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Maoyuan Jianga,b,∗, Ghiath Monnetb, Benoit Devincrea

aCNRS - ONERA, LEM, 29 Avenue de la Division Leclerc, 92322 Chatillon Cedex, France
b EDF-R&D, MMC, Avenues des Renardières, 77680, Moret sur Loing, France

Abstract

3D-DD simulations are performed with cubic grains ranging from 1 to 10 µm

to investigate the physical mechanisms at the origin of the Hall-Petch law. In

particular, the long-range stress (back stress) induced by the density of polarized

dislocations (GNDs) accumulated at GBs is quantified separately from the short-

range stress associated with the forest dislocation (SSDs) density. We show that

the back stress and the associated strain hardening is independent of grain size

at low strain. Hence, the grain size effect reproduced by 3D-DD simulations

is controlled by an increase of the CRSS when decreasing grain size. Such

evolution of the CRSS amplitude is controlled by two competing strengthening

mechanisms justifying the generic 1/
√
d dependent form of the Hall-Petch law

observed in simulations and experiments.

Keywords: DD simulations, Hall-Petch effect, GNDs density, Crystal

plasticity

1. Introduction

In a seminal works, Hall and Petch [1, 2] demonstrated for the first time the

existence of a grain size effect on mechanical properties in mild steels. From

these works and the many following investigations, an empirical relationship was

established between yield stress σy and grain size d, known as the Hall-Petch
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(HP) law:

σy = σ0 +K
1√
d

(1)

where σ0 is a reference stress generally called friction stress and K is a material

constant called the HP constant. Armstrong et al. [3] provided later evidence

that the HP law is equally applicable to the entire stress-strain curve for most

polycrystalline materials. Since then, much work has been made to validate the

existence of the HP law in a wide range of metals and alloys [4–6].

However, the exact form of the HP law (Eq. 1), as well as its origin are still

under discussion. For example, the question of a variation of the HP constant

K with plastic deformation is a matter of many debates. Some claim that K in-

creases [7] with plastic deformation, while others suggest that K is invariant or

decreases slightly with plastic deformation, as cited in [8, 9]. Other discussions

focus on the mathematical form that gives the most general fit of the experi-

mental data and several alternative forms to Eq. 1 have been proposed [10–13].

Moreover, although the “smaller is stronger” effect is experimentally confirmed

in many polycrystalline materials with submicron and micron grain sizes, the

main basic mechanism controlling this effect is still not clearly identified. In a

recent review, Cordero et al. [7] re-examined many existing models in a system-

atic way by considering the numerous experimental studies published over the

last six decades on pure metals. Their conclusion is that the strain-hardening

model proposed by Ashby for grain size strengthening [14] is the most consis-

tent with existing data. On the other hand, recent studies based on statistic

approaches applied to a large experimental data set have shown that the effect

of grain size may not evolve as 1/
√
d, but rather follow more consistent trends

with 1/d or ln(d)/d [15–17]. This suggests that the HP effect could be con-

trolled by dislocation line tension effects associated to specific elements of the

dislocation microstructure. As a consequence, the HP constant K might rather

be insensitive to plastic deformation and highly depend on the size of grains.

Several types of simulation have been used to investigate the HP effect.

These simulations provide a detailed description of the dislocation microstruc-
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tures and a calculation of the interaction force between dislocations and various

obstacles, such as forest segments, precipitates, grain boundaries, etc. Through

molecular dynamics simulations, we know that grain boundaries (GB) are im-

portant obstacles to the free expansion of dislocations and are therefore a key

component of strain hardening [18–21]. In order to study plastic deformation in

the micrometer range, discrete dislocation dynamics is a very efficient method.

2D dislocation dynamics (DD) simulations [22–26] reproduce a grain size effect,

but cannot provide definitive answers because important dislocation properties,

such as cross-slip and line tension are ignored or oversimplified. To quantita-

tively unravel the plastic properties of polycrystals, 3D-DD simulations are a

solution. For example, Ohashi et al. [27] have shown that the increase of yield

stress observed in small grains is related to a shortening of dislocation sources.

