Yuan Yin
email: yuan.yin@sorbonne-universite.fr

Ibrahim Ayed
email: ibrahim.ayed@sorbonne-universite.fr

Emmanuel De Bézenac
email: emmanuel.de-bezenac@sorbonne-universite.fr

Nicolas Baskiotis
email: nicolas.baskiotis@sorbonne-universite.fr

Patrick Gallinari
email: patrick.gallinari@sorbonne-universite.fr

LEADS: Learning Dynamical Systems that Generalize Across Environments

When modeling dynamical systems from real-world data samples, the distribution of data often changes according to the environment in which they are captured, and the dynamics of the system itself vary from one environment to another. Generalizing across environments thus challenges the conventional frameworks. The classical settings suggest either considering data as i.i.d. and learning a single model to cover all situations or learning environment-specific models. Both are suboptimal: the former disregards the discrepancies between environments leading to biased solutions, while the latter does not exploit their potential commonalities and is prone to scarcity problems. We propose LEADS, a novel framework that leverages the commonalities and discrepancies among known environments to improve model generalization. This is achieved with a tailored training formulation aiming at capturing common dynamics within a shared model while additional terms capture environment-specific dynamics. We ground our approach in theory, exhibiting a decrease in sample complexity w.r.t. classical alternatives. We show how theory and practice coincides on the simplified case of linear dynamics. Moreover, we instantiate this framework for neural networks and evaluate it experimentally on representative families of nonlinear dynamics. We show that this new setting can exploit knowledge extracted from environment-dependent data and improves generalization for both known and novel environments.

Introduction

Data-driven approaches offer an interesting alternative and complement to physical-based methods for modeling the dynamics of complex systems and are particularly promising in a wide range of settings: e.g. if the underlying dynamics are partially known or understood, if the physical model is incomplete, inaccurate, or fails to adapt to different contexts, or if external perturbation sources and forces are not modeled. The idea of deploying machine learning (ML) to model complex dynamical systems picked momentum a few years ago, relying on recent deep learning progresses and on the development of new methods targeting the evolution of temporal and spatiotemporal systems [START_REF] Brunton | Discovering governing equations from data by sparse identification of nonlinear dynamical systems[END_REF][START_REF] De Bézenac | Deep learning for physical processes: Incorporating prior scientific knowledge[END_REF][START_REF] Chen | Neural ordinary differential equations[END_REF][START_REF] Long | Pde-net: Learning pdes from data[END_REF][START_REF] Raissi | Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[END_REF][START_REF] Ayed | Learning dynamical systems from partial observations[END_REF][START_REF] Yin | Augmenting physical models with deep networks for complex dynamics forecasting[END_REF]. It is already being applied in different scientific disciplines (see e.g. [START_REF] Willard | Integrating physics-based modeling with machine learning: A survey[END_REF] for a recent survey) and could help accelerate scientific discovery to address challenging domains such as climate [START_REF] Reichstein | Deep learning and process understanding for data-driven Earth system science[END_REF] or health [START_REF] Fresca | Deep learning-based reduced order models in cardiac electrophysiology[END_REF].

However, despite promising results, current developments are limited and usually postulate an idealized setting where data is abundant and the environment does not change, the so-called "i.i.d. hypothesis". In practice, real-world data may be expensive or difficult to acquire. Moreover, changes in the environment may be caused by many different factors. For example, in climate modeling, there are external forces (e.g. Coriolis) which depend on the spatial location [START_REF] Madec | Nemo ocean engine[END_REF]; or, in health science, parameters need to be personalized for each patient as for cardiac computational models [START_REF] Neic | Efficient computation of electrograms and ecgs in human whole heart simulations using a reactioneikonal model[END_REF]. More generally, data acquisition and modeling are affected by different factors such as geographical position, sensor variability, measuring circumstances, etc. The classical paradigm either considers all the data as i.i.d. and looks for a global model, or proposes specific models for each environment. The former disregards discrepancies between the environments, thus leading to a biased solution with an averaged model which will usually perform poorly. The latter ignores the similarities between environments, thus affecting generalization performance, particularly in settings where per-environment data is limited. This is particularly problematic in dynamical settings, as small changes in initial conditions lead to trajectories not covered by the training data.

In this work, we consider a setting where it is explicitly assumed that the trajectories are collected from different environments. Note that in this setting, the i.i.d. hypothesis is removed twice: by considering the temporality of the data and by the existence of multiple environments. In many useful contexts the dynamics in each environment share similarities, while being distinct which translates into changes in the data distributions. Our objective is to leverage the similarities between environments in order to improve the modeling capacity and generalization performance, while still carefully dealing with the discrepancies across environments. This brings us to consider two research questions:

RQ1 Does modeling the differences between environments improve generalization error w.r.t. classical settings: One-For-All, where a unique function is trained for all environments; and One-Per-Env., where a specific function is fitted for each environment? (cf. Sec. 4 for more details) RQ2 Is it possible to extrapolate to a novel environment that has not been seen during training?

We propose LEarning Across Dynamical Systems (LEADS), a novel learning methodology decomposing the learned dynamics into shared and environment-specific components. The learning problem is formulated such that the shared component captures the dynamics common across environments and exploits all the available data, while the environment-specific component only models the remaining dynamics, i.e. those that cannot be expressed by the former, based on environment-specific data. We show, under mild conditions, that the learning problem is well-posed, as the resulting decomposition exists and is unique (Sec. 2.2). We then analyze the properties of this decomposition from a sample complexity perspective. While, in general, the bounds might be too loose to be practical, a more precise study is conducted in the case of linear dynamics for which theory and practice are closer. We then instantiate this framework for more general hypothesis spaces and dynamics, leading to a heuristic for the control of generalization that will be validated experimentally. Overall, we show that this framework provides better generalization properties than One-Per-Env., requiring less training data to reach the same performance level (RQ1). The shared information is also useful to extrapolate to unknown environments: the new function for this environment can be learned from very little data (RQ2). We experiment with these ideas on three representative cases (Sec. [START_REF] Baxter | A model of inductive bias learning[END_REF] where the dynamics are provided by differential equations: ODEs with the Lotka-Volterra predator-prey model, and PDEs with the Gray-Scott reaction-diffusion and the more challenging incompressible Navier-Stokes equations. Experimental evidence confirms the intuition and the theoretical findings: with a similar amount of data, the approach drastically outperforms One-For-All and One-Per-Env. settings, especially in low data regimes. Up to our knowledge, it is the first time that generalization in multiple dynamical systems is addressed from an ML perspective1 .

Approach 2.1 Problem setting

We consider the problem of learning models of dynamical physical processes with data acquired from a set of environments E. Throughout the paper, we will assume that the dynamics in an environment e ∈ E are defined through the evolution of differential equations. This will provide in particular a clear setup for the experiments and the validation. For a given problem, we consider that the dynamics of the different environments share common factors while each environments has its own specificity, resulting in a distinct model per environment. Both the general form of the differential equations and the specific terms of each environment are assumed to be completely unknown. x e t denotes the state of the equation for environment e, taking its values from a bounded set A, with evolution term f e : A → T A, T A being the tangent bundle of A. In other words, over a fixed time interval [0, T], we have:

dx e t dt = f e (x e t) (1)
We assume that, for any e, f e lies in a functional vector space F. In the experiments, we will consider one ODE, in which case A ⊂ R d , and two PDEs, in which case A is a d ′ -dimensional vector field over a bounded spatial domain S ⊂ R d ′ . The term of the data-generating dynamical system in Eq. 1 is sampled from a distribution for each e, i.e. f e ∼ Q. From f e , we define T e , the data distribution of trajectories x e

• verifying Eq. 1, induced by a distribution of initial states x e 0 ∼ P 0 . The data for this environment is then composed of l trajectories sampled from T e , and is denoted as Te with x e,i

• the i-th trajectory. We will denote the full dataset by T = e∈E Te .

The classical empirical risk minimization (ERM) framework suggests to model the data dynamics either at the global level (One-For-All), taking trajectories indiscriminately from T, or at the specific environment level (One-Per-Env.), training one model for each Te . Our aim is to formulate a new learning framework with the objective of explicitly considering the existence of different environments to improve the modeling strategy w.r.t. the classical ERM settings.

LEADS framework

We decompose the dynamics into two components where f ∈ F is shared across environments and g e ∈ F is specific to the environment e, so that ∀e ∈ E, f e = f + g e (2) Since we consider functional vector spaces, this additive hypothesis is not restrictive and such a decomposition always exists. It is also quite natural as a sum of evolution terms can be seen as the sum of the forces acting on the system. Note that the sum of two evolution terms can lead to behaviors very different from those induced by each of those terms. However, learning this decomposition from data defines an ill-posed problem: for any choice of f , there is a {g e } e∈E such that Eq. 2 is verified. A trivial example would be f = 0 leading to a solution where each environment is fitted separately.

Our core idea is that f should capture as much of the shared dynamics as is possible, while g e should focus only on the environment characteristics not captured by f . To formalize this intuition, we introduce Ω(g e), a penalization on g e , which precise definition will depend on the considered setting. We reformulate the learning objective as the following constrained optimization problem:

min f,{ge} e∈E ∈F e∈E Ω(g e) subject to ∀x e,i ∈ T, ∀t, dx e,i t dt = (f + g e)(x e,i t) (3)
Minimizing Ω aims to reduce g e s' complexity while correctly fitting the dynamics of each environment. This argument will be made formal in the next section. Note that f will be trained on the data from all environments contrary to g e s. A key question is then to determine under which conditions the minimum in Eq. 3 is well-defined. The following proposition provides an answer (proof cf. Sup. A): Proposition 1 (Existence and Uniqueness). Assume Ω is convex, then the existence of a minimal decomposition f ⋆ , {g ⋆ e } e∈E ∈ F of Eq. 3 is guaranteed. Furthermore, if Ω is strictly convex, this decomposition is unique. In practice, we consider the following relaxed formulation of Eq. 3:

min f,{ge} e∈E ∈F e∈E 1 λ Ω(g e) + l i=1 T 0 dx e,i t dt -(f + g e)(x e,i τ) 2 dt (4)
where f, g e are taken from a hypothesis space F approximating F. λ is a regularization weight and the integral term constrains the learned f + g e to follow the observed dynamics. The form of this objective and its effective calculation will be detailed in Sec. 4.4.

