]]◦ inlM
s+MMs

= idid+M

Lemma 3.2. The multiplication µs is associative, i.e., µs ◦µsMs = µs ◦Msµs.
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Proof. Let us first expand both sides.

L.H.S. = µs ◦µsMs

= µs ◦ [idMs+MMs , inrM
s+MMs

◦µMs ◦M[ηMs
, idMMs ]] by def. µs

= [µs
,µs ◦ inrM

s+MMs

◦µMs ◦M[ηMs
, idMMs ]] by (11)

= [µs
, inrid+M ◦µ ◦M[η , idM]◦µMs ◦M[ηMs

, idMMs ]] by def. µs and [kX ,kY ]◦ inr= kY

R.H.S. = µs ◦Msµs

= [idid+M, inrid+M ◦µ ◦M[η , idM]]◦ (µs +Mµs) by def. µs

= [µs
, inrid+M ◦µ ◦M[η , idM]◦Mµs] by (12)

= [µs
, inrid+M ◦µ ◦M([η , idM]◦µs)]

= [µs
, inrid+M ◦µ ◦M[[η , idM]◦ idid+M, [η , idM]◦ inrid+M ◦µ ◦M[η , idM ]] by (11)

= [µs
, inrid+M ◦µ ◦M[[η , idM],µ ◦M[η , idM]] by [η , idM]◦ inrid+M = idM

Since the left component is the same, it is enough to prove the right component is also the same, i.e. that

inrid+M ◦µ ◦M[η , idM]◦µMs ◦M[ηMs
, idMMs ] = inrid+M ◦µ ◦M[[η , idM],µ ◦M[η , idM ]].

We pave the following diagram.

M(id+M+M(id+M)) MM

MM(id+M) MMM MM M

M(id+M) MM M id+M

M[[η ,idM ],µ◦M[η ,idM]]

µ

inr
id+M

M[ηMs
,idMMs ]

µMs

M[η ,idM ] µ
inr

id+M

MM[η ,idM ]

µM

Mµ

µ

Mµ
(a)

(b) (c)

(16)

We show (a) below, (b) commutes by naturality of µ and (c) commutes by associativity of µ . To prove

(a) commutes, we can remove one application on M on every morphism and starting with the bottom

path, we have the following derivation.

µ ◦M[η , idM]◦ [ηMs
, idMMs ] = [µ ◦M[η , idM]◦ηMs

,µ ◦M[η , idM]] by (11)

= [µ ◦ηM ◦ [η , idM],µ ◦M[η , idM]] by nat. η

= [[η , idM],µ ◦M[η , idM]] by (1)

Combining Lemmas 3.1 and 3.2, we obtain the following result.

Theorem 3.3. The triple (Ms
,η s

,µs) is a monad.

Next, we show that this is the semifree monad on M.

Theorem 3.4. There is an isomorphism EM(Ms)∼= EMs(M).
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Proof. First, note that any Ms-algebra α : X +MX → X must be of the form α = [idX ,a] since idX =
α ◦η s

X = α ◦ inlX+MX . Next, we claim the commutativity of the two following diagrams is equivalent,

i.e., [idX ,a] is an Ms-algebra if and only if a is an M-semialgebra.

X +MX +M(X +MX) X +MX

X +MX X

[idX ,a]+M[idX ,a]

[idX ,a]

µs
X

[idX ,a] (17)

MMX MX

MX X

Ma

a

µX

a (18)

Since the bottom path of (17) simplifies to [[idX ,a],a◦M[idX ,a]] and the top path simplifies to [[idX ,a],a◦
µX ◦M[ηX , idMX ]], we infer that the left square commutes if and only if

a◦M[idX ,a] = a◦µX ◦M[ηX , idMX ]. (19)

Next, if (19) holds, we pre-compose by MinrX+MX and find that

a◦Ma = a◦M[idX ,a]◦MinrX+MX = a◦µX ◦M[ηX , idMX ]◦MinrX+MX = a◦µX .

Conversely, if (18) commutes (a◦Ma = a◦µX ), we can derive the following two equalities.

a◦Ma◦MηX = a◦µX ◦MηX = a

a◦ηX ◦a = a◦Ma◦ηMX = a◦µX ◦ηMX = a,

which lead to the following derivation showing (19) holds.

a◦M[idX ,a] = a◦Ma◦MηX ◦M[idX ,a] by 1st eqn. above

= a◦M[a◦ηX ,a◦ηX ◦a] by (11)

= a◦M[a◦ηX ,a] by 2nd eqn. above

= a◦Ma◦ M[ηX , idMX ] by (11)

= a◦µX ◦M[ηX , idMX ] by (4)

We have shown that the assignments [idX ,a] 7→ a and a 7→ [idX ,a] are well-typed, and they are clearly

inverses. It is left to show they are functorial. It is enough to show that a homomorphism between [idX ,a]
and [idX ,b] is a homomorphism between a and b and vice versa.

Suppose, f ◦ [idX ,a] = [idX ,b]◦ ( f +M f ), then pre-composing with inrX+MX yields f ◦a = b◦M f .