De Sansal et al. [28] studied the HP effect in periodic polycrystalline aggregates

composed of regular polyhedral grains and obtained an HP exponent n between

-1/2 and -1. Zhou and LeSar [29] studied the size-dependent plasticity of free-

standing polycrystalline thin films and developed a strengthening model based

on the length of spiral sources. Yellakara and Wang [30] studied the response

of polycrystalline thin films and reported a variation of the HP exponent with

the shape of the simulated grains. Zhang et al. [31] calculated the storage rate

of geometrically necessary dislocations (GNDs) at GBs and incorporated this

quantity into a strain-gradient crystal plasticity model. Fan et al. [32] have

shown that the grain size effect in ultrafine-grained magnesium is influenced by

three factors: Peierls stress, dislocation source strength and GB resistance. Fi-

nally, El-Awady [33] extended the results of simulations dedicated to the effect

of micropillar size effect and proposed a model based on dislocation density to

predict the HP effect. In summary, much work has been done to reveal the

dominant mechanisms responsible for the grain size effect, but no well-accepted

conclusion has yet been achieved.

With the present work, we wish to bring new decisive elements clarifying key

points of this long-standing problem. Our goal is not to carry out numerical

simulations that are as accurate as possible, but rather to study simple config-
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urations that allow us to decide between different scenarios. We have recently

shown with 3D-DD simulation [34], that the HP law can be reproduced with

simple polycrystalline aggregates made of cubic grains. In order to identify the

underlying mechanisms controlling this simulated size effect, additional 3D-DD

simulations were performed. In what follows, we explore the plastic properties

of a cubic grain embedded in an elastic matrix. This simplification of the pre-

vious simulations still shows a grain size effect and strong similarities with the

experimentally observed HP effect. Moreover, this configuration is theoretically

equivalent to the problem of Eshelby’s inclusion that can be studied analyti-

cally. Owing to the simplicity of these configurations, one can use an original

computational procedure recently proposed to compute the back stress induced

by GNDs density evenly distributed over a surface [35]. From these, we want to

probe the elementary mechanisms explaining the simulated HP effect. The rest

of the paper is organized as follows. In Section 2, the simulation technique and

conditions are presented. In Section 3, the simulation results are discussed. In

Section 4, the conclusions we draw from this study are summarized.

2. Simulation conditions

In order to study the underlying mechanisms controlling the effect of grain

size observed in [34], complementary 3D-DD simulations were performed. In

the following, we explore the plastic properties of a cubic grain embedded in

an elastic matrix. Such configuration is an extreme simplification of polycrystal

mechanics, but it nevertheless presents a grain size effect which can be compared

with the experimentally observed HP effect.

The open-source code microMegas was used to perform the 3D-DD simula-

tions. The main features of this code are depicted in [36]. Pure copper is used

as test case material with a lattice friction τ0 fixed to 2.5 MPa. Six grain sizes

between 1.25 µm and 10 µm are tested. We apply the same simulation protocol

as the one used in [34]. A point to remember is that GBs are considered as im-

penetrable interfaces to the movement of the dislocations. This simplification
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is physically justified since the simulated deformations are limited to 0.2% and

therefore the applied stresses are relatively low and the plastic deformation is

relatively homogeneous within the deformed grains.

In all the simulations, the dislocated grain under investigation is placed at

the center of a large simulation volume with periodic boundary conditions. As

the grain size is always two times smaller than the simulation volume and the

elastic interactions between dislocations are cut at distances larger than the

linear grain size, the mechanical problem under investigation is equivalent to

a finite plastic volume embedded in infinite elastic medium. Hence, it is the

equivalent of the Eshelby’s inclusion problem, but solved at the dislocation

scale with a discrete mechanical approach. No elastic strain incompatibility

needs to be considered since linear elastic isotropy is used. Also, the plastic

incompatibility between the deformed grain and the elastic medium is by defi-

nition accommodated by the geometrically necessary dislocations accumulated

at grain boundaries.

(a)                                           (b)                                            (c)

Figure 1: (a) Initial dislocation microstructure made of a random distribution of 168 FR

sources. (b) the forest dislocation density (SSDs) in the interior of simulated grain at εp =

0.2%. (c) the polarized dislocation density (GNDs) accumulated in the vicinity of GBs at

εp = 0.2%. Dislocations belonging to different slip systems are illustrated with different

colors.

