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Abstract

A literature review regarding functionals used in Stereo Digital Image Correlation (SDIC) is
presented. A suitable functional for performing data assimilation, in the sense that all available
information at all times is wisely taken into account, is also introduced. It is based on the
comparison between a substitute image and actual ones, together with an associated weight.
An interpretation of this weight is proposed. Eventually, a link between this functional and
Global SDIC ones is established. It clearly shows that the former encompasses the latter and
provides the consistent weighting scheme to use in usual SDIC, instead of adhoc schemes.
Keywords: Data Assimilation, Multi-view Functional, Global Stereo DIC, Photometric DIC

1 Introduction

Stereo Digital Image Correlation (SDIC) is a full-field measurement technique that allows to
retrieve a three-dimensional displacement field on a (possibly) non-planar surface, the Region
Of Interest (ROI) [1]. In a test-simulation dialogue perspective, global methods for SDIC show
the advantage of facilitating comparisons between measurements and simulations. As the
same kinematic basis can be chosen, it is possible to define an error between, for instance,
Finite-Element (FE) DIC measurements and FE simulations simply by subtracting the associated
displacement field degrees of freedom. For this reason, important studies have been carried
out recently to extend the scope of existing methods and be able to perform measurements on
increasingly complex geometries [2, 3, 4, 5]. When following this path, the issue of visibility
and surface curvature is raised. We wish to carefully address this topic here from a theoretical
viewpoint and relate it to a close one: the weighting scheme in the SDIC functionals.

For these purposes, in Section 2, the usual SDIC frameworks are introduced together with
the proposed data assimilation suitable functional. Then we establish the link between this
functional and the usual SDIC formulations. In Section 3, we consider shape measurements,
while Section 4 tackles displacement measurements, first when considering only two time steps,
and then with an arbitrary number of time steps. This leads us to Section 5 and Section 6 where
discussions regarding the perspectives are proposed and concluding remarks are drawn.
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2 State of the Art

In this section, we introduce the usual Global SDIC frameworks. That is, we begin this state of the
art by focusing on shape measurements and then on displacement measurements. Eventually,
the proposed functional is introduced.

To write the different functionals, we consider a set of Nc cameras, each of which took a
reference state image of the ROI Ω. The associated set of reference state images is denoted(
I 0

c

)
c . We also introduce the camera models

(
P c

)
c . For all c, P c maps a 3D point from the

world reference frame to a 2D point in the image reference frame associated to camera c. A
set of camera parameters p

c
is associated to this mapping. It encompasses extrinsic (relative

position of the camera with respect to the specimen) and intrinsic parameters (focal/sampling
parameters, camera centre coordinates in the pictures and possibly camera distortions).

2.1 Shape measurements

When considering planar (or near-planar) surfaces, it is possible to ensure that every single point
of the ROI Ω remains visible by all cameras at all times. In this case, the functional associated to
the shape measurement step reads [3, 6]:

F1

(
U 0,

(
p

c

)
c

)
=

Nc∑
c=1

c−1∑
i=1

∫
Ω

(
I 0

i ◦P i ◦φU0
(X )− I 0

c ◦P c ◦φU0
(X )

)2
d X , (1)

where U 0 is the shape correction field and ∀X ∈Ω, φ
U0

(X ) = X +U 0(X ). This functional ensures

in the least-squares sense that the greylevel corresponding to a physical point is the same for all
cameras, and drives the shape correction field U 0 accordingly. Note that the sum is written over
all camera pairs. There are two main drawbacks to this formulation. First, computational costs
associated to the problem scale as N 2

c which is not ideal in a multi-camera setup. Second, the
problem is extremely ill-posed [3, Figure 3].

Remark 1 Often raw data stemming from pictures are not compared directly as might seem
suggested by Equation (1). Instead, some corrections are made, for instance, by using a Zero-Mean
Normalised Sum of Squared Differences (ZNSSD) correlation criterion [6].

