
LEADS: Learning Dynamical
Systems that Generalize Across Environments

Yuan Yin1, Ibrahim Ayed1,2, Emmanuel de Bézenac1, Nicolas Baskiotis1, Patrick Gallinari1,3

1Sorbonne Université, Paris, France
2ThereSIS Lab, Thales, Paris, France 3Criteo AI Lab, Paris, France

{yuan.yin,ibrahim.ayed,emmanuel.de-bezenac,
nicolas.baskiotis,patrick.gallinari}@sorbonne-universite.fr

Abstract

When modeling dynamical systems from real-world data samples, the distribution
of data often changes according to the environment in which they are captured,
and the dynamics of the system itself vary from one environment to another.
Generalizing across environments thus challenges the conventional frameworks.
The classical settings suggest either considering data as i.i.d. and learning a single
model to cover all situations or learning environment-specific models. Both are sub-
optimal: the former disregards the discrepancies between environments leading to
biased solutions, while the latter does not exploit their potential commonalities and
is prone to scarcity problems. We propose LEADS, a novel framework that leverages
the commonalities and discrepancies among known environments to improve model
generalization. This is achieved with a tailored training formulation aiming at
capturing common dynamics within a shared model while additional terms capture
environment-specific dynamics. We ground our approach in theory, exhibiting a
decrease in sample complexity w.r.t. classical alternatives. We show how theory
and practice coincides on the simplified case of linear dynamics. Moreover, we
instantiate this framework for neural networks and evaluate it experimentally on
representative families of nonlinear dynamics. We show that this new setting
can exploit knowledge extracted from environment-dependent data and improves
generalization for both known and novel environments.

1 Introduction

Data-driven approaches offer an interesting alternative and complement to physical-based methods for
modeling the dynamics of complex systems and are particularly promising in a wide range of settings:
e.g. if the underlying dynamics are partially known or understood, if the physical model is incomplete,
inaccurate, or fails to adapt to different contexts, or if external perturbation sources and forces are not
modeled. The idea of deploying machine learning (ML) to model complex dynamical systems picked
momentum a few years ago, relying on recent deep learning progresses and on the development of
new methods targeting the evolution of temporal and spatiotemporal systems [6, 9, 7, 21, 30, 2, 37]. It
is already being applied in different scientific disciplines (see e.g. [36] for a recent survey) and could
help accelerate scientific discovery to address challenging domains such as climate [32] or health [12].

However, despite promising results, current developments are limited and usually postulate an
idealized setting where data is abundant and the environment does not change, the so-called “i.i.d.
hypothesis”. In practice, real-world data may be expensive or difficult to acquire. Moreover, changes
in the environment may be caused by many different factors. For example, in climate modeling, there
are external forces (e.g. Coriolis) which depend on the spatial location [23]; or, in health science,
parameters need to be personalized for each patient as for cardiac computational models [27]. More

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



generally, data acquisition and modeling are affected by different factors such as geographical position,
sensor variability, measuring circumstances, etc. The classical paradigm either considers all the data
as i.i.d. and looks for a global model, or proposes specific models for each environment. The former
disregards discrepancies between the environments, thus leading to a biased solution with an averaged
model which will usually perform poorly. The latter ignores the similarities between environments,
thus affecting generalization performance, particularly in settings where per-environment data is
limited. This is particularly problematic in dynamical settings, as small changes in initial conditions
lead to trajectories not covered by the training data.

In this work, we consider a setting where it is explicitly assumed that the trajectories are collected from
different environments. Note that in this setting, the i.i.d. hypothesis is removed twice: by considering
the temporality of the data and by the existence of multiple environments. In many useful contexts the
dynamics in each environment share similarities, while being distinct which translates into changes
in the data distributions. Our objective is to leverage the similarities between environments in order
to improve the modeling capacity and generalization performance, while still carefully dealing with
the discrepancies across environments. This brings us to consider two research questions:

RQ1 Does modeling the differences between environments improve generalization error w.r.t. classi-
cal settings: One-For-All, where a unique function is trained for all environments; and One-
Per-Env., where a specific function is fitted for each environment? (cf. Sec. 4 for more details)

RQ2 Is it possible to extrapolate to a novel environment that has not been seen during training?

We propose LEarning Across Dynamical Systems (LEADS), a novel learning methodology decom-
posing the learned dynamics into shared and environment-specific components. The learning problem
is formulated such that the shared component captures the dynamics common across environments
and exploits all the available data, while the environment-specific component only models the remain-
ing dynamics, i.e. those that cannot be expressed by the former, based on environment-specific data.
We show, under mild conditions, that the learning problem is well-posed, as the resulting decompo-
sition exists and is unique (Sec. 2.2). We then analyze the properties of this decomposition from a
sample complexity perspective. While, in general, the bounds might be too loose to be practical, a
more precise study is conducted in the case of linear dynamics for which theory and practice are
closer. We then instantiate this framework for more general hypothesis spaces and dynamics, lead-
ing to a heuristic for the control of generalization that will be validated experimentally. Overall, we
show that this framework provides better generalization properties than One-Per-Env., requiring less
training data to reach the same performance level (RQ1). The shared information is also useful to
extrapolate to unknown environments: the new function for this environment can be learned from
very little data (RQ2). We experiment with these ideas on three representative cases (Sec. 4) where
the dynamics are provided by differential equations: ODEs with the Lotka-Volterra predator-prey
model, and PDEs with the Gray-Scott reaction-diffusion and the more challenging incompressible
Navier-Stokes equations. Experimental evidence confirms the intuition and the theoretical findings:
with a similar amount of data, the approach drastically outperforms One-For-All and One-Per-Env.
settings, especially in low data regimes. Up to our knowledge, it is the first time that generalization in
multiple dynamical systems is addressed from an ML perspective1.

2 Approach
2.1 Problem setting
We consider the problem of learning models of dynamical physical processes with data acquired from
a set of environments E. Throughout the paper, we will assume that the dynamics in an environment
e ∈ E are defined through the evolution of differential equations. This will provide in particular a
clear setup for the experiments and the validation. For a given problem, we consider that the dynamics
of the different environments share common factors while each environments has its own specificity,
resulting in a distinct model per environment. Both the general form of the differential equations and
the specific terms of each environment are assumed to be completely unknown. xe

t denotes the state of
the equation for environment e, taking its values from a bounded set A, with evolution term fe : A →
TA, TA being the tangent bundle of A. In other words, over a fixed time interval [0, T ], we have:

dxe
t

dt
= fe(x

e
t ) (1)

1Code is available at https://github.com/yuan-yin/LEADS.

2

https://github.com/yuan-yin/LEADS


We assume that, for any e, fe lies in a functional vector space F. In the experiments, we will consider
one ODE, in which case A ⊂ Rd, and two PDEs, in which case A is a d′-dimensional vector field
over a bounded spatial domain S ⊂ Rd′

. The term of the data-generating dynamical system in Eq. 1
is sampled from a distribution for each e, i.e. fe ∼ Q. From fe, we define Te, the data distribution of
trajectories xe

· verifying Eq. 1, induced by a distribution of initial states xe
0 ∼ P0. The data for this

environment is then composed of l trajectories sampled from Te, and is denoted as T̂e with xe,i
· the

i-th trajectory. We will denote the full dataset by T̂ =
⋃

e∈E T̂e.

The classical empirical risk minimization (ERM) framework suggests to model the data dynamics
either at the global level (One-For-All), taking trajectories indiscriminately from T̂, or at the spe-
cific environment level (One-Per-Env.), training one model for each T̂e. Our aim is to formulate
a new learning framework with the objective of explicitly considering the existence of different
environments to improve the modeling strategy w.r.t. the classical ERM settings.

2.2 LEADS framework
We decompose the dynamics into two components where f ∈ F is shared across environments and
ge ∈ F is specific to the environment e, so that

∀e ∈ E, fe = f + ge (2)
Since we consider functional vector spaces, this additive hypothesis is not restrictive and such a de-
composition always exists. It is also quite natural as a sum of evolution terms can be seen as the sum
of the forces acting on the system. Note that the sum of two evolution terms can lead to behaviors
very different from those induced by each of those terms. However, learning this decomposition from
data defines an ill-posed problem: for any choice of f , there is a {ge}e∈E such that Eq. 2 is verified.
A trivial example would be f = 0 leading to a solution where each environment is fitted separately.

Our core idea is that f should capture as much of the shared dynamics as is possible, while ge should
focus only on the environment characteristics not captured by f . To formalize this intuition, we
introduce Ω(ge), a penalization on ge, which precise definition will depend on the considered setting.
We reformulate the learning objective as the following constrained optimization problem:

min
f,{ge}e∈E∈F

∑
e∈E

Ω(ge) subject to ∀xe,i ∈ T̂,∀t, dx
e,i
t

dt
= (f + ge)(x

e,i
t ) (3)

Minimizing Ω aims to reduce ges’ complexity while correctly fitting the dynamics of each environ-
ment. This argument will be made formal in the next section. Note that f will be trained on the data
from all environments contrary to ges. A key question is then to determine under which conditions the
minimum in Eq. 3 is well-defined. The following proposition provides an answer (proof cf. Sup. A):
Proposition 1 (Existence and Uniqueness). Assume Ω is convex, then the existence of a minimal
decomposition f⋆, {g⋆e}e∈E ∈ F of Eq. 3 is guaranteed. Furthermore, if Ω is strictly convex, this
decomposition is unique.
In practice, we consider the following relaxed formulation of Eq. 3:

min
f,{ge}e∈E∈F

∑
e∈E

(
1

λ
Ω(ge) +

l∑
i=1

∫ T

0

∥∥∥∥dxe,i
t

dt
− (f + ge)(x

e,i
τ )

∥∥∥∥2dt) (4)

where f, ge are taken from a hypothesis space F̂ approximating F. λ is a regularization weight and
the integral term constrains the learned f + ge to follow the observed dynamics. The form of this
objective and its effective calculation will be detailed in Sec. 4.4.

3 Improving generalization with LEADS
Defining an appropriate Ω is crucial for our method. In this section, we show that the generalization
error should decrease with the number of environments. While the bounds might be too loose for
NNs, our analysis is shown to adequately model the decreasing trend in the linear case, linking both
our intuition and our theoretical analysis with empirical evidence. This then allows us to construct an
appropriate Ω for NNs.

3.1 General case
After introducing preliminary notations and definitions, we define the hypothesis spaces associated
with our multiple environment framework. Considering a first setting where all environments of
interest are present at training time, we prove an upper-bound of their effective size based on the

3



covering numbers of the approximation spaces. This allows us to quantitatively control the sample
complexity of our model, depending on the number of environments m and other quantities that can
be considered and optimized in practice. We then consider an extension for learning on a new and
unseen environment. The bounds here are inspired by ideas initially introduced in [4]. They consider
multi-task classification in vector spaces, where the task specific classifiers share a common feature
extractor. Our extension considers sequences corresponding to dynamical trajectories, and a model
with additive components instead of function composition in their case.

Definitions. Sample complexity theory is usually defined for supervised contexts, where for a given
input x we want to predict some target y. In our setting, we want to learn trajectories (xe

t )0≤t≤T

starting from an initial condition x0. We reformulate this problem and cast it as a standard supervised
learning problem: Te being the data distribution of trajectories for environment e, as defined in
Sec. 2.1, let us consider a trajectory xe

· ∼ Te, and time τ ∼ Unif([0, T ]); we define system states
x=xe

τ ∈ A as input, and the corresponding values of derivatives y = fe(x
e
τ ) ∈ TA as the associated

target. We will denote Pe the underlying distribution of (x, y), and P̂e the associated dataset of size n.