Conversely, if f ◦a = b◦M f , we have

f ◦ [idX ,a] = [ f , f ◦a] = [ f ,b◦M f ] = [idX ,b]◦ ( f +M f ).

We conclude the desired isomorphism.

Remark 3.5. From the proof of the above theorem, we can also infer the following fact, which plays an

important role in [8] and in the concrete presentations by operations and equations provided in Section 5.

Given a semialgebra a : MX → X in EMs(M), we have that a◦ηX : X → X is idempotent, i.e., (a◦ηX )◦
(a◦ηX) = a◦ηX .
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4 Weak Distributive Laws are Strong

In this section, we will give an analogue to Proposition 2.7 in the case of weak distributive laws. Then,

we will use the isomorphism EMs(M)∼= EM(Ms) to obtain a correspondence between weak distributive

laws MT ⇒ T M and (strong) distributive laws MsT ⇒ T Ms satisfying an additional constraint.

Let (M,ηM
,µM) and (T,ηT

,µT ) be monads on a category C with all coproducts.

If we try to apply the same construction from Proposition 2.7 to a weak distributive law λ : MT ⇒
T M, we quickly encounter a problem when proving that for any M-algebra x : MX → X , T̃ x := T x ◦λX

is an M-algebra. Indeed, showing that (3) commutes relies on the derivation

T x◦λX ◦ηM
TX = T x◦T ηM

X = T id,

which needs (6) to commute, hence λ to be strong. We will see in Theorem 4.1 that this is the only

obstacle to construct a lifting, namely that the lifting T̃ is now on EMs(M). Notice that the construction

of the lifting T̃ to semialgebras obtained from a weak distributive law also appears in the proof of [8,

Proposition 13]. However, Theorem 4.1 takes this further and characterizes the liftings T̃ on EMs(M)
that correspond to weak distributive laws.

Indeed, in the other direction, there is another issue when showing that the transformation obtained

from a lifting on EMs(M) makes (9) commute. In the setting of Proposition 2.7, we can use the fact that

T̃ µM
X satisfies the unit axiom of an M-algebra, but this is not necessarily the case here. Therefore, we

must add the restriction (20) to the liftings on EMs(M) to obtain the correspondence in Theorem 4.1.

Let us try to provide some intuition behind the condition (20) featured in this theorem. Recall from

Remark 3.5 that, whenever α : MA→ A is a semialgebra for M, then α ◦ηA is an idempotent, that we

will denote here by a : A→ A. Also recall that T̃ α : MTA→ TA is the semialgebra obtained by applying

T̃ to α . Then condition (20) roughly means that, given any term t(x1, . . . ,xn) in MTA, we have that

T̃ α(t(x1, . . . ,xn)) = T̃ α(t(ax1, . . . ,axn)), that is, applying the idempotent a to the leaves of any term in

MTA does not change the evaluation of that term under the semialgebra T̃ α .

Theorem 4.1. Weak distributive laws λ : MT ⇒ T M are in correspondence with liftings (T̃ , η̃ , µ̃) of T

to EMs(M) such that for any M-semialgebra α : MA→ A,

T̃ α = T̃ α ◦MTα ◦MTηM
A . (20)

Proof. A full proof is given in the appendix. The correspondence is given by the same assignments as

in Proposition 2.7 and in fact, the proof will closely follow the one in [20, Chapter 3] except for some

minor steps mentioned above which rely on the distributive law being strong and the objects of EM(M)
satisfying the unit axiom.

Next, we combine the characterization of liftings to semialgebras coming from weak distributive laws

and the characterization of semialgebras as algebras for the semifree monad to obtain Theorem 4.3. For

that, we need to describe how the isomorphism EMs(M)∼= EM(Ms) leads to a correspondence between

liftings of T to these categories.

Lemma 4.2. Liftings of T to EMs(M) are in correspondence with liftings of T to EM(Ms).

Proof. Note that the isomorphism S : EMs(M) ∼= EM(Ms) : S−1 described in Theorem 3.4 commutes
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with the forgetful functors UM
s and UMs

, namely, the following diagram commutes.

EMs(M) EM(Ms)

C
UM

s UMs

S

S−1

(21)

Therefore, it is straightforward to check that if T̃ is a lifting of T on EMs(M), then T̃ s := ST̃ S−1 is a

lifting of T on EM(Ms) and conversely if T̃ s is a lifting of T on EM(Ms), then S−1T̃ sS is a lifting of T

on EMs(M).

Theorem 4.3. Weak distributive laws λ : MT ⇒ T M are in correspondence with distributive laws δ :

MsT ⇒ T Ms satisfying

δ ◦ inrT+MT = T [inrid+M ◦ηM
, inrid+M]◦δ ◦ inrT+MT

. (22)

Proof. First, note that a distributive law δ : MsT⇒T Ms satisfies an instance of (6) saying δ ◦η sT = T η s.