In order to cope with the aforementioned problem ill-posedness but also to account for the
surface sampling performed by each camera sensor, a shape measurement functional based on
a residual thought as the difference between a substitute image and actual images was built [7].
In this case, Equation (1) becomes:

F ′
1

(
U 0,

(
p

c

)
c

, Î
)
=

Nc∑
c=1

∫
Ω

(
I 0

c ◦P c ◦φU0
(X )− Î (X )

)2
d X . (2)

It shows the benefit to tackle the two main issues identified previously. The problem scales as
Nc (like the displacement measurement one, see Section 2.2), and the optimisation procedure
relies on an alternating optimisation (fixed-point algorithm) between the shape correction field,
extrinsics and the substitute image. It makes indeed the formulation much less ill-posed than in
[3, 6] as it discards the functional kernel directions such as local and global slidings (illustrated in
[3, Figure 3]).

Then, authors explicitly dealt with visibility issues by relying on a weighting term based on
visibility [8]:

F ′′
1

(
U 0,

(
p

c

)
c

)
=

Nc∑
c=1

c−1∑
i=1

∫
Ω

Vc (X )Vi (X )
(
I 0

i ◦P i ◦φU0
(X )− I 0

c ◦P c ◦φU0
(X )

)2
d X , (3)
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where ∀c ∈ [[1, Nc ]], Vc is the visibility function associated to camera c such that:

Vc : Ω→ {0,1}

X 7→
{

1 if X is visible by camera c
0 otherwise.

2.2 Displacement measurements

To engage in displacement measurements, we consider a deformed state of which the same Nc

cameras shoot the associated pictures
(
I 1

c

)
c . The displacement measurement functional is then

given by [3]:

F2(U 1) =
Nc∑

c=1

∫
Ω

(
I 1

c ◦P c ◦φU1
(X )− I 0

c ◦P c ◦φU0
(X )

)2
d X . (4)

Remark 2 With such notations, the displacement field associated to the deformation of the ROIΩ
between the reference state and the deformed state is U 1 −U 0.

Visibility issues in the displacement measurement step were addressed by resorting on the
assumption that a point visible by a camera in the reference state remains visible by this camera
at all times, [4]:

F ′
2(U 1) =

Nc∑
c=1

∫
Ω

Vc (X )
(
I 1

c ◦P c ◦φU1
(X )− I 0

c ◦P c ◦φU0
(X )

)2
d X . (5)

However, no clear justification for the weighting terms associated to the visibility is given,
neither for Equation (3) [8] nor for Equation (5) [4]. Also, the general case, where the displacement
field is such that a part of the structure may disappear from view, is not tackled.

2.3 Proposed functional

In this work, we wish to thoroughly establish weighting schemes for both shape and displacement
measurements in Global SDIC frameworks. To this end, we propose a unified formulation which,
as will be shown in the remainder of this paper, encompasses all usual ones. The main idea is
to define the weighting scheme in the pictures first as in [9]. Besides, relying on the framework
described in [9] allows to overcome limitations associated to the assumption that a point visible
by a camera in the reference state remains visible by the same camera at all times.

We consider Nt time steps associated to Nc cameras. The corresponding pictures are denoted(
I t

c

)
(c,t ). With these notations, the weighting scheme defined here αt

c (X ) stands for the level of
confidence associated to the corresponding observation I t

c ◦P c ◦φUt
(X ) and thus to the residual(

I t
c ◦P c ◦φUt

(X )− Î (X )
)
. Asαt

c is defined on the whole ROIΩ, we expect it to meet some desirable

properties. First, αt
c should be equal to 0 in regions ofΩ that are not seen in I t

c . Second, it should
somehow take into account the mapping performed by the optical system between the surface
and the image. αt

c (X ) should therefore depend on the optical system characteristics, and to the
distance together with the local orientation of the surface with respect to the imager (surface
foreshortening). Eventually, camera noise plays an important role in the level of confidence
associated to an observation and should be accounted for in αt