We are searching for f, ge :A→TA in an approximation function space F̂ of the original space F. Let
us define Ĝ ⊆ F̂ the effective function space from which the ges are sampled. Let f + Ĝ := {f + g :
g ∈ Ĝ} be the hypothesis space generated by function pairs (f, g), with a fixed f ∈ F̂. For any h :
A → TA, the error on some test distribution Pe is given by erPe

(h) =
∫
A×TA

∥h(x)− y∥2dPe(x, y)
and the error on the training set by êr

P̂e
(h) = 1

n

∑
(x,y)∈P̂e

∥h(x)− y∥2.

LEADS sample complexity. Let C
Ĝ
(ε, F̂) and C

F̂
(ε, Ĝ) denote the capacity of F̂ and Ĝ at a certain

scale ε > 0. Such capacity describes the approximation ability of the space. The capacity of a
class of functions is defined based on covering numbers, and the precise definition is provided in
Sup. B.2, Table S1. The following result is general and applies for any decomposition of the form
f + ge. It states that to guarantee a given average test error, the minimal number of samples required
is a function of both capacities and the number of environments m, and it provides a step towards
RQ1 (proof see Sup. B.2):
Proposition 2. Given m environments, let ε1, ε2, δ > 0, ε = ε1+ε2. Assume the number of examples
n per environment satisfies

n ≥ max

{
64

ε2

(
1

m

(
log

4

δ
+ log C

Ĝ

( ε1
16

, F̂
))

+ log C
F̂

( ε2
16

, Ĝ
))

,
16

ε2

}
(5)

Then with probability at least 1−δ (over the choice of training sets {P̂e}), any learner (f+g1, . . . , f+
gm) will satisfy 1

m

∑
e∈E erPe

(f + ge) ≤ 1
m

∑
e∈E êr

P̂e
(f + ge) + ε.

The contribution of F̂ to the sample complexity decreases as m increases, while that of Ĝ remains the
same: this is due to the fact that shared functions f have access to the data from all environments,
which is not the case for ge. From this finding, one infers the basis of LEADS: when learning from
several environments, to control the generalization error through the decomposition fe = f + ge, f
should account for most of the complexity of fe while the complexity of ge should be controlled and
minimized. We then establish an explicit link to our learning problem formulation in Eq. 3. Further
in this section, we will show for linear ODEs that the optimization of Ω(ge) in Eq. 4 controls the
capacity of the effective set Ĝ by selecting ges that are as “simple” as possible.

As a corollary, we show that for a fixed total number of samples in T̂, the sample complexity will
decrease as the number of environments increases. To see this, suppose that we have two situations
corresponding to data generated respectively from m and m/b environments. The total sample
complexity for each case will be respectively bounded by O(logC

Ĝ
( ε116 , F̂) +m logC

F̂
( ε216 , Ĝ)) and

O(b logC
Ĝ
( ε116 , F̂) +m logC

F̂
( ε216 , Ĝ)). The latter being larger than the former, a situation with more

environments presents a clear advantage. Fig. 4 in Sec. 4 confirms this result with empirical evidence.

LEADS sample complexity for novel environments. Suppose that problem Eq. 3 has been solved
for a set of environments E, can we use the learned model for a new environment not present in the
initial training set (RQ2)? Let e′ be such a new environment, Pe′ the trajectory distribution of e′,
generated from dynamics fe′ ∼ Q, and P̂e′ an associated training set of size n′. The following results
show that the number of required examples for reaching a given performance is much lower when
training f + ge′ with f fixed on this new environment than training another f ′ + ge′ from scratch
(proof see Sup. B.2).

4



Proposition 3. For all ε, δ with 0 < ε, δ < 1 if the number of samples n′ satisfies

n′ ≥ max

{
64

ε2
log

4C( ε
16 , f + Ĝ)

δ
,
16

ε2

}
, (6)

then with probability at least 1− δ (over the choice of novel training set P̂e′ ), any learner f + ge′ ∈
f + Ĝ will satisfy erPe′ (f + ge′) ≤ êr

P̂e′
(f + ge′) + ε.

In Prop. 3 as the capacity of F̂ no longer appears, the number of required samples now depends
only on the capacity of f + Ĝ. This sample complexity is then smaller than learning from scratch
fe′ = f + ge′ as can be seen by comparing with Prop. 2 at m = 1.

From the previous propositions, it is clear that the environment-specific functions ge need to be
explicitly controlled. We now introduce a practical way to do that. Let ω(r, ε) be a strictly increasing
function w.r.t. r such that

logC
F̂
(ε, Ĝ) ≤ ω(r, ε), r = supg∈Ĝ

Ω(g) (7)
Minimizing Ω would reduce r and then the sample complexity of our model by constraining Ĝ. Our
goal is thus to construct such a pair (ω,Ω). In the following, we will first show in Sec. 3.2, how one
can construct a penalization term Ω based on the covering number bound for linear approximators and
linear ODEs. We show with a simple use case that the generalization error obtained in practice follows
the same trend as the theoretical error bound when the number of environments varies. Inspired by this
result, we then propose in Sec. 3.3 an effective Ω to penalize the complexity of the neural networks ge.

3.2 Linear case: theoretical bounds correctly predict the trend of test error
Results in Sec. 3.1 provide general guidelines for our approach. We now apply them to a linear system
to see how the empirical results meet the tendency predicted by theoretical bound.

Let us consider a linear ODE dxe
t

dt =LFe
(xe

t ) where LFe
:x 7→Fex is a linear transformation associated

to the square real valued matrix Fe ∈ Md,d(R). We choose as hypothesis space the space of linear
functions F̂⊂L(Rd,Rd) and instantiate a linear LEADS dxe

t

dt =(LF + LGe
)(xe

t ), LF ∈ F̂,LGe
∈

Ĝ ⊆ F̂. As suggested in [3], we have that (proof in Sup. B.3):
Proposition 4. If for all linear maps LGe

∈ Ĝ, ∥G∥2F≤r, if the input space is bounded s.t. ∥x∥2≤b,
and the MSE loss function is bounded by c, then

logC
F̂
(ε, Ĝ) ≤ ⌈rcd(2b)2/ε2⌉ log 2d2 =: ω(r, ε)

ω(r, ε) is a strictly increasing function w.r.t. r. This indicates that we can choose Ω(LG)=∥G∥F as
our optimization objective in Eq. 3. The sample complexity in Eq. 5 will decrease with the size the
largest possible r=supLG∈Ĝ

Ω(LG). The optimization process will reduce Ω(LG) until a minimum
is reached. The maximum size of the effective hypothesis space is then bounded and decreases
throughout training thanks to the penalty. Then in linear case Prop. 2 becomes (proof cf. Sup. B.3):
Proposition 5. If for linear maps LF ∈ F̂, ∥F ∥2F≤r′, LG ∈ Ĝ, ∥G∥2F≤r, ∥x∥2≤b, and if the MSE
loss function is bounded by c, given m environments and n samples per environment, with the
probability 1 − δ, the generalization error upper bound is ε = max {

√
(p +

√
p2 + 4q)/2,

√
16/n}

where p = 64
mn log 4

δ and q = 64
n ⌈( r′

mz2 + r
(1−z)2 )cd(32b)

2⌉ log 2d2 for any 0 < z < 1.

1 2 4 8

2

4

6

8

Test
MSE

×10–2

2 traj/env.

4 traj/env.

2 traj/env.

4 traj/env.

Error w/o Ω optim.
Error w Ω optim.

1 2 4 8
1.5
2.0
2.5
3.0 GeneralizationErrorBound

2 traj/env.

4 traj/env.2 traj/env.

4 traj/env.

Bound w/o Ω optim.
Bound w Ω optim.

Number of Training Environments
Figure 1: Test error compared with corresponding the-
oretical bound. The arrows indicate the changes after
applying Ω(ge) penalty.

In Fig. 1, we take an instance of linear ODE
defined by Fe = QΛeQ

⊤ with the diag-
onal Λe specific to each environment Af-
ter solving Eq. 3 we have at the optimum
that Ge=Fe − F ⋆=Fe − 1

m

∑
e′∈E Fe′ .

Then we can take r = max{LGe} Ω(LGe
)

as the norm bound of Ĝ when Ω(ge) is op-
timized. Fig. 1 shows on the left the test
error with and without penalty and the cor-
responding theoretical bound on the right.
We observe that, after applying the penalty
Ω, the test error is reduced as well as the
theoretical generalization bound, as indi-
cated by the arrows from the dashed line to
the concrete one. See Sup. B.3 for more de-
tails on this experiment.

5



3.3 Nonlinear case: instantiation for neural nets
The above linear case validates the ideas introduced in Prop. 2 and provides an instantiation guide and
an intuition on the more complex nonlinear case. This motivates us to instantiate the general case by
choosing an appropriate approximating space F̂ and a penalization function Ω from the generalization
bounds for the corresponding space. Sup. B.4 of the Appendix contains additional details justifying
those choices. For F̂, we select the space of feed-forward neural networks with a fixed architecture.
We choose the following penalty function:

Ω(ge) = ∥ge∥2∞+α∥ge∥2Lip (8)
where ∥g∥∞= ess sup|g| and ∥·∥Lip is the Lipschitz semi-norm, α is a hyperparameter. This is
inspired by the existing capacity bound for NNs [14] (see Sup. B.4 for details). Note that constructing
tight generalization bounds for neural networks is still an open research problem [26]; however, it
may still yield valuable intuitions and guide algorithm design. This heuristic is tested successfully on
three different datasets with different architectures in the experiments (Sec. 4).

4 Experiments
Our experiments are conducted on three families of dynamical systems described by three broad
classes of differential equations. All exhibit complex and nonlinear dynamics. The first one is
an ODE-driven system used for biological system modeling. The second one is a PDE-driven
reaction-diffusion model, well-known in chemistry for its variety of spatiotemporal patterns. The
third one is the more physically complex Navier-Stokes equation, expressing the physical laws of
incompressible Newtonian fluids. To show the general validity of our framework, we will use 3
different NN architectures (MLP, ConvNet, and Fourier Neural Operator [19]). Each architecture
is well-adapted to the corresponding dynamics. This also shows that the framework is valid for a
variety of approximating functions.

4.1 Dynamics, environments, and datasets
Lotka-Volterra (LV). This classical model [22] is used for describing the dynamics of interaction
between a predator and a prey. The dynamics follow the ODE:

du/dt = αu− βuv, dv/dt = δuv − γv

with u, v the number of prey and predator, α, β, γ, δ>0 defining how the two species interact. The
system state is xe

t = (ue
t , v

e
t ) ∈ R2

+. The initial conditions ui
0, v

i
0 are sampled from a uniform

distribution P0. We characterize the dynamics by θ = (α/β, γ/δ) ∈ Θ. An environment e is then
defined by parameters θe sampled from a uniform distribution over a parameter set Θ. We then
sample two sets of environment parameters: one used as training environments for RQ1, the other
treated as novel environments. for RQ2.