Improving generalization with LEADS

Defining an appropriate Ω is crucial for our method. In this section, we show that the generalization error should decrease with the number of environments. While the bounds might be too loose for NNs, our analysis is shown to adequately model the decreasing trend in the linear case, linking both our intuition and our theoretical analysis with empirical evidence. This then allows us to construct an appropriate Ω for NNs.

General case

After introducing preliminary notations and definitions, we define the hypothesis spaces associated with our multiple environment framework. Considering a first setting where all environments of interest are present at training time, we prove an upper-bound of their effective size based on the covering numbers of the approximation spaces. This allows us to quantitatively control the sample complexity of our model, depending on the number of environments m and other quantities that can be considered and optimized in practice. We then consider an extension for learning on a new and unseen environment. The bounds here are inspired by ideas initially introduced in [START_REF] Baxter | A model of inductive bias learning[END_REF]. They consider multi-task classification in vector spaces, where the task specific classifiers share a common feature extractor. Our extension considers sequences corresponding to dynamical trajectories, and a model with additive components instead of function composition in their case.

Definitions. Sample complexity theory is usually defined for supervised contexts, where for a given input x we want to predict some target y. In our setting, we want to learn trajectories (x e t) 0≤t≤T starting from an initial condition x 0 . We reformulate this problem and cast it as a standard supervised learning problem: T e being the data distribution of trajectories for environment e, as defined in Sec. 2.1, let us consider a trajectory x e

• ∼ T e , and time τ ∼ Unif([0, T]); we define system states x = x e τ ∈ A as input, and the corresponding values of derivatives y = f e (x e τ) ∈ T A as the associated target. We will denote P e the underlying distribution of (x, y), and Pe the associated dataset of size n.

We are searching for f, g e : A → T A in an approximation function space F of the original space F. Let us define Ĝ ⊆ F the effective function space from which the g e s are sampled. Let f + Ĝ := {f + g : g ∈ Ĝ} be the hypothesis space generated by function pairs (f, g), with a fixed f ∈ F. For any h : A → T A, the error on some test distribution P e is given by er Pe (h) = A×T A ∥h(x) -y∥ 2 dP e (x, y) and the error on the training set by êr Pe (h) = 1 n (x,y)∈ Pe ∥h(x) -y∥ 2 .

LEADS sample complexity. Let C Ĝ(ε, F) and C F (ε, Ĝ) denote the capacity of F and Ĝ at a certain scale ε > 0. Such capacity describes the approximation ability of the space. The capacity of a class of functions is defined based on covering numbers, and the precise definition is provided in Sup. B.2, Table S1. The following result is general and applies for any decomposition of the form f + g e . It states that to guarantee a given average test error, the minimal number of samples required is a function of both capacities and the number of environments m, and it provides a step towards

RQ1 (proof see Sup. B.2): Proposition 2. Given m environments, let ε 1 , ε 2 , δ > 0, ε = ε 1 + ε 2 .
Then with probability at least 1-δ (over the choice of training sets { Pe }), any learner (f +g 1 , . . . , f + g m) will satisfy 1 m e∈E er Pe (f + g e) ≤ 1 m e∈E êr Pe (f + g e) + ε. The contribution of F to the sample complexity decreases as m increases, while that of Ĝ remains the same: this is due to the fact that shared functions f have access to the data from all environments, which is not the case for g e . From this finding, one infers the basis of LEADS: when learning from several environments, to control the generalization error through the decomposition f e = f + g e , f should account for most of the complexity of f e while the complexity of g e should be controlled and minimized. We then establish an explicit link to our learning problem formulation in Eq. 3. Further in this section, we will show for linear ODEs that the optimization of Ω(g e) in Eq. 4 controls the capacity of the effective set Ĝ by selecting g e s that are as "simple" as possible.

As a corollary, we show that for a fixed total number of samples in T, the sample complexity will decrease as the number of environments increases. To see this, suppose that we have two situations corresponding to data generated respectively from m and m/b environments. The total sample complexity for each case will be respectively bounded by O(log

C Ĝ(ε1 16 , F) + m log C F (ε2 16 , Ĝ)) and O(b log C Ĝ(ε1 16 , F) + m log C F (ε2 16
, Ĝ)). The latter being larger than the former, a situation with more environments presents a clear advantage. Fig. 4

then with probability at least 1 -δ (over the choice of novel training set Pe ′), any learner f + g e ′ ∈ f + Ĝ will satisfy er P e ′ (f + g e ′) ≤ êr Pe ′ (f + g e ′) + ε. In Prop. 3 as the capacity of F no longer appears, the number of required samples now depends only on the capacity of f + Ĝ. This sample complexity is then smaller than learning from scratch f e ′ = f + g e ′ as can be seen by comparing with Prop. 2 at m = 1.

From the previous propositions, it is clear that the environment-specific functions g e need to be explicitly controlled. We now introduce a practical way to do that. Let ω(r, ε) be a strictly increasing function w.r.t. r such that log C F (ε, Ĝ) ≤ ω(r, ε), r = sup g∈ Ĝ Ω(g)

Minimizing Ω would reduce r and then the sample complexity of our model by constraining Ĝ. Our goal is thus to construct such a pair (ω, Ω). In the following, we will first show in Sec. In Fig. 1, we take an instance of linear ODE defined by F e = QΛ e Q ⊤ with the diagonal Λ e specific to each environment After solving Eq. 3 we have at the optimum that

Number of Training Environments

G e = F e -F ⋆ = F e -1 m e ′ ∈E F e ′ .
Then we can take r = max {L Ge } Ω(L Ge) as the norm bound of Ĝ when Ω(g e) is optimized. Fig. 1 shows on the left the test error with and without penalty and the corresponding theoretical bound on the right. We observe that, after applying the penalty Ω, the test error is reduced as well as the theoretical generalization bound, as indicated by the arrows from the dashed line to the concrete one. See Sup. B.3 for more details on this experiment.

Nonlinear case: instantiation for neural nets

The above linear case validates the ideas introduced in Prop. 2 and provides an instantiation guide and an intuition on the more complex nonlinear case. This motivates us to instantiate the general case by choosing an appropriate approximating space F and a penalization function Ω from the generalization bounds for the corresponding space. Sup. B.4 of the Appendix contains additional details justifying those choices. For F, we select the space of feed-forward neural networks with a fixed architecture. We choose the following penalty function:

Ω(g e) = ∥g e ∥ 2 ∞ +α∥g e ∥ 2
Lip (8) where ∥g∥ ∞ = ess sup|g| and ∥•∥ Lip is the Lipschitz semi-norm, α is a hyperparameter. This is inspired by the existing capacity bound for NNs [START_REF] Haussler | Decision theoretic generalizations of the pac model for neural net and other learning applications[END_REF] (see Sup. B.4 for details). Note that constructing tight generalization bounds for neural networks is still an open research problem [START_REF] Nagarajan | Uniform convergence may be unable to explain generalization in deep learning[END_REF]; however, it may still yield valuable intuitions and guide algorithm design. This heuristic is tested successfully on three different datasets with different architectures in the experiments (Sec. 4).

Experiments

Our experiments are conducted on three families of dynamical systems described by three broad classes of differential equations. All exhibit complex and nonlinear dynamics. The first one is an ODE-driven system used for biological system modeling. The second one is a PDE-driven reaction-diffusion model, well-known in chemistry for its variety of spatiotemporal patterns. The third one is the more physically complex Navier-Stokes equation, expressing the physical laws of incompressible Newtonian fluids. To show the general validity of our framework, we will use 3 different NN architectures (MLP, ConvNet, and Fourier Neural Operator [START_REF] Li | Fourier neural operator for parametric partial differential equations[END_REF]). Each architecture is well-adapted to the corresponding dynamics. This also shows that the framework is valid for a variety of approximating functions.

Dynamics, environments, and datasets

Lotka-Volterra (LV). This classical model [START_REF] Lotka | Elements of physical biology[END_REF] is used for describing the dynamics of interaction between a predator and a prey. The dynamics follow the ODE:

du /dt = αu -βuv, dv /dt = δuv -γv with u, v the number of prey and predator, α, β, γ, δ > 0 defining how the two species interact. The system state is x e t = (u e t , v e t) ∈ R 2 + . The initial conditions u i 0 , v i 0 are sampled from a uniform distribution P 0 . We characterize the dynamics by θ = (α /β, γ /δ) ∈ Θ. An environment e is then defined by parameters θ e sampled from a uniform distribution over a parameter set Θ. We then sample two sets of environment parameters: one used as training environments for RQ1, the other treated as novel environments. for RQ2.

Gray-Scott (GS).

This reaction-diffusion model is famous for its complex spatiotemporal behavior given its simple equation formulation [START_REF] Pearson | Complex patterns in a simple system[END_REF]. The governing PDE is:

∂u /∂t = D u ∆u -uv 2 + F (1 -u), ∂v /∂t = D v ∆v + uv 2 -(F + k)v
where the u, v represent the concentrations of two chemical components in the spatial domain S with periodic boundary conditions, the spatially discretized state at time t is

x e t = (u e t , v e t) ∈ R 2×32 2 + . D u , D v
denote the diffusion coefficients respectively for u, v, and are held constant, and F, k are the reaction parameters determining the spatio-temporal patterns of the dynamics [START_REF] Pearson | Complex patterns in a simple system[END_REF]. As for the initial conditions (u 0 , v 0) ∼ P 0 , we consider uniform concentrations, with 3 2-by-2 squares fixed at other concentration values and positioned at uniformly sampled positions in S to trigger the reactions. An environment e is defined by its parameters θ e = (F e , k e) ∈ Θ. We consider a set of θ e parameters uniformly sampled from the environment distribution Q on Θ.

Navier-Stokes (NS). We consider the Navier-Stokes PDE for incompressible flows:

∂w /∂t = -v • ∇w + ν∆w + ξ ∇ • v = 0
where v is the velocity field, w = ∇ × v is the vorticity, both v, w lie in a spatial domain S with periodic boundary conditions, ν is the viscosity and ξ is the constant forcing term in the domain S.