c (e.g. as defined by [4]). Let us
assume that we can assign, at all times, the same level of confidence to two pixels coming from
a same picture c and, without loss of generality, to two pixels coming from different pictures.
Hence, we may assign a unit weight in every image plane (if our last assumption is not fulfilled,
we may assign the weight 1/σ2

c to the image plane corresponding to camera c by assuming a
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Gaussian white uniform noise of variance σc in images shot by c as in [4]). Then, by following the
developments in [10] and [9], we build a functional, suitable for data assimilation, based on every
piece of available information [11]:

F
((

U t

)
t ,

(
p

c

)
c

, Î
)
=

Nt−1∑
t=0

Nc∑
c=1

∫
Ω
αt

c (X )
(
I t

c ◦P c ◦φUt
(X )− Î (X )

)2
d X . (6)

Here, data assimilation should be understood as a general method to take advantage of all
available observations to evaluate quantities of interest. In our case (DIC), these quantities are
typically displacements, camera parameters or the substitute image for instance. With previous
assumptions, αt

c is given by:

αt
c (X ) =

[∣∣∣∣det

(
∇φ

Ut

)∣∣∣∣(JcVc
)◦φ

Ut

]
(X ), (7)

where Jc =
∣∣∣det∇Pc

∣∣∣. Note that αt
c naturally meets the desirable properties listed above: the

visibility function Vc naturally appears when integrating by substitution and the surface sampling
performed by the imager is taken into account thanks to Jc . On top of that, the contribution of
the displacement field U t is taken into account.

Remark 3 ∀(X ,c, t ), αt
c (X ) ≥ 0.

Remark 4 Let us stress once again that with such notations, the displacement field associated to
time t is U t −U 0. Usually, after the shape measurement step, Ω is updated such that Ω̃= φ

U0
(Ω).

However, if we want to be able to efficiently perform a minimisation with respect to all arguments
of F (that is

(
U t

)
t ,

(
p

c

)
c

and Î ), constantly updating the integration domain of all integrals may
not be the most effective minimisation strategy. Keeping that in mind, defining the displacement
on the nominal shapeΩ as Ũ t =U t −U 0 is a small price to pay.

3 Shape measurements

In this section, we develop F from Equation (6) so as to establish the link between this formu-
lation and the usual SDIC shape measurement functionals (see Equation (1) and Equation (3)).
For that, we consider Nt = 1, that is only reference pictures I 0

c are available. Note that with such
considerations, F is very close to F ′

1 in Equation (2):

F
(
U 0,

(
p

c

)
c

, Î
)
=

Nc∑
c=1

∫
Ω
α0

c (X )
(
I 0

c ◦P c ◦φU0
(X )− Î (X )

)2
d X . (8)

As in [7], Î is obtained by minimising F , that is directly (least-squares solution of F minimisation):

∀X ∈Ω,
Nc∑

c=1
α0

c (X ) 6= 0, Î (X ) =

Nc∑
c=1

α0
c I 0

c ◦P c ◦φU0
(X )

Nc∑
c ′=1

α0
c ′ (X )

. (9)

Remark 5 If ∃X ∈Ω,
Nc∑

c=1
α0

c (X ) = 0, then ∀c ∈ [[1, Nc ]], α0
c (X ) = 0 as ∀(

X ,c
)

, α0
c (X ) ≥ 0. Practically,

it means that the point X cannot be seen by any camera. Hence Î (X ) can be set to any arbitrary
real number without affecting the value of F . Thus, in what follows, we do not consider this case
anylonger.
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To reduce the amount of notation, we denote fc = I 0
c ◦ P c ◦ φ

U0
and develop Equation (8)

(Equation (6) with Nt = 1):

F =
∫
Ω

(
Nc∑

c=1
α0

c f 2
c −2Î

Nc∑
c=1

α0
c fc + Î 2

Nc∑
c=1

α0
c

)
,

using the identity (9), it follows:

F =
∫
Ω

(
Nc∑

c=1
α0

c f 2
c − Î 2

Nc∑
c=1

α0
c

)
.