Gray-Scott (GS). This reaction-diffusion model is famous for its complex spatiotemporal behavior
given its simple equation formulation [29]. The governing PDE is:

∂u/∂t = Du∆u− uv2 + F (1− u), ∂v/∂t = Dv∆v + uv2 − (F + k)v

where the u, v represent the concentrations of two chemical components in the spatial domain S
with periodic boundary conditions, the spatially discretized state at time t is xe

t = (ue
t , v

e
t ) ∈ R2×322

+ .
Du, Dv denote the diffusion coefficients respectively for u, v, and are held constant, and F, k are the
reaction parameters determining the spatio-temporal patterns of the dynamics [29]. As for the initial
conditions (u0, v0) ∼ P0, we consider uniform concentrations, with 3 2-by-2 squares fixed at other
concentration values and positioned at uniformly sampled positions in S to trigger the reactions. An
environment e is defined by its parameters θe = (Fe, ke) ∈ Θ. We consider a set of θe parameters
uniformly sampled from the environment distribution Q on Θ.

Navier-Stokes (NS). We consider the Navier-Stokes PDE for incompressible flows:
∂w/∂t = −v · ∇w + ν∆w + ξ ∇ · v = 0

where v is the velocity field, w = ∇ × v is the vorticity, both v, w lie in a spatial domain S with
periodic boundary conditions, ν is the viscosity and ξ is the constant forcing term in the domain S.
The discretized state at time t is the vorticity xe

t = we
t ∈ R322 . Note that v is already contained in w.

We fix ν = 10−3 across the environments. We sample the initial conditions we
0 ∼ P0 as in [19]. An

environment e is defined by its forcing term ξe ∈ Θξ. We uniformly sampled a set of forcing terms
from Q on Θξ.

6



One-Per-Env. FT-NODE LEADS

GS NS GS NS GS NS

Ground truth

GS NS

One-Per-Env. FT-NODE LEADS

GS NS GS NS GS NS
Figure 2: Left: final states for GS and NS predicted by the two best baselines (One-Per-Env. and
FT-NODE) and LEADS compared with ground truth. Different environment are arranged by row (3
in total). Right: the corresponding MAE error maps, the scale of the error map is [0, 0.6] for GS, and
[0, 0.2] for NS; darker is smaller. (See Sup. D for full sequences)

0.6 0.8 1.0 1.2
0.75
1.00
1.25

0.8 1.0 1.2
1.25
1.50
1.75

0.0 0.5 1.0
0.5
1.0
1.5

1 2 3 4
2

4One-Per-Env. FT-NODE LEADS Ground truth

Figure 3: Test predicted trajectories in phase space with two baselines (One-Per-Env. and FT-NODE)
and LEADS compared with ground truth for LV for 4 envs., one per figure from left to right. Quantity
of the prey u and the predator v respectively on the horizontal and the vertical axis. Initial state is the
rightmost end-point of the figures and it is common to all the trajectories.

Datasets. For training, we create two datasets for LV by simulating trajectories of K=20 successive
points with temporal resolution ∆t=0.5. We use the first one as a set of training dynamics to validate
the LEADS framework. We choose 10 environments and simulate 8 trajectories (thus corresponding
to n= 8 ·K data points) per environment for training. We can then easily control the number of
data points and environments in experiments by taking different subsets. The second one is used to
validate the improvement with LEADS while training on novel environments. We simulate 1 trajectory
(n=1·K data points) for training. We create two datasets for further validation of LEADS with GS
and NS. For GS, we simulate trajectories of K=10 steps with ∆t=40. We choose 3 parameters and
simulate 1 trajectory (n=1·K data points) for training. For NS, we simulate trajectories of K=10
steps with ∆t=1. We choose 4 forcing terms and simulate 8 trajectories (n=8·K states) for training.
For test-time evaluation, we create for each equation in each environment a test set of 32 trajectories
(32·K) data points. Note that every environment dataset has the same number of trajectories and the
initial conditions are fixed to equal values across the environments to ensure that the data variations
only come from the dynamics themselves, i.e. for the i-th trajectory in P̂e, ∀e, xe,i

0 =xi
0. LV and

GS data are simulated with the DOPRI5 solver in NumPy [10, 13]. NS data is simulated with the
pseudo-spectral method as in [19].

4.2 Experimental settings and baselines
We validate LEADS in two settings: in the first one all the environments in E are available at once
and then f and all the ges are all trained on E. In the second one, training has been performed on
E as before, and we consider a novel environment e′ ̸∈ E: the shared term f being kept fixed, the
approximating function fe′ = f + ge′ is trained on the data from e′ (i.e. only ge′ is modified).

All environments available at once. We introduce five baselines used for comparing with LEADS:
(a) One-For-All: learning on the entire dataset P̂ over all environments with the sum of a pair of
NNs f + g, with the standard ERM principle, as in [2]. Although this is equivalent to use only one
function f , we use this formulation to indicate that the number of parameters is the same for this
experiment and for the LEADS ones. (b) One-Per-Env.: learning a specific function for each dataset
P̂e. For the same reason as above, we keep the sum formulation (f + g)e. (c) Factored Tensor RNN
or FT-RNN [33]: it modifies the recurrent neural network to integrate a one-hot environment code
into each linear transformation of the network. Instead of being encoded in a separate function ge like
in LEADS, the environment appears here as an extra one-hot input for the RNN linear transformations.
This can be implemented for representative SOTA (spatio-)temporal predictors such as GRU [8] or
PredRNN [35]. (d) FT-NODE: a baseline for which the same environment encoding as FT-RNN
is incorporated in a Neural ODE [7]. (e) Gradient-based Meta Learning or GBML-like method:
we propose a GBML-like baseline which can directly compare to our framework. It follows the

7



Table 1: Results for LV, GS, and NS datasets, trained on m envs. with n data points per env.

Method LV (m = 10, n = 1 ·K) GS (m = 3, n = 1 ·K) NS (m = 4, n = 8 ·K)

MSE train MSE test MSE train MSE test MSE train MSE test

One-For-All 4.57e-1 5.08±0.56 e-1 1.55e-2 1.43±0.15 e-2 5.17e-2 7.31±5.29 e-2
One-Per-Env. 2.15e-5 7.95±6.96 e-3 8.48e-5 6.43±3.42 e-3 5.60e-6 1.10±0.72 e-2
FT-RNN [33] 5.29e-5 6.40±5.69 e-3 8.44e-6 8.19±3.09 e-3 7.40e-4 5.92±4.00 e-2
FT-NODE 7.74e-5 3.40±2.64 e-3 3.51e-5 3.86±3.36 e-3 1.80e-4 2.96±1.99 e-2
GBML-like 3.84e-6 5.87±5.65 e-3 1.07e-4 6.01±3.62 e-3 1.39e-4 7.37±4.80 e-3
LEADS no min. 3.28e-6 3.07±2.58 e-3 7.65e-5 5.53±3.43 e-3 3.20e-4 7.10±4.24 e-3
LEADS (Ours) 5.74e-6 1.16±0.99 e-3 5.75e-5 2.08±2.88 e-3 1.03e-4 5.95±3.65 e-3

principle of MAML [11], by training One-For-All at first which provides an initialization near to
the given environments like GBML does, then fitting it individually for each training environment.
(f) LEADS no min.: ablation baseline, our proposal without the Ω(ge) penalization. A comparison
with the different baselines is proposed in Table 1 for the three dynamics. For concision, we provide
a selection of results corresponding to 1 training trajectory per environment for LV and GS and 8 for
NS. This is the minimal training set size for each dataset. Further experimental results when varying
the number of environments from 1 to 8 are provided in Fig. 4 and Table S3 for LV.

Learning on novel environments. We consider the following training schemes with a pre-trained,
fixed f : (a) Pre-trained-f -Only: only the pre-trained f is used for prediction; a sanity check to ensure
that f cannot predict in any novel environment without further adaptation. (b) One-Per-Env.: training
from scratch on {P̂e′} as One-Per-Env. in the previous section. (c) Pre-trained-f -Plus-Trained-ge:
we train g on each dataset P̂e′ based on pre-trained f , i.e. f + ge′ , leaving only ge′s adjustable. We
compare the test error evolution during training for 3 schemes above for a comparison of convergence
speed and performance. Results are given in Fig. 5.

4.3 Experimental results
All environments available at once. We show the results in Table 1. For LV systems, we confirm
first that the entire dataset cannot be learned properly with a single model (One-For-All) when the
number of environments increases. Comparing with other baselines, our method LEADS reduces the
test MSE over 85% w.r.t. One-Per-Env. and over 60% w.r.t. LEADS no min., we also cut 50%-75% of
error w.r.t. other baselines. Fig. 3 shows samples of predicted trajectories in test, LEADS follows very
closely the ground truth trajectory, while One-Per-Env. under-performs in most environments. We
observe the same tendency for the GS and NS systems. The error is reduced by: around 2/3 (GS)
and 45% (NS) w.r.t. One-Per-Env.; over 60% (GS) and 15% (NS) w.r.t. LEADS no min.; 45-75%
(GS) and 15-90% (NS) w.r.t. other baselines. In Fig. 2, the final states obtained with LEADS are
qualitatively closer to the ground truth. Looking at the error maps on the right, we see that the errors
are systematically reduced across all environments compared to the baselines. This shows that LEADS
accumulates less errors through the integration, which suggests that LEADS alleviates overfitting.

1 2 4 8Number of Training Environments

10–4

10–3

10–2

10–1

Test
MSE

(Log
-sca

le)

One-For-All
One-Per-Env.
LEADS (Ours)

Trainingtrajectoriesper env.
↓↓↓

1
2

4
8

Figure 4: Test error for LV w.r.t. the number of environ-
ments. We apply the models in 1 to 8 environments. 4
groups of curves correspond to models trained with 1 to
8 trajectories per env. All groups highlight the same ten-
dencies: increasing One-For-All, stable One-Per-Env.,
and decreasing LEADS. More results of baselines meth-
ods in Sup. D.

We have also conducted a larger scale ex-
periment on LV (Fig. 4) to analyze the be-
havior of the different training approaches
as the number of environments increases.
We consider three models One-For-All,
One-Per-Env. and LEADS, 1, 2, 4 and 8
environments, and for each such case, we
have 4 groups of curves, corresponding to
1, 2, 4 and 8 training trajectories per envi-
ronment. We summarize the main observa-
tions. With One-For-All (blue), the error
increases as the number of environments
increases: the dynamics for each environ-
ment being indeed different, this introduces
an increasingly large bias, and thus the data
cannot be fit with one single model. The
performance of One-Per-Env. (in red), for
which models are trained independently for
each environment, is constant as expected
when the number of environments changes.

8



LEADS (green) circumvents these issues and shows that the shared characteristics among the environ-
ments can be leveraged so as to improve generalization: it is particularly effective when the number of
samples per environment is small. (See Sup. D for more details on the experiments and on the results).

0 2500 5000 7500 10000 12500 15000 17500 20000Gradient step
10–3

10–2

10–1

Test
MSE

(Log
-sca

le) Pre-trained-f-Only
One-Per-Env.Pre-trained-f-Plus-Trained-ge

Figure 5: Test error evolution during training on 2 novel
environments for LV.