Thus, we obtain that δ = [T inlid+M
,δ r] for some natural transformation δ r : MT ⇒ T Ms. Then, (22) can

be simplified to

δ r = T [inrid+M ◦ηM
, inrid+M]◦δ r

. (23)

To further lighten notation, we let µs,r := inrid+M ◦µM ◦M[ηM
, idM] so that µs = [idid+M,µs,r].

In the forward direction, we start with a weak distributive law λ : MT ⇒ T M and let T̃ be the lifting

obtain from Theorem 4.1. Through the isomorphism EMs(M)∼= EM(Ms), we obtain a lifting T̃ s of T to

EM(Ms), it sends an Ms-algebra [idX ,x] to [idTX , T̃ x]. Next, by the correspondence in Proposition 2.7,

we get a distributive law δ : MsT ⇒ T Ms whose components are

δX = MsT X
MsT inlX+MX

−−−−−−−→MsT MsX
T̃ sµs

X−−−→ T MsX .

Since we know the first component is T inlid+M, we are more interested in the second component which

we find to be

δ r

X = T̃ sµs
X ◦MsT inlX+MX ◦ inrTX+MT X

= [idT (X+MX), T̃ µs,r
X ]◦ (T inlX+MX +MT inlX+MX )◦ inrTX+MT X

= [idT (X+MX), T̃ µs,r
X ]◦ inrT MsX+MT MsX ◦MT inlX+MX

= T̃ µs,r
X ◦MT inlX+MX

.

Now, using the fact that T̃ µs,r
X = T µs,r

X ◦λX and the definition of µs,r, we find that

T [inrX+MX ◦ηM
X , inrX+MX ]◦δ r

X

= T [inrX+MX ◦ηM
X , inrX+MX ]◦ T̃ µs,r

X ◦MT inlX+MX

= T [inrX+MX ◦ηM
X , inrX+MX ]◦T µs,r

X ◦λX ◦MT inlX+MX

= T [inrX+MX ◦ηM
X , inrX+MX ]◦T inrX+MX ◦T µM

X ◦T M[ηM
X , idMX ]◦λX ◦MT inlX+MX

= T inrX+MX ◦T µM
X ◦T M[ηM

X , idMX ]◦λX ◦MT inlX+MX

= T̃ µs,r
X ◦MT inlX+MX

= δ r

X .
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In the opposite direction, we start with a distributive law δ = [T inlid+M
,δ r] : MsT ⇒ T Ms which is

sent (using Proposition 2.7) to a lifting T̃ s of T on EM(Ms) that sends an Ms-algebra [idX ,x] : MsX → X

to

T [idX ,x]◦ [T inlX+MX
,δ r

X ] = [idT X ,T [idX ,x]◦δ r

X ].

Using Lemma 4.2, we obtain a lifting T̃ on EMs(M) sending an M-semialgebra x : MX→ X to T [idX ,x]◦
δ r

X . After showing this lifting satisfies (20) below, we can use Theorem 4.1 to obtain the weak distributive

law λ .

T̃ x◦MT x◦MT ηM
X = T [idX ,x]◦δ r

X ◦MTx◦MT ηM
X

= T [idX ,x]◦T (x+Mx)◦T (ηM
X +MηM

X )◦δ r

X by nat. of δ r

= T [x◦ηM
X ,x◦Mx◦MηM

X ]◦δ r

X

= T [x◦ηM
X ,x◦µM

X ◦MηM
X ]◦δ r

X by assoc. of x

= T [x◦ηM
X ,x]◦δ r

X by (2)

= T [idX ,x]◦T [inrX+MX ◦ηM
X , inrX+MX ]◦δ r

X

= T [idX ,x]◦δ r

X by (23)

= T̃ x.

The results of Section 4 can be summarized as follows.

{λ : MT
w.d.l.
=⇒ T M}

Thm 4.1
←→ {T̃ : EMs(M)

lifts T
−−−→ EMs(M) satisfying (20)}

Lem 4.2
←→ {T̃ s : EM(Ms)

lifts T
−−−→ EM(Ms) such that S−1T̃ sS satisfies (20)}

Thm 4.3
←→ {δ : MsT

d.l.
=⇒ T Ms satisfying (23)}

5 Examples

In this section, we give algebraic presentations of three semifree monads.

5.1 Maybe Monad

The maybe monad is defined on the functor −+1 : Set→ Set where 1= {⋆}. The unit and multiplication

have components given by

ηX = inlX+1 : X → X +1 and µX = [idX+1, inr
X+1] : X +1+1→ X +1.

By Theorems 3.3 and 3.4, we know that the semifree monad for −+ 1 is a monad on the functor

X 7→ X +X + 1 with unit η s
X = inlX+(X+1) and multiplication µs

X = [idX , inr
X+(X+1) ◦ [idX+1, inr

X+1] ◦
([inlX+1

, idX+1] + id1)]. This is very opaque and it does not help us understand the semialgebras for

−+1.