Making use a second time of (9):

F =
∫
Ω

1∑
k α

0
k

(∑
i

∑
c
α0

i α
0
c f 2

c −∑
i

∑
c
α0

i α
0
c fi fc

)
.

As
∑

i
∑

c α
0
i α

0
c f 2

c =∑
i
∑

c α
0
i α

0
c f 2

i :

F = 1

2

∫
Ω

1∑
k α

0
k

(∑
i

∑
c
α0

i α
0
c f 2

c −2
∑

i

∑
c
α0

i α
0
c fi fc +

∑
i

∑
c
α0

i α
0
c f 2

i

)
.

We can factor this expression:

F = 1

2

∑
i

∑
c

∫
Ω

α0
i α

0
c∑

k α
0
k

(
f 2

c −2 fi fc + f 2
i

)
,

which can finally be rewritten:

F =∑
c

∑
i<c

∫
Ω

α0
cα

0
i∑

k α
0
k

(
fc − fi

)2 .

This last equation is very close to the functionals F1 (1) and F ′′
1 (3) used in a standard Global

SDIC framework for the shape measurement step (see Section 2.1). These developments allow to
establish a link between a weight assigned to each observation fc , namely α0

c , and the associated

weight in the usual framework, which should be
α0

cα
0
i∑

k α
0
k

when comparing fc to fi .

In F1 (1) [3], it is (implicitly) assumed that:

α0
c =

∣∣∣∣det

(
∇φ

U0

)∣∣∣∣(JcVc
)◦φ

U0
∼ 1,

because (near) planar surfaces are considered. In this case, considering the correct weighting

scheme does not change much the functional expression, as
α0

cα
0
i∑

k α
0
k

∼ 1

Nc
. Note that we just

showed that, according to previous assumptions:

F1/Nc = F ′
1.

However, in F ′′
1 (3) [8], α0

c ∼ Vc is assumed. Hence, when considering more complex geome-

tries, the correct weight when comparing fc to fi should be
VcVi∑

k Vk
, instead of VcVi .
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4 Displacement measurements

Let us now consider the displacement measurement step. Before getting into the general case
Nt > 2, we establish the link between F (6) and usual frameworks considering only two time steps
(Nt = 2). It is done first by relying on a substitute image Î given by Equation (9) (only reference
state images are used to build Î ), and then by updating Î thanks to data provided by deformed
state images.

4.1 Incremental displacement measurements

Since Nt = 2, the functional F from Equation (6) writes as follows:

F
(
U 0,U 1,

(
p

c

)
c

, Î
)

=
Nc∑

c=1

∫
Ω
α0

c (X )
(
I 0

c ◦P c ◦φU0
(X )− Î (X )

)2 +α1
c (X )

(
I 1

c ◦P c ◦φU1
(X )− Î (X )

)2
d X

=
Nc∑

c=1

∫
Ω
α0

c

(
fc − Î

)2 +α1
c

(
gc − Î

)2
,

(10)
where gc = I 1

c ◦P c ◦φU1
.

4.1.1 Substitute image based on reference state images only

Here, as in [7] we keep on using the same substitute image based on Equation (9). In this case,
the functional is minimised with respect to U 1 only and reads:

F =
Nc∑

c=1

∫
Ω
α0

c

(
fc − Î

)2

︸ ︷︷ ︸
Constant=F0

+
Nc∑

c=1

∫
Ω
α1

c

(
gc − Î

)2

F = F0 +
Nc∑

c=1

∫
Ω
α1

c

(
g 2

c −2Î gc + Î 2)
We can then make use of Equation (9):