Learning on novel environments. We
demonstrate how the pre-trained dynamics
can help to fit a model for novel environ-
ments. We took an f pre-trained by LEADS
on a set of LV environments. Fig. 5 shows
the evolution of the test loss during training
for three systems: a f function pre-trained
by LEADS on a set of LV training environ-
ments, a ge function trained from scratch
on the new environment and LEADS that
uses a pre-trained f and learns a ge residue
on this new environment. Pre-trained-f -Only alone cannot predict in any novel environments. Very
fast in the training stages, Pre-trained-f -Plus-Trained-ge already surpasses the best error of the
model trained from scratch (indicated with dotted line). Similar results are also observed with the GS
and NS datasets (cf. Sup. D, Table S5). These empirical results clearly show that the learned shared
dynamics accelerates and improves the learning in novel environments.

4.4 Training and implementation details

Discussion on trajectory-based optimization. Solving the learning problem Eq. 2 in our setting,
involves computing a trajectory loss (integral term in Eq. 4). However, in practice, we do not have
access to the continuous trajectories at every instant t but only to a finite number of snapshots
for the state values {xk∆t}0≤k≤ T

∆t
at a temporal resolution ∆t. From these discrete observed

trajectories, it is still possible to recover an approximate derivative dΛk∆t ≃
dxk∆t

dt using a numerical
scheme Λ. The integral term for a given sample in the objective Eq. 4 would then be estimated as∑K

k=1

∥∥dΛk∆t − (f + ge)(x∆tk)
∥∥2. This is not the best solution and we have observed much better

prediction performance for all models, including the baselines, when computing the error directly
on the states, using an integral formulation

∑K
k=1∥x(k+1)∆t − x̃(k+1)∆t∥2, where x̃(k+1)∆t is the

solution given by a numerical solver approximating the integral xk∆t +
∫ (k+1)∆t

k∆t
(f + ge)(x̃s)ds

starting from xk∆t. Comparing directly in the state space yields more accurate results for prediction
as the learned network tends to correct the solver’s numerical errors, as first highlighted in [37].

Calculating Ω. Given finite data and time, the exact infinity norm and Lipschitz norm are both
intractable. We opt for more practical forms in the experiments. For the infinity norm, we chose to
minimize the empirical norm of the output vectors on known data points, this choice is motivated
in Sup. C. In practice, we found out that dividing the output norm by its input norm works better:
1
n

∑
i,k∥ge(x

e,i
k∆t)∥2/∥x

e,i
k∆t∥2, where the xe,i

k∆t are known states in the training set. For the Lipschitz
norm, as suggested in [5], we optimize the sum of the spectral norms of the weight at each layer∑D

l=1∥W
ge
l ∥2. We use the power iteration method in [25] for fast spectral norm approximation.

Implementation. We used 4-layer MLPs for LV, 4-layer ConvNets for GS and Fourier Neural
Operator (FNO) [19] for NS. For FT-RNN baseline, we adapted GRU [8] for LV and PredRNN
[35] for GS and NS. We apply the Swish function [31] as the default activation function. Networks
are integrated in time with RK4 (LV, GS) or Euler (NS), using the basic back-propagation through
the internals of the solver. We apply an exponential Scheduled Sampling [17] with exponent of
0.99 to stabilize the training. We use the Adam optimizer [15] with the same learning rate 10−3

and (β1, β2) = (0.9, 0.999) across the experiments. For the hyperparamters in Eq. 8, we chose
respectively λ = 5× 103, 102, 105 and α = 10−3, 10−2, 10−5 for LV, GS and NS. All experiments
are performed with a single NVIDIA Titan Xp GPU.

5 Related work
Recent approaches linking invariances to Out-of-Distribution (OoD) Generalization, such as [1, 16,
34], aim at finding a single classifier that predicts well invariantly across environments with the
power of extrapolating outside the known distributions. However, in our dynamical systems context,
the optimal regression function should be different in each environment, and modeling environment

9



bias is as important as modeling the invariant information, as both are indispensable for prediction.
Thus such invariant learners are incompatible with our setting. Meta-learning methods have recently
been considered for dynamical systems as in [11, 18]. Their objective is to train a single model
that can be quickly adapted to a novel environment with a few data-points in limited training steps.
However, in general these methods do not focus on leveraging the commonalities and discrepencies
in data and may suffer from overfitting at test time [24]. Multi-task learning [38] seeks for learning
shared representations of inputs that exploit the domain information. Up to our knowledge current
multi-task methods have not been considered for dynamical systems. [33] apply multi-task learning
for interactive physical environments but do not consider the case of dynamical systems. Other
approaches like [39, 28] integrate probabilistic methods into a Neural ODE, to learn a distribution of
the underlying physical processes. Their focus is on the uncertainty of a single system. [37] consider
an additive decomposition but focus on the combination of physical and statistical components for a
single process and not on learning from different environments.

6 Discussions
Limitations Our framework is generic and could be used in many different contexts. On the
theoretical side, the existence and uniqueness properties (Prop. 1) rely on relatively mild conditions
covering a large number of situations. The complexity analysis, on the other side, is only practically
relevant for simple hypothesis spaces (here linear), and then serves for developing the intuition on
more complex spaces (NNs here) where bounds are too loose to be informative. Another limitation is
that the theory and experiments consider deterministic systems only: the experimental validation is
performed on simulated deterministic data. Note however that this is the case in the vast majority
of the ML literature on ODE/PDE spatio-temporal modeling [30, 20, 19, 37]. In addition, modeling
complex dynamics from real world data is a problem by itself.

Conclusion We introduce LEADS, a data-driven framework to learn dynamics from data collected
from a set of distinct dynamical systems with commonalities. Experimentally validated with three
families of equations, our framework can significantly improve the test performance in every envi-
ronment w.r.t. classical training, especially when the number of available trajectories is limited. We
further show that the dynamics extracted by LEADS can boost the learning in similar new environ-
ments, which gives us a flexible framework for generalization in novel environments. More generally,
we believe that this method is a promising step towards addressing the generalization problem for
learning dynamical systems and has the potential to be applied to a large variety of problems.

Acknowledgements

We acknowledge financial support from the ANR AI Chairs program DL4CLIM ANR-19-CHIA-
0018-01.

References
[1] M. Arjovsky, L. Bottou, I. Gulrajani, and D. Lopez-Paz. Invariant Risk Minimization.

arXiv:1907.02893 [cs, stat], Mar. 2020. arXiv: 1907.02893.

[2] I. Ayed, E. de Bézenac, A. Pajot, J. Brajard, and P. Gallinari. Learning dynamical systems from
partial observations. CoRR, abs/1902.11136, 2019.

[3] P. L. Bartlett, D. J. Foster, and M. J. Telgarsky. Spectrally-normalized margin bounds for neural
networks. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30, pages 6240–
6249. Curran Associates, Inc., 2017.

[4] J. Baxter. A model of inductive bias learning. J. Artif. Int. Res., 12(1):149–198, Mar. 2000.

[5] A. Bietti, G. Mialon, D. Chen, and J. Mairal. A kernel perspective for regularizing deep neural
networks. In K. Chaudhuri and R. Salakhutdinov, editors, Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pages 664–674, Long Beach, California, USA, 09–15 Jun 2019. PMLR.

10



[6] S. L. Brunton, J. L. Proctor, and J. N. Kutz. Discovering governing equations from data by sparse
identification of nonlinear dynamical systems. Proceedings of the National Academy of Sciences,
113(15):3932–3937, 2016.

[7] R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud. Neural ordinary differential
equations. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 31, pages 6571–6583.
Curran Associates, Inc., 2018.

[8] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio.
Learning phrase representations using RNN encoder–decoder for statistical machine translation.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 1724–1734, Doha, Qatar, Oct. 2014. Association for Computational Linguistics.

[9] E. de Bézenac, A. Pajot, and P. Gallinari. Deep learning for physical processes: Incorporating
prior scientific knowledge. In 6th International Conference on Learning Representations, ICLR
2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenRe-
view.net, 2018.

[10] J. Dormand and P. Prince. A family of embedded runge-kutta formulae. Journal of Computa-
tional and Applied Mathematics, 6(1):19 – 26, 1980.

[11] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. CoRR, abs/1703.03400, 2017.

[12] S. Fresca, A. Manzoni, L. Dedè, and A. Quarteroni. Deep learning-based reduced order models
in cardiac electrophysiology, volume 15. 2020.

[13] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau,
E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk,
M. Brett, A. Haldane, J. F. del R’ıo, M. Wiebe, P. Peterson, P. G’erard-Marchant, K. Sheppard,
T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant. Array programming with
NumPy. Nature, 585(7825):357–362, Sept. 2020.

[14] D. Haussler. Decision theoretic generalizations of the pac model for neural net and other
learning applications. Information and Computation, 100(1):78 – 150, 1992.

[15] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Y. Bengio and
Y. LeCun, editors, 3rd International Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[16] D. Krueger, E. Caballero, J. Jacobsen, A. Zhang, J. Binas, R. Le Priol, and A. C. Courville.
Out-of-distribution generalization via risk extrapolation (rex). CoRR, abs/2003.00688, 2020.

[17] A. Lamb, A. Goyal, Y. Zhang, S. Zhang, A. Courville, and Y. Bengio. Professor Forcing: A
New Algorithm for Training Recurrent Networks. arXiv:1610.09038 [cs, stat], Oct. 2016. arXiv:
1610.09038.

[18] S. Lee, H. Yang, and W. Seong. Identifying physical law of hamiltonian systems via meta-
learning. CoRR, abs/2102.11544, 2021.

[19] Z. Li, N. B. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anand-
kumar. Fourier neural operator for parametric partial differential equations. In International
Conference on Learning Representations, 2021.

[20] Z. Long, Y. Lu, and B. Dong. Pde-net 2.0: Learning pdes from data with A numeric-symbolic
hybrid deep network. CoRR, abs/1812.04426, 2018.

[21] Z. Long, Y. Lu, X. Ma, and B. Dong. Pde-net: Learning pdes from data. In International
Conference on Machine Learning, pages 3214–3222, 2018.

[22] A. J. Lotka. Elements of physical biology. Science Progress in the Twentieth Century (1919-
1933), 21(82):341–343, 1926.

11



[23] G. Madec, R. Bourdallé-Badie, J. Chanut, E. Clementi, A. Coward, C. Ethé, D. Iovino, D. Lea,
C. Lévy, T. Lovato, N. Martin, S. Masson, S. Mocavero, C. Rousset, D. Storkey, M. Vancop-
penolle, S. Müeller, G. Nurser, M. Bell, and G. Samson. Nemo ocean engine, Oct. 2019. Add
SI3 and TOP reference manuals.

[24] N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel. Meta-learning with temporal convolutions.
CoRR, abs/1707.03141, 2017.

[25] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. Spectral normalization for generative
adversarial networks. CoRR, abs/1802.05957, 2018.

[26] V. Nagarajan and J. Z. Kolter. Uniform convergence may be unable to explain generalization
in deep learning. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

[27] A. Neic, F. O. Campos, A. J. Prassl, S. A. Niederer, M. J. Bishop, E. J. Vigmond, and G. Plank.
Efficient computation of electrograms and ecgs in human whole heart simulations using a reaction-
eikonal model. Journal of Computational Physics, 346:191 – 211, 2017.

[28] A. Norcliffe, C. Bodnar, B. Day, J. Moss, and P. Liò. Neural ODE processes. In International
Conference on Learning Representations, 2021.

