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Abstract. A literature review regarding functionals used in stereo digital image correlation (SDIC) is pre-
sented. A suitable functional for performing data assimilation, in the sense that all available information
at all times is wisely taken into account, is also introduced. It is based on the comparison between a substi-
tute image and actual ones, together with an associated weight. An interpretation of this weight is proposed.
Eventually, a link between the functional and global SDIC ones is established. It clearly shows that the former
encompasses the latter and provides the consistent weighting scheme to use in usual SDIC instead of ad hoc
schemes.

Keywords. Data assimilation, Multi-view functional, Global stereo DIC, Photometric DIC, Large deforma-
tions.

Note. The first author is an employee of the DGA (Direction Générale de l’Armement - Ministry of Armed
Forces), France.
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1. Introduction

Stereo digital image correlation (SDIC) is a full-field measurement technique that allows to
retrieve a three-dimensional (3D) displacement field on a (possibly) non-planar surface, the
region of interest (ROI) [1]. In a test-simulation dialogue perspective, the global methods for
SDIC show the advantage of facilitating comparisons between measurements and simulations.
As the same kinematic basis can be chosen, it is possible to define an error between, for instance,

∗Corresponding author.

ISSN (electronic) : 1873-7234 https://comptes-rendus.academie-sciences.fr/mecanique/

https://doi.org/10.5802/crmeca.93
https://orcid.org/0000-0002-6265-4726
https://orcid.org/0000-0001-8387-4122
https://orcid.org/0000-0002-1522-3931
mailto:fouque@insa-toulouse.fr
mailto:robin.bouclier@math.univ-toulouse.fr
mailto:passieux@insa-toulouse.fr
mailto:jean-noel.perie@iut-tlse3.fr
https://comptes-rendus.academie-sciences.fr/mecanique/


454 Raphaël Fouque et al.

finite element (FE) DIC measurements and FE simulations simply by subtracting the associated
displacement field degrees of freedom. For this reason, important studies have been carried
out recently to extend the scope of existing methods and be able to perform measurements
on increasingly complex geometries [2–5]. When following this path, the issue of visibility and
surface curvature is raised. We wish to carefully address this topic here from a theoretical
viewpoint and relate it to a close one: the weighting scheme in the SDIC functionals.

For these purposes, in Section 2, the usual SDIC frameworks are introduced together with
the proposed data assimilation suitable functional. Then, we establish the link between this
functional and the usual SDIC formulations. In Section 3, we consider shape measurements,
while Section 4 tackles displacement measurements. First, when considering only two time steps,
and then with an arbitrary number of time steps. This leads us to Sections 5 and 6, where
discussions regarding the perspectives are proposed and concluding remarks are drawn.

2. State of the art

In this section, we introduce the usual global SDIC frameworks. That is, we begin this state of the
art by focusing on shape measurements and then on displacement measurements. Eventually,
the proposed functional is introduced.

To write the different functionals, we consider a set of Nc cameras, each of which took a
reference state image of the ROI Ω. The associated set of reference state images is denoted
by

(
I 0

c

)
c . We also introduce the camera models

(
P c

)
c . For all c, P c maps a 3D point from the

world reference frame to a two-dimensional (2D) point in the image reference frame associated
with camera c. A set of camera parameters p

c
is associated with this mapping. It encompasses

extrinsic (relative position of the camera with respect to the specimen) and intrinsic parameters
(focal/sampling parameters, camera centre coordinates in the pictures and possibly camera
distortions).