An alternative way to see these semialgebras is through the point of view of universal algebra. The

theory of pointed sets containing a single constant • : 0 with no equations is an algebraic presentation

of the maybe monad. Briefly, this is because a (−+ 1)-algebra a : X + 1→ X satisfies idX = a◦ηX =
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a ◦ inl, thus a = [idX ,•] where • : 1→ X is the constant. However, in a semialgebra, a ◦ ηX is only

required to satisfy a ◦ηX ◦ a = a (see proof of Theorem 3.4). Therefore, denoting a = [a,•], we find

(by pre-composing a ◦ηX ◦ a = a with inl and inr) that a is idempotent and a(•) = •. We infer that a

(−+ 1)-semialgebra can be presented with an idempotent unary operation and a constant preserved by

the idempotent.

Theorem 5.1. Let Σs
+1 = {a : 1,• : 0} and Es

+1 = {aax = ax,a•= •}, then A(Σs
+1,E

s
+1)
∼= EMs(M).

Proof. A semialgebra for the maybe monad is a function a : X + 1→ X satisfying a ◦ (a+ id1) = a ◦
[idX+1, inr

X+1]. Pre-composing by inlX+1 and inrX+1, we find that, equivalently, a satisfies a◦ inl◦a = a.

Now, given a (−+ 1)-semialgebra a : X + 1→ X , we define a := a ◦ inl : X → X and • := a ◦ inr :

1→ X . These operations satisfy the equations in Es
+1 by the following derivations.

a◦a= a◦ inl◦a◦ inl= a◦ inl= a

a◦•= a◦ inl◦a◦ inr = a◦ inr = •

Conversely, given a : X → X and • : 1→ X satisfying a ◦ a = a and a ◦ • = •, we define a := [a,•] :

X +1→ X . To verify [a,•] is a (−+1)-semialgebra, it is enough to check that [a,•]◦ inl◦ [a,•] = [a,•].
This follows like so:

[a,•]◦ inl◦ [a,•] = a◦ [a,•] = [a◦a,a◦•] = [a,•].

These operations are clearly inverses, and we are left to show that they are functorial. Suppose

f : X →Y is a homomorphism from a to b (i.e. f ◦a = b◦ ( f + id1)), then

f ◦a= f ◦a◦ inl= b◦ ( f + id1)◦ inl= b◦ inl◦ f = b◦ f

f ◦•a = f ◦a◦ inr= b◦ ( f + id1)◦ inr= b◦ inr= •b
.

Conversely, suppose f ◦a= b◦ f and f ◦•a = •b, then

f ◦ [a,•a] = [ f ◦a, f ◦•a] = [b◦ f ,•b] = [b,•b]◦ ( f + id1).

5.2 Semigroup Monad

The semigroup (or non-empty lists) monad (−)+ : Set→ Set sends X to X+ the set of non-empty finite

words over X (we denote them with lists e.g.: [x1,x2,x3]). The unit and multiplication are given by

ηX : X → X+ = x 7→ [x] and

µX : (X+)+→X+= [[x1,1, . . . ,xn1,1], . . . , [xk,1, . . . ,xnk ,k]] 7→ [x1,1, . . . ,xn1,1,x2,1 . . . ,xnk−1,k−1,xk,1, . . . ,xnk ,k].

This monad is presented by the theory of semigroups which contains a binary operation with an associa-

tivity equation. We will not bother working out what the semifree monad for (−)+ is, and we give its

algebraic presentation at once.

Theorem 5.2. Let Σs
+ = {a : 1, · : 2} and Es

+ contain

aax = ax

a(x · y) = x · y

ax ·ay = x · y

(x · y) · z = x · (y · z),

then A(Σs
+,E

s
+)
∼= EMs((−)

+).
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Proof. The structure of the proof is exactly the same as for Theorem 5.1 (all details are in the appendix).

A (−)+-semialgebra a : X+→ X is sent to (X ,a : 0, · : 2) where a := a[−] and · := a[−,−]. A ((Σs
+,E

s
+))-

algebra (X ,a, ·) is sent to a : X+→ X = [x1, . . . ,xn] 7→ ax1 · · ·axn which is well-defined by associativity

of ·. There is a technical difficulty which requires us to prove (by induction) that the equations in Es
+

imply

∀n≥ 2, ax1 · · ·axn = x1 · · ·xn = a(x1 · · ·xn).

5.3 Distribution Monad

The distribution monad D : Set→ Set sends X to DX the set of finitely supported distributions on X ,

i.e.,

D(X) := {ϕ ∈ [0,1]X | ∑
x∈X

ϕ(x) = 1 and ϕ(x) 6= 0 for finitely many xs}.

Its unit and multiplication are given by ηX = x 7→ 1x, where 1x is the Dirac distribution at x, and

µX = Φ 7→

(
x 7→ ∑

φ∈supp(Φ)

Φ(φ) ·φ(x)

)
.

It is presented by the theory of convex algebras which contains a binary operation +p for every p∈ (0,1)
satisfying idempotence (x +p x = x), skew commutativity (x +p y = y +1−p x) and skew associativity

((x+q y)+p z = x+pq (y+ p(1−q)
1−pq

z)). Here is the algebraic presentation of Ds.

