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Abstract 

A detailed and didactic analysis of the diffusivity in a 2D inversion layer is carried out, providing 

its dependence on carrier density and temperature. Then, a comprehensive study of the diffusion and 

drift current components in a MOSFET is proposed. Their dependence with gate and drain voltages is 

investigated down to deep cryogenic temperature, revealing that at T=4K the diffusion current is 

nearly constant in strong inversion whatever the mobility law. Finally, based on our diffusivity 

analysis, a new formulation of the diffusion noise valid from weak to strong inversion down to very 

low temperature has been developed. 
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1. Introduction 

The MOSFET is a crucial component in the microelectronics era [1,2]. Due to its high performance 

in terms of on-current and turn-on behaviour, it has valuably been employed in CMOS technologies 

e.g. for digital applications. Recently, a regain of interest for cryogenic electronics has emerged for 

use in readout CMOS circuits for quantum computing application [3-5]. In this respect, a clear 

understanding of the MOSFET operation is still a key issue, especially in subthreshold region where 

carrier diffusion dominates and above threshold where drift prevails [1,2]. At deep cryogenic 

temperature, however, the subthreshold slope greatly increases, reducing in turn the subthreshold 

voltage range. Hence, the question about the diffusion current component arises since the carrier 

diffusivity D should decrease according to the Einstein relation, qD=µ.kT, at least for a constant 

mobility. Besides, the carrier diffusion has an important contribution to the white noise in MOSFET 

and should be addressed [6-8]. 

Therefore, in this work, we propose a comprehensive analysis of the MOSFET diffusion current 

from subthreshold to above threshold region both in linear and saturation regimes and down to deep 

cryogenic temperatures. To this end, we first review in a didactic way the definitions of the carrier 

diffusivity depending on the carrier statistics i.e. Boltzmann, Fermi-Dirac and degenerate metallic 

ones. Then, using a template MOS device with a single 2D subband, we analyse in an original way the 

diffusion current component in all operation regimes and versus temperature down 4K range. Finally, 

we revisit the formulation of the diffusion noise in a MOSFET down to deep cryogenic temperatures. 

 

2. Carrier diffusivity in MOSFET inversion layer 

By stating that, at equilibrium, the electrochemical potential gradient is zero along the transport 

coordinate x, or in other words that the drift current, Jdrift=q.n.µ.d/dx, is compensated by the 

diffusion current, Jdiff=-q.D.dn/dx, where q is the magnitude of the electron charge, n is the carrier 

density, µ the carrier mobility in the channel and  the electrical potential in the channel, it is easy to 

show that, in the most general case, the carrier diffusivity D is given by the generalized Einstein 

relation [9], 

�. � = µ. �. ��	�
 , (Fermi-Dirac statistics)   (1) 

Ef being the Fermi level.  

In the case of Boltzmann statistics, since ∂n/∂Ef= �/�
, it reduces to the usual Einstein relation: �. � = µ. �
, (Boltzmann statistics)    (2) 

k being the Boltzmann constant and T the temperature. 
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In the case of metallic statistics (full degeneracy), and considering for the sake of simplicity, that 

the MOSFET inversion layer is depicted by a single 2D subband of density of states A2d, which is 

realistic at low temperature, we have n=A2d.Ef, such that the carrier diffusivity takes the form [10], �. � = µ. �	. (Metallic statistics)    (3) 

The carrier density in a single 2D subband is given by [11,12], � = �
. ��� . ���1 + ��	/���,     (4) 

where the 2D density of states is given by A2D=g.md*/(.ħ) with g the subband degeneracy factor, md* 

the DOS effective mass and ħ the reduced Planck constant. 

Using Eq. (4), it is easy to show that the diffusivity of Eq. (1) can be related to the carrier inversion 

layer density by, 

�. � = µ. 
��� . � �� .!��
"� �� .!��#$%,      (5) 

which can also be equated to in terms of inversion layer charge Qi (absolute value) and quantum 

capacitance, Cq=q.A2d, as, 

� = µ. &'() . � ).*'� .+)
,� ).*'� .+)#$-

.      (6) 

Figure 1 illustrates the variation of the diffusivity with temperature in log or linear scale as 

obtained using Eq. (6) for various inversion layer charges with a constant mobility µ=1000 cm
2
/Vs. 