[29] J. E. Pearson. Complex patterns in a simple system. Science, 261(5118):189–192, 1993.

[30] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial differ-
ential equations. Journal of Computational Physics, 378:686–707, 2019.

[31] P. Ramachandran, B. Zoph, and Q. V. Le. Searching for activation functions. CoRR,
abs/1710.05941, 2017.

[32] M. Reichstein, G. Camps-Valls, B. Stevens, M. Jung, J. Denzler, N. Carvalhais, and Prabhat.
Deep learning and process understanding for data-driven Earth system science. Nature, 566:195–
204, 2019.

[33] S. Spieckermann, S. Düll, S. Udluft, A. Hentschel, and T. Runkler. Exploiting similarity in
system identification tasks with recurrent neural networks. Neurocomputing, 169:343 – 349,
2015. Learning for Visual Semantic Understanding in Big Data ESANN 2014 Industrial Data
Processing and Analysis.

[34] D. Teney, E. Abbasnejad, and A. van den Hengel. Unshuffling Data for Improved Generalization.
2020.

[35] Y. Wang, M. Long, J. Wang, Z. Gao, and P. S. Yu. Predrnn: Recurrent neural networks for
predictive learning using spatiotemporal lstms. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017.

[36] J. D. Willard, X. Jia, S. Xu, M. Steinbach, and V. Kumar. Integrating physics-based modeling
with machine learning: A survey. volume 1, pages 1–34, 2020.

[37] Y. Yin, V. Le Guen, J. Dona, E. de Bezenac, I. Ayed, N. Thome, and P. Gallinari. Augment-
ing physical models with deep networks for complex dynamics forecasting. In International
Conference on Learning Representations, 2021.

[38] Y. Zhang and Q. Yang. A survey on multi-task learning. CoRR, abs/1707.08114, 2017.

[39] Çağatay Yıldız, M. Heinonen, and H. Lähdesmäki. Ode2vae: Deep generative second order
odes with bayesian neural networks, 2019.

12



Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] In Sec. 6.
(c) Did you discuss any potential negative societal impacts of your work? [No]

The only relevant societal impact is around the computational cost, while we use very
limited computation power (maximum with a single GPU).

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes]

In Sec. 2.1 and Sec. 3.
(b) Did you include complete proofs of all theoretical results? [Yes]

In the supplemental material.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]
We will provide the code in the supplemental material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] In Sec. 4.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] In Sec. 4.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] In Sec. 4.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] In Sec. 4.
(b) Did you mention the license of the assets? [Yes] In the supplemental material.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13



LEADS: Learning Dynamical
Systems that Generalize Across Environments

Supplemental Material

Yuan Yin1, Ibrahim Ayed1,2, Emmanuel de Bézenac1, Nicolas Baskiotis1, Patrick Gallinari1,3

1Sorbonne Université, Paris, France
2ThereSIS Lab, Thales, Paris, France 3Criteo AI Lab, Paris, France

{yuan.yin,ibrahim.ayed,emmanuel.de-bezenac,
nicolas.baskiotis,patrick.gallinari}@sorbonne-universite.fr

A Proof of Proposition 1

Proposition 1 (Existence and Uniqueness). Assume Ω is convex, then the existence of a minimal
decomposition f⋆, {g⋆e}e∈E ∈ F of Eq. 3 is guaranteed. Furthermore, if Ω is strictly convex, this
decomposition is unique.

Proof. The optimization problem is:

min
f,ge∈F

∑
e∈E

Ω(ge) subject to ∀xe,i ∈ T̂,∀t, dx
e,i
t

dt
= (f + ge)(x

e,i
t ) (3)

The idea is to first reconstruct the full functional from the trajectories of T̂. By definition, Ae is the
set of points reached by trajectories in T̂ from environment e so that:

Ae = {x ∈ Rd | ∃xe
· ∈ T̂,∃t, xe

t = x}
Then let us define a function fdata

e in the following way, ∀e ∈ E, take a ∈ Ae, we can find xe
· ∈ T̂

and t0 such that xe
t0 = a. Differentiating xe

· at t0, which is possible by definition of T̂, we take:

fdata
e (a) =

dxe
t

dt

∣∣∣∣
t=t0

For any (f, ge) satisfying the constraint in Eq. 3, we then have (f + ge)(a) =
dxt

dt

∣∣
t0

= fdata
e (a) for

all a ∈ Ae. Conversely, any pair such that (f, ge) ∈ F×F and f + ge = fdata
e , verifies the constraint.

Thus we have the equivalence between Eq. 3 and the following objective:

min
f∈F

∑
e

Ω(fdata
e − f) (S1)

The result directly follows from the fact that the objective is a sum of (strictly) convex functions in f
and is thus (strictly) convex in f .

B Further details on the generalization with LEADS

In this section, we will give more details on the link between our framework and its generalization
performance. After introducing the necessary definitions in Sec. B.1, we show the proofs of the results
for the general case in Sec. 3. Then in Sec. B.3 we provide the instantiation for linear approximators.
Finally, we show how we derived our heuristic instantiation for neural networks in Eq. 8 in Sec. 3.3
from the existing capacity bound for neural networks.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



Table S1: Capacity definitions of different sets by covering number with associated metric or pseudo-
metric.

Capacity Metric or pseudo-metric Mentioned in

C(ε,Hm) :=
supP N(ε,Hm, dP)

dP((f + g1, . . . , f + gm), (f ′ + g′1, . . . , f
′ + g′m)) =∫

(A×TA)m
1
m |
∑

e∈E∥(f + ge)(x
e) − ye∥2−

∑
e∈E∥(f ′ +

g′e)(x
e)− ye∥2|dP(x,y)

Theorem S1; Prop. S1

C
Ĝ
(ε, F̂) :=

supP N(ε, F̂, d[P,Ĝ])

d[P,Ĝ](f, f
′) =

∫
A×TA

supg∈Ĝ
|∥(f + g)(x) − y∥2−∥(f ′ +

g)(x)− y∥2|dP(x, y)
Prop. 2, S1, S3; Cor. S1

C
F̂
(ε, Ĝ) :=

supP N(ε, Ĝ, d[P,F̂])

d[P,F̂](g, g
′) =

∫
A×TA

supf∈F̂
|∥(f + g)(x) − y∥2−∥(f +

g′)(x)− y∥2|dP(x, y)
Prop. 2, S1, S2

C(ε, f + Ĝ) :=

supP N(ε, f + Ĝ, dP)

dP(f +g, f +g′) =
∫
A×TA

|∥(f +g)(x)−y∥2−∥(f +g′)(x)−
y∥2|dP(x, y)

Prop. 3

C(ε, Ĝ, L1) :=

supP N(ε, Ĝ, dL1(P))
dL1(P)(g, g

′) =
∫
Rd∥(g − g′)(x)∥1dP(x) Prop. S2; Theorem S3

C(ε, Ĝ, L2) :=

supP N(ε, Ĝ, dL2(P))
dL2(P)(g, g

′) =
√∫

Rd∥(g − g′)(x)∥22dP(x) Prop. 4; Lemma S1

B.1 Preliminaries

Table S1 gives the definition of the different capacity instances considered in the paper for each
hypothesis space, and the associated distances. We say that a space H is ε-covered by a set H , with
respect to a metric or pseudo-metric d(·, ·), if for all h ∈ H there exists h′ ∈ H with d(h, h′) ≤ ε. We
define by N(ε,H, d) the cardinality of the smallest H that ε-covers H, also called covering number
[S7]. The capacity of each hypothesis space is then defined by the maximum covering number over
all distributions. Note that the loss function is involved in every metric in Table S1. For simplicity,
we therefore omit the notation of loss function for the hypothesis spaces.

As in [S2], covering numbers are based on pseudo-metrics. We can verify that all distances in Table S1
are pseudo-metrics:

Proof. This is trivially verified. For example, for the distance dP(f + g, f + g′) given in Table S1,
which is the distance between f + g, f + g′ ∈ f + Ĝ, it is easy to check that the following properties
do hold:

• dP(f + g, f + g′) = 0 (subtraction of same functions evaluated on same x and y)

• dP(f + g, f + g′) = dP(f + g′, f + g) (evenness of absolute value)

• dP(f + g, f + g′) ≤ dP(f + g, f + g′′) + dP(f + g′′, f + g′) (triangular inequality of
absolute value)

Other distances in Table S1 can be proven to be pseudo-metrics in the same way.

B.2 General Case

B.2.1 Proof of Proposition 2

Proposition 2. Given m environments, let ε1, ε2, δ > 0, ε = ε1+ε2. Assume the number of examples
n per environment satisfies

n ≥ max

{
64

ε2

(
1

m

(
log

4

δ
+ log C

Ĝ

( ε1
16

, F̂
))

+ log C
F̂

( ε2
16

, Ĝ
))

,
16

ε2

}
(5)

Then with probability at least 1−δ (over the choice of training sets {P̂e}), any learner (f+g1, . . . , f+
gm) will satisfy 1

m

∑
e∈E erPe

(f + ge) ≤ 1
m

∑
e∈E êr

P̂e
(f + ge) + ε.

2



Proof. We introduce some extra definitions that are necessary for proving the proposition. Let
H = f+Ĝ defined for each f ∈ F̂, and let us define the product space Hm = {(f+g1, . . . , f+gm) :
f + ge ∈ H}. Functions in this hypothesis space all have the same f , but not necessarily the same
ge. Let H be the collection of all hypothesis spaces H = f + Ĝ,∀f ∈ F̂. The hypothesis space
associated to multiple environments is then defined as Hm :=

⋃
H∈H Hm.

Our proof makes use of two intermediary results addressed in Theorem S1 and Prop. S1.
Theorem S1 ([S2], Theorem 4, adapted to our setting). Assuming H is a permissible hypothesis space
family. For all ε > 0, if the number of examples n of each environment satisfies:

n ≥ max

{
64

mε2
log

4C( ε
16 ,H

m)

δ
,
16

ε2

}
Then with probability at least 1− δ (over the choice of {P̂e}), any (f + g1, . . . , f + gm) will satisfy

1

m

∑
e∈E

erPe(f + ge) ≤
1

m

∑
e∈E

êr
P̂e

(f + ge) + ε

Note that permissibility (as defined in [S2]) is a weak measure-theoretic condition satisfied by many
real world hypothesis space families [S2]. We will now express the capacity of Hm in terms of the
capacities of its two constituent component-spaces F̂ and Ĝ, thus leading to the main result.
Proposition S1. For all ε, ε1, ε2 > 0 such that ε = ε1 + ε2,

logC(ε,Hm) ≤ logC
Ĝ
(ε1, F̂) +m logC

F̂
(ε2, Ĝ) (S2)

Proof of Proposition S1. To prove the proposition it is sufficient to show the property of covering
sets for any joint distribution defined on all environments P on the space (A× TA)m. Let us then
fix such a distribution P. and let P̄ = 1

m

∑
e∈E Pe be the average distribution.

Suppose that F is an ε1-cover of (F̂, d[P̄,Ĝ]) and {Ge}e∈E are ε2-covers of (Ĝ, d[Pe,F̂]). Let H =

{(x1, . . . , xm) 7→ ((f + g1)(x1), . . . , (f + gm)(xm)), f ∈ F, ge ∈ Ge}, be a set built from the
covering sets aforementioned. Note that by definition |H| = |F |·

∏
e∈E |Ge| ≤ C

Ĝ
(ε1, F̂)CF̂

(ε2, Ĝ)
m

as we take some distribution instances.