Theorem 5.3. Let Σs
D
= {a : 1,+p : 2 | p ∈ (0,1)} and Es

D
contain

aax = ax

a(x+p y) = x+p y

ax+p ay = x+p y

x+p x = ax

x+p y = y+1−p x

(x+q y)+p z = x+pq (y+ p(1−q)
1−pq

z),

then A(Σs
D
,Es

D
)∼= EMs(D)

Proof. In this proof, we will have to distinguish probability distributions seen in D(X) and those seen

in a (Σs
D
,Es

D
)-algebra. In the former, we will write px+ py (p := 1− p) in the binary case and ∑n

i=1 pixi

in general. In the latter, we will write x+p y in the binary case and +n
i=1 pixi in general. Note that + is

well-defined by skew associativity of +p (assuming all xis are distinct).

The proof follows the sketch of the last two (all details are in the appendix). A D-semialgebra

a : DX → X is sent to (X ,a : 0,+p : 2) where a := a(1−) and +p := a(p−+p−). A (Σs
D
,Es

D
)-algebra

(X ,a : 0,+p : 2) is sent to a : DX → X = ∑n
i=1 pixi 7→+n

i=1 piaxi. Analogously to the proof for the

semigroup monad, a step in the proof uses the fact that the equations in Es
D

imply

∀n≥ 2, a

(
n

+
i=1

pixi

)
=

n

+
i=1

pixi =
n

+
i=1

piaxi.
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These three examples show a clear link between the presentation of a monad on Set and of its

semifree monad. They all fit in the following conjecture.

Conjecture 5.4. Let (M,η ,µ) be a monad on Set with an algebraic presentation (ΣM,EM), then then

the semifree monad (Ms
,η s

,µs) is presented by the signature ΣM ∪{a : 1} with the equations

aax = ax

∀op : n ∈ ΣM,a(op(x1, . . . ,xn)) = op(x1, . . . ,xn) = op(ax1, . . . ,axn)

∀t(x1, . . . ,xn) = s(x1, . . . ,xn) ∈ EM, t(ax1, . . . ,axn) = s(ax1, . . . ,axn).

6 Directions for Future Work

In this paper we proved that semialgebras for a monad M on a category with coproducts are in fact alge-

bras for the semifree monad Ms with underlying functor id+M. We also showed that weak distributive

laws MT ⇒ T M correspond to certain strong distributive laws MsT ⇒ T Ms.

Starting with a weak distributive law λ : MT ⇒ T M, we now have two ways to obtain a weak

composite of T and M. If idempotents split in the base category, Garner’s method [8] yields a weak

lifting T̂ of T to EM(M) and hence a monad structure on the functor UM ◦ T̂ ◦FM, where FM is the free

M-algebra functor sending X to (MX ,µM
X ). If all coproducts exist in the base category, our method also

yields a lifting T̃ s of T on EM(Ms) and hence a monad structure on the functor UMs

◦ T̃ s ◦FMs

.

In general these composite monads are not the same, for example, for the weak distributive law of [9]

we obtain on one hand the monad PcD of convex powersets of distributions, and on the other, a monad

P(id+D). Understanding how these composite monads relate directly and how the second one can be

used for the semantics of computational effects is left for future investigations.

The adjunctions between EMs(M) and EM(M) described in [8, Lemma 12] can now be seen as

adjunctions between EM(M) and EM(Ms) as drawn below.

EM(M) EM(Ms)

C

UM FMs

I

K

UMs
FM

⊣⊣

⊣
⊣

One can show that I is the functor induced by the monad map [ηM
, idM] : Ms ⇒ M, and hence that

I ◦UM =UMs

. Also, while this only implies K ◦FMs

and FM are isomorphic, since both are left adjoints

to UM, one can also prove they are equal. However, the other triangles do not necessarily commute.

Another direction for future research is Conjecture 5.4. If it is resolved positively or if another general

algebraic presentation for semialgebras is discovered, we may be able to use Theorem 4.3 in conjunction

with the very general results of [23] to obtain no-go theorems for weak distributive laws.
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7 Appendix

7.1 Proofs for Section 4

Proof of Theorem 4.1. Let λ : MT ⇒ T M be a weak distributive law, we define a functor T̃ : EMs(M)→

EMs(M) that sends an M-semialgebra MX
x
−→ X to MT X

λX−→ T MX
Tx
−→ T X . First, we check that T x◦λX

is an M-semialgebra with the following diagram where (a) is (8) instantiated for λ , (b) is the naturality

of λ and (c) is T applied to associativity of x.

MMTX MT X

MT MX T MMX T MX

MT X T MX T X

λX

Tx

λX Tx

µM
T X

MλX

MT x TMx

T µM
XλMX

(a)

(b) (c)

(24)

Next, T̃ sends a homomorphism f : (X ,x)→ (Y,y) to T f : (T X ,T x ◦ λX)→ (TY,Ty ◦ λY ) which is a

homomorphism because

T f ◦T x◦λX = Ty◦T M f ◦λX = Ty◦λY ◦MT f .