2.1. Shape measurements

When considering planar (or near-planar) surfaces, it is possible to ensure that every single point
of the ROIΩ remains visible by all cameras at all times. In this case, the functional associated with
the shape measurement step reads [3, 6]:

F1

(
U 0,

(
p

c

)
c

)
=

Nc∑
c=1

c−1∑
i=1

∫
Ω

(
I 0

i ◦P i ◦φU0
(X )− I 0

c ◦P c ◦φU0
(X )

)2
dX , (1)

where U 0 is the shape correction field and ∀X ∈Ω, φ
U0

(X ) = X +U 0(X ). This functional ensures

in the least-squares sense that the grey level corresponding to a physical point is the same for all
cameras, and drives the shape correction field U 0 accordingly. Note that the sum is written over
all camera pairs. There are two main drawbacks to this formulation. First, computational costs
associated with the problem scale as N 2

c which is not ideal in a multi-camera setup. Second, the
problem is extremely ill-posed [3, Figure 3].

Remark 1. Often raw data stemming from pictures are not compared directly as might seem sug-
gested by (1). Instead, some corrections are made, for instance, by using a zero-mean normalised
sum of squared differences (ZNSSD) correlation criterion [6].

In order to cope with the aforementioned problem ill-posedness but also to account for the
surface sampling performed by each camera sensor, a shape measurement functional based on
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Raphaël Fouque et al. 455

a residual thought as the difference between a substitute image and actual images was built [7].
In this case, Equation (1) becomes

F ′
1

(
U 0,

(
p

c

)
c

, Î
)
=

Nc∑
c=1

∫
Ω

(
I 0

c ◦P c ◦φU0
(X )− Î (X )

)2
dX . (2)

It shows the benefit to tackle the two main issues identified previously. The problem scales as
Nc (like the displacement measurement one, see Section 2.2), and the optimisation procedure
relies on an alternating optimisation (fixed-point algorithm) between the shape correction field,
extrinsic, and the substitute image. It makes indeed the formulation much less ill-posed than
in [3,6] as it discards the functional kernel directions such as local and global slidings (illustrated
in [3, Figure 3]).

Then, authors explicitly dealt with visibility issues by relying on a weighting term based on
visibility [8]:

F ′′
1

(
U 0,

(
p

c

)
c

)
=

Nc∑
c=1

c−1∑
i=1

∫
Ω

Vc (X )Vi (X )
(
I 0

i ◦P i ◦φU0
(X )− I 0

c ◦P c ◦φU0
(X )

)2
dX , (3)

where ∀c ∈ [[1, Nc ]], Vc is the visibility function associated with camera c such that

Vc : Ω → {0,1}

X 7→
{

1 if X is visible by camera c
0 otherwise.

2.2. Displacement measurements

To engage in displacement measurements, we consider a deformed state of which the same Nc

cameras shoot the associated pictures
(
I 1

c

)
c . The displacement measurement functional is then

given by [3]:

F2(U 1) =
Nc∑

c=1

∫
Ω

(
I 1

c ◦P c ◦φU1
(X )− I 0

c ◦P c ◦φU0
(X )

)2
dX . (4)

Remark 2. With such notations, the displacement field associated with the deformation of the
ROIΩ between the reference state and the deformed state is U 1 −U 0.

Visibility issues in the displacement measurement step were addressed by resorting on the
assumption that a point visible by a camera in the reference state remains visible by this camera
at all times, [4]:

F ′
2(U 1) =

Nc∑
c=1

∫
Ω

Vc (X )
(
I 1

c ◦P c ◦φU1
(X )− I 0

c ◦P c ◦φU0
(X )

)2
dX . (5)

However, no clear justification for the weighting terms associated with the visibility is given,
neither for (3) [8] nor for (5) [4]. Also, the general case, where the displacement field is such that
a part of the structure may disappear from view, is not tackled.

2.3. Proposed functional

In this work, we wish to thoroughly establish weighting schemes for both shape and displacement
measurements in global SDIC frameworks. To this end, we propose a unified formulation which,
as will be shown in the remainder of this paper, encompasses all usual ones. The main idea is
to define the weighting scheme in the pictures first as in [9]. Besides, relying on the framework
described in [9] allows to overcome limitations associated with the assumption that a point
visible by a camera in the reference state remains visible by the same camera at all times.