An example of the simulated initial dislocation microstructure is shown in

Fig. 1a. This is a random distribution of screw FR sources belonging to the

eight slip systems activated when tensile loading is applied in the [001] direc-

tion. The sources length L is set as a third of the grain size d. According to

Ohashi et al. [27], this solution gives the lowest critical stress to activate plastic

5



deformation in a cubic grain. In line with [34], simulations are not made using

a constant initial dislocation density with different grain sizes , but rather with

a constant number of FR sources, i.e., 168 FR sources (21 per slip system). In

this work, we are focused on exploring the size effects in small grains with rel-

atively low dislocation density. The use of FR sources in the initial dislocation

microstructure is then preferred as it allows introducing strong pinning points

and avoids starvation effect. Hence, the initial dislocation density decreases

with the grain size and is spanning from 1011 to 1013 m−2. This variation,

imposed in the simulation setup is consistent with many experimental observa-

tions reported for micron-sized crystals [37–39] and fine-grained polycrystalline

materials [40–42]. An increase of the dislocation density with decreasing grain

sizes is indeed expected in volumes smaller than a few microns and can easily be

justified with DD simulations. If a low initial dislocation density is taken into

account in the simulations, regardless of grain size, then the smaller grains are

free of dislocations and no plastic deformation (in the absence of specific dislo-

cation nucleation processes) can be reproduced. On the other hand, if a high

and constant initial dislocation density is used, a strong forest strengthening is

then simulated and no more size effects are reproduced by modifying the grain

size. The same remark has been made by El-Awady [33] for the modeling of

plastic deformation in micron-sized crystals.

In Tab. 1, information regarding the grain size, the source length, the cor-

responding initial dislocation density and the strain rates used in this work is

summarized.

The activation of cross-slip (CS) for screw dislocation lines is accounted for

in the simulations following simulation rules described in [36]. According to

many DD investigations (see for instance [43, 44]) CS is a key mechanism to

simulate plasticity in micron-sized grains because it avoids the starvation of

dislocation multiplication by creating new sources and strong pinning points in

the dislocation microstructure.
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d (µm) L (µm) ρini (m−2) ε̇ (s−1)

1.25 0.375 3.2×1013 70

2.5 0.75 8×1012 60

3.5 1.05 4×1012 55

5 1.5 2×1012 50

7.5 2.25 0.9×1012 45

10 3 0.5×1012 40

Table 1: Definition of the main quantities controlling the simulated microstructures. d is the

grain size, L is the FR source length, ρini is the initial dislocation density and ε̇ is the imposed

plastic strain rate in the [001] grain orientation.

3. Results and discussion

A deformation, up to 0.2% of plastic strain, of the six different grains defined

in Section 2 was simulated. As expected, these simulations show a grain size

effect. As illustrated in Fig. 2, the flow stress at any fixed value of plastic strain

increases as grain size is reduced. Moreover, the simulated flow stress is com-

parable to that of many experiments and is even stronger than that calculated

in our previous study with periodic polycrystal aggregates [34].

From the simulated stress-strain curves shown in Fig. 3a, another important

feature should be noted. The stress-strain curves obtained with different grain

sizes are parallel and the strain hardening rate is independent of the dislocation

density. A constant strain hardening rate is then systematically observed at low

plastic strain. Such behavior is in agreement with some experimental stress-

strain curves observed in the early stage of deformation found in 316L steels [8]

or bainitic steels [42]. Furthermore, we see in Fig. 3a that the simulated size

effect is directly related to a change of the yield stress at the very beginning

of the stress-strain curves. In order to unravel these observations, a systematic

analysis of the different mechanisms controlling plastic strengthening is made

in the following.
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Figure 2: Scaled data demonstrating the Hall–Petch effect in experiments (open marks), in the

3D-DDD simulations reported in [34] (filled circles) and in the present study (filled squares).

Each data set is scaled by its minimum grain size and maximum flow stress (measured at 0.2%

plastic strain) in order to compare all data sets on the same axis.

3.1. Origin of the constant strain hardening rate

Inside the plastically-deformed grain, two families of dislocations with differ-

ent properties can be considered: the statistically stored dislocations (SSD) and

the geometrically necessary dislocations (GND). The way we define the areas

where SSDs and GNDs are stored during plastic deformation is explained with

details in [35]. As an example, Fig. 1 shows that the SSD density ρSSD (alterna-

tively called forest dislocation density) is inside the grain and the GND density

ρGND (alternatively called polarized dislocation density) accumulates near the

GBs. Those two dislocation densities contribute to plastic strengthening in

different ways.

The internal stress τint opposed to plastic flow inside the grains results from

two contributions. One is a short-range stress τSSD associated with dislocations

contact reactions and this stress is a function of only ρSSD since polarized
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dislocations can hardly form junctions. The other is a long-range stress τGND

associated with the density ρGND accumulated at GBs. Since the evolution of

the SSD and GND density can be directly calculated, an average value of τint is

defined in the simulations assuming that the contributions of τSSD and τGND

are additive. This hypothesis has been validated for this study on the condition

that the strain rate imposed during the simulations is low enough to reproduce

quasi-static dislocation dynamics. In this case, (τSSD +τGND) calculated at the

grain center almost perfectly balances the applied stress τapp imposed during

grain deformation.
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Figure 3: Simulations results for cubic grains with different sizes and deformed in the [100]

tensile direction. (a) Evolution of the applied shear stress resolved on the active slip systems,

τapp as a function of the plastic strain εp in the [100] direction. (b) Concomitant variations

of the surface dislocation density ρGs as function of the resolved plastic shear strain γ.