We immediately see that UM
s T̃ = TUM

s . Next, we check that the components of the unit and multiplication

determined by UM
s η̃ =ηTUM

s and UM
s µ̃ = µTUM

s are homomorphisms. The unit is η̃(X ,x) =ηT
X : (X ,x)→

(T X ,Tx◦λX ) which is a homomorphism because T x◦λX ◦MηT
X = T x◦ηT

MX =ηT
X ◦x. The multiplication

is µ̃(X ,x) = µT
X : (T T X ,T (T x ◦λX) ◦λTX)→ (T X ,T x ◦λX) which is a homomorphism by the following

diagram where (a) is (9) instantiated for λ and (b) is naturality of µT .

MTT X MT X

T MTX

T T MX T MX

T T X T X

λT X

TλX

TT x

µT
X

λX

Tx

MµT
X

µT
MX

(b)

(a)

(25)

We conclude that (T̃ , η̃ , µ̃) is a lifting of T to EMs(M). It remains to show that T̃ satisfies (20). It follows

from the following diagram where (a) is T applied to (1), (b) is naturality of λ and (c) is T applied to
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associativity of x.

MT X T MX

T MX

MT MX T MMX

MT X T MX T X

MT ηM
X

MT x

λX Tx

λX

Tx

TMx

T µM
X

TMηM
X

λX

(a)

(c)(b)

(26)

In the other direction, we start with a lifting (T̃ , η̃, µ̃) satisfying T̃ x = T̃ x ◦MTx ◦MTηM
X for any

M-semialgebra x : MX → X , and we let λX = T̃ µM
X ◦MTηM

X . We will show that λ is a weak distributive

law.

First, naturality follows from the following diagram where (a) commutes by naturality of ηM and (b)

commutes because T M f is the image of M f : MX → MY which is a homomorphism between µM
X and

µM
Y by naturality of µM.

MTX MTMX T MX

MTY MTMY T MY
MT ηM

Y T̃ µM
Y

MT f

MT ηM
X T̃ µM

X

MT M f TM f(a) (b) (27)
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Next, we show that the instances of (7), (8) and (9) for λ commute by paving the following diagrams.

MX

MMX MX

MTX MT MX T MX

MηT
X

MT ηM
X T̃ µM

X

MηM
X

MηT
MX

ηT
MX

µM
X ηT

MX

(a)

(c)

(b)
(28)

MMTX MMTMX MTMX MT MMX T MMX

MMTMX MT MX

MT X MTMX T MX
MT ηM

X T̃ µM
X

MMT ηM
X MT̃ µM

X MT ηM
MX T̃ µM

MX

µM
T X T µM

X

MMT ηM
X

µM
T MX T̃ µM

X

MT̃ µM
X

MT µM
X

(f) (g)

(d)

(e)
(29)

MTT X MTMT X T MTX T MT MX T T MX

MTMTMX MT T MX

MTT MX T T MX

MTX MTMX T MX

MµT
X

MT ηM
T X T̃ µM

T X TMT ηM
X TT̃ µM

X

µT
MX

MT ηM
X T̃ µM

X

MT TηM
X

MµT
MX

MT MT ηM
X

T̃ µM
T MX

MT ηM
T MX

T̃ T̃ µM
X

µT
MX

(h)

(i)

MT T̃ µM
X

T̃ T̃ µM
X

(j)

(m)

(k)
(l)

(30)

(a) Naturality of ηM and ηT .

(b) By left of (1).

(c) By hypothesis, η̃(MX ,µM
X ) = ηT

MX is a homomor-

phism.

(d) Apply MT to right of (1).

(e) Apply T̃ to µM
X as a homomorphism

(MMX ,µM
MX)→ (MX ,µM

X ) in EMs(M).

(f) Naturality of µM and ηM.

(g) Associativity of T̃ µM
X .

(h) Naturality of ηM.

(i) Apply T̃ to MT ηM
X as a homomorphism

(MT X ,µM
TX)→ (MTMX ,µM

TMX ) in EMs(M).

(j) Apply T̃ to T̃ µM
X as a homomorphism

(MT MX ,µM
TMX )→ (T MX , T̃ µM

X ) in EMs(M).

(k) Naturality of µT and ηM.

(l) By (20).

(m) By hypothesis, µ̃(MX ,µM
X ) = µT

MX is a homomor-

phism.

We conclude that λ is a weak distributive law.

Finally, we are left to show that the operations we described are inverses. Starting with λ , we obtain

a lifting T̃ sending µM
X to T µM

X ◦λMX which is sent to λ ′ whose component at X is

λ ′X = T µM
X ◦λMX ◦MTηM

X = T µM
X ◦T MηM

X ◦λX = λX .