C. R. Mécanique — 2021, 349, n 3, 453-463
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We consider Nt time steps associated with Nc cameras. The corresponding pictures are
denoted by

(
I t

c

)
(c,t ). With these notations, the weighting scheme defined here as αt

c (X ) stands
for the level of confidence associated with the corresponding observation I t

c ◦P c ◦φUt
(X ) and

thus to the residual
(
I t

c ◦P c ◦φUt
(X )− Î (X )

)
. As αt

c is defined on the whole ROI Ω, we expect it

to meet some desirable properties. First, αt
c should be equal to 0 in regions of Ω that are not

seen in I t
c . Second, it should somehow take into account the mapping performed by the optical

system between the surface and the image.αt
c (X ) should, therefore, depend on the optical system

characteristics and to the distance together with the local orientation of the surface with respect
to the imager (surface foreshortening). Eventually, camera noise plays an important role in the
level of confidence associated with an observation and should be accounted for in αt

c (e.g., as
defined by [4]). Let us assume that we can assign, at all times, the same level of confidence to
two pixels coming from a same picture c and, without loss of generality, to two pixels coming
from different pictures. Hence, we may assign a unit weight in every image plane (if our last
assumption is not fulfilled, we may assign the weight 1/σ2

c to the image plane corresponding
to camera c by assuming a Gaussian white uniform noise of variance σc in images shot by c as
in [4]). Then, by following the developments in [10] and [9], we build a functional, suitable for
data assimilation, based on every piece of available information [11]:

F
((

U t

)
t ,

(
p

c

)
c

, Î
)
=

Nt−1∑
t=0

Nc∑
c=1

∫
Ω
αt

c (X )
(
I t

c ◦P c ◦φUt
(X )− Î (X )

)2
dX . (6)

Here, data assimilation should be understood as a general method to take advantage of all
available observations to evaluate quantities of interest. In our case (DIC), these quantities are
typically displacements, camera parameters, or the substitute image, for instance. With previous
assumptions, αt

c is given by

αt
c (X ) =

[∣∣∣∣det

(
∇φ

Ut

)∣∣∣∣(JcVc
)◦φ

Ut

]
(X ), (7)

where Jc =
∣∣∣det∇Pc

∣∣∣. Note that αt
c naturally meets the desirable properties listed above: the vis-

ibility function Vc naturally appears when integrating by substitution, and the surface sampling
performed by the imager is taken into account, thanks to Jc . On top of that, the contribution of
the displacement field U t is taken into account.

Remark 3. ∀(X ,c, t ), αt
c (X ) ≥ 0.

Remark 4. Let us stress once again that with such notations, the displacement field associated
with time t is U t −U 0. Usually, after the shape measurement step, Ω is updated such that
Ω̃ = φ

U0
(Ω). However, if we want to be able to efficiently perform a minimisation with respect

to all arguments of F (i.e.,
(
U t

)
t ,

(
p

c

)
c

and Î ), constantly updating the integration domain of all
integrals may not be the most effective minimisation strategy. Keeping that in mind, defining the
displacement on the nominal shapeΩ as Ũ t =U t −U 0 is a small price to pay.

3. Shape measurements

In this section, we develop Functional F from (6) so as to establish the link between this formu-
lation and the usual SDIC shape measurement functionals (see (1) and (3)). For that, we consider
Nt = 1, that is, only reference pictures I 0

c are available. Note that with such considerations, Func-
tional F (6) is very close to F ′

1 in (2):

F
(
U 0,

(
p

c

)
c

, Î
)
=

Nc∑
c=1

∫
Ω
α0

c (X )
(
I 0

c ◦P c ◦φU0
(X )− Î (X )

)2
dX . (8)
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As in [7], Î is obtained by minimising Functional F (8), that is directly (solution of a linear least-
squares problem)