The discretized state at time t is the vorticity x e t = w e t ∈ R 32 2 . Note that v is already contained in w. We fix ν = 10 -3 across the environments. We sample the initial conditions w e 0 ∼ P 0 as in [START_REF] Li | Fourier neural operator for parametric partial differential equations[END_REF]. An environment e is defined by its forcing term ξ e ∈ Θ ξ . We uniformly sampled a set of forcing terms from Q on Θ ξ . For test-time evaluation, we create for each equation in each environment a test set of 32 trajectories (32•K) data points. Note that every environment dataset has the same number of trajectories and the initial conditions are fixed to equal values across the environments to ensure that the data variations only come from the dynamics themselves, i.e. for the i-th trajectory in Pe , ∀e, x e,i 0 = x i 0 . LV and GS data are simulated with the DOPRI5 solver in NumPy [START_REF] Dormand | A family of embedded runge-kutta formulae[END_REF][START_REF] Harris | Array programming with NumPy[END_REF]. NS data is simulated with the pseudo-spectral method as in [START_REF] Li | Fourier neural operator for parametric partial differential equations[END_REF].

Experimental settings and baselines

We validate LEADS in two settings: in the first one all the environments in E are available at once and then f and all the g e s are all trained on E. In the second one, training has been performed on E as before, and we consider a novel environment e ′ ̸ ∈ E: the shared term f being kept fixed, the approximating function f e ′ = f + g e ′ is trained on the data from e ′ (i.e. only g e ′ is modified).

All environments available at once. We introduce five baselines used for comparing with LEADS: (a) One-For-All: learning on the entire dataset P over all environments with the sum of a pair of NNs f + g, with the standard ERM principle, as in [START_REF] Ayed | Learning dynamical systems from partial observations[END_REF]. Although this is equivalent to use only one function f , we use this formulation to indicate that the number of parameters is the same for this experiment and for the LEADS ones. (b) One-Per-Env.: learning a specific function for each dataset Pe . For the same reason as above, we keep the sum formulation (f + g) e . (c) Factored Tensor RNN or FT-RNN [START_REF] Spieckermann | Exploiting similarity in system identification tasks with recurrent neural networks[END_REF]: it modifies the recurrent neural network to integrate a one-hot environment code into each linear transformation of the network. Instead of being encoded in a separate function g e like in LEADS, the environment appears here as an extra one-hot input for the RNN linear transformations. This can be implemented for representative SOTA (spatio-)temporal predictors such as GRU [START_REF] Cho | Learning phrase representations using RNN encoder-decoder for statistical machine translation[END_REF] or PredRNN [START_REF] Wang | Predrnn: Recurrent neural networks for predictive learning using spatiotemporal lstms[END_REF]. (d) FT-NODE: a baseline for which the same environment encoding as FT-RNN is incorporated in a Neural ODE [START_REF] Chen | Neural ordinary differential equations[END_REF]. (e) Gradient-based Meta Learning or GBML-like method: we propose a GBML-like baseline which can directly compare to our framework. It follows the principle of MAML [START_REF] Finn | Model-agnostic meta-learning for fast adaptation of deep networks[END_REF], by training One-For-All at first which provides an initialization near to the given environments like GBML does, then fitting it individually for each training environment.

(f) LEADS no min.: ablation baseline, our proposal without the Ω(g e) penalization. A comparison with the different baselines is proposed in Table 1 for the three dynamics. For concision, we provide a selection of results corresponding to 1 training trajectory per environment for LV and GS and 8 for NS. This is the minimal training set size for each dataset. Further experimental results when varying the number of environments from 1 to 8 are provided in Fig. 4 and Table S3 for LV.

Learning on novel environments. We consider the following training schemes with a pre-trained, fixed f : (a) Pre-trained-f -Only: only the pre-trained f is used for prediction; a sanity check to ensure that f cannot predict in any novel environment without further adaptation. (b) One-Per-Env.: training from scratch on { Pe ′ } as One-Per-Env. in the previous section. (c) Pre-trained-f -Plus-Trained-g e : we train g on each dataset Pe ′ based on pre-trained f , i.e. f + g e ′ , leaving only g e ′ s adjustable. We compare the test error evolution during training for 3 schemes above for a comparison of convergence speed and performance. Results are given in Fig. 5.

Experimental results

All environments available at once. We show the results in Table 1. For LV systems, we confirm first that the entire dataset cannot be learned properly with a single model (One-For-All) when the number of environments increases. Comparing with other baselines, our method LEADS reduces the test MSE over 85% w.r.t. One-Per-Env. and over 60% w.r.t. LEADS no min., we also cut 50%-75% of error w.r.t. other baselines. Fig. 3 shows samples of predicted trajectories in test, LEADS follows very closely the ground truth trajectory, while One-Per-Env. under-performs in most environments. We observe the same tendency for the GS and NS systems. The error is reduced by: around 2/3 (GS) and 45% (NS) w.r.t. One-Per-Env.; over 60% (GS) and 15% (NS) w.r.t. LEADS no min.; 45-75% (GS) and 15-90% (NS) w.r.t. other baselines. In Fig. 2, the final states obtained with LEADS are qualitatively closer to the ground truth. Looking at the error maps on the right, we see that the errors are systematically reduced across all environments compared to the baselines. This shows that LEADS accumulates less errors through the integration, which suggests that LEADS alleviates overfitting. We apply the models in 1 to 8 environments. 4 groups of curves correspond to models trained with 1 to 8 trajectories per env. All groups highlight the same tendencies: increasing One-For-All, stable One-Per-Env., and decreasing LEADS. More results of baselines methods in Sup. D.

We have also conducted a larger scale experiment on LV (Fig. 4) to analyze the behavior of the different training approaches as the number of environments increases. We consider three models One-For-All, One-Per-Env. and LEADS, 1, 2, 4 and 8 environments, and for each such case, we have 4 groups of curves, corresponding to 1, 2, 4 and 8 training trajectories per environment. We summarize the main observations. With One-For-All (blue), the error increases as the number of environments increases: the dynamics for each environment being indeed different, this introduces an increasingly large bias, and thus the data cannot be fit with one single model. The performance of One-Per-Env. (in red), for which models are trained independently for each environment, is constant as expected when the number of environments changes. LEADS (green) circumvents these issues and shows that the shared characteristics among the environments can be leveraged so as to improve generalization: it is particularly effective when the number of samples per environment is small. (See Sup. D for more details on the experiments and on the results). Learning on novel environments. We demonstrate how the pre-trained dynamics can help to fit a model for novel environments. We took an f pre-trained by LEADS on a set of LV environments. S5). These empirical results clearly show that the learned shared dynamics accelerates and improves the learning in novel environments.

Training and implementation details

Discussion on trajectory-based optimization. Solving the learning problem Eq. 2 in our setting, involves computing a trajectory loss (integral term in Eq. 4). However, in practice, we do not have access to the continuous trajectories at every instant t but only to a finite number of snapshots for the state values {x k∆t } 0≤k≤ T ∆t at a temporal resolution ∆t. From these discrete observed trajectories, it is still possible to recover an approximate derivative d Λ k∆t ≃ dx k∆t dt using a numerical scheme Λ. The integral term for a given sample in the objective Eq. 4 would then be estimated as

K k=1 d Λ k∆t -(f + g e)(x ∆tk)
2 . This is not the best solution and we have observed much better prediction performance for all models, including the baselines, when computing the error directly on the states, using an integral formulation K k=1 ∥x (k+1)∆t -x(k+1)∆t ∥ 2 , where x(k+1)∆t is the solution given by a numerical solver approximating the integral x k∆t + (k+1)∆t k∆t (f + g e)(x s)ds starting from x k∆t . Comparing directly in the state space yields more accurate results for prediction as the learned network tends to correct the solver's numerical errors, as first highlighted in [START_REF] Yin | Augmenting physical models with deep networks for complex dynamics forecasting[END_REF].

Calculating Ω. Given finite data and time, the exact infinity norm and Lipschitz norm are both intractable. We opt for more practical forms in the experiments. For the infinity norm, we chose to minimize the empirical norm of the output vectors on known data points, this choice is motivated in Sup. C. In practice, we found out that dividing the output norm by its input norm works better:

1 n i,k ∥g e (x e,i
k∆t)∥ 2 /∥x e,i k∆t ∥ 2 , where the x e,i k∆t are known states in the training set. For the Lipschitz norm, as suggested in [START_REF] Bietti | A kernel perspective for regularizing deep neural networks[END_REF], we optimize the sum of the spectral norms of the weight at each layer D l=1 ∥W ge l ∥ 2 . We use the power iteration method in [START_REF] Miyato | Spectral normalization for generative adversarial networks[END_REF] for fast spectral norm approximation. Implementation. We used 4-layer MLPs for LV, 4-layer ConvNets for GS and Fourier Neural Operator (FNO) [START_REF] Li | Fourier neural operator for parametric partial differential equations[END_REF] for NS. For FT-RNN baseline, we adapted GRU [START_REF] Cho | Learning phrase representations using RNN encoder-decoder for statistical machine translation[END_REF] for LV and PredRNN [START_REF] Wang | Predrnn: Recurrent neural networks for predictive learning using spatiotemporal lstms[END_REF] for GS and NS. We apply the Swish function [START_REF] Ramachandran | Searching for activation functions[END_REF] as the default activation function. Networks are integrated in time with RK4 (LV, GS) or Euler (NS), using the basic back-propagation through the internals of the solver. We apply an exponential Scheduled Sampling [START_REF] Lamb | Professor Forcing: A New Algorithm for Training Recurrent Networks[END_REF] with exponent of 0.99 to stabilize the training. We use the Adam optimizer [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF] with the same learning rate 10 -3 and (β 1 , β 2) = (0.9, 0.999) across the experiments. For the hyperparamters in Eq. 8, we chose respectively λ = 5 × 10 3 , 10 2 , 10 5 and α = 10 -3 , 10 -2 , 10 -5 for LV, GS and NS. All experiments are performed with a single NVIDIA Titan Xp GPU.