In all the simulations, we found that ρSSD hardly evolves inside the grains.

Up to 0.2%, ρSSD is constant and stay very close to the initial dislocation density

ρini. This observation is consistent with the initial dislocation density used in

our simulations, i.e. a constant small number of sources is considered within

the grains. τSSD is then almost constant and its amplitude corresponds to the

yield strength measured on the stress-strain curves before accumulating GND

density. This lack of forest strengthening implies that the evolution of τGND

is dominant in controlling strain hardening in the simulations. Surprisingly, as

shown in Fig. 3a, τGND is independent of grain size and its variation is linearly
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proportional to εp.

More detailed analysis of the simulations shown that the long-range stress

τGND associated with the GND density is a load-sensitive stress. In the simu-

lated grains, τGND is systematically opposed to the applied resolved shear stress.

This is why, τGND is sometimes referred to as “back stress” in the following.

We now recall the main steps in calculating τGND in the DD simulations.

In our previous work [35], the distribution of GNDs from GB surface to the

inner area of a grain is evaluated and the GNDs density is found concentrated

at a thin GBs area of 0.4 µm thick, which is about 1/25 of the simulated grain

size 10 µm. This proportionality between the thickness of GBs area and the

grain size is applied in this work. The spatial distribution of GNDs density

α∼ is computed in the wall-like GB area using the formulation established by

Arsenlis and Parks [45]. Then, α∼ is multiplied with the GB area thickness and

that determines a local GND density variation at lower scale. By doing such

calculations, a surface Nye’s tensor α∼s
is defined as:

α∼s
=

n∑
i

ρiGs(b
i ⊗ li) (2)

where ρiGs is the surface GND density calculated as the total length of GND

segments accumulated against the GBs and divided by the surface area of each

GB facets enclosing a grain. bi and li are the normalized Burgers vector and

line direction vector for slip system i, respectively. Once α∼s
is known, the elastic

distortion tensor Ue∼
is calculated by integrating equation α∼s

' curlUe∼
. This

calculation is made assuming a Dirac delta distribution of the GND density

at the GBs. This solution is a common approximation which allows for the

identification of analytical solutions in the case of infinite dislocation walls [46,

47]. Then, assuming isotropic elasticity, the back stress associated with each

GB facets can be calculated inside the grain using the stress solution for the

infinite dislocation walls and dimensionless shape functions recently developed

to calculate the self-stress of interfacial finite dislocation walls with any character

[35]. Here, it is important to note that none of the steps in the calculation

summarized above involve grain size. Thus, the back stress at the center of a
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grain is only proportional to the surface GNDs density ρGs stored at the GBs.

For this reason, identifying the evolution of back stress with plastic deformation

or strain-hardening requires only a calculation of the evolution of the surface

GND density the GBs.

To proceed with such a calculation, it should be noted that the density

of surface GND ρGs is of dimension m−1 and differs from the conventional

dislocation density ρ with dimension m−2. Monitoring ρGs as a function of γ

in the DD simulations can simply be implement (see [35]). The result of such

calculation with the six simulated grain sizes is shown in Fig. 3b. As the forest

hardening inside the grains is extremely low, a simple model is proposed to

understand the reported behavior. Inside a cubic grain of size d with fcc lattice

symmetry, when a dislocation loop at grain center expands to the GBs, the

increase of ρGs is approximately dρGs = 1/(
√

2d) and the shear strain made

by the expansion of this loop is dγ = (3
√

3b)/(4d). The storage rate of surface

GND density is therefore whatever the number of active slip systems and the

grain size:
dρGs

dγ
=

2
√

6

9b
≈ 1

2b
(3)

The relationship established in Eq. 3 is an essential property of ρGs. Con-

trary to the classical storage rate of the dislocation density in a volume, which

is inversely proportional to the grain size d, the storage rate of the surface GND

density dρGs/dγ is independent of the grain size and it is a constant quantity

of the order of (2b)−1. This property simply explain why we observe in the

simulations that all simulated grains (shown in Fig. 3b) collapse into a single

trend line. The storage rate of the surface GND density is, during the plastic

deformation of the grains, a constant quantity which is independent of the grain

size. It should be noted that the DD simulation results reproduced here are in

quantitative agreement with the simple dimension analysis leading to Eq. 3.