∀X ∈Ω,
Nc∑

c=1
α0

c (X ) 6= 0, Î (X ) =

Nc∑
c=1

α0
c I 0

c ◦P c ◦φU0
(X )

Nc∑
c ′=1

α0
c ′ (X )

. (9)

Remark 5. If ∃X ∈Ω,
Nc∑

c=1
α0

c (X ) = 0, then∀c ∈ [[1, Nc ]], α0
c (X ) = 0 as∀(

X ,c
)

, α0
c (X ) ≥ 0. Practically,

it means that the point X cannot be seen by any camera. Hence Î (X ) can be set to any arbitrary
real number without affecting the value of Functional F . Thus, in what follows, we do not consider
this case any longer.

Remark 6. As there is no substitute image in usual SDIC frameworks, we will constantly rely on
Functional F minimisation with respect to Î to establish the link between Functional F and the
functionals commonly used in SDIC.

To reduce the amount of notation, we denote fc = I 0
c ◦P c ◦φU0

. And for any function h defined

over Ω, in the following, we will simply write
∫
Ωh instead of

∫
Ωh(X )dX . Now, let us develop (8)

((6) with Nt = 1):

F =
∫
Ω

(
Nc∑

c=1
α0

c f 2
c −2Î

Nc∑
c=1

α0
c fc + Î 2

Nc∑
c=1

α0
c

)
,

using the identity (9), it follows

F =
∫
Ω

(
Nc∑

c=1
α0

c f 2
c −2

∑Nc
i=1α

0
i fi∑Nc

k=1α
0
k

Nc∑
c=1

α0
c fc +

∑Nc
i=1α

0
i fi

∑Nc
c=1α

0
c fc∑Nc

k=1α
0
k

)
.

This previous expression can be simplified and factored as

F =
∫
Ω

1∑
k α

0
k

(∑
i

∑
c
α0

i α
0
c f 2

c −∑
i

∑
c
α0

i α
0
c fi fc

)
.

As
∑

i
∑

c α
0
i α

0
c f 2

c =∑
i
∑

c α
0
i α

0
c f 2

i :

F = 1

2

∫
Ω

1∑
k α

0
k

(∑
i

∑
c
α0

i α
0
c f 2

c −2
∑

i

∑
c
α0

i α
0
c fi fc +

∑
i

∑
c
α0

i α
0
c f 2

i

)
.

We can factor this expression as

F = 1

2

∑
i

∑
c

∫
Ω

α0
i α

0
c∑

k α
0
k

(
f 2

c −2 fi fc + f 2
i

)
,

which can finally be rewritten as

F =∑
c

∑
i<c

∫
Ω

α0
cα

0
i∑

k α
0
k

(
fc − fi

)2 .

This last equation is very close to Functionals F1 (1) and F ′′
1 (3) used in a standard global SDIC

framework for the shape measurement step (see Section 2.1). These developments allow to
establish a link between a weight assigned to each observation fc , namely α0

c , and the associated
weight in the usual framework, which should be α0

cα
0
i /

∑
k α

0
k when comparing fc to fi .

In F1 (1) [3], it is (implicitly) assumed that

α0
c =

∣∣∣∣det

(
∇φ

U0

)∣∣∣∣(JcVc
)◦φ

U0
∼ 1,
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because (near) planar surfaces are considered. In this case, considering the correct weighting
scheme does not change much the functional expression as α0

cα
0
i /

∑
k α

0
k ∼ 1/Nc . Note that we

just showed that according to previous assumptions

F1/Nc = F ′
1.

However, in F ′′
1 (3) [8], α0

c ∼ Vc is assumed. Hence, when considering more complex geome-
tries, the correct weight when comparing fc to fi should be VcVi /

∑
k Vk , instead of VcVi .

4. Displacement measurements

Let us now consider the displacement measurement step. Before getting into the general case
Nt > 2, we establish the link between Functional F (6) and usual frameworks considering only two
time steps (Nt = 2). It is done first by relying on a substitute image Î given by (9) (only reference
state images are used to build Î ), and then by updating Î , thanks to data provided by deformed
state images.