For each learner (f + g1, . . . , f + gm) ∈ Hm in the hypothesis space, we take any f ′ ∈ F
such that d[P̄,Ĝ](f, f

′) ≤ ε1 and g′e ∈ Ge for all e such that d[Pe,F̂](ge, g
′
e) ≤ ε2, and we build

(f ′ + g′1, . . . , f
′ + g′m). The distance is then:

dP((f + g1, . . . , f + gm), (f ′ + g′1, . . . , f
′ + g′m))

≤ dP((f + g1, . . . , f + gm), (f ′ + g1, . . . , f
′ + gm))

+ dP((f
′ + g1, . . . , f

′ + gm), (f ′ + g′1, . . . , f
′ + g′m))

(triangular inequality of pseudo-metric)

≤ 1

m

[∑
e∈E

dPe
(f + ge, f

′ + ge) +
∑
e∈E

dPe
(f ′ + ge, f

′ + g′e)

]
(triangular inequality of absolute value)

≤ 1

m

∑
e∈E

d[Pe,Ĝ]
(f, f ′) +

1

m

∑
e∈E

d[Pe,F̂](ge, g
′
e) (by definition of d[Pe,Ĝ]

and d[Pe,F̂])

= d[P̄,Ĝ](f, f
′) +

1

m

∑
e∈E

d[Pe,F̂](ge, g
′
e) ≤ ε1 + ε2

(mean of the distance on different Pe is the distance on P̄)

To conclude, for any distribution P, when F is an ε1-cover of F̂ and {Ge} are ε2-covers of Ĝ, the set
H built upon them is an (ε1 + ε2)-cover of Hm. Then if we take the maximum over all distributions
we conclude that C(ε1 + ε2,Hm) ≤ C

Ĝ
(ε1, F̂)CF̂

(ε2, Ĝ)
m and we have Eq. S2. ■

3



We can now use the bound developed in Prop. S1 and use it together with Theorem S1, therefore
concluding the proof of Prop. 2.

B.2.2 Proof of Proposition 3

Proposition 3. For all ε, δ with 0 < ε, δ < 1 if the number of samples n′ satisfies

n′ ≥ max

{
64

ε2
log

4C( ε
16 , f + Ĝ)

δ
,
16

ε2

}
, (6)

then with probability at least 1− δ (over the choice of novel training set P̂e′ ), any learner f + ge′ ∈
f + Ĝ will satisfy erPe′ (f + ge′) ≤ êr

P̂e′
(f + ge′) + ε.

Proof. The proof is derived from the following theorem which can be easily adapted to our context:
Theorem S2 ([S2], Theorem 3). Let H a permissible hypothesis space. For all 0 < ε, δ < 1, if the
number of examples n of each environment satisfies:

n ≥ max

{
64

mε2
log

4C( ε
16 ,H)

δ
,
16

ε2

}
Then with probability at least 1− δ (over the choice of dataset P̂ sampled from P), any h ∈ H will
satisfy

erP(h) ≤ êr
P̂
(h) + ε

Given that P̂e′ is sampled from the same environment distribution Q, then by fixing the pre-trained f ,
we fix the space of hypothesis to f + Ĝ, and we apply the Theorem S2 to obtain the proposition.

B.3 Linear case

We provide here the proofs of theoretical bounds given in Sec. 3.2. See the description in Sup. D for
the detailed information on the example linear ODE dataset and the training with varying number of
environments.

B.3.1 Proof of Proposition 4

Proposition 4. If for all linear maps LGe ∈ Ĝ, ∥G∥2F≤r, if the input space is bounded s.t. ∥x∥2≤b,
and the MSE loss function is bounded by c, then

logC
F̂
(ε, Ĝ) ≤ ⌈rcd(2b)2/ε2⌉ log 2d2 =: ω(r, ε)

Proof. Let us take G an ε
2
√
c
-cover of Ĝ with L2-distance: dL2(P) (see definition in Table S1).

Therefore, for each LG ∈ Ĝ take g′ ∈ G such that dL2(LG,LG′) ≤ ε
2
√
c
, then

d[P,F̂](LG,LG′)

=

∫
A×A′

sup
LF ∈F̂

|∥(F +G)x− y∥22−∥(F +G′)x− y∥22|dP(x, y)

≤
∫

A×TA

sup
LF ∈F̂

∥(G−G′)x∥2(∥(F +G)x− y∥2+∥(F +G′)(x)− y∥2)dP(x, y)

≤

√√√√∫
A

∥(G−G′)x∥2dP(x)
√√√√ ∫

A×TA

sup
LF ∈F̂

(∥(F +G)x− y∥2+∥(F +G′)x− y∥2)2dP(x, y)

≤2
√
c

√∫
Rd

∥(G−G′)x∥2dP(x) ≤ ε

We have the CF(ε, Ĝ) ≤ C( ε
2
√
c
, Ĝ, L2). According to the following lemma:

Lemma S1 ([S1], Lemma 3.2, Adapted). Given positive reals (a, b, ε) and positive integer d. Let
vector x ∈ Rd be given with ∥x∥p ≤ b, Ĝ = {LG : G ∈ Rd×d, ∥G∥2F ≤ r} where ∥·∥F is the

4



Frobenius norm. Then

logC(ε, Ĝ, L2) ≤
⌈
rdb2

ε2

⌉
log 2d2

And we obtain that

logC
F̂
(ε, Ĝ) ≤

⌈
rcd(2b)2

ε2

⌉
log 2d2 =: ω(r, ε)

where ω(r, ε) is a strictly increasing function w.r.t. r.

B.3.2 Proof of Proposition 5

Proposition 5. If for linear maps LF ∈ F̂, ∥F ∥2F≤r′, LG ∈ Ĝ, ∥G∥2F≤r, ∥x∥2≤b, and if the MSE
loss function is bounded by c, given m environments and n samples per environment, with the
probability 1 − δ, the generalization error upper bound is ε = max {

√
(p +

√
p2 + 4q)/2,

√
16/n}

where p = 64
mn log 4

δ and q = 64
n ⌈( r′

mz2 + r
(1−z)2 )cd(32b)

2⌉ log 2d2 for any 0 < z < 1.

Proof. This can be derived from Prop. 2 with the help of Prop. 4 for linear maps. If we take the lower
bounds of two capacities logC

F̂
( ε116 , Ĝ) and logC

Ĝ
( ε216 , F̂) for the linear maps hypothesis spaces F̂, Ĝ,

then the number of required samples per environment n now can be expressed as follows:

n = max

{
64

ε2

(
1

m
log

4

δ
+

1

m

⌈
r′cd(32b)2

ε21

⌉
log 2d2 +

⌈
rcd(32b)2

ε22

⌉
log 2d2

)
,
16

ε2

}
To simplify the resolution of the equation above, we take ε1 = zε for any 0 < z < 1, then
ε2 = ε − ε1 = (1 − z)ε. Then by resolving the equation, the generalization margin is then upper
bounded by ε with:

ε = max


√

p+
√
p2 + 4q

2
,

√
16

n


where p = 64

mn log 4
δ and q = 64

n

⌈(
r

mz2 + r′

(1−z)2

)
cd(32b)2

⌉
log 2d2.

B.4 Nonlinear case: instantiation for neural networks

We show in this section how we design a concrete model for nonlinear dynamics following the general
guidelines given in Sec. 3.1. This is mainly composed of the following two parts: (a) choosing an
appropriate approximation space and (b) choosing a penalization function Ω for this space. It is
important to note that, even if the bounds given in the following sections may be loose in general, it
could provide useful intuitions on the design of the algorithms which can be validated by experiments
in our case.

B.4.1 Choosing approximation space F̂

We choose the space of feed-forward neural networks with a fixed architecture. Given the universal ap-
proximation properties of neural networks [S5], and the existence of efficient optimization algorithms
[S3], this is a reasonable choice, but other families of approximating functions could be used as well.

We then consider the function space of neural networks with D-layers with inputs and outputs in
Rd: F̂NN = {ν : x 7→ σD(WD · · ·σ1(W1x))) : x, ν(x) ∈ Rd}, D is the depth of the network, σj is
a Lipschitz activation function at layer j, and Wj weight matrix from layer j − 1 to j. The number of
adjustable parameters is fixed to W for the architecture. This definition covers fully connected NNs
and convolutional NNs. Note that the Fourier Neural Operator [S6] used in the experiments for NS
can be also covered by the definition above, as it performs alternatively the convolution in the Fourier
space.

B.4.2 Choosing penalization Ω

Now we choose an Ω for the space above. Let us first introduce a practical way to bound the capacity
of Ĝ ∈ F̂NN. Proposition S2 tells us that for a fixed NN architecture (implying constant parameter

5



number W and depth D), we can control the capacity through the maximum output norm R and
Lipschitz norm L defined in the proposition.

Proposition S2. If for all neural network g ∈ Ĝ, ∥g∥∞ = ess sup|g| ≤ R and ∥g∥Lip ≤ L, with
∥·∥Lip the Lipschitz semi-norm, then:

logC
F̂
(ε, Ĝ) ≤ ω(R,L, ε) (S3)

where ω(R,L, ε) = c1 log
RL
ε + c2 for c1 = 2W and c2 = 2W log 8e

√
cD, with c the bound of

MSE loss. ω(R,L, ε) is a strictly increasing function w.r.t. R and L.

Proof. To link the capacity to some quantity that can be optimized for neural networks, we need to
apply the following theorem:

Theorem S3 ([S4], Theorem 11, Adapted). With the neural network function space F̂NN, let W be the
total number of adjustable parameters, D the depth of the architecture. Let Ĝ ⊆ F̂NN be all functions
into [−R,R]d representable on the architecture, and all these functions are at most L-Lipschitz. Then
for all 0 < ε < 2R,

C(ε, Ĝ, L1) ≤
(
2e · 2R ·DL

ε

)2W

Here, we need to prove firstly that the F̂-dependent capacity of Ĝ is bounded by a scaled independent
capacity on L1 of itself. We suppose that the MSE loss function (used in the definitions in Table S1) is
bounded by some constant c. This is a reasonable assumption given that the input and output of neural
networks are bounded in a compact set. Let us take G an ε

2
√
c
-cover of Ĝ with L1-distance: dL1(P)

(see definition in Table S1). Therefore, for each g ∈ Ĝ take g′ ∈ G such that dL1(g, g′) ≤ ε
2
√
c
, then

d[P,F̂](g, g
′) =

∫
A×A′

sup
f∈F̂

|∥(f + g)(x)− y∥22−∥(f + g′)(x)− y∥22|dP(x, y)

≤
∫

A×TA

sup
f∈F̂

∥(g − g′)(x)∥2(∥(f + g)(x)− y∥2+∥(f + g′)(x)− y∥2)dP(x, y)

≤2
√
c

∫
Rd

∥(g − g′)(x)∥1dP(x) ≤ ε

Then we have the first inequality CF(ε, Ĝ) ≤ C( ε
2c , Ĝ, L

1). As we suppose that ∥g∥∞≤ R for all
g ∈ Ĝ, then for all g ∈ Ĝ, we have g(x) ∈ [−R,R]d. We now apply the Theorem S3 on Ĝ, we then
have the following inequality

logC

(
ε

2
√
c
, Ĝ, L1

)
≤ 2W log

8e
√
cDRL

ε
(S4)

where e is the base of the natural logarithm, W is the number of parameters of the architecture, D is
the depth of the architecture. Then if we consider W, c,D as constants, the bound becomes:

logC

(
ε

2
√
c
, Ĝ, L1

)
≤ c1 log

RL

ε
+ c2 = ω(R,L, ε) (S5)

for c1 = 2W and c2 = 2W log 8e
√
cD.