F = F0 +
∫
Ω

1∑Nc
k=1α

0
k

(
Nc∑

c=1

Nc∑
i=1

α0
i α

1
c g 2

c −2
Nc∑

c=1

Nc∑
i=1

α0
i α

1
c gc fi +

∑Nc
c=1α

1
c∑Nc

k=1α
0
k

Nc∑
i=1

Nc∑
j=1

α0
jα

0
i fi f j

)

= F0 +
∑

i

∑
c

∫
Ω

α0
i α

1
c∑

k α
0
k

(
g 2

c −2gc fi +
∑

j α
0
j fi f j∑

k α
0
k

)

= F0 +
∑

i

∑
c

∫
Ω

α0
i α

1
c∑

k α
0
k

((
gc − fi

)2 − f 2
i +

∑
j α

0
j fi f j∑

k α
0
k

)

= F0 +
∑

i

∑
c

∫
Ω

α0
i α

1
c∑

k α
0
k

((
gc − fi

)2 − f 2
i + fi Î

)
= F0 +

∑
i

∑
c

∫
Ω

α0
i α

1
c∑

k α
0
k

((
gc − fi

)2 − (
fi − Î

)2 + Î (Î − fi )
)

= F0 +
∑

i

∑
c

∫
Ω

α0
i α

1
c∑

k α
0
k

((
gc − fi

)2 − (
fi − Î

)2
)
+∑

c

∫
Ω
α1

c Î

(
Î −

∑
i α

0
i fi∑

k α
0
k

)
.
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The last sum equals 0 by definition of Î (9):

F = F0 +
∑

i

∑
c

∫
Ω

α0
i α

1
c∑

k α
0
k

((
gc − fi

)2 − (
fi − Î

)2
)

=∑
c

∫
Ω
α0

c

(
fc − Î

)2 +∑
i

∑
c

∫
Ω

α0
i α

1
c∑

k α
0
k

(
gc − fi

)2 −∑
c

∑
j

∫
Ω

α0
cα

1
j∑

k α
0
k

(
fc − Î

)2

=∑
i

∑
c

∫
Ω

α0
i α

1
c∑

k α
0
k

(
gc − fi

)2 +∑
c

∫
Ω
α0

c ( fc − Î )2

(
1−

∑
j α

1
j∑

k α
0
k

)

=∑
c

∫
Ω

α0
cα

1
c∑

k α
0
k

(
gc − fc

)2 +∑
c

∑
i 6=c

∫
Ω

α0
i α

1
c∑

k α
0
k

(
gc − fi

)2 +∑
c

∫
Ω
α0

c ( fc − Î )2

(
1−

∑
j α

1
j∑

k α
0
k

)
. (11)

At this point, let us point out that relying on a substitute image for the displacement measure-
ment step exhibits some interesting properties. First, it encompasses usual formulations of the
shape measurement step (Equation (4) or Equation (5)) thanks to the first sum in Equation (11)
but also every spatio-temporal cross-correlations gc − fi , with cameras i 6= c, which are usually
not included. Also, as Equation (2) compared to Equation (1), Equation (6) scales linearly with
the number of cameras, unlike Equation (11) which scales quadratically. Finally, note that the
last term in Equation (11) may be neglected if for every point X of Ω,

∑
j α

1
j (X ) ' ∑

k α
0
k (X ), that

is if every point X is equally well observed in the pictures
(
I 0

c

)
c and in the pictures

(
I 1

c

)
c .

Again, these developments establish a link between a weight associated to a given observation
and the consistent weighting scheme that should be adopted in the usual framework. In F2 (4)

[3], it is assumed that α0
c ∼ α1

c ∼ 1 and again, considering a consistent weighting scheme
α0

cα
1
c∑

k α
0
k

when comparing fc to gc only scales F2 by a constant factor 1
Nc

. However, when introducing a
visibility function such that α0

c ∼ α1
c ∼ Vc as in F ′

2 (5) [4], the consistent weight when comparing

fc to gc should be
α0

cα
1
c∑

k α
0
k

∼ Vc∑
k Vk

instead of Vc .