Related work

Recent approaches linking invariances to Out-of-Distribution (OoD) Generalization, such as [START_REF] Arjovsky | Invariant Risk Minimization[END_REF][START_REF] Krueger | Out-of-distribution generalization via risk extrapolation (rex)[END_REF][START_REF] Teney | Unshuffling Data for Improved Generalization[END_REF], aim at finding a single classifier that predicts well invariantly across environments with the power of extrapolating outside the known distributions. However, in our dynamical systems context, the optimal regression function should be different in each environment, and modeling environment bias is as important as modeling the invariant information, as both are indispensable for prediction. Thus such invariant learners are incompatible with our setting. Meta-learning methods have recently been considered for dynamical systems as in [START_REF] Finn | Model-agnostic meta-learning for fast adaptation of deep networks[END_REF][START_REF] Lee | Identifying physical law of hamiltonian systems via metalearning[END_REF]. Their objective is to train a single model that can be quickly adapted to a novel environment with a few data-points in limited training steps. However, in general these methods do not focus on leveraging the commonalities and discrepencies in data and may suffer from overfitting at test time [START_REF] Mishra | Meta-learning with temporal convolutions[END_REF]. Multi-task learning [START_REF] Zhang | A survey on multi-task learning[END_REF] seeks for learning shared representations of inputs that exploit the domain information. Up to our knowledge current multi-task methods have not been considered for dynamical systems. [START_REF] Spieckermann | Exploiting similarity in system identification tasks with recurrent neural networks[END_REF] apply multi-task learning for interactive physical environments but do not consider the case of dynamical systems. Other approaches like [START_REF] Çagatay Yıldız | Ode 2 vae: Deep generative second order odes with bayesian neural networks[END_REF][START_REF] Norcliffe | Neural ODE processes[END_REF] integrate probabilistic methods into a Neural ODE, to learn a distribution of the underlying physical processes. Their focus is on the uncertainty of a single system. [START_REF] Yin | Augmenting physical models with deep networks for complex dynamics forecasting[END_REF] consider an additive decomposition but focus on the combination of physical and statistical components for a single process and not on learning from different environments.

Discussions

Limitations Our framework is generic and could be used in many different contexts. On the theoretical side, the existence and uniqueness properties (Prop. 1) rely on relatively mild conditions covering a large number of situations. The complexity analysis, on the other side, is only practically relevant for simple hypothesis spaces (here linear), and then serves for developing the intuition on more complex spaces (NNs here) where bounds are too loose to be informative. Another limitation is that the theory and experiments consider deterministic systems only: the experimental validation is performed on simulated deterministic data. Note however that this is the case in the vast majority of the ML literature on ODE/PDE spatio-temporal modeling [START_REF] Raissi | Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[END_REF][START_REF] Long | Pde-net 2.0: Learning pdes from data with A numeric-symbolic hybrid deep network[END_REF][START_REF] Li | Fourier neural operator for parametric partial differential equations[END_REF][START_REF] Yin | Augmenting physical models with deep networks for complex dynamics forecasting[END_REF]. In addition, modeling complex dynamics from real world data is a problem by itself.

Conclusion

We introduce LEADS, a data-driven framework to learn dynamics from data collected from a set of distinct dynamical systems with commonalities. Experimentally validated with three families of equations, our framework can significantly improve the test performance in every environment w.r.t. classical training, especially when the number of available trajectories is limited. We further show that the dynamics extracted by LEADS can boost the learning in similar new environments, which gives us a flexible framework for generalization in novel environments. More generally, we believe that this method is a promising step towards addressing the generalization problem for learning dynamical systems and has the potential to be applied to a large variety of problems. The only relevant societal impact is around the computational cost, while we use very limited computation power (maximum with a single GPU).

The idea is to first reconstruct the full functional from the trajectories of T. By definition, A e is the set of points reached by trajectories in T from environment e so that:

A e = {x ∈ R d | ∃x e
• ∈ T, ∃t, x e t = x} Then let us define a function f data e in the following way, ∀e ∈ E, take a ∈ A e , we can find x e

• ∈ T and t 0 such that x e t0 = a. Differentiating x e • at t 0 , which is possible by definition of T, we take:

f data e (a) = dx e t dt t=t0
For any (f, g e) satisfying the constraint in Eq. 3, we then have (f + g e)(a) = dxt dt t0 = f data e (a) for all a ∈ A e . Conversely, any pair such that (f, g e) ∈ F ×F and f + g e = f data e , verifies the constraint.

Thus we have the equivalence between Eq. 3 and the following objective:

min f ∈F e Ω(f data e -f) (S1)
The result directly follows from the fact that the objective is a sum of (strictly) convex functions in f and is thus (strictly) convex in f .

B Further details on the generalization with LEADS

In this section, we will give more details on the link between our framework and its generalization performance. After introducing the necessary definitions in Sec. B.1, we show the proofs of the results for the general case in Sec. 3. Then in Sec. B.3 we provide the instantiation for linear approximators. Finally, we show how we derived our heuristic instantiation for neural networks in Eq. 8 in Sec. 3.3 from the existing capacity bound for neural networks.

d P ((f + g 1 , . . . , f + g m), (f ′ + g ′ 1 , . . . , f ′ + g ′ m)) = (A×T A) m 1 m | e∈E ∥(f + g e)(x e) -y e ∥ 2 -e∈E ∥(f ′ + g ′ e)(x e) -y e ∥ 2 |dP(x, y) Theorem S1; Prop. S1 C Ĝ(ε, F) := sup P N(ε, F, d [P, Ĝ]) d [P, Ĝ] (f, f ′) = A×T A sup g∈ Ĝ|∥(f + g)(x) -y∥ 2 -∥(f ′ + g)(x) -y∥ 2 |dP(x, y) Prop. 2, S1, S3; Cor. S1 C F (ε, Ĝ) := sup P N(ε, Ĝ, d [P, F]) d [P, F] (g, g ′) = A×T A sup f ∈ F |∥(f + g)(x) -y∥ 2 -∥(f + g ′)(x) -y∥ 2 |dP(x, y) Prop. 2, S1, S2 C(ε, f + Ĝ) := sup P N(ε, f + Ĝ, d P) d P (f + g, f + g ′) = A×T A |∥(f + g)(x) -y∥ 2 -∥(f + g ′)(x) - y∥ 2 |dP(x, y) Prop. 3 C(ε, Ĝ, L 1) := sup P N(ε, Ĝ, d L 1 (P)) d L 1 (P) (g, g ′) = R d ∥(g -g ′)(x)∥ 1 dP(x) Prop. S2; Theorem S3 C(ε, Ĝ, L 2) := sup P N(ε, Ĝ, d L 2 (P)) d L 2 (P) (g, g ′) = R d ∥(g -g ′)(x)∥ 2 2 dP(x) Prop. 4; Lemma S1

B.1 Preliminaries

Table S1 gives the definition of the different capacity instances considered in the paper for each hypothesis space, and the associated distances. We say that a space H is ε-covered by a set H, with respect to a metric or pseudo-metric d(•, •), if for all h ∈ H there exists h ′ ∈ H with d(h, h ′) ≤ ε. We define by N(ε, H, d) the cardinality of the smallest H that ε-covers H, also called covering number [S7]. The capacity of each hypothesis space is then defined by the maximum covering number over all distributions. Note that the loss function is involved in every metric in Table S1. For simplicity, we therefore omit the notation of loss function for the hypothesis spaces.

As in [S2], covering numbers are based on pseudo-metrics. We can verify that all distances in Table S1 are pseudo-metrics:

Proof. This is trivially verified. For example, for the distance d P (f + g, f + g ′) given in Table S1, which is the distance between f + g, f + g ′ ∈ f + Ĝ, it is easy to check that the following properties do hold:

• d P (f + g, f + g ′) = 0 (subtraction of same functions evaluated on same x and y)

• d P (f + g, f + g ′) = d P (f + g ′ , f + g) (evenness of absolute value) • d P (f + g, f + g ′) ≤ d P (f + g, f + g ′′) + d P (f + g ′′ , f + g ′) (triangular inequality of absolute value)
Other distances in Table S1 can be proven to be pseudo-metrics in the same way.

B.2 General Case B.2.1 Proof of Proposition 2 Proposition 2. Given m environments, let ε 1 , ε 2 , δ > 0, ε = ε 1 + ε 2 . Assume the number of examples n per environment satisfies n ≥ max 64 ε 2 1 m log 4 δ + log C Ĝ ε 1 16 , F + log C F ε 2 16 , Ĝ , 16 ε 2 (5)
Then with probability at least 1-δ (over the choice of training sets { Pe }), any learner (f +g 1 , . . . , f + g m) will satisfy Then with probability at least 1 -δ (over the choice of { Pe }), any (f + g 1 , . . . , f + g m) will satisfy

1 m e∈E er Pe (f + g e) ≤ 1 m e∈E êr Pe (f + g e) + ε
Note that permissibility (as defined in [S2]) is a weak measure-theoretic condition satisfied by many real world hypothesis space families [S2]. We will now express the capacity of H m in terms of the capacities of its two constituent component-spaces F and Ĝ, thus leading to the main result.

Proposition S1. For all ε, ε 1 , ε 2 > 0 such that ε = ε 1 + ε 2 , log C(ε, H m) ≤ log C Ĝ(ε 1 , F) + m log C F (ε 2 , Ĝ) (S2)
Proof of Proposition S1. To prove the proposition it is sufficient to show the property of covering sets for any joint distribution defined on all environments P on the space (A × T A) m . Let us then fix such a distribution P. and let P = 1 m e∈E P e be the average distribution. Suppose that F is an ε 1 -cover of (F, d [P, Ĝ]) and {G e } e∈E are ε 2 -covers of (Ĝ, d [Pe, F]). Let H = {(x 1 , . . . , x m) → ((f + g 1)(x 1), . . . , (f + g m)(x m)), f ∈ F, g e ∈ G e }, be a set built from the covering sets aforementioned. Note that by definition

|H| = |F |• e∈E |G e | ≤ C Ĝ(ε 1 , F)C F (ε 2 , Ĝ) m
as we take some distribution instances.