As can be seen, the carrier diffusivity D shows mostly a linear dependence with temperature, in 

accordance with Einstein’s relation, except at low temperature where it is saturating to a constant 

value given by Eq. (3) and which depends on inversion layer charge. It should be noted that, in the 

most general case, these variations of D with temperature should also account for the mobility 

dependence with temperature. Nevertheless, it is worth emphasizing that, from Fig. 1, the carrier 

diffusivity at very low temperature is saturating to a value governed by the metallic statistics and that 

the classical Einstein relation is useless. 
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Fig. 1. Variation of carrier diffusivity D with temperature for two inversion layer charges in log (left) 

or linear (right) scale (µ= 1000 cm
2
/Vs). 

 

Another interesting situation at cryogenic temperatures considers the presence of an exponential 

band tail below the subband edge [13-15]. In this case, the energy density of states N(E,E) with an 

exponential band tail can be described by [16], 

./�, 
12 = ���$3456 /# 8� 92,     (7) 

where T0 is a characteristic temperature in the range 30-50K [14-16]. For degenerate (metallic) 

statistics, i.e. when T<<T0, integration of Eq. (7) over energy between -∞ to Ef yields for the 2D 

carrier inversion layer density, 

���	 , 
1� = �
1. ��� . �� :1 + �;< = �>�.�9?@.    (8) 

As a result, it is worth noting that, in this case, the 2D carrier density is given by the same 

expression as in Eq. (4) for a single subband without band tail but with the temperature T0, regardless 

of the real temperature, provided T<<T0. 

The corresponding diffusivity can now be evaluated using Eq. (1), yielding, 

���	 , 
1� = µ. �
1.ln:1 + �;< = �>��9?@ . :1 + �;< =− �>��9?@.  (9) 

Figure 2a shows the variation of diffusivity given by Eq. (9) with the Fermi level Ef for a constant 

mobility. One can see that, for Ef well above the band edge i.e. Ef>>0, the diffusivity varies linearly 

with the Fermi level in accordance with the metallic statistics limit of Eq. (3), which is undefined for 

Ef<0. In contrast, for Ef well below the band edge i.e. Ef<<0, the diffusivity saturates to the value 

D=µ.kT0/q as in Eq. (2), but now with T0 playing the role of the temperature. Figure 2b&c shows the 

corresponding variations of diffusivity with carrier inversion layer in linear and log scale. Similarly, 

the diffusivity varies linearly with n for n>>kT0.A2d (5.10
11

/cm
2
) well above band edge, whereas the 

diffusivity saturates to µ.kT0/q for n<<kT0.A2d. 
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(a)                                             (b)                                    (c) 

Fig. 2. Variations of carrier diffusivity D with a) Fermi level Ef, b) and c) carrier inversion layer 

density n in linear and log scale for a 2D single subband with a band tail with T0=40K. Solid lines: Eq. 

(9), dashed lines: metallic statistics limit of Eq. (3) (Constant mobility µ= 1000 cm
2
/Vs). 

 

In the above discussion, we assumed, for simplicity, a constant mobility for the calculation of the 

diffusivity. One might wonder whether this assumption is not too simplistic as compared to 

experiment. To this end, we have derived using Eq. (5) the experimental diffusivity from typical 

experimental effective mobility data µeff(n) obtained by split C-V technique on 28nm FDSOI 

MOSFETs (see Fig. 3a). As is usual at very low temperature [17], the effective mobility displays a 

bell-shaped behavior at T=4.2K, whereas it decreases in amplitude and flattens up at strong inversion 

for T=200K. As can be seen from Fig. 3b, even though µeff is not constant versus 2D carrier density, 

the overall variation of the associated diffusivity D with 2D carrier density exhibits a linear trend (blue 

dashed line), well fitted by the metallic statistics limit of Eq.(3) with a constant mobility.  