The back stress inside a deformed grain being proportional to ρGs, the work

hardening generated by the accumulation of GND density is also a constant and

is expected to be independent of the grain size. This explains why in the absence
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of forest hardening a constant linear relationship is observed between τ and εp

(Fig. 3a). This result is general and was verified at low strain in different DD

simulations considering periodic aggregates made of several cubic grains [34].

This important result provides a physically justified argument to understand

the independence of the HP constant K with plastic strain reported in some

experiments (see for instance [17]).

3.2. Influence of the initial dislocation microstructure

In the previous section, we established that the strain hardening reproduced

in the DD simulations do not explain the observed size effect (Fig. 2). We

now investigate the possibility that this effect is connected to the dislocation

properties controlling the flow stress amplitude at plastic yield.

In the theoretical work of Zaiser and Sandfeld [48], a similitude principle is

applied to show that grain size effect should scale with D
√
ρ. Such prediction

was confirmed by different works. For instance, El-Awady [33] deduced the same

scaling law from DD simulation made with micro crystals with different size.

Haouala et al. [49] also reported the same type of behavior from strain gradient

CP-FFT simulations. Here it must be noted that in such works, the initial dislo-

cation density was considered constant imposing a systematic variation of D
√
ρ.

In the present study, the number of initial sources n and the proportionality be-

tween the source length and the grain size are set constant. With such initial

simulation conditions, D
√
ρ is constant and equals

√
n/3. Nevertheless a size

effect is produced (see Fig. 3). This suggests that the size effect we simulated

may not be simply controlled by the dislocation density normalized by the grain

size. Some other mechanisms may be involved in the plastic strengthening to

give rise to a size effect. For this reason, the influence of the initial dislocations

microstructure is analyzed with some details in the following.

The dislocation microstructure used at the beginning of the simulations is

presented in Section 2 and summarized in Tab 1. Only two basic properties

may control the flow stress with such microstructures. Either the plastic yield

instability is reached when the applied stress equals the critical stress needed
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to activate FR sources [50], or when it equals the critical stress needed to unzip

the dislocation junctions formed at the very beginning of the simulations to

minimize the elastic energy [51]. The predominance of one or the other of these

mechanisms results from the choice of the length of FR sources in relation to

the mean distance between dislocation lines. The latter quantity is statistically

fixed by the initial dislocation density [52].

In the source control regime, a minimum stress is required to bow out the

dislocation sources to a critical position where the irreversible expansion of

dislocation loops is triggered [53]. Such critical stress can be predicted with the

Foreman equation [50]:

τF = A
µb

2π

1

L

[
ln

(
L

r0

)
+B

]
(4)

for screw dislocations A = 1.5; for edge dislocations A = 1. In the case of FR

sources with finite pinning points, B is commonly considered as 0 and the core

radius of dislocation r0 is considered as b. The characteristic length of the FR

sources imposed in the initial configuration is denoted by L.

In the forest control regime, the stress to unzip dislocation junctions anchor-

ing dislocation lines in their glide plane depends on the dislocation density and

can be predicted with the forest equation [51, 54, 55]:

τforest = αµb
√
ρ with α =

ln
(
αrefb

√
ρ
)

ln
(
αrefb

√
ρref

)αref (5)

In Eq. 5, the reference forest strength coefficient approximates to αref = 0.35

at the reference dislocation density ρref = 1012m−2.

In the present study, a proportionality rule between the grain size d and the

length of the FR sources L is assumed in the initial configuration and L = d/3.

Also, the number of sources n in the initial configuration is identical in all the

simulations. Thus, the initial dislocation density ρini is expressed as:

ρini =
nL

d3
=

n

27L2
(6)

In Fig. 4, the critical resolved shear stress (CRSS) averaged with 3 different

initial configurations for the different grain sizes is reported. The simulation
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results are compared with the predictions of the Foreman equation (Eq. 4) and

the forest equation (Eq. 5). As expected, the dislocation density in the grains

being initially small, the calculated yield stress are in better agreement with the

prediction of the Foreman equation. This indicates that the property controlling

the initiation of plastic deformation in the simulated grains is preferentially

source multiplication. However, it must be noted that the simulated CRSS shift

towards the prediction of the forest equation when the grain size is decreasing,

i.e., when ρini is increasing. Additionally, to test the additivity of the source

strengthening and forest strengthening effects, a quadratic mean of the Foreman

equation and the forest equation is calculated using
√

(τF 2 + τforest2)/2. The

corresponding predictions are plotted with black dashed line in Fig. 4. It can be

seen that the prediction of the quadratic mean is in very good agreement with

the DD simulations results when the grain sizes are small. Hence, the source

and forest strengthening mechanisms are both contributing to the flow stress

and their respective contribution can be captured with a simple rule of mixture.