D. Petrişan & R. Sarkis 237

Starting with T̃ , we obtain a weak distributive law λ whose component at X is T̃ µM
X ◦MT ηM

X which is

sent to T̃ ′ which sends an M-semialgebra x : MX → X to

T̃ ′x = T x◦λX

= T x◦ T̃ µM
X ◦MT ηM

X

= T̃ x◦MT x◦MT ηM
X Apply T̃ to x as a homomorphism (MX ,µM

X )→ (X ,x).

= T̃ x. T̃ satisfies (20)

The theorem follows.

7.2 Proofs for Section 5

Proof of Theorem 5.2. Given a (−)+-semialgebra a : X+→ X , we define a := a[−] : X→ X and−·− :=
a[−,−] : X ×X → X . Let us verify each of the equations in Es

+ hold.

aax = a[ax]

= a[a[x]]

= (a◦a+)[[x]]

= (a◦µX )[[x]]

= a[x]

= ax

a(x · y) = a[a[x,y]]

= (a◦a+)[[x,y]]

= (a◦µX )[[x,y]]

= a[x,y] = x · y

ax ·ay = a[a[x],a[y]]

= (a◦a+)[[x], [y]]

= (a◦µX )[[x], [y]]

= a[x,y] = x · y

(x · y) · z = a[a[x,y],z]

= a[a[a[x,y]],a[z]]

= a[a[x,y],a[z]]

= (a◦a+)[[x,y], [z]]

= (a◦µX )[[x,y], [z]]

= a[x,y,z]

=
... symmetric argument

= a[x,a[y,z]] = x · (y · z).

Conversely, given a : X → X and · : X×X→ X satisfying the equations in Es
+, we define a : X+→ X

by [x1, . . . ,xn] 7→ ax1 · · ·axn which is well-defined by associativity. We need to generalize the equation

ax · ay = x · y = a(x · y) to longer strings of ·, namely, we claim that ax1 · · ·axn = x1 · · ·xn = a(x1 · · ·xn).
We proceed by induction starting with n = 2 which is true by hypothesis. If it holds for n−1, then

ax1 · · ·axn = (ax1 · · ·axn−1) ·axn

= (x1 · · ·xn−1) ·axn

= a(x1 · · ·xn−1) ·aaxn

= a(x1 · · ·xn−1) ·axn = a(x1 · · ·xn)

= (x1 · · ·xn−1) · xn

= x1 · · ·xn.

In the following derivation which shows a is a (−)+-semialgebra, we need a slightly weaker version

that holds even for n = 1: a(ax1 · · ·axn) = ax1 · · ·axn. For any L = [[x1,1, . . . ,xn1,1], . . . , [xk,1, . . . ,xnk ,k]] ∈
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(X+)+,

a(a+(L)) = a[ax1,1 · · ·axn1,1, . . . ,axk,1 · · ·axnk,k]

= a(ax1,1 · · ·axn1,1) · · ·a(axk,1 · · ·axnk ,k)

= ax1,1 · · ·axn1,1 · · ·axk,1 · · ·axnk,k

= a[x1,1, . . . ,xn1,1,x2,1 . . . ,xnk−1,k−1,xk,1, . . . ,xnk ,k]

= a(µX (L)).

Let us show these operations are inverses. If a and · are obtained from a : X+→ X , then we proceed

by induction to show that a[x1, . . . ,xn] = ax1 · · ·axn. For n = 1, it is clear. For n = 2, we have a[x1,x2] =
a[a[x1],a[x2]] = ax1 ·ax2. Suppose it holds for n−1, then

a[x1, . . . ,xn] = (a◦µX )[[x1, . . . ,xn−1], [xn]]

= a[a[x1, . . . ,xn−1],a[xn]]

= a[ax1 · · ·axn−1,axn]

= a(ax1 · · ·axn−1) ·aaxn

= ax1 · · ·axn.

We conclude that the semialgebra obtained from a and · is a. In the other direction, let a be obtained

from a and ·. We have a[x,y] = ax ·ay = x · y and a[x] = ax showing that the operations obtained from a

are a and ·.
Finally, we check that these operations are functorial. Suppose f : X → Y is a homomorphism

between a and b, then

f (a(x)) = f (a[x]) = b[ f (x)] = b f (x)

f (x ·a y) = f (a[x,y]) = b[ f (x), f (y)] = f (x) ·b f (y).

Conversely, if f ◦a= b◦ f and f ◦ ·a = ·b ◦ ( f × f ), then

f (a[x1, . . . ,xn]) = f (ax1 ·
a ·a ·a axn) = b f (x1) ·

b ·b ·b b f (xn) = b[ f (x1), . . . , f (xn)].