This feature justifies why we will still assume, in first instance, a constant mobility in the following 

sections for the MOSFET modelling and subsequent discussion of the results about diffusion partition 

in device operation.  

  

  

(a)                                                          (b) 

0.02- 0 0.02
0

10

20

30

40

D
 (

cm
2
/s

)

Ef (eV)

0

10

20

30

40

0

10

20

30

40

D
 (

cm
2
/s

)

4.10122.1012 1.109 1.1011 1.1013

n (q/cm2) n (q/cm2)

0 2 4 6

n (1012q/cm2)

500

1000

0

1500

µ
ef

f
(c

m
2
/V

s)

4.2

200

T (K)= 

0 2 4 6

n (1012q/cm2)

0

20

40

D
 (

cm
2
/s

)

T (K)= 

4.2

200



6/14 

 

Fig. 3. a) Experimental (symbols) variation of effective mobility µeff with 2D carrier density n at 

T=4.2K and T=200K. Typical µeff experimental data from 10µm×10µm 28nm FDSOI MOSFET with 

1.8nm EOT gate oxide, 7nm silicon and 30nm bottom oxide. b) Corresponding experimental 

(symbols) variation of diffusivity D with 2D carrier density n at T=4.2K and T=200K. The diffusivity 

D is calculated using Eq. (5). The blue dashed lines show the linear trends obtained for a constant 

mobility (Resp. µ= 1080 and 500 cm
2
/Vs) using the metallic statistics limit of Eq. (3).  

 

 

2. MOSFET diffusion current modelling 

In the gradual channel approximation, the drain current in a long channel MOSFET 

Id=W.µ.Qi.dUc/dx, is obtained after integration along the channel coordinate x as [1,2], 

B� = CD E µ. FG/HI − JK2LJKM�1     (10) 

where s is the surface potential, Uc the quasi-Fermi level shift between source (@0V) and drain 

(@Vd), Vd the drain voltage and W and L the channel width and length, respectively. 

Similarly, the diffusion current component, Iddiff=-W.D.dQi/dx, can be obtained in the form, 

B��G		 = − CD E �/FG2LFG&'�&'N     (11) 

where Qis and Qid are the inversion layer charge at source and drain end, respectively. The diffusion 

current could be further evaluated using Eq. (11) after specifying D(Qi) as given by Eq. (6) for a 

subband without band tail or Eq. (11) for a degenerate subband with band tail. In any case, the drift 

current component Iddrift can in turn be evaluated after subtracting the diffusion current as Iddrift=Id-

Iddiff. 

It is interesting to formulate the diffusion current in the two limiting cases i.e. Boltzmann and 

degenerate metallic statistics where the diffusivity takes a simple form. In fact, using Eqs (2), (3) and 

(11) yields, assuming a constant mobility, for the diffusion current: 

B��G		 = CD . ��O . µ. /FGI − FG�2 (Boltzmann statistics)   (12a) 

B��G		 = C�D . µ() . /FGI� − FG�� 2. (Metallic statistics)   (12b) 

To go further and compute the drain current in the device, we have to define a MOSFET structure. 

To this end, we choose for template device a FDSOI MOSFET having an equivalent gate oxide 

thickness tox=2nm, a silicon film thickness tsi=10nm and a bottom oxide thickness tbox=30nm. These 

values are typical for a 28nm FDSOI CMOS technology [18]. For this structure, the gate charge 

conservation equation for the front channel reads [16,19], 

PQ = P	R + HI + &'/SN#M9#TU2(VW + (X./SN#MX2(VW     (13) 
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where Vfb is the flat band voltage, V0=Eg/2q for an undoped silicon film (Eg being the silicon 

bandgap), Vb is the bottom gate bias, Cox is the gate oxide capacitance (=ox/tox), 

Cb=Csi.Cbox/(Csi+Cbox) is the back gate coupling capacitance with Csi being the Si film capacitance 

(=si/tsi) and Cbox the bottom oxide capacitance (=ox/tbox). 