4.1.2 Substitute image updating

Here, we perform data assimilation in the sense that F from Equation (10) (Equation (6) with
Nt = 2) is minimised with respect to all arguments (that is, U 0,U 1,

(
p

c

)
c

and Î ), unlike the

previous section. For this reason, Î is updated by minimising F :

Î =

Nc∑
c=1

α0
c fc +α1

c gc

Nc∑
k=1

α0
k +α1

k

. (12)

Hence, we can develop:

F =
∫
Ω

(
Nc∑

c=1
α0

c f 2
c −2Î

Nc∑
c=1

α0
c fc + Î 2

Nc∑
c=1

α0
c

)
+

(
Nc∑

c=1
α1

c g 2
c −2Î

Nc∑
c=1

α1
c gc + Î 2

Nc∑
c=1

α1
c

)

=
∫
Ω

(∑
c

(
α0

c f 2
c +α1

c g 2
c

)−2Î
∑

c

(
α0

c fc +α1
c gc

)+ Î 2
∑

c

(
α0

c +α1
c

))
.
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Making use of the expression of Î (12) a first time:

F =
∫
Ω

(∑
c

(
α0

c f 2
c +α1

c g 2
c

)− Î 2
∑

c

(
α0

c +α1
c

))
,

and a second time after factoring by 1/
∑

k
(
α0

k +α1
k

)
in the integral:

F =
∫
Ω

1∑
k
(
α0

k +α1
k

) [∑
i

∑
c

(
α0

i +α1
i

)(
α0

c f 2
c +α1

c g 2
c

)−∑
i

∑
c

(
α0

c fc +α1
c gc

)(
α0

i fi +α1
i gi

)]

= ∑
i

∑
c

∫
Ω

α0
i α

0
c

(
f 2

c − fi fc
)+α0

i α
1
c g 2

c +α0
cα

1
i f 2

c +α1
i α

1
c

(
g 2

c − gi gc
)−2α0

i α
1
c fi gc∑

k
(
α0

k +α1
k

) .

Again as, for instance,
∑

i
∑

c α
0
cα

1
i f 2

c =∑
i
∑

c α
0
i α

1
c f 2

i :

F =∑
i

∑
c

∫
Ω

1∑
k
(
α0

k +α1
k

) [
α0

i α
1
c

(
gc − fi

)2 + 1

2
α0

i α
0
c

(
fc − fi

)2 + 1

2
α1

i α
1
c

(
gc − gi

)2
]

=∑
c

∫
Ω

α0
cα

1
c∑

k
(
α0

k +α1
k

) (
gc − fc

)2 +∑
c

∑
i 6=c

∫
Ω

α1
cα

0
i∑

k
(
α0

k +α1
k

) (
gc − fi

)2

+∑
c

∑
i<c

∫
Ω

α0
i α

0
c∑

k
(
α0

k +α1
k

) (
fc − fi

)2 +∑
c

∑
i<c

∫
Ω

α1
i α

1
c∑

k
(
α0

k +α1
k

) (
gc − gi

)2 . (13)

Considering only the terms such that i = c in the previous expression of F (first term) allows
to retrieve a functional similar to the one used in the usual frameworks for the displacement
measurement step (see Equation (4) and Equation (5)).

Let us stress again that relying on a substitute image Î in a displacement measurement per-
spective shows the benefit to have a much richer functional than the usual ones. In Equation (13),
there are indeed terms proportional to

(
fc − fi

)2 and
(
gc − gi

)2 which are similar to a shape mea-
surement (see Section 3). The stereo correspondence is thus preserved. There are also terms pro-
portional to

(
gc − fi

)2 , i 6= c (spatio-temporal cross-correlations) which have no counterparts in
the usual frameworks.