For each learner (f + g 1 , . . . , f + g m) ∈ H m in the hypothesis space, we take any

f ′ ∈ F such that d [P, Ĝ] (f, f ′) ≤ ε 1 and g ′ e ∈ G e
for all e such that d [Pe, F] (g e , g ′ e) ≤ ε 2 , and we build

(f ′ + g ′ 1 , . . . , f ′ + g ′ m)
. The distance is then:

d P ((f + g 1 , . . . , f + g m), (f ′ + g ′ 1 , . . . , f ′ + g ′ m)) ≤ d P ((f + g 1 , . . . , f + g m), (f ′ + g 1 , . . . , f ′ + g m)) + d P ((f ′ + g 1 , . . . , f ′ + g m), (f ′ + g ′ 1 , . . . , f ′ + g ′ m)) (triangular inequality of pseudo-metric) ≤ 1 m e∈E d Pe (f + g e , f ′ + g e) + e∈E d Pe (f ′ + g e , f ′ + g ′ e)
(triangular inequality of absolute value)

≤ 1 m e∈E d [Pe, Ĝ] (f, f ′) + 1 m e∈E d [Pe, F] (g e , g ′ e) (by definition of d [Pe, Ĝ] and d [Pe, F]) = d [P, Ĝ] (f, f ′) + 1 m e∈E d [Pe, F] (g e , g ′ e) ≤ ε 1 + ε 2
(mean of the distance on different P e is the distance on P)

To conclude, for any distribution P, when F is an ε 1 -cover of F and {G e } are ε 2 -covers of Ĝ, the set H built upon them is an (ε 1 + ε 2)-cover of H m . Then if we take the maximum over all distributions we conclude that C(ε

1 + ε 2 , H m) ≤ C Ĝ(ε 1 , F)C F (ε 2 , Ĝ
) m and we have Eq. S2.

■

We can now use the bound developed in Prop. S1 and use it together with Theorem S1, therefore concluding the proof of Prop. 2.

B.2.2 Proof of Proposition 3

Proposition 3. For all ε, δ with 0 < ε, δ < 1 if the number of samples n ′ satisfies

n ′ ≥ max 64 ε 2 log 4C(ε 16 , f + Ĝ) δ , 16 ε 2 , (6)
then with probability at least 1 -δ (over the choice of novel training set Pe ′), any learner f + g e ′ ∈ f + Ĝ will satisfy er P e ′ (f + g e ′) ≤ êr Pe ′ (f + g e ′) + ε.

Proof. The proof is derived from the following theorem which can be easily adapted to our context:

Theorem S2 ([S2], Theorem 3)
. Let H a permissible hypothesis space. For all 0 < ε, δ < 1, if the number of examples n of each environment satisfies:

n ≥ max 64 mε 2 log 4C(ε 16 , H) δ , 16 ε 2
Then with probability at least 1 -δ (over the choice of dataset P sampled from P), any h ∈ H will satisfy er P (h) ≤ êr P(h) + ε

Given that Pe ′ is sampled from the same environment distribution Q, then by fixing the pre-trained f , we fix the space of hypothesis to f + Ĝ, and we apply the Theorem S2 to obtain the proposition.

B.3 Linear case

We provide here the proofs of theoretical bounds given in Sec. S1). Therefore, for each

L G ∈ Ĝ take g ′ ∈ G such that d L 2 (L G , L G ′) ≤ ε 2 √ c , then d [P, F] (L G , L G ′) = A×A ′ sup L F ∈ F|∥(F + G)x -y∥ 2 2 -∥(F + G ′)x -y∥ 2 2 |dP(x, y) ≤ A×T A sup L F ∈ F∥(G -G ′)x∥ 2 (∥(F + G)x -y∥ 2 +∥(F + G ′)(x) -y∥ 2)dP(x, y) ≤ A ∥(G -G ′)x∥ 2 dP(x) A×T A sup L F ∈ F(∥(F + G)x -y∥ 2 +∥(F + G ′)x -y∥ 2) 2 dP(x, y) ≤2 √ c R d ∥(G -G ′)x∥ 2 dP(x) ≤ ε We have the C F (ε, Ĝ) ≤ C(ε 2 √ c , Ĝ, L 2).
According to the following lemma: Lemma S1 ([S1], Lemma 3.2, Adapted). Given positive reals (a, b, ε) and positive integer d. Let vector x ∈ R d be given with

∥x∥ p ≤ b, Ĝ = {L G : G ∈ R d×d , ∥G∥ 2 F ≤ r} where ∥•∥ F is the Frobenius norm. Then log C(ε, Ĝ, L 2) ≤ rdb 2 ε 2 log 2d 2
And we obtain that

log C F (ε, Ĝ) ≤ rcd(2b) 2 ε 2 log 2d 2 =: ω(r, ε)
where ω(r, ε) is a strictly increasing function w.r.t. r.

B.3.2 Proof of Proposition 5

Proposition 5. If for linear maps

L F ∈ F, ∥F ∥ 2 F ≤ r ′ , L G ∈ Ĝ, ∥G∥ 2 F ≤ r, ∥x∥ 2 ≤ b,
and if the MSE loss function is bounded by c, given m environments and n samples per environment, with the probability 1 -δ, the generalization error upper bound is ε = max { (p + p 2 + 4q)/2, 16 /n} where p = 64 mn log 4 δ and q = 64 n ⌈(

r ′ mz 2 + r (1-z) 2)cd(32b) 2 ⌉ log 2d 2 for any 0 < z < 1.
Proof. This can be derived from Prop. 2 with the help of Prop. 4 for linear maps. If we take the lower bounds of two capacities log C F (ε1 16 , Ĝ) and log C Ĝ(ε2 16 , F) for the linear maps hypothesis spaces F, Ĝ, then the number of required samples per environment n now can be expressed as follows:

n = max 64 ε 2 1 m log 4 δ + 1 m r ′ cd(32b) 2 ε 2 1 log 2d 2 + rcd(32b) 2 ε 2 2 log 2d 2 , 16 ε 2
To simplify the resolution of the equation above, we take ε 1 = zε for any 0 < z < 1, then

ε 2 = ε -ε 1 = (1 -z)ε.
Then by resolving the equation, the generalization margin is then upper bounded by ε with:

ε = max    p + p 2 + 4q 2 , 16 n  
 where p = 64 mn log 4 δ and q = 64 n r

mz 2 + r ′ (1-z) 2 cd(32b) 2 log 2d 2 .

B.4 Nonlinear case: instantiation for neural networks

We show in this section how we design a concrete model for nonlinear dynamics following the general guidelines given in Sec. 3.1. This is mainly composed of the following two parts: (a) choosing an appropriate approximation space and (b) choosing a penalization function Ω for this space. It is important to note that, even if the bounds given in the following sections may be loose in general, it could provide useful intuitions on the design of the algorithms which can be validated by experiments in our case.

B.4.1 Choosing approximation space F

We choose the space of feed-forward neural networks with a fixed architecture. Given the universal approximation properties of neural networks [S5], and the existence of efficient optimization algorithms [S3], this is a reasonable choice, but other families of approximating functions could be used as well.

We then consider the function space of neural networks with D-layers with inputs and outputs in

R d : FNN = {ν : x → σ D (W D • • • σ 1 (W 1 x))) : x, ν(x) ∈ R d }, D
is the depth of the network, σ j is a Lipschitz activation function at layer j, and W j weight matrix from layer j -1 to j. The number of adjustable parameters is fixed to W for the architecture. This definition covers fully connected NNs and convolutional NNs. Note that the Fourier Neural Operator [S6] used in the experiments for NS can be also covered by the definition above, as it performs alternatively the convolution in the Fourier space.

B.4.2 Choosing penalization Ω

Now we choose an Ω for the space above. Let us first introduce a practical way to bound the capacity of Ĝ ∈ FNN . Proposition S2 tells us that for a fixed NN architecture (implying constant parameter number W and depth D), we can control the capacity through the maximum output norm R and Lipschitz norm L defined in the proposition.

Proposition S2.

If for all neural network g ∈ Ĝ, ∥g∥ ∞ = ess sup|g| ≤ R and ∥g∥ Lip ≤ L, with ∥•∥ Lip the Lipschitz semi-norm, then:

log C F (ε, Ĝ) ≤ ω(R, L, ε) (S3)
where ω(R, L, ε) = c 1 log RL ε + c 2 for c 1 = 2W and c 2 = 2W log 8e √ cD, with c the bound of MSE loss. ω(R, L, ε) is a strictly increasing function w.r.t. R and L.

Proof. To link the capacity to some quantity that can be optimized for neural networks, we need to apply the following theorem: Theorem 11,Adapted). With the neural network function space FNN , let W be the total number of adjustable parameters, D the depth of the architecture. Let Ĝ ⊆ FNN be all functions into [-R, R] d representable on the architecture, and all these functions are at most L-Lipschitz. Then for all 0 < ε < 2R,

Theorem S3 ([S4],
C(ε, Ĝ, L 1) ≤ 2e • 2R • DL ε 2W
Here, we need to prove firstly that the F-dependent capacity of Ĝ is bounded by a scaled independent capacity on L 1 of itself. We suppose that the MSE loss function (used in the definitions in Table S1) is bounded by some constant c. This is a reasonable assumption given that the input and output of neural networks are bounded in a compact set. Let us take G an ε 2 √ c -cover of Ĝ with L 1 -distance: d L 1 (P) (see definition in Table S1). Therefore, for each g ∈ Ĝ take

g ′ ∈ G such that d L 1 (g, g ′) ≤ ε 2 √ c , then d [P, F] (g, g ′) = A×A ′ sup f ∈ F|∥(f + g)(x) -y∥ 2 2 -∥(f + g ′)(x) -y∥ 2 2 |dP(x, y) ≤ A×T A sup f ∈ F∥(g -g ′)(x)∥ 2 (∥(f + g)(x) -y∥ 2 +∥(f + g ′)(x) -y∥ 2)dP(x, y) ≤2 √ c R d ∥(g -g ′)(x)∥ 1 dP(x) ≤ ε
Then we have the first inequality C F (ε, Ĝ) ≤ C(ε 2c , Ĝ, L 1). As we suppose that ∥g∥ ∞ ≤ R for all g ∈ Ĝ, then for all g ∈ Ĝ, we have g(x) ∈ [-R, R] d . We now apply the Theorem S3 on Ĝ, we then have the following inequality

log C ε 2 √ c , Ĝ, L 1 ≤ 2W log 8e √ cDRL ε (S4)
where e is the base of the natural logarithm, W is the number of parameters of the architecture, D is the depth of the architecture. Then if we consider W, c, D as constants, the bound becomes:

log C ε 2 √ c , Ĝ, L 1 ≤ c 1 log RL ε + c 2 = ω(R, L, ε) (S5)
for c 1 = 2W and c 2 = 2W log 8e √ cD.