Proof of Theorem 5.3. Given a D-semialgebra a : DX → X , we define x+p y := a(px+ py) and ax =
a(1x). Let us verify each equation in Es

D
holds.

aax = aa(1x)

= a(1a(1x))

= (a◦Da)(1(1x))

= (a◦µX )(1(1x))

= a(1x) = ax

x+p x = a(px+ px)

= a(1x) = ax

x+p y = a(px+ py)

= a(py+ px)

= y+1−p x

a(x+p y) = a(1a(px+ py))

= (a◦Da)(1(px+ py))

= (a◦µX )(1(px+ py))

= a(px+ py)

= x+p y
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ax+p ay = a(pax+ pay)

= a(pa(1x)+ pa(1y))

= (a◦Da)(p(1x)+ p(1y))

= (a◦µX )(p(1x)+ p(1y)))

= a(px+ py)

= x+p y

(x+q y)+p z = a(p(x+q y)+ pz)

= a(pa(qx+qy))+ pz)

= a(pa(1a(qx+qy))+ pa(1z))

= a(pa(qx+qy)+ pa(1z))

= (a◦Da)(p(qx+qy)+ p(1z))

= (a◦µX )(p(qx+qy)+ p(1z))

= a(pqx+ pqy+ pz)

=
... symmetric argument

= x+pq (y+ p(1−q)
1−pq

z)

Conversely, given +p and a satisfying Es
D

, we define a : DX → X by a(∑n
i=1 pixi) =+n

i=1 piaxi.

We need to generalize the equation a(x+p y) = x+p y = ax+p ay to distributions with larger support,

namely, we claim that a(+n
i=1 pixi) =+n

i=1 pixi =+n
i=1 piaxi. We proceed by induction starting with

n = 2 which is true by hypothesis. Suppose it holds for n− 1, and let p′i for 1 ≤ i ≤ n be such that

+n
i=1 pixi =+n−1

i=1 p′ixi +p′n
xn, then

n

+
i=1

piaxi =
n−1

+
i=1

p′iaxi +p′n
axn

=
n−1

+
i=1

p′ixi +p′n
axn

= a

(
n−1

+
i=1

p′ixi

)
+p′n

aaxn

= a

(
n−1

+
i=1

p′ixi

)
+p′n

axn = a

(
n−1

+
i=1

p′ixi +p′n
xn

)
= a

(
n

+
i=1

pixi

)

=

(
n−1

+
i=1

p′ixi

)
+p′n

xn

=
n

+
i=1

pixi.

In the following derivation which shows that a is a D-semialgebra, we need a slightly weaker version
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that holds even for n = 1: a(+n
i=1 piaxi) =+n

i=1 piaxi. For any Φ = ∑n
i=1 pi

(
∑

mi

j=1 qi, jxi, j

)
,3

a(Da(Φ)) = a

(
n

∑
i=1

pi

(
mi

+
j=1

qi, jaxi, j

))

=
n

+
i=1

pia

(
mi

+
j=1

qi, jaxi, j

)

=
n

+
i=1

pi

(
mi

+
j=1

qi, jaxi, j

)

=
n

+
i=1

mi

+
j=1

piqi, jaxi, j

= a

(
n

∑
i=1

mi

∑
j=1

piqi, jxi, j

)

= a(µX (Φ)).

Let us show that these operations are inverses. If a and +p are obtained from a : DX → X , then we

proceed by induction to show that a(∑n
i=1 pixi) =+n

i=1 piaxi. For n = 1 it is clear. For n = 2, we have

a(px+ py) = a(pa(1x)+ pa(1y)) = ax+p ay. Suppose it hods for n−1, then

a

(
n

∑
i=1

pixi

)
= (a◦µX )

(
p′n

(
n−1

∑
i=1

p′i
p′n

xi

)
+ p′n(1xn)

)

= (a◦Da)

(
p′n

(
n−1

∑
i=1

p′i
p′n

xi

)
+ p′n(1xn)

)

= a

(
p′na

(
n−1

∑
i=1

p′i
p′n

xi

)
+ p′na(1xn)

)

= a

(
p′n

(
n−1

+
i=1

p′i
p′n

axi

)
+ p′naxn

)

= a

(
n−1

+
i=1

p′i
p′n

axi

)
+p′n

aaxn

=

(
n−1

+
i=1

p′i
p′n

axi

)
+p′n

axn

=
n

+
i=1

axi.

We conclude that the semialgebra obtained from a and +p is a.

In the other direction, let a be obtained from a and +p. We have a(px+ py) = ax+p ay = x+p y and

a(1x) = ax showing that the operations obtained from a are a and +p.

Finally, we check that these operations are functorial. Suppose f : X → Y is a homomorphism

3In this derivation, we cannot assume that all the xi, js are distinct, so skew associativity is not enough to say that +n

i=1 is

well-defined. However, we may use skew commutativity and idempotence as well because a is applied to every term of the sum

and idempotence holds when this is the case.
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between a and b, then

f (ax) = f (a(1x)) = b(1 f (x)) = b f (x)

f (x+a
p y) = f (a(px+ py)) = b(p f (x)+ p f (y)) = f (x)+b

p f (y).

Conversely, if f ◦a= b◦ f and f ◦+a
p =+b

p ◦ ( f × f ), then

f (a(
n

∑
i=1

pixi)) = f

(
n

+
i=1

piaxi

)
=

n

+
i=1

pi f (axi) =
n

+
i=1

pib f (xi) = b(
n

∑
i=1

pi f (xi)).
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