This leads us to choose for Ω a strictly increasing function that bounds ω(R,L, ε). Given the
inequality (Eq. S3), this choice for Ω will allow us to bound practically the capacity of Ĝ.

Minimizing Ω will then reduce the effective capacity of the parametric set used to learn ge. Concretely,
we choose for Ω:

Ω(ge) = ∥ge∥2∞+α∥ge∥2Lip (7)

where α > 0 is a hyper-parameter. This function is strictly convex and attains its unique minimum at
the null function.

With this choice, let us instantiate Prop. 2 for our familly of NNs. Let r = supg∈Ĝ
Ω(g), and

ω(r, ε) = c1 log
r

ε
√
α
+ c2 (strictly increasing w.r.t. the r) for given parameters c1, c2 > 0. We have:

6



Table S2: Details for the results of evaluation error in test on linear systems in Fig. 1 .
Samples/env. Method m = 1 m = 2 m = 4 m = 8

n = 2 ·K LEADS no min. 8.13±5.56 e-2 6.81±4.44 e-2 4.92±4.26 e-2 4.50±3.10 e-2
LEADS (Ours) 5.11±3.20 e-2 3.93±2.88 e-2 2.10±0.96 e-2

n = 4 ·K LEADS no min. 4.08±2.57 e-2 3.96±2.56 e-2 3.10±2.08 e-2 2.23±1.44 e-2
LEADS (Ours) 2.74±1.96 e-2 1.61±1.24 e-2 1.02±0.74 e-2

Proposition S3. If r = supg∈Ĝ
Ω(g) is finite, the number of samples n in Eq. 5, required to satisfy

the error bound in Proposition 2 with the same δ, ε, ε1 and ε2 becomes:

n ≥ max

{
64

ε2

(
1

m
log

4C
Ĝ
( ε116 , F̂)

δ
+ ω

(
r,

ε2
16

))
,
16

ε2

}
(S6)

Proof. If Ω(ge) ≤ r, we have 2 logR ≤ log r and 2 logL+ logα ≤ log r, then

logRL ≤ log
r√
α

We can therefore bound ω(R,L, ε) by

ω(R,L, ε) = c1 log
RL

ε
+ c2 ≤ c1 log

r

ε
√
α
+ c2 = ω(r, ε)

The result follows from Proposition S2.

This means that the number of required samples will decrease with the size the largest possible
Ω(g) = r. The optimization process will reduce Ω(ge) until a minimum is reached. The maximum
size of the effective hypothesis space is then bounded and decreases throughout training. In particular,
the following result follows:
Corollary S1. Optimizing Eq. 4 for a given λ, we have that the number of samples n in Eq. 5 required
to satisfy the error bound in Proposition 2 with the same δ, ε, ε1 and ε2 is:

n ≥max

{
64

ε2

(
1

m
log

4C
Ĝ
( ε116 , F̂)

δ
+ ω

(
λκ,

ε2
16

))
,
16

ε2

}
(S7)

where κ =
∑

e∈E

∑l
i=1

∫ T

0

∥∥∥dxe,i
s

dt

∥∥∥2ds.

Proof. Denote Lλ(f, {ge}) the loss function defining Eq. 4. Consider a minimizer (f⋆, {g⋆e}) of Lλ.
Then:

Lλ(f
⋆, {g⋆e}) ≤ Lλ(0, {0}) = κ

which gives:
∀e, Ω(g⋆e) ≤

∑
e

Ω(g⋆e) ≤ λκ

Defining Ĝ = {g ∈ F̂ | Ω(g) ≤ λκ}, we then have that Eq. 4 is equivalent to:

min
f∈F̂,{ge}e∈E∈Ĝ

∑
e∈E

(
Ω(ge)

λ
+

l∑
i=1

∫ T

0

∥∥∥∥dxe,i
s

dt
− (f + ge)(x

e,i
s )

∥∥∥∥2ds
)

(S8)

and the result follows from Proposition S3.

We can then decrease the sample complexity in the chosen NN family by: (a) increasing the number
of training environments engaged in the framework, and (b) decreasing Ω(ge) for all ge, with Ω(ge)
instantiated as in Sec. 3.1. Ω provides a bound based on the largest output norm and the Lipschitz
constant for a family of NNs. The experiments (Sec. 4) confirm that this is indeed an effective way to
control the capacity of the approximating function family. Note that in our experiments, the number
of samples needed in practice is much smaller than suggested by the theoretical bound.

7



Table S3: Detailed results of evaluation error in test on LV systems for Fig. 4. For the case of m = 1,
all baselines except FT-RNN are equivalent to One-Per-Env.. The arrows indicate that the table cells
share the same value.

Samples/env. Method m = 1 m = 2 m = 4 m = 8

n = 1 ·K

One-For-All 7.87±7.54 e-3 0.22±0.06 0.33±0.06 0.47±0.04
One-Per-Env. 7.87±7.54 e-3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
FT-RNN 4.02±3.17 e-2 1.62±1.14 e-2 1.62±1.40 e-2 1.08±1.03 e-2
FT-NODE 7.87±7.54 e-3 7.63±5.84 e-3 4.18±3.77 e-3 4.92±4.19 e-3
GBML-like 7.87±7.54 e-3 6.32±5.72 e-2 1.44±0.66 e-1 9.85±8.84 e-3
LEADS (Ours) 7.87±7.54 e-3 3.65±2.99 e-3 2.39±1.83 e-3 1.37±1.14 e-3

n = 2 ·K

One-For-All 1.38±1.61 e-3 0.22±0.04 0.36±0.07 0.60±0.11
One-Per-Env. 1.38±1.61 e-3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
FT-RNN 7.20±7.12 e-2 2.72±4.00 e-2 1.69±1.57 e-2 1.38±1.25 e-2
FT-NODE 1.38±1.61 e-3 9.02±8.81 e-3 1.11±1.05 e-3 1.00±0.95 e-3
GBML-like 1.38±1.61 e-3 9.26±8.27 e-3 1.17±1.09 e-2 1.96±1.95 e-2
LEADS (Ours) 1.38±1.61 e-3 8.65±9.61 e-4 8.40±9.76 e-4 6.02±6.12 e-4

n = 4 ·K

One-For-All 1.36±1.25 e-4 0.19±0.02 0.31±0.04 0.50±0.04
One-Per-Env. 1.36±1.25 e-4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
FT-RNN 8.69±8.36 e-4 3.39±3.38 e-4 3.02±1.50 e-4 2.26±1.45 e-4
FT-NODE 1.36±1.25 e-4 1.74±1.65 e-4 1.78±1.71 e-4 1.39±1.20 e-4
GBML-like 1.36±1.25 e-4 2.57±7.18 e-3 2.65±3.26 e-3 2.36±3.58 e-3
LEADS (Ours) 1.36±1.25 e-4 1.10±0.92 e-4 1.03±0.98 e-4 9.66±9.79 e-5

n = 8 ·K

One-For-All 5.98±5.13 e-5 0.16±0.03 0.35±0.06 0.52±0.06
One-Per-Env. 5.98±5.13 e-5 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
FT-RNN 2.09±1.73 e-4 1.18±1.16 e-4 1.13±1.13 e-4 9.13±8.31 e-5
FT-NODE 5.98±5.13 e-5 6.91±4.46 e-5 7.82±6.95 e-5 6.88±6.39 e-5
GBML-like 5.98±5.13 e-5 1.02±1.68 e-4 1.41±2.68 e-4 0.99±1.53 e-4
LEADS (Ours) 5.98±5.13 e-5 5.47±4.63 e-5 4.52±3.98 e-5 3.94±3.49 e-5

Table S4: Test MSE of experiments on LV (m = 4, n = 1 ·K) with different empirical norms.
Empirical Norm p = 1 p = 2 p = 3 p = 10 p = ∞

Test MSE 2.30e-3 2.36e-3 2.34e-3 3.41e-3 6.12e-3

C Optimizing Ω in practice

In Sec. 3.3, we developed an instantiation of the LEADS framework for neural networks. We proposed
to control the capacity of the ges components through a penalization function Ω defined as Ω(ge) =
∥ge∥2∞+α∥ge∥2Lip. This definition ensures the properties required to control the sample complexity.

However, in practice, both terms in Ω(ge) are difficult to compute as they do not yield an analytical
form for neural networks. For a fixed activation function, the Lipschitz-norm of a trained model only
depends on the model parameters and, for our class of neural networks, can be bounded by the spectral
norms of the weight matrices, as described in Sec. 4.4. This allows for a practical implementation.

The infinity norm on its side depends on the domain definition of the function and practical imple-
mentations require an empirical estimate. Since there is no trivial estimator for the infinity norm
of a function, we performed tests with different proxies such as the empirical Lp and L∞ norms,

respectively defined as ∥ge∥Lp(P̂e)
=
(

1
n

∑
x∈P̂e

|ge(x)|p
)1/p

for 1 ≤ p < ∞ and ∥ge∥L∞(P̂e)
=

maxx∈P̂e
|ge(x)|. Here |·| is an ℓ2 vector norm. Note that on a finite set of points, these norms reduce

to vector norms ∥(|ge(x1)|, . . . , |ge(xn)|)⊤∥p. They are then all equivalent on the space defined by
the training set. Table S4 shows the results of experiments performed on LV equation with different
1 ≤ p ≤ ∞. Overall we found that Lp for small values of p worked better and chose in our experi-
ments set p = 2.

8



Moreover, using both minimized quantities ∥ge∥2L2(P̂e)
and the spectral norm of the product of weight

matrices, denoted L(ge) and Π(ge) respectively, we can give a bound on Ω(ge). First, for any x in
the compact support of Pe, we have that, fixing some x0 ∈ P̂e:

|ge(x)| ≤ |ge(x)− ge(x0)|+ |ge(x0)|
For the first term:

|ge(x)− ge(x0)| ≤ ∥ge∥Lip|x− x0| ≤ Π(ge)|x− x0|

and the support of Pe being compact by hypothesis, denoting by δ its diameter:
|ge(x)− ge(x0)| ≤ δΠ(ge)

Moreover, for the second term:
|ge(x0)| =

√
|ge(x0)|2 ≤

√
L(ge)

and summing both contributions gives us the bound:

∥ge∥∞ ≤ δΠ(ge) +
√
L(ge)

so that:
Ω(ge) ≤ (δ + α)Π(ge) +

√
L(ge)

Note that this estimation is a crude one and improvements can be made by considering the closest x0

from x and taking δ to be the maximal distance between points not from the support of Pe and P̂e.