4.2 Data assimilation displacement measurements

In this section, we investigate the possibility to minimise the functional F defined in Equation (6)

with respect to every argument (i.e.
(
U t

)
0≤t≤Nt−1 ,

(
p

c

)
1≤c≤Nc

, Î ) and show to which extent this

functional is suitable for performing data assimilation by, once again, establishing the link
with usual frameworks. Here, by data assimilation, we mean benefitting from all available
observations to evaluate quantities of interest (that is, for instance in DIC, displacements, camera
parameters, substitute image). A key element in such an approach is the level of confidence
associated to observations and that we have already discussed.

In what follows, to reduce the amount of notation, we will simply write I t
c instead of I t

c ◦P c ◦
φ

Ut
. With such notations, the expression of Î is simply (least-squares solution of F minimisation):

Î =

Nt−1∑
t=0

Nc∑
c=1

αt
c I t

c

Nt−1∑
s=0

Nc∑
i=1

αs
i

.

8



Note that this expression for Î , stemming from the minimisation of F , is very close to the heuristic
approach used in [12]. In the context of heat haze effects, relying on a substitute image based on
all available pictures is essential as the confidence associated to the reference picture is low. Then
we can develop F from Equation (6) (similar treatment as in Section 4.1.2):

F =
Nt−1∑
t=0

Nc∑
c=1

∫
Ω
αt

c

((
I t

c

)2 −2I t
c Î + Î 2

)
=

∫
Ω

∑
t

∑
c
αt

c

(
I t

c

)2 − Î 2
∑

t

∑
c
αt

c

=
∫
Ω

1∑
r
∑

j α
r
j

(∑
t

∑
c

∑
s

∑
i
αs

iα
t
c

(
I t

c

)2 −∑
t

∑
c

∑
s

∑
i
αs

iα
t
c I t

c I s
i

)

= 1

2

∑
t

∑
c

∑
s

∑
i

∫
Ω

αs
iα

t
c∑

r
∑

j α
r
j

(
I t

c − I s
i

)2
.

Finally, F can be split in different parts (s 6= t and s = t ):

F =∑
t

 ∑
s<t

 ∑
c

∫
Ω

αs
cα

t
c∑

r
∑

j α
r
j

(
I t

c − I s
c

)2

︸ ︷︷ ︸
Similar to a displacement

measurement functional

+∑
c

∑
i 6=c

∫
Ω

αs
iα

t
c∑

r
∑

j α
r
j

(
I t

c − I s
i

)2

︸ ︷︷ ︸
Spatio-temporal

cross-correlations

 +∑
c

∑
i<c

∫
Ω

αt
iα

t
c∑

r
∑

j α
r
j

(
I t

c − I t
i

)2

︸ ︷︷ ︸
Similar to a shape

measurement functional

 .

(14)

This final expression for F , obtained when minimising with respect to every single argument
of the functional, clearly establishes the link with usual frameworks. We can see that it includes
usual shape measurements (see Equation (1)) at all times, together with terms similar to displace-
ment measurements (see Equation (4) or Equation (5)) for all pairs of times, as well as spatio-
temporal cross-correlations (comparing I t

c to I s
i , with cameras i 6= c, (spatial) and times s 6= t

(temporal)). Once again, it is much richer than the usual functionals.

5 Discussions

In order to establish the links above between F (6) and usual frameworks, we had to adopt the
same experimental setups. That is, at all times, the number of cameras Nc is the same and the
cameras are assumed to remain in a fixed position all along the experiment. Let us stress that it
does not have to be the case, and that the formulation proposed (6) is easily extended to arbitrary
number of pictures at each time (N t

c ), with moving cameras (p t
c
). This would allow to consider

experimental setups with cameras supported by robotic arms or even drones, for instance. For
these reasons and others that we wish to illustrate in what follows, the functional proposed (6)
opens up new perspectives in terms of experimental setups. It offers much more flexibility to the
experimenter, while providing a much greater robustness, as it increases the amount of data for
each problem (camera calibration, shape, displacement).