It is worth mentioning that an alternative derivation of the drift and diffusion current components 

can be formulated using Eqs (10) and (13). As a matter of fact, it can be noticed that the variations of 

s along the channel are related to the drift electric potential gradient, whereas the variations of (Uc-

s) along x are linked to the diffusion potential gradient. As a result, it is easy to show using Eq. (13) 

that ds =Cinv/(Cinv+Cox).dUc, such that the drain components can be expressed as, 

B��YG	Z = CD E µ. FG/HI − JK2. LPIM�1 = CD E µ. FG/HI − JK2. ('�[('�[3(VW LJKM�1 ,  (14a) 

B�,�G		 = CD E µ. FG/HI − JK2. /LJK − LHI2M�1 = CD E µ. FG/HI − JK2. (VW('�[3(VW LJKM�1 , (14b) 

where the inversion charge capacitance is given by Cinv=Qi/HI. Of course, one can easily see that 

adding Iddiff and Iddrift allows recovering Id. Moreover, it can be shown using the generalized Einstein 

relation of Eq. (1) that this formulation is perfectly equivalent to the diffusion approach of Eq. (11). It 

also means that the diffusion and drift drain current components can be evaluated using Eqs (14) 

without using the diffusivity relations. 

To close this section, we would like to examine the consequence of the above derivations on the 

thermal noise in MOSFETs. Let’s consider, for the sake of simplicity, the thermal noise in linear 

region where the MOSFET is a simple resistance. It can be easily extended to the nonlinear region by 

integration along the channel of the noise source using the Klaassen and Prins approach [20]. 

Nevertheless, in this case, according the Nyquist-Johnson relation, which derives from the most 

general fluctuation-dissipation theorem, the drain current thermal noise can be written as [21], 

\]� = 4. �
. µ. CD FG.     (15) 

In an alternative approach, the thermal noise is related to the diffusion noise and can often be 

expressed as [6-8,21], 

\]� = 4. �. �. CD FG.      (16) 

In the case of Boltzmann’s statistics, q.D=µ.kT (Eq. (2)), so that Eq. (16) well reduces to Eq. (15). 

However, in the case of metallic statistics, q.D=µ.Ef (Eq. (3)), i.e. also q.D=µ.Qi/Cq, such that Eq. (16) 

becomes, 

\]� = 4. µ. CD &'�(). (wrong)    (17) 

This relation is obviously wrong since it would imply that the thermal noise in a metallic resistance 

would not follow the Nyquist-Johnson formula and would not cancel out at zero temperature. This 
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also means that Eq. (16) is not general and cannot handle the onset of degenerate statistics. Actually, 

this inconsistency comes from the fact that the total carrier number, Qi/q, appearing in Eq. (16), is 

incorrectly used. As a matter of fact, in a metallic system, the carriers participating to the transport are 

located in the Fermi skin, which has an energy thickness of kT around the Fermi level Ef and are not 

equal to the total number of carriers in the band [22]. Indeed, according to the thermodynamic 

fluctuations, the carrier number in the Fermi skin is given by [22,23], 

∆� = E ./�2. `. /1 − `2L� = �
. �
��>,    (18) 

where f is the Fermi-Dirac function. Therefore, in a 2D subband inversion layer, the inversion charge 

in the Fermi skin now reads, 

∆FG = �
. �&'��> = ��O . aG
b.     (19) 

Replacing the total inversion charge Qi by the inversion charge in the Fermi skin Qi in Eq. (16) 

allows to obtain the exact diffusion noise formula, 

\]� = 4. �
. �. CD aG
b. (exact)    (20) 

For further verification, we can check that, in the case of Boltzmann’s statistics, Cinvq.Qi/kT, 

which means also that QiQi, so that Eq. (20) well recovers Eq. (16), and by turn Eq. (15). 