4.1. Incremental displacement measurements

Since Nt = 2, Functional F (6) writes as follows:

F
(
U 0,U 1,

(
p

c

)
c

, Î
)
=

Nc∑
c=1

∫
Ω
α0

c (X )
(
I 0

c ◦P c ◦φU0
(X )− Î (X )

)2 +α1
c (X )

(
I 1

c ◦P c ◦φU1
(X )− Î (X )

)2
dX

=
Nc∑

c=1

∫
Ω
α0

c

(
fc − Î

)2 +α1
c

(
gc − Î

)2
, (10)

where gc = I 1
c ◦P c ◦φU1

.

4.1.1. Substitute image based on reference state images only

Here, as in [7] we keep on using the same substitute image based on (9). In this case, Functional
F (10) is minimised with respect to U 1 only and reads:

F =
Nc∑

c=1

∫
Ω
α0

c

(
fc − Î

)2

︸ ︷︷ ︸
Constant=F0

+
Nc∑

c=1

∫
Ω
α1

c

(
gc − Î

)2

F = F0 +
Nc∑

c=1

∫
Ω
α1

c

(
g 2

c −2Î gc + Î 2)
We can then make use of (9):

F = F0 +
∫
Ω

1∑Nc
k=1α

0
k

(
Nc∑

c=1

Nc∑
i=1

α0
i α

1
c g 2

c −2
Nc∑

c=1

Nc∑
i=1

α0
i α

1
c gc fi +

∑Nc
c=1α

1
c∑Nc

k=1α
0
k

Nc∑
i=1

Nc∑
j=1

α0
jα

0
i fi f j

)

= F0 +
∑

i

∑
c

∫
Ω

α0
i α

1
c∑

k α
0
k

(
g 2

c −2gc fi +
∑

j α
0
j fi f j∑

k α
0
k

)

= F0 +
∑

i

∑
c

∫
Ω

α0
i α

1
c∑

k α
0
k

((
gc − fi

)2 − f 2
i +

∑
j α

0
j fi f j∑

k α
0
k

)

= F0 +
∑

i

∑
c

∫
Ω

α0
i α

1
c∑

k α
0
k

((
gc − fi

)2 − f 2
i + fi Î

)
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= F0 +
∑

i

∑
c

∫
Ω

α0
i α

1
c∑

k α
0
k

((
gc − fi

)2 − (
fi − Î

)2 + Î (Î − fi )
)

= F0 +
∑

i

∑
c

∫
Ω

α0
i α

1
c∑

k α
0
k

((
gc − fi

)2 − (
fi − Î

)2
)
+∑

c

∫
Ω
α1

c Î

(
Î −

∑
i α

0
i fi∑

k α
0
k

)
.

The last sum equals 0 by definition of Î (9):

F = F0 +
∑

i

∑
c

∫
Ω

α0
i α

1
c∑

k α
0
k

((
gc − fi

)2 − (
fi − Î

)2
)

= ∑
c

∫
Ω
α0

c

(
fc − Î

)2 +∑
i

∑
c

∫
Ω

α0
i α

1
c∑

k α
0
k

(
gc − fi

)2 −∑
c

∑
j

∫
Ω

α0
cα

1
j∑

k α
0
k

(
fc − Î

)2

= ∑
i

∑
c

∫
Ω

α0
i α

1
c∑

k α
0
k

(
gc − fi

)2 +∑
c

∫
Ω
α0

c ( fc − Î )2

(
1−

∑
j α

1
j∑

k α
0
k

)

= ∑
c

∫
Ω

α0
cα

1
c∑

k α
0
k

(
gc − fc

)2 +∑
c

∑
i 6=c

∫
Ω

α0
i α

1
c∑

k α
0
k

(
gc − fi

)2 +∑
c

∫
Ω
α0

c ( fc − Î )2

(
1−

∑
j α

1
j∑

k α
0
k

)
. (11)