This leads us to choose for Ω a strictly increasing function that bounds ω(R, L, ε). Given the inequality (Eq. S3), this choice for Ω will allow us to bound practically the capacity of Ĝ.

Minimizing Ω will then reduce the effective capacity of the parametric set used to learn g e . Concretely, we choose for Ω: Ω(g e) = ∥g e ∥ 2 ∞ +α∥g e ∥ 2 Lip [START_REF] Chen | Neural ordinary differential equations[END_REF] where α > 0 is a hyper-parameter. This function is strictly convex and attains its unique minimum at the null function.

With this choice, let us instantiate Prop. 2 for our familly of NNs. Let r = sup g∈ Ĝ Ω(g), and ω(r, ε) = c 1 log r ε √ α + c 2 (strictly increasing w.r.t. the r) for given parameters c 1 , c 2 > 0. We have: Proof.

If Ω(g e) ≤ r, we have 2 log R ≤ log r and 2 log L + log α ≤ log r, then

log RL ≤ log r √ α We can therefore bound ω(R, L, ε) by ω(R, L, ε) = c 1 log RL ε + c 2 ≤ c 1 log r ε √ α + c 2 = ω(r, ε)
The result follows from Proposition S2.

This means that the number of required samples will decrease with the size the largest possible Ω(g) = r. The optimization process will reduce Ω(g e) until a minimum is reached. The maximum size of the effective hypothesis space is then bounded and decreases throughout training. In particular, the following result follows: Corollary S1. Optimizing Eq. 4 for a given λ, we have that the number of samples n in Eq. 5 required to satisfy the error bound in Proposition 2 with the same δ, ε, ε 1 and ε 2 is: We can then decrease the sample complexity in the chosen NN family by: (a) increasing the number of training environments engaged in the framework, and (b) decreasing Ω(g e) for all g e , with Ω(g e) instantiated as in Sec. 3.1. Ω provides a bound based on the largest output norm and the Lipschitz constant for a family of NNs. The experiments (Sec. 4) confirm that this is indeed an effective way to control the capacity of the approximating function family. Note that in our experiments, the number of samples needed in practice is much smaller than suggested by the theoretical bound.

n ≥ max 64 ε 2 1 m log 4C Ĝ(ε1 16 , F) δ + ω λκ, ε 2

C Optimizing Ω in practice

In Sec. 3.3, we developed an instantiation of the LEADS framework for neural networks. We proposed to control the capacity of the g e s components through a penalization function Ω defined as Ω(g e) = ∥g e ∥ 2 ∞ +α∥g e ∥ 2 Lip . This definition ensures the properties required to control the sample complexity. However, in practice, both terms in Ω(g e) are difficult to compute as they do not yield an analytical form for neural networks. For a fixed activation function, the Lipschitz-norm of a trained model only depends on the model parameters and, for our class of neural networks, can be bounded by the spectral norms of the weight matrices, as described in Sec. 4.4. This allows for a practical implementation.

The infinity norm on its side depends on the domain definition of the function and practical implementations require an empirical estimate. Since there is no trivial estimator for the infinity norm of a function, we performed tests with different proxies such as the empirical L p and L ∞ norms, respectively defined as ∥g e ∥ L p (Pe) = 1 S4 shows the results of experiments performed on LV equation with different 1 ≤ p ≤ ∞. Overall we found that L p for small values of p worked better and chose in our experiments set p = 2.

Moreover, using both minimized quantities ∥g e ∥ 2 L 2 (Pe) and the spectral norm of the product of weight matrices, denoted L(g e) and Π(g e) respectively, we can give a bound on Ω(g e). First, for any x in the compact support of P e , we have that, fixing some x 0 ∈ Pe : Note that this estimation is a crude one and improvements can be made by considering the closest x 0 from x and taking δ to be the maximal distance between points not from the support of P e and Pe .

Finally, we noticed that minimizing ∥ ge id ∥ 2

L 2 (Pe)
in domains bounded away from zero gave better results as normalizing by the norm of the output allowed to adaptively rescale the computed norm. Formally, minimizing this quantity does not fundamentally change the optimization as we have that:

∀x, 1 M 2 |g e (x)| 2 ≤ g e (x) x 2 ≤ 1 m 2 |g e (x)| 2 meaning that: 1 M 2 L(g e) ≤ g e id 2 L 2 (Pe) ≤ 1 m 2 L(g e)
where m, M are the lower and upper bound of |x| on the support of P e with m > 0 by hypothesis (the quantity we minimize is still higher than L(g e) even if this is not the case).

D Additional experimental details D.1 Details on the environment dynamics

Lotka-Volterra (LV). The model dynamics follow the ODE: du dt = αu -βuv, dv /dt = δuv -γv with u, v the number of prey and predator, α, β, γ, δ > 0 defining how the two species interact. The initial conditions u i 0 , v i 0 are sampled from a uniform distribution P 0 = Unif([1, 2] 2). We characterize the dynamics by θ = (α /β, γ /δ) ∈ Θ = {0.5, 1, 1.44, 1.5, 1.86, 2} 2 . An environment e is then defined by parameters θ e sampled from a uniform distribution over the parameter set Θ.

Gray-Scott (GS). The governing PDE is:

∂u ∂t = D u ∆u -uv 2 + F (1 -u), ∂v /∂t = D v ∆v + uv 2 -(F + k)v
where the u, v represent the concentrations of two chemical components in the spatial domain S with periodic boundary conditions. D u , D v denote the diffusion coefficients respectively for u, v, and are held constant to D u = 0.2097, D v = 0.105, and F, k are the reaction parameters depending on the environment. As for the initial conditions (u 0 , v 0) ∼ P 0 , we place 3 2-by-2 squares at uniformly sampled positions in S to trigger the reactions. The values of (u 0 , v 0) are fixed to (0, 1) outside the squares and to (1 -ϵ, ϵ) with a small ϵ > 0 inside. An environment e is defined by its parameters θ e = (F e , k e) ∈ Θ = {(0.037, 0.060), (0.030, 0.062), (0.039, 0.058)}. We consider a set of θ e parameters uniformly sampled from the environment distribution Q on Θ.

Navier-Stokes (NS). We consider the Navier-Stokes PDE for incompressible flows:

∂w ∂t = -v • ∇w + ν∆w + ξ ∇ • v = 0
where v is the velocity field, w = ∇ × v is the vorticity, both v, w lie in a spatial domain S with periodic boundary conditions, ν is the viscosity and ξ is the constant forcing term in the domain S.

We fix ν = 10 -3 across the environments. We sample the initial conditions w e 0 ∼ P 0 as in [S6]. An environment e is defined by its forcing term ξ e ∈ Θ ξ = {ξ 1 , ξ 2 , ξ 3 , ξ 4 } with ξ 1 (x, y) = 0.1(sin(2π(x + y)) + cos(2π(x + y))) ξ 2 (x, y) = 0.1(sin(2π(x + y)) + cos(2π(x + 2y))) ξ 3 (x, y) = 0.1(sin(2π(x + y)) + cos(2π(2x + y))) ξ 4 (x, y) = 0.1(sin(2π(2x + y)) + cos(2π(2x + y))) where (x, y) ∈ S is the position in the domain S. We uniformly sampled a set of forcing terms from Q on Θ ξ .

Linear ODE. We take an example of linear ODE expressed by the following formula:

du t dt = L QΛQ ⊤ (u t) = QΛQ ⊤ u t
where u t ∈ R 8 is the system state, Q ∈ M 8,8 (R) is an orthogonal matrix such that QQ ⊤ = 1, and Λ ∈ M 8,8 (R) is a diagonal matrix containing eigenvalues. We sample Λ e from a uniform distribution on Θ Λ = {Λ 1 , . . . , Λ 8 }, defined for each Λ i by:

[Λ i] jj = 0, if i = j for i, j ∈ {1, . . . , 8}, -0.5, otherwise. which means that the i-th eigenvalue is set to 0, while others are set to a common value -0.5.

D.2 Choosing hyperparameters

As usual, the hyperparameters need to be tuned for each considered set of systems. We therefore chose the hyperparameters using standard cross-validation techniques. We did not conduct a systematic sensitivity analysis. In practice, we found that: (a) if the regularization term is too large w.r.t. the trajectory loss, the model cannot fit the trajectories, and (b) if the regularization term is too small, the performance is similar to LEADS no min. The candidate hyperparameters are defined on a very sparse grid, for example, for neural nets, (10 3 , 10 4 , 10 5 , 10 6) for λ and (10 -2 , 10 -3 , 10 -4 , 10 -5) for α.

D.3 Details on the experiments with a varying number of environments

We conducted large-scale experiments respectively for linear ODEs (Sec. 3.2, Fig. 1) and LV (Sec. 4, Fig. 4) to compare the tendency of LEADS w.r.t. the theoretical bound and the baselines by varying the number of environments available for the instantiated model.

To guarantee the comparability of the test-time results, we need to use the same test set when varying the number of environments. We therefore propose to firstly generate a global set of environments, separate it into subgroups for training, then we test these separately trained models on the global test set.

We performed the experiments as follows: Note that when m = 1, having b = 8 environment groups of one single environment, One-For-All, One-Per-Env. and LEADS are reduced to One-Per-Env. applied on all M environments. We can see in Fig. 4 that each group of plots starts from the same point. • In the test phase, the performance of the model trained with the group E i is tested with the test samples of the corresponding group. Then we take the mean error over all b groups to obtain the results on all M environments. Note that the result at each point in figures 1 and 4 is calculated on the same total test set, which guarantees the comparability between results.