Moreover, for metallic statistics, Cinv=Cq, and q.D=µ.Ef i.e. also q.D=µ.Qi/Cq, such that we check that 

Eq. (20) well reduces to Eq. (15). In the most general case, we have, from the generalized Einstein 

equation, q.D=µ.n.Ef/n i.e. also D=µ.Qi/q.Ef/Qi=µ.Qi.s/Qi=µ.Qi/Cinv, so that Eq. (20) fully 

recovers Eq. (15).   

Therefore, Eq. (20) does constitute the most general form of diffusion thermal noise in a MOSFET 

in ohmic regime. It can easily be extended to the nonlinear regime using the Klassen and Prins 

formula [20]. 

 

4. Results and discussion 

Typical Id(Vg) characteristics for our template FDSOI device obtained using Eqs (10), (13) and (14) 

are shown in Fig. 4 for high and very low temperatures. At T=200K, as is well known, the diffusion 

current dominates at weak inversion, whereas the drift component prevails at strong inversion above 

threshold. At T=4K, the drift component also seems to prevail on diffusion above threshold, while the 

weak inversion region is squeezed out.  

It should also be noted that, according to Eq. (14), the drift current is modulated by the partition 

capacitive ratio Cinv/(Cinv+Cox), whereas the diffusion current is modulated by Cox/(Cinv+Cox). This 

means that the subthreshold slope of the diffusion current in weak inversion is the same as for the 

whole drain current since Cinv<<Cox, such that the partition capacitive ratio 1. Contrarily, for the drift 
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current, the partition capacitive ratio Cinv/Cox, and since Cinv is proportional to Qi in weak inversion, 

the drift current varies as Id.Qi i.e. also Qi
2
. As a result, the subthreshold slope of the drift current in 

weak inversion is equal to twice the subthreshold slope of the whole drain current. This feature well 

explains the subthreshold slope behavior in Fig. 4, better visible for T=200K, for the diffusion and 

drift current components. 

In order to better visualize the diffusion and drift components, we have plotted in Fig. 5 the ratio 

between them and the drain current Rdiff=Iddiff/Id and Rdrift=Iddrift/Id. As can be seen from this figure, at 

very low temperature, the diffusion current fully dominates below threshold, whereas the drift 

component totally vanishes. Above threshold, while using a constant mobility, the two components 

are almost flat and Rdiff is equal here to 0.07 and Rdrift to 0.93. These values correspond to the limit 

obtained using the diffusivity (Eq. (3)) and the inversion charge in Eqs (14) for degenerate metallic 

statistics. In fact, it is easy to show from Eqs (3) and (14) that these values are close to Cox/(Cox+Cq) 

and Cq/Cox+Cq) since CinvCq in the degenerate case. 

 

Fig. 4. Id(Vg) characteristics showing the drift and diffusion components for high and very low 

temperatures (constant mobility µ=1000cm
2
/Vs, Vd=0.5V, Vb=0, W=L=1µm). 

 

Fig. 5. Rdiff(Vg) and Rdrift(Vg) characteristics for high and very low temperatures. The red dashed line 

shows the Rdiff(Vg) for degenerate statistics for T=4K (constant mobility µ=1000cm
2
/Vs, Vd=0.5V, 

Vb=0, W=L=1µm). 
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In Fig. 6a are also displayed the variations with drain voltage of the drain current along with the 

drift and diffusion components. In Fig. 6b are shown the corresponding Rdiff(Vd) and Rdrift(Vd) 

characteristics for two temperatures T=4K and T=200K. As can be seen, it should be noted that the 

ratios Rdiff and Rdrift are almost independent of drain voltage from linear to saturation region, 

especially for very low temperature.  

 

(a)                                                    (b) 

Fig. 6. a) Id(Vd) characteristics at T=4K showing the drift and diffusion components. a) Rdiff(Vd) and 

Rdrift(Vd) characteristics for T=4K (solid lines) and T=200K (constant mobility µ=1000cm
2
/Vs, 

Vd=0.5V, Vb=0, W=L=1µm). 