First, as already evoked, when considering reference state images fc and deformed ones gc

that see totally disjoint regions of the ROI, the first term in Equation (11), equivalent to usual
SDIC frameworks, becomes zero, as the product α0

cα
1
c equals zero. This kind of situation totally

incapacitates all DIC software (including SDIC and 2D-DIC). This may arise in the case of large

9



rotations as described in [9]. Yet, the Functional F (6) allows to naturally address this issue, thanks
to the cross-correlation terms.

Also, when considering large strains, relying on all available pictures with a weight αt
c de-

pending on the displacement field U t , as the one that naturally arises in [9] and given here in
Equation (7), would be particularly helpful to perform a finer sampling of the substitute image

[10, 11]. For large positive strains,

∣∣∣∣det∇φUt

∣∣∣∣ = ∣∣∣det
(
I +∇Ut

)∣∣∣ > 1. This assigns a greater level of

confidence to the image I t
c , which is consistent with the better sampling achieved by the pixels

in I t
c of the ROI. In other words, in the case of large (positive) strains, it is unfortunate, in the

current frameworks, to identify the substitute image in the reference state images only, as the
information in deformed state ones is much more reliable.

On top of that, note that the weighting scheme together with the construction of the Func-
tional (6) naturally provide a way to merge results from different times and different viewpoints
in order to perform multiscale substitute image identification and, most importantly, multiscale
displacement measurements. That is, cameras with different resolutions imaging the ROI [13].
Currently, the dialogue between measurements performed at two different resolutions is still an
open problem.

Then, regarding camera calibration, some research works identify projection parameters on
the sole basis of reference state images [7]. This camera calibration process, while convenient
from an experimenter perspective, has the major drawback not to calibrate the whole volume
spanned by the object which can result in a stereo correspondence loss. Identifying camera
parameters based on the minimisation of Equation (6) would allow to calibrate the whole volume
spanned by the ROI, precisely because the minimisation would be performed on all positions
occupied by the object. Also, this would allow to avoid calibrating the stereo rig at different times
(based on targets), as done to prevent temporal drift during long experiments. Regarding this
matter, the last terms in Equation (14), similar to shape measurement functionals, turns out to
be useful.

Finally, this formulation is particularly suitable for spatio-temporal regularisation and one
could imagine making use of it to perform SDIC measurements during tests with a single moving
camera, or a rotating object (in a tomograph for instance) in front of the fixed camera, relying on
similar techniques as in [14].

6 Conclusion

There are two main results associated to the developments presented herein. First, we estab-
lished a link between functionals on which global SDIC usually relies and a functional based on
the sum of errors between a substitute image and observations from all cameras, at all times
(6). We showed that the latter is much richer than the formers in a displacement measurement
context. Based on the consideration of large displacements, camera calibration and stereo cor-
respondence issues, we illustrated that all the terms usually discarded in SDIC frameworks are
actually extremely useful. For this reason, the Functional (6) appears to (a) be well-suited to per-
form data assimilation in SDIC, as expected from the construction of this functional based on all
available data, (b) stand for an interesting perspective in the formulation of the Stereo Digital Im-
age Correlation problem, as it can be seen as a dense counterpart of bundle adjustment methods
[10, 1].

Second, we proposed an interpretation of the weighting scheme used in the Functional (6).
This weight can be thought of as the level of confidence associated to each pixel. From this
interpretation, we gave properties that this weight should satisfy regarding visibility, camera
noise and surface curvature. Thanks to the link established between this functional and usual

10



frameworks, we provided a weighting scheme for usual SDIC frameworks consistent with our
previous interpretation.

We did not provide a framework allowing to perform global SDIC based on Functional (6). A
natural outlook of these theoretical developments is thus to propose a numerical implementation
allowing to minimise efficiently this functional with actual data.
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