D.4 Additional experimental results

Experiments with a varying number of environments We show in tables S2 and S3 the detailed results used for the plots in figures 1 and 4, compared to baseline methods.

Learning in novel environments We conducted same experiments as in Sec. 4.3 to learn in unseen environments for GS and NS datasets. The test MSE at different training steps is shown in Table S5.

Full-length trajectories We provide in figures S1-S4 the full-length sample trajectories for GS and NS of Fig. 2.

Figure 1 :

 1 Figure 1: Test error compared with corresponding theoretical bound. The arrows indicate the changes after applying Ω(g e) penalty.

Figure 2 :Figure 3 :

 23 Figure 2: Left: final states for GS and NS predicted by the two best baselines (One-Per-Env. and FT-NODE) and LEADS compared with ground truth. Different environment are arranged by row (3 in total). Right: the corresponding MAE error maps, the scale of the error map is [0, 0.6] for GS, and [0, 0.2] for NS; darker is smaller. (See Sup. D for full sequences)

Figure 4 :

 4 Figure4: Test error for LV w.r.t. the number of environments. We apply the models in 1 to 8 environments. 4 groups of curves correspond to models trained with 1 to 8 trajectories per env. All groups highlight the same tendencies: increasing One-For-All, stable One-Per-Env., and decreasing LEADS. More results of baselines methods in Sup. D.

Figure 5 :

 5 Figure 5: Test error evolution during training on 2 novel environments for LV.

Fig. 5

 5 shows the evolution of the test loss during training for three systems: a f function pre-trained by LEADS on a set of LV training environments, a g e function trained from scratch on the new environment and LEADS that uses a pre-trained f and learns a g e residue on this new environment. Pre-trained-f -Only alone cannot predict in any novel environments. Very fast in the training stages, Pre-trained-f -Plus-Trained-g e already surpasses the best error of the model trained from scratch (indicated with dotted line). Similar results are also observed with the GS and NS datasets (cf. Sup. D, Table

Checklist 1 .

 1 For all authors... (a) Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope? [Yes] (b) Did you describe the limitations of your work? [Yes] In Sec. 6. (c) Did you discuss any potential negative societal impacts of your work? [No]

 (d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes] 2. If you are including theoretical results... (a) Did you state the full set of assumptions of all theoretical results? [Yes] In Sec. 2.1 and Sec. 3. (b) Did you include complete proofs of all theoretical results? [Yes] In the supplemental material. 3. If you ran experiments... (a) Did you include the code, data, and instructions needed to reproduce the main experimental results (either in the supplemental material or as a URL)? [Yes] We will provide the code in the supplemental material. (b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)? [Yes] In Sec. 4. (c) Did you report error bars (e.g., with respect to the random seed after running experiments multiple times)? [Yes] In Sec. 4. (d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs, internal cluster, or cloud provider)? [Yes] In Sec. 4. 4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets... (a) If your work uses existing assets, did you cite the creators? [Yes] In Sec. 4. (b) Did you mention the license of the assets? [Yes] In the supplemental material. (c) Did you include any new assets either in the supplemental material or as a URL? [Yes] (d) Did you discuss whether and how consent was obtained from people whose data you're using/curating? [N/A] (e) Did you discuss whether the data you are using/curating contains personally identifiable information or offensive content? [N/A] 5. If you used crowdsourcing or conducted research with human subjects... (a) Did you include the full text of instructions given to participants and screenshots, if applicable? [N/A] (b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB) approvals, if applicable? [N/A] (c) Did you include the estimated hourly wage paid to participants and the total amount spent on participant compensation? [N/A]

3 . 2 .B. 3 . 1 Proof of Proposition 4 Proposition 4 .

 323144 See the description in Sup. D for the detailed information on the example linear ODE dataset and the training with varying number of environments. If for all linear maps L Ge ∈ Ĝ, ∥G∥ 2 F ≤ r, if the input space is bounded s.t. ∥x∥ 2 ≤ b, and the MSE loss function is bounded by c, then log C F (ε, Ĝ) ≤ ⌈rcd(2b) 2 /ε 2 ⌉ log 2d 2 =: ω(r, ε) Proof. Let us take G an ε 2 √ c -cover of Ĝ with L 2 -distance: d L 2 (P) (see definition in Table

 Denote L λ (f, {g e }) the loss function defining Eq. 4. Consider a minimizer (f ⋆ , {g ⋆ e }) of L λ . Then:L λ (f ⋆ , {g ⋆ e }) ≤ L λ (0, {0}) = κ which gives: ∀e, Ω(g ⋆ e) ≤ e Ω(g ⋆ e) ≤ λκDefining Ĝ = {g ∈ F | Ω(g) ≤ λκ}, we then have that Eq. 4 is equivalent to:min f ∈ F,{ge} e∈E ∈ Ĝ e∈E Ω(g e)

7 . 3 n 1 . 5 n 5 .

 73155 87±7.54 e-3 ----------------------------------→ FT-RNN 4.02±3.17 e-2 1.62±1.14 e-2 1.62±1.40 e-2 1.08±1.03 e-2 FT-NODE 7.87±7.54 e-3 7.63±5.84 e-3 4.18±3.77 e-3 4.92±4.19 e-3 GBML-like 7.87±7.54 e-3 6.32±5.72 e-2 1.44±0.66 e-1 9.85±8.84 e-3 LEADS (Ours) 7.87±7.54 e-3 3.65±2.99 e-3 2.39±1.83 e-3 1.37±1.14 e-38±1.61 e-3 ----------------------------------→ FT-RNN 7.20±7.12 e-2 2.72±4.00 e-2 1.69±1.57 e-2 1.38±1.25 e-2 FT-NODE 1.38±1.61 e-3 9.02±8.81 e-3 1.11±1.05 e-3 1.00±0.95 e-3 GBML-like 1.38±1.61 e-3 9.26±8.27 e-3 1.17±1.09 e-2 1.96±1.95 e-2 LEADS (Ours) 1.38±1.61 e-3 8.65±9.61 e-4 8.40±9.76 e-4 6.02±6.12 e-4 n = 4 • K One-For-All 1.36±1.25 e-4 0.19±0.02 0.31±0.04 0.50±0.04 One-Per-Env. 1.36±1.25 e-4 ----------------------------------→ FT-RNN 8.69±8.36 e-4 3.39±3.38 e-4 3.02±1.50 e-4 2.26±1.45 e-4 FT-NODE 1.36±1.25 e-4 1.74±1.65 e-4 1.78±1.71 e-4 1.39±1.20 e-4 GBML-like 1.36±1.25 e-4 2.57±7.18 e-3 2.65±3.26 e-3 2.36±3.58 e-3 LEADS (Ours) 1.36±1.25 e-4 1.10±0.92 e-4 1.03±0.98 e-4 9.66±9.79 e-98±5.13 e-5 ----------------------------------→ FT-RNN 2.09±1.73 e-4 1.18±1.16 e-4 1.13±1.13 e-4 9.13±8.31 e-5 FT-NODE 5.98±5.13 e-5 6.91±4.46 e-5 7.82±6.95 e-5 6.88±6.39 e-5 GBML-like 5.98±5.13 e-5 1.02±1.68 e-4 1.41±2.68 e-4 0.99±1.53 e-4 LEADS (Ours) 5.98±5.13 e-5 5.47±4.63 e-5 4.52±3.98 e-5 3.94±3.49 e-5 Table S4: Test MSE of experiments on LV (m = 4, n = 1 • K) with different empirical norms.

nx∈

 Pe |g e (x)| p 1/p for 1 ≤ p < ∞ and ∥g e ∥ L ∞ (Pe) = max x∈ Pe |g e (x)|. Here |•| is an ℓ 2 vector norm. Note that on a finite set of points, these norms reduce to vector norms ∥(|g e (x 1)|, . . . , |g e (x n)|) ⊤ ∥ p . They are then all equivalent on the space defined by the training set. Table

 |g e (x)| ≤ |g e (x) -g e (x 0)| + |g e (x 0)| For the first term: |g e (x) -g e (x 0)| ≤ ∥g e ∥ Lip |x -x 0 | ≤ Π(g e)|x -x 0 | and the support of P e being compact by hypothesis, denoting by δ its diameter: |g e (x) -g e (x 0)| ≤ δΠ(g e) Moreover, for the second term: |g e (x 0)| = |g e (x 0)| 2 ≤ L(g e) and summing both contributions gives us the bound: ∥g e ∥ ∞ ≤ δΠ(g e) + L(g e) so that: Ω(g e) ≤ (δ + α)Π(g e) + L(g e)

• 10 Table S5 :

 10S5 In the training phase, we consider M = 8 environments in total in the environment set E total . We denote here the cardinality of an environment set E by card(E), the environments are then arranged into b = 1, 2, 4 or 8 disjoint groups of the same size, i.e. {E 1 , . . . ,E b } such that b i=1 E i = E total , card(E 1) = • • • = card(E b) = ⌊M/b⌋ =: m,where m is the number of environments per group, and E i ∩ E j = ∅ whenever i ̸ = j. For example, for m = 1, all the original environments are gathered into one global environment, when for m = 8 we keep all the original environments. The methods are then instantiated respectively for each E i . For example, for LEADS with b environment groups, we instantiate LEADS 1 , . . . , LEADS b respectively on E 1 , . . . , E b . Other frameworks are applied in the same way. Results on 2 novel environments for LV, GS, and NS at different traning steps with n data points per env. The arrows indicate that the table cells share the same value. = 1 • K) Pre-trained-f -Only 0.36 -----------→ One-Per-Env. from scratch 0.23 8.85e-3 3.05e-3 Pre-trained-f -Plus-Trained-g e 0.73 1.36e-3 1.11e-3GS (n = 1 • K)Pre-trained-f -Only 5.44e-3 -----------→ One-Per-Env. from scratch 4.20e-2 5.53e-3 3.05e-3 Pre-trained-f -Plus-Trained-g e 2.29e-3 1.45e-3 1.27e-3NS (n = 8 • K) Pre-trained-f -Only 1.75e-1 -----------→ One-Per-Env. from scratch 6.76e-2 1.70e-2 1.18e-2 Pre-trained-f -Plus-Trained-g e 1.37e-2 8.07e-3 7.14e-3

Figure S1 :

 S1 Figure S1: Full-length prediction comparison of Fig. 2 for GS. In each figure, from top to bottom, the trajectory snapshots are output respectively from 3 training environments. The temporal resolution of each sequence is ∆t = 40.