However, the prediction of the quadratic mean becomes poorer and poorer as the

grain size increases. This result implies that the CRSS of the larger simulated

grains is mainly controlled by the length of the dislocation sources in the initial

microstructure and that the mechanisms of plastic relaxation existing at the

very beginning of plastic strain poorly affect the flow stress.

From the above analysis, one can conclude that in fine grains (in the micro-

meter range) and with a low initial dislocation density, CRSS is dominated by

the multiplication of dislocation sources. It is questionable whether this result

is dependent on the method used to construct the initial dislocation microstruc-

ture. Here, we insist on the fact that the dislocation microstructure used at

the beginning of the simulations must be considered as the minimum disloca-

tion density necessary to allow the grains to deform in multiple slip. This last

condition is important to mechanically accommodate the deformation incom-

patibilities existing at GBs during the deformation of polycrystalline aggregates.

To build an initial microstructure where plastic strain is dominated by the

forest mechanism would impose a dislocation density multiplied by a factor
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taken into account. In addition, a quadratic mean is evaluated from the Foreman equation

and the forest equation with
√

(τF 2 + τforest2)/2 and the obtained results are shown with

black dashed line.

greater than 10. As shown in Tab 1, this solution seems unrealistic as the dislo-

cation density in the smallest simulated grains is already very high. Moreover,

the flow stress at plastic yield is always low enough to rule out the possibility

of dislocations nucleation at GBs. Therefore, we propose that the prediction

of plasticity dominated by the multiplication of dislocations from a few sources

is realistic at the early stages of plastic deformation and for grain sizes in the

micrometer range.

We have therefore identified a simple mechanism that justify the existence

of a grain size effect. This result is in agreement with El-Awady’s recent results

in the case of micropillar plasticity, which he used to justify the existence of the
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classical HP law in polycrystals [33]. In order to take this analysis a step further,

it should be noted here that the initial dislocation microstructure exisiting in

the grains seems to be a key material parameter for understanding the detail

nature of the HP law. In the next section, we show that the results of our DD

simulations can explain some experimentally observed deviations from the HP

law.

3.3. Identification of the size effect scaling law

So far, we shown that (i) the strain hardening mechanism associated with

the accumulation of GNDs against GBs is constant at low stress and cannot

explain the existence of a grain size effect, (ii) the existence of the HP law must

rather be explained by the differences in flow stress amplitudes at yield. Among

the sources multiplication and the forest mechanism, DD simulations suggest

that the former mechanism is the most plausible with grains in the micrometer

range. Therefore, the scaling law associated with the grain size effect should

theoretically be consistent with an equation of the form1:

τ ∝ ln

(
L

b

)
1

L
∝ ln

(
d

b

)
1

d
(7)

This prediction is in good agreement with the recent work of Li et al. [17],

who gathered a wide range of experimental data and tested several grain size

dependent relationships, such as 1/
√
d, 1/d and ln (d/b) (1/d). The one in form

ln(d/b)/d provides the best fit with the experimental data. Now, we test the

same systematic approach with the DD simulation results.

In Fig. 5, the flow stress values taken from Fig. 3 at 0.1% and 0.2% of plastic

strain are plotted. Two functions of the form: a + b/
√
d and a + b [ln(d/b)/d]

are first used to adjust the two set of 18 simulations results. The fit calculation

we have performed only imposes that the two sets of curves agree with the

results of the DD simulations for the largest grain size, i.e. the one where the

1It is interesting to note that a plastic flow controlled by the forest mechanism provides

the same equation form since α ∝ ln(d/b) and ρini ∝ 1/d2 in Eq. 5-6.
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εp R2(1/
√
d) R2(1/ [ln(d/b)/d]) R2(1/dn)

0.1% 0.97 0.95 0.99

0.2% 0.95 0.94 0.99

Table 2: The calculated coefficients of determination R2 for the fitting results with form 1/
√
d,

1/ [ln(d/b)/d] and 1/dn shown in Fig. 5 are summarized.

dispersion of the simulation results is minimal. As reported in Tab. 2 giving the

coefficient of determination R2 calculated for each fitting, the difference between

the two tested scaling law is small. Nevertheless, for both tested plastic strain

amplitudes (0.1% and 0.2%), the 1/
√
d form is found to give a slightly better

correlation with the simulation results.