Finally, we noticed that minimizing ∥ ge
id ∥

2
L2(P̂e)

in domains bounded away from zero gave better
results as normalizing by the norm of the output allowed to adaptively rescale the computed norm.
Formally, minimizing this quantity does not fundamentally change the optimization as we have that:

∀x, 1

M2
|ge(x)|2≤

∣∣∣∣ge(x)x

∣∣∣∣2 ≤ 1

m2
|ge(x)|2

meaning that:
1

M2
L(ge) ≤

∥∥∥ge
id

∥∥∥2
L2(P̂e)

≤ 1

m2
L(ge)

where m,M are the lower and upper bound of |x| on the support of Pe with m > 0 by hypothesis (the
quantity we minimize is still higher than L(ge) even if this is not the case).

D Additional experimental details

D.1 Details on the environment dynamics

Lotka-Volterra (LV). The model dynamics follow the ODE:
du

dt
= αu− βuv, dv/dt = δuv − γv

with u, v the number of prey and predator, α, β, γ, δ>0 defining how the two species interact. The
initial conditions ui

0, v
i
0 are sampled from a uniform distribution P0 = Unif([1, 2]2). We characterize

the dynamics by θ = (α/β, γ/δ) ∈ Θ = {0.5, 1, 1.44, 1.5, 1.86, 2}2. An environment e is then defined
by parameters θe sampled from a uniform distribution over the parameter set Θ.

Gray-Scott (GS). The governing PDE is:
∂u

∂t
= Du∆u− uv2 + F (1− u), ∂v/∂t = Dv∆v + uv2 − (F + k)v

where the u, v represent the concentrations of two chemical components in the spatial domain S with
periodic boundary conditions. Du, Dv denote the diffusion coefficients respectively for u, v, and are
held constant to Du = 0.2097, Dv = 0.105, and F, k are the reaction parameters depending on the
environment. As for the initial conditions (u0, v0) ∼ P0, we place 3 2-by-2 squares at uniformly
sampled positions in S to trigger the reactions. The values of (u0, v0) are fixed to (0, 1) outside the
squares and to (1 − ϵ, ϵ) with a small ϵ> 0 inside. An environment e is defined by its parameters
θe = (Fe, ke) ∈ Θ = {(0.037, 0.060), (0.030, 0.062), (0.039, 0.058)}. We consider a set of θe
parameters uniformly sampled from the environment distribution Q on Θ.

9



Navier-Stokes (NS). We consider the Navier-Stokes PDE for incompressible flows:
∂w

∂t
= −v · ∇w + ν∆w + ξ ∇ · v = 0

where v is the velocity field, w = ∇ × v is the vorticity, both v, w lie in a spatial domain S with
periodic boundary conditions, ν is the viscosity and ξ is the constant forcing term in the domain S.
We fix ν = 10−3 across the environments. We sample the initial conditions we

0 ∼ P0 as in [S6]. An
environment e is defined by its forcing term ξe ∈ Θξ = {ξ1, ξ2, ξ3, ξ4} with

ξ1(x, y) = 0.1(sin(2π(x+ y)) + cos(2π(x+ y)))

ξ2(x, y) = 0.1(sin(2π(x+ y)) + cos(2π(x+ 2y)))

ξ3(x, y) = 0.1(sin(2π(x+ y)) + cos(2π(2x+ y)))

ξ4(x, y) = 0.1(sin(2π(2x+ y)) + cos(2π(2x+ y)))

where (x, y) ∈ S is the position in the domain S. We uniformly sampled a set of forcing terms from
Q on Θξ.

Linear ODE. We take an example of linear ODE expressed by the following formula:
dut

dt
= LQΛQ⊤(ut) = QΛQ⊤ut

where ut ∈ R8 is the system state, Q ∈ M8,8(R) is an orthogonal matrix such that QQ⊤ = 1, and
Λ ∈ M8,8(R) is a diagonal matrix containing eigenvalues. We sample Λe from a uniform distribution
on ΘΛ = {Λ1, . . . ,Λ8}, defined for each Λi by:

[Λi]jj =

{
0, if i = j for i, j ∈ {1, . . . , 8},
−0.5, otherwise.

which means that the i-th eigenvalue is set to 0, while others are set to a common value −0.5.

D.2 Choosing hyperparameters

As usual, the hyperparameters need to be tuned for each considered set of systems. We therefore chose
the hyperparameters using standard cross-validation techniques. We did not conduct a systematic
sensitivity analysis. In practice, we found that: (a) if the regularization term is too large w.r.t. the
trajectory loss, the model cannot fit the trajectories, and (b) if the regularization term is too small, the
performance is similar to LEADS no min. The candidate hyperparameters are defined on a very sparse
grid, for example, for neural nets, (103, 104, 105, 106) for λ and (10−2, 10−3, 10−4, 10−5) for α.

D.3 Details on the experiments with a varying number of environments

We conducted large-scale experiments respectively for linear ODEs (Sec. 3.2, Fig. 1) and LV (Sec. 4,
Fig. 4) to compare the tendency of LEADS w.r.t. the theoretical bound and the baselines by varying
the number of environments available for the instantiated model.

To guarantee the comparability of the test-time results, we need to use the same test set when varying
the number of environments. We therefore propose to firstly generate a global set of environments,
separate it into subgroups for training, then we test these separately trained models on the global test
set.

We performed the experiments as follows:

• In the training phase, we consider M = 8 environments in total in the environment set
Etotal. We denote here the cardinality of an environment set E by card(E), the environments
are then arranged into b = 1, 2, 4 or 8 disjoint groups of the same size, i.e. {E1, . . . , Eb}
such that

⋃b
i=1 Ei = Etotal, card(E1) = · · · = card(Eb) = ⌊M/b⌋ =: m, where m is

the number of environments per group, and Ei ∩ Ej = ∅ whenever i ̸= j. For example,
for m = 1, all the original environments are gathered into one global environment, when
for m = 8 we keep all the original environments. The methods are then instantiated
respectively for each Ei. For example, for LEADS with b environment groups, we instantiate
LEADS1, . . . ,LEADSb respectively on E1, . . . , Eb. Other frameworks are applied in the
same way.

10



Table S5: Results on 2 novel environments for LV, GS, and NS at different traning steps with n data
points per env. The arrows indicate that the table cells share the same value.

Dataset Training Schema Test MSE at training step

50 2500 10000

LV (n = 1 ·K)
Pre-trained-f -Only 0.36 −−−−−−−−−−−→
One-Per-Env. from scratch 0.23 8.85e-3 3.05e-3
Pre-trained-f -Plus-Trained-ge 0.73 1.36e-3 1.11e-3

GS (n = 1 ·K)
Pre-trained-f -Only 5.44e-3 −−−−−−−−−−−→
One-Per-Env. from scratch 4.20e-2 5.53e-3 3.05e-3
Pre-trained-f -Plus-Trained-ge 2.29e-3 1.45e-3 1.27e-3

NS (n = 8 ·K)
Pre-trained-f -Only 1.75e-1 −−−−−−−−−−−→
One-Per-Env. from scratch 6.76e-2 1.70e-2 1.18e-2
Pre-trained-f -Plus-Trained-ge 1.37e-2 8.07e-3 7.14e-3

Note that when m = 1, having b = 8 environment groups of one single environment,
One-For-All, One-Per-Env. and LEADS are reduced to One-Per-Env. applied on all M
environments. We can see in Fig. 4 that each group of plots starts from the same point.

• In the test phase, the performance of the model trained with the group Ei is tested with the
test samples of the corresponding group. Then we take the mean error over all b groups to
obtain the results on all M environments. Note that the result at each point in figures 1 and 4
is calculated on the same total test set, which guarantees the comparability between results.

D.4 Additional experimental results

Experiments with a varying number of environments We show in tables S2 and S3 the detailed
results used for the plots in figures 1 and 4, compared to baseline methods.

Learning in novel environments We conducted same experiments as in Sec. 4.3 to learn in unseen
environments for GS and NS datasets. The test MSE at different training steps is shown in Table S5.

Full-length trajectories We provide in figures S1-S4 the full-length sample trajectories for GS and
NS of Fig. 2.

11



(a) One-Per-Env.

(b) FT-NODE

(c) LEADS

(d) Ground truth

Figure S1: Full-length prediction comparison of Fig. 2 for GS. In each figure, from top to bottom, the
trajectory snapshots are output respectively from 3 training environments. The temporal resolution of
each sequence is ∆t = 40.

12



(a) Difference between One-Per-Env. and Ground truth

(b) Difference between FT-NODE and Ground truth

(c) Difference between LEADS and Ground truth

Figure S2: Full-length error maps of Fig. 2 for GS. In each figure, from top to bottom, the trajectory
snapshots correspond to 3 training environments, one per row. The temporal resolution of each
sequence is ∆t = 40.

13



(a) One-Per-Env.

(b) FT-NODE

(c) LEADS

(d) Ground truth

Figure S3: Full-length prediction comparison of Fig. 2 for NS. In each figure, from top to bottom, the
trajectory snapshots correspond to 3 training environments. The temporal resolution of each sequence
is ∆t = 1.

14



(a) Difference between One-Per-Env. and Ground truth

(b) Difference between FT-NODE and Ground truth

(c) Difference between LEADS and Ground truth

Figure S4: Full-length error maps of Fig. 2 for NS. In each figure, from top to bottom, the trajectory
snapshots correspond to from 3 training environments. The temporal resolution of each sequence is
∆t = 1.

15



References
[S1] P. L. Bartlett, D. J. Foster, and M. J. Telgarsky. Spectrally-normalized margin bounds for neural

networks. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30, pages
6240–6249. Curran Associates, Inc., 2017.

[S2] J. Baxter. A model of inductive bias learning. J. Artif. Int. Res., 12(1):149–198, Mar. 2000.

[S3] L. Chizat and F. Bach. On the global convergence of gradient descent for over-parameterized
models using optimal transport. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 31, pages 3036–3046. Curran Associates, Inc., 2018.

[S4] D. Haussler. Decision theoretic generalizations of the pac model for neural net and other
learning applications. Information and Computation, 100(1):78 – 150, 1992.

[S5] P. Kidger and T. Lyons. Universal Approximation with Deep Narrow Networks. In J. Abernethy
and S. Agarwal, editors, Proceedings of Thirty Third Conference on Learning Theory, volume
125 of Proceedings of Machine Learning Research, pages 2306–2327. PMLR, 09–12 Jul 2020.

[S6] Z. Li, N. B. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anand-
kumar. Fourier neural operator for parametric partial differential equations. In International
Conference on Learning Representations, 2021.

[S7] S. Shalev-Shwartz and S. Ben-David. Covering Numbers, page 337–340. Cambridge Univer-
sity Press, 2014.

16


	Introduction
	Approach
	Problem setting
	LEADS framework

	Improving generalization with LEADS 
	General case
	Linear case: theoretical bounds correctly predict the trend of test error 
	Nonlinear case: instantiation for neural nets 

	Experiments
	Dynamics, environments, and datasets
	Experimental settings and baselines
	Experimental results
	Training and implementation details

	Related work
	Discussions
	Proof of Proposition 1
	Further details on the generalization with LEADS 
	Preliminaries 
	General Case
	Proof of Proposition 2
	Proof of Proposition 3

	Linear case
	Proof of Proposition 4
	Proof of Proposition 5

	Nonlinear case: instantiation for neural networks
	Choosing approximation space 
	Choosing penalization 


	 Optimizing  in practice
	Additional experimental details
	Details on the environment dynamics
	Choosing hyperparameters
	Details on the experiments with a varying number of environments
	Additional experimental results