 

Moreover, in Fig. 7 are displayed the temperature dependence of the diffusion and drift ratios, Rdiff 

and Rdrift, for two gate voltages, Vg=0.5V and Vg=1V, located in weak and strong inversion, 

respectively. As can be seen, the diffusion ratio Rdiff depends slowly on temperature for both gate 

voltages. Instead, the drift ratio Rdrift varies weakly with temperature in strong inversion (Vg=1V), 

whereas Rdrift appears to be thermally activated in weak inversion below threshold (see Fig. 7c, 

Vg=0.5V). 

  

(a)                                        (b)                                                  (c) 

Fig. 7. a) and b) Variations with temperature of Rdiff and Rdrift for Vg=0.5V and Vg=1V in linear scale. 

c) Variations with temperature of Rdiff and Rdrift for Vg=0.5V in log scale (constant mobility 

µ=1000cm
2
/Vs, Vd=0.5V, Vb=0, W=L=1µm). 
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The case of a non-constant mobility as those experimentally measured vs inversion layer density 

(see Fig. 3a) has been investigated for completeness purpose. To this end, we have introduced in the 

drain current equation (Eq. 10) an effective mobility depending of inversion charge Qi with a bell-

shaped form as observed at very low temperature [17]: 

µ�		 = �.µc&'/&U3&U/&'      (21) 

where µm is the maximum mobility and Qc a critical charge locating µm versus Qi. 

In Fig. 8 are compared the variation with gate voltage of the ratio Rdiff=Iddiff/Id as obtained with a 

non-constant mobility law (Eq. 21, black solid line), as well as for a constant mobility (triangle 

symbols). As can be seen from the figure, the curves are almost superimposed, indicating that the 

mobility law has no significant impact on the diffusion ratio Rdiff and by turn on Rdrift=1-Rdiff. 

Moreover, as already discussed and suggested by Eq. (14b), the diffusion ratio mainly varies as the 

capacitance ratio Cox/(Cox+Cinv) (see red cross symbols in Fig. 8). The latter feature explains why the 

mobility law is not important factor in the diffusion vs drift partition scheme. 

 

Fig. 8. Rdiff(Vg) characteristics for high and very low temperature:  i) black dashed line for non-

constant mobility of Eq. (21), ii) triangle symbols for constant mobility (µ=1000cm
2
/Vs) and iii) red 

cross symbols for the ratio Cox/(Cox+Cinv)  (µm=1000cm
2
/Vs, Qc=2.10

12
q/cm

2
, Vd=0.01V, Vb=0, 

W=L=1µm). 

 

Finally, we illustrate in Fig. 9 the variations of the drain current thermal noise SId with gate voltage 

for two temperatures as obtained from various formulations. As can be seen, Eq. (20) provides exactly 

the same result as the Nyquist-Johnson formula (Eq. (15)) for both temperatures, emphasizing its 

validity. In contrast, Eq. (16) is only valid in weak inversion where the Boltzmann statistics applies, 

whereas it becomes incorrect at strong inversion, as much as the temperature is lowered, due to the 

onset of degenerate statistics. 
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Fig. 9. Variations of drain current thermal noise SId with gate voltage Vg as obtained using different 

equations for T=200K and T=4K (constant mobility µ=1000cm
2
/Vs, Vd=0.5V, Vb=0, W=L=1µm) 

 

3. Summary and Conclusion 

First, we have performed a detailed and didactic analysis of the diffusivity in a 2D inversion layer 

and shown its dependence on carrier density and temperature for Boltzmann, Fermi-Dirac and 

degenerate metallic statistics. Then, we have developed a comprehensive and original formulation of 

the diffusion and drift current components in a MOSFET. Their variation with gate voltage and drain 

voltage has been examined down to deep cryogenic temperature. In weak inversion, the subthreshold 

slope of the drift and diffusion components has been well interpreted by the partition capacitive ratio. 

In strong inversion, the diffusion current at T=4K has been found nearly constant whatever the 

mobility law. Finally, owing to our diffusivity analysis, we have proposed a new expression for the 

diffusion noise valid from weak to strong inversion down to very low temperature, perfectly 

compatible with the Nyquist-Johnson relation. 
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