Hence, the size effect reproduced in the DD simulations appears to be in

better agreement with the conventional formulation of the HP law rather than

the solution, Eq. 7 one can expect from a theoretical analysis.

In order to give an ultimate fit to the simulation data, a third function

of form τ0 + k/dn is tested and the fitting results are reported in Fig. 5 with

orange dash-dotted lines. As noted in Tab. 2, this last fit gives an coefficient of

determination R2 = 0.99. We obtained an exponent n = 0.64 at 0.1% of plastic

strain and an exponent n = 0.67 at 0.2% of plastic strain. Hence, both values

are closed to the exponent of 0.5 considered in the conventional HP law. From

a practical point of view, the difference between this scaling law we fitted on the

simulation data and the HP law could hardly be differentiated by experimental

means.

To understand the origin of this deviation from the theoretical law expected

in the DD simulations, we now analyze the evolution of the dislocation mi-

crostructure inside grains with two different sizes, i.e. d = 1.25 µm and

d = 10 µm. To precisely characterize the distribution of source lengths in-

side the grains at yield, we calculated at the time step when a first dislocation

loop is deposited at the GB, the length of all the curved dislocation lines within

the microstructure. Such segments are ended either by junctions, or by points
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Figure 5: Variation of the simulated flow stress as function of the grain size, measured at

0.1% and 0.2% of plastic strain. First, the simulation results (squares) are fitted with 2

mathematical forms: a+ b/
√
d (blue full line) and a+ b [ln(d/b)/d] (green dashed line), a and

b are fitting parameters. Then, a third ultimate fit (orange dash-dotted line) is performed

with form τ0 + k/dn, where τ0 is the mean value of a from the above two fitting results and

k and n are fitting parameters.

at the intersection between two glide planes or by the initial pinning points

introduced in the initial random configuration made with the n FR sources.

The corresponding histograms are plotted in Fig. 6. As we can see, the

length distribution inside the small grain is much more spread out, while the

length distribution in the large grain is concentrated inside a narrow range.

More precisely, in the large grain, the length distribution is located in a range

between 3 and 4 µm, close to the length of FR sources introduced in the initial

configuration (see Tab. 1). On the other hand, in the small grain, the set

of columns located out of 0.5 µm is not negligible. It indicates that a few

sources, with a length longer than the initial value (0.375 µm), are formed

during the very first steps of the dislocation dynamics. The flow stress in such

grain is then smaller than expected since dislocation multiplication can occur

from longer dislocation segments. This result justifies the systematic deviation

observed in Fig. 4 for the smaller grains with respect to the prediction of the

Foreman’s equation (Eq. 4). Indeed, the formation of long sources (relative to

18



grain size) is more likely to be observed in the smaller grains since in these grains

the dislocation density is higher, the dislocation line tension is less rigid, the

internal stress is higher and the cross-slip of the screw dislocations is facilitated.

0.1                0.2        0.3    0.4  0.5                  1

1                   2           3       4      5                   10

15
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 5

 0

40
  

30

20
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 0

Figure 6: Length distribution of pinned dislocation line segments in (a) a small grain d = 1.25

µm and (b) a large grain d = 10 µm. Those distribution are calculated when a first dislocation

loop is deposited at the GBs. The formation of a long segment observed in the smaller grain

at the beginning of the simulation is illustrated with snapshot images displayed in (c)-(f).

The screw direction (parallel to b) is indicated in (c). Segments in different glide planes are

noted with different colors. In (d), a double cross-slip is illustrated and strong attractive

forces between close segments of opposite sign are marked with red arrows. The contact

reaction observed in (d) is a collinear annihilation. In (e), a longer line segment is formed

after the reaction. The two super-jogs involved in the collinear annihilation are noted with

yellow arrows. In (f), the formed long segment expands rapidly.

To depict the process of long source formation, we provide some evidence of

the rearrangement of the dislocation microstructure in the small grain d = 1.25

µm. This process is illustrated in Fig. 6(c-f) with a snapshot made of four

images. In this sequence, two pinned segments close to the screw direction

interact and annihilate with a collinear reaction [56]. The process goes as follows.

In Fig. 6d, owing to a double cross-slip process, two super jogs are formed along
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one dislocation line. The presence of those super jogs allows two attractive line

segments to interact and annihilate with a collinear reaction. In Fig. 6e, we see

that this annihilation reaction leaves a tiny line segment and a long dislocation

segment pinned at its ends. At last in Fig. 6f, this long segment bows-out and

acts as a source. It expands rapidly because the multiplication of this dislocation

segment is made possible at a lower stress.