Figure S2 :

 S2 Figure S2: Full-length error maps of Fig. 2 for GS. In each figure, from top to bottom, the trajectory snapshots correspond to 3 training environments, one per row. The temporal resolution of each sequence is ∆t = 40.

Figure S3 :

 S3 Figure S3: Full-length prediction comparison of Fig. 2 for NS. In each figure, from top to bottom, the trajectory snapshots correspond to 3 training environments. The temporal resolution of each sequence is ∆t = 1.

 in Sec. 4 confirms this result with empirical evidence.LEADS sample complexity for novel environments. Suppose that problem Eq. 3 has been solved for a set of environments E, can we use the learned model for a new environment not present in the initial training set (RQ2)? Let e ′ be such a new environment, P e ′ the trajectory distribution of e ′ , generated from dynamics f e ′ ∼ Q, and Pe ′ an associated training set of size n ′ . The following results show that the number of required examples for reaching a given performance is much lower when training f + g e ′ with f fixed on this new environment than training another f ′ + g e ′ from scratch (proof see Sup. B.2). For all ε, δ with 0 < ε, δ < 1 if the number of samples n ′ satisfies

	Proposition 3. n ′ ≥ max	64 ε 2 log	4C(ε 16 , f + Ĝ) δ	,	16 ε 2 ,

 [START_REF] Bartlett | Spectrally-normalized margin bounds for neural networks[END_REF].2, how one can construct a penalization term Ω based on the covering number bound for linear approximators and linear ODEs. We show with a simple use case that the generalization error obtained in practice follows the same trend as the theoretical error bound when the number of environments varies. Inspired by this result, we then propose in Sec. 3.3 an effective Ω to penalize the complexity of the neural networks g e . Fe (x e t) where L Fe : x → F e x is a linear transformation associated to the square real valued matrix F e ∈ M d,d (R). We choose as hypothesis space the space of linear functions F ⊂ L(R d , R d) and instantiate a linear LEADS

	3.2 Linear case: theoretical bounds correctly predict the trend of test error
	Results in Sec. 3.1 provide general guidelines for our approach. We now apply them to a linear system
	to see how the empirical results meet the tendency predicted by theoretical bound.
	Let us consider a linear ODE Ĝ ⊆ F. As suggested in [3], we have that (proof in Sup. B.3): dx e t dt = L dx e t dt = (L F + L Ge)(x e t), L F ∈ F, L Ge ∈
	Proposition 4. If for all linear maps L Ge ∈ Ĝ, ∥G∥ 2 F ≤ r, if the input space is bounded s.t. ∥x∥ 2 ≤ b,
	and the MSE loss function is bounded by c, then					
	log C F (ε, Ĝ) ≤ ⌈rcd(2b) 2 /ε 2 ⌉ log 2d 2 =: ω(r, ε)	
	ω(r, ε) is a strictly increasing function w.r.t. r. This indicates that we can choose Ω(L G) = ∥G∥ F as
	our optimization objective in Eq. 3. The sample complexity in Eq. 5 will decrease with the size the
	largest possible r = sup L G ∈ Ĝ Ω(L G). The optimization process will reduce Ω(L G) until a minimum is reached. The maximum size of the effective hypothesis space is then bounded and decreases
	throughout training thanks to the penalty. Then in linear case Prop. 2 becomes (proof cf. Sup. B.3):
	Proposition 5. If for linear maps L F ∈ F, ∥F ∥ 2 F ≤ r ′ , L G ∈ Ĝ, ∥G∥ 2 F ≤ r, ∥x∥ 2 ≤ b, and if the MSE
	loss function is bounded by c, given m environments and n samples per environment, with the
	probability 1 -δ, the generalization error upper bound is ε = max { (p + p 2 + 4q)/2, 16 /n}
	where p = 64 mn log 4 δ and q = 64 n ⌈(r ′ mz 2 + r (1-z) 2)cd(32b) 2 ⌉ log 2d 2 for any 0 < z < 1.
	2 4 6 8 Test MSE	×10 -2	2 traj/env. 2 traj/env.	Error w/o Ω optim. 4 traj/env. 4 traj/env. Error w Ω optim.		Bound w/o Ω optim. 4 traj/env. 2 traj/env. 4 traj/env. 2 traj/env. Bound w Ω optim.	1.5 2.0 2.5 3.0 Generalization Error Bound
		1 2	4	8	1 2	4	8

Table 1 :

 1 Results for LV, GS, and NS datasets, trained on m envs. with n data points per env.

	Method	LV (m = 10, n = 1 • K)	GS (m = 3, n = 1 • K)	NS (m = 4, n = 8 • K)
		MSE train	MSE test	MSE train	MSE test	MSE train	MSE test
	One-For-All	4.57e-1	5.08±0.56 e-1	1.55e-2	1.43±0.15 e-2	5.17e-2	7.31±5.29 e-2
	One-Per-Env.	2.15e-5	7.95±6.96 e-3	8.48e-5	6.43±3.42 e-3	5.60e-6	1.10±0.72 e-2
	FT-RNN [33]	5.29e-5	6.40±5.69 e-3	8.44e-6	8.19±3.09 e-3	7.40e-4	5.92±4.00 e-2
	FT-NODE	7.74e-5	3.40±2.64 e-3	3.51e-5	3.86±3.36 e-3	1.80e-4	2.96±1.99 e-2
	GBML-like	3.84e-6	5.87±5.65 e-3	1.07e-4	6.01±3.62 e-3	1.39e-4	7.37±4.80 e-3
	LEADS no min.	3.28e-6	3.07±2.58 e-3	7.65e-5	5.53±3.43 e-3	3.20e-4	7.10±4.24 e-3
	LEADS (Ours)	5.74e-6	1.16±0.99 e-3	5.75e-5	2.08±2.88 e-3	1.03e-4	5.95±3.65 e-3

 Proposition 1 (Existence and Uniqueness). Assume Ω is convex, then the existence of a minimal decomposition f ⋆ , {g ⋆ e } e∈E ∈ F of Eq. 3 is guaranteed. Furthermore, if Ω is strictly convex, this decomposition is unique.

		LEADS: Learning Dynamical
	Systems that Generalize Across Environments
		Supplemental Material
	Yuan Yin 1 , Ibrahim Ayed 1,2 , Emmanuel de Bézenac 1 , Nicolas Baskiotis 1 , Patrick Gallinari 1,3
		1 Sorbonne Université, Paris, France
	2 ThereSIS Lab, Thales, Paris, France 3 Criteo AI Lab, Paris, France
		{yuan.yin,ibrahim.ayed,emmanuel.de-bezenac,
	nicolas.baskiotis,patrick.gallinari}@sorbonne-universite.fr
	A Proof of Proposition 1
	Proof. The optimization problem is:
	min f,ge∈F	e∈E

Ω(g e) subject to ∀x e,i ∈ T, ∀t, dx e,i t dt = (f + g e)(x e,i t)

Table S1 :

 S1 Capacity definitions of different sets by covering number with associated metric or pseudometric.

	Capacity	Metric or pseudo-metric	Mentioned in
	C(ε, H m) :=		
	sup P N(ε, H m , d P)		

 Proof. We introduce some extra definitions that are necessary for proving the proposition. Let H = f + Ĝ defined for each f ∈ F, and let us define the product space H m = {(f +g 1 , . . . , f +g m) : f + g e ∈ H}. Functions in this hypothesis space all have the same f , but not necessarily the same g e . Let H be the collection of all hypothesis spaces H = f + Ĝ, ∀f ∈ F. The hypothesis space associated to multiple environments is then defined as H m := H∈H H m .Our proof makes use of two intermediary results addressed in Theorem S1 and Prop. S1. Theorem S1 ([S2], Theorem 4, adapted to our setting). Assuming H is a permissible hypothesis space family. For all ε > 0, if the number of examples n of each environment satisfies:

	n ≥ max	64 mε 2 log	4C(ε 16 , H m) δ	,	16 ε 2

1 m e∈E er Pe (f + g e) ≤ 1 m e∈E êr Pe (f + g e) + ε.

Table S2 :

 S2 Details for the results of evaluation error in test on linear systems in Fig.1. If r = sup g∈ Ĝ Ω(g) is finite, the number of samples n in Eq. 5, required to satisfy the error bound in Proposition 2 with the same δ, ε, ε 1 and ε 2 becomes:

	Samples/env.	Method		m = 1		m = 2		m = 4	m = 8
	n = 2 • K	LEADS no min. 8.13±5.56 e-2 LEADS (Ours)	6.81±4.44 e-2 4.92±4.26 e-2 4.50±3.10 e-2 5.11±3.20 e-2 3.93±2.88 e-2 2.10±0.96 e-2
	n = 4 • K	LEADS no min. 4.08±2.57 e-2 LEADS (Ours)	3.96±2.56 e-2 3.10±2.08 e-2 2.23±1.44 e-2 2.74±1.96 e-2 1.61±1.24 e-2 1.02±0.74 e-2
	Proposition S3. n ≥ max	64 ε 2	1 m	log	4C Ĝ(ε1 16 , F) δ	+ ω r,	ε 2 16	,	16 ε 2	(S6)

Table S3 :

 S3 Detailed results of evaluation error in test on LV systems for Fig.4. For the case of m = 1, all baselines except FT-RNN are equivalent to One-Per-Env.. The arrows indicate that the table cells share the same value.

	Samples/env.	Method	m = 1	m = 2	m = 4	m = 8
		One-For-All	7.87±7.54 e-3	0.22±0.06	0.33±0.06	0.47±0.04
		One-Per-Env.				
	n = 1 • K					

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Code is available at https://github.com/yuan-yin/LEADS.

Acknowledgements

We acknowledge financial support from the ANR AI Chairs program DL4CLIM ANR-19-CHIA-0018-01.