Such rearrangement processes are frequently observed in the simulations of

smaller grains. This explains why the scaling law for the grain size effect does not

agree with a [ln(d/b)/d] form. Rather, this scaling law agrees with a 1/
√
d form,

which takes into account the enhanced relaxation of dislocation microstructures

when decreasing the grain size. Such effect can be characterized inside the

smaller grains by an increase in the ratio between the active dislocation source

length and the grain size dimension. Lastly, it is important to note that the

simulations performed with a constant initial dislocation density with increasing

grain sizes will not lead to the same conclusion.

4. Conclusions

A large set of DD simulations dedicated to the configuration of a plastically-

deformed cubic grain within an elastic matrix were performed to study the

physical origins of the HP effect. At low strain, the evolution of surface GNDs

density is much higher than the one of SSDs density; therefore the strengthening

and the strain hardening are mainly controlled by the back stress generated by

GNDs rapidly accumulated at GBs. We show that the storage rate of surface

GND density is constant and independent of grain size. Such result is verified

by both simple geometrical analysis and DD simulations. As a consequence,

the computed strain hardening rate shows no sensitivity to grain size in all the

simulated grains when deformed in multislip conditions. Such finding suggests

that numerically the back stress due to the plastic incompatibility developed at

GBs could be evaluated directly from the evolution of the total plastic strain

inside grains.
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The size effect reproduced with DD simulations is related to the calculated

CRSS at the very beginning of plastic deformation. A refined investigation was

made to quantify the influence of the initial dislocation microstructure on the

CRSS. Particularly, two strengthening mechanisms existing at the initiation of

plastic deformation are studied: the dislocation source strengthening and the

dislocation forest strengthening. Both mechanisms suggest that the variation of

the CRSS with grain size should be governed by the form ln (d/b) (1/d). How-

ever, the HP relationship calculated with DD simulations is in better agreement

with the form 1/
√
d. Such discrepancy is explained by a rearrangement of the

initial dislocation microstructure at the beginning of the simulations mainly to

relax the elastic energy inside the grain. The rearrangements are more active

in the small grains and driven by line tension, collinear annihilation and cross-

slip effects. It should be noted that the determination of scaling law might be

influenced by some simulation simplifications, e.g. grains are in cubic shape, im-

penetrable GBs are considered and long-range internal stress is only associated

with the GNDs density accumulated at GBs. These simplifications are justified

for the micron-sized grains at low plastic strain explored in this work. However,

in order to investigate the general HP law at a larger range of grain sizes, the

impact of the used simulation simplifications should be carefully addressed in

future work.

The range of grain sizes explored in this work is limited to several microme-

ters and the dislocation density used in simulations varies with grain size. When

extending our discussions to the case of coarse-grained polycrystals, the argu-

ments we made from the DD simulations may be found incomplete. In industrial

alloys, the initial dislocation density is expected of the same order of magnitude

and the confined effect of source length is negligible. In this case, no size effect

is predicted from the present simulation analysis, which is however in contradic-

tion with many experimental facts. Therefore, the important issues concerning

the localization of the plastic deformation in large grains and the associated

formation of dislocation pile-ups at GBs should be a key issue with industrial

polycrystalline materials. Those phenomena can lead to a heterogeneous dis-
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tribution of GNDs density at GBs that possibly enables the transmission of

dislocations. To justify the HP effect for larger grain sizes with a realistic initial

dislocation density, we believe that the classical model of dislocation pile-up

could be used as a criterion for defining the minimum stress for plastic slip

transfer to the GBs. This solution would be necessary above a critical dimen-

sion when any change in grain size does not mechanically impose a change in

the initial dislocation density.

In this work, we have shown that the physical properties behind the effect of

grain size is complex despite the simple form of the HP law. Several dislocation

mechanisms may be involved at the same time and the dominant one must be

differentiated according to the explored grain size range and material history.

This work also highlights the possibility of developing, based on the results of

DD simulations, a simple dislocation density based model taking into account

the elementary mechanisms controlling the grain size effect in polycrystalline

materials. The strengthening effects we discussed are limited to dislocations

confined within one grain. To further investigate the generalized size effect of

polycrystalline aggregates, the sensitivity of plastic strengthening to crystallo-

graphic orientations also needs to be considered. Such effect is investigated in a

forthcoming paper, which presents a new dislocation density-based model, jus-

tified by the results of the present study and making use of the surface GND

density model we developed in [35].
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