At this point, let us point out that relying on a substitute image for the displacement mea-
surement step exhibits some interesting properties. First, it encompasses usual formulations of
the shape measurement step (Equations (4) or (5)), thanks to the first sum in (11), but also every
spatio-temporal cross-correlations gc − fi , with cameras i 6= c, which are usually not included.
Also, as (2) compared to (1), (6) scales linearly with the number of cameras, unlike (11) which
scales quadratically. Finally, note that the last term in (11) may be neglected if for every point X
of Ω,

∑
j α

1
j (X ) ' ∑

k α
0
k (X ), that is, if every point X is equally well observed in the pictures

(
I 0

c

)
c

and in the pictures
(
I 1

c

)
c .

Again, these developments establish a link between a weight associated to a given observation
and the consistent weighting scheme that should be adopted in the usual framework. In F2 (4) [3],
it is assumed that α0

c ∼α1
c ∼ 1 and again, considering a consistent weighting scheme α0

cα
1
c /

∑
k α

0
k

when comparing fc to gc only scales F2 by a constant factor 1/Nc . However, when introducing a
visibility function such that α0

c ∼ α1
c ∼ Vc as in F ′

2 (5) [4], the consistent weight when comparing
fc to gc should be α0

cα
1
c /

∑
k α

0
k ∼Vc /

∑
k Vk instead of Vc .

4.1.2. Substitute image updating

Here, we perform data assimilation in the sense that Functional F from (10) (Equation (6) with
Nt = 2) is minimised with respect to all arguments (i.e., U 0,U 1,

(
p

c

)
c

and Î ), unlike the previous

section. For this reason, Î is updated by minimising Functional F (10):

Î =

Nc∑
c=1

α0
c fc +α1

c gc

Nc∑
k=1

α0
k +α1

k

. (12)

Hence, we can develop

F =
∫
Ω

(
Nc∑

c=1
α0

c f 2
c −2Î

Nc∑
c=1

α0
c fc + Î 2

Nc∑
c=1

α0
c

)
+

(
Nc∑

c=1
α1

c g 2
c −2Î

Nc∑
c=1

α1
c gc + Î 2

Nc∑
c=1

α1
c

)

=
∫
Ω

(∑
c

(
α0

c f 2
c +α1

c g 2
c

)−2Î
∑

c

(
α0

c fc +α1
c gc

)+ Î 2
∑

c

(
α0

c +α1
c

))
.
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Making use of the expression of Î (12) a first time

F =
∫
Ω

(∑
c

(
α0

c f 2
c +α1

c g 2
c

)− Î 2
∑

c

(
α0

c +α1
c

))
,

and a second time after factoring by 1/
∑

k
(
α0

k +α1
k

)
in the integral

F =
∫
Ω

1∑
k
(
α0

k +α1
k

) [∑
i

∑
c

(
α0

i +α1
i

)(
α0

c f 2
c +α1

c g 2
c

)−∑
i

∑
c

(
α0

c fc +α1
c gc

)(
α0

i fi +α1
i gi

)]

= ∑
i

∑
c

∫
Ω

α0
i α

0
c

(
f 2

c − fi fc
)+α0

i α
1
c g 2

c +α0
cα

1
i f 2

c +α1
i α

1
c

(
g 2

c − gi gc
)−2α0

i α
1
c fi gc∑

k
(
α0

k +α1
k

) .

Again as, for instance,
∑

i
∑

c α
0
cα

1
i f 2

c =∑
i
∑

c α
0
i α

1
c f 2

i :

F = ∑
i

∑
c

∫
Ω

1∑
k
(
α0

k +α1
k

) [
α0

i α
1
c

(
gc − fi

)2 + 1

2
α0

i α
0
c

(
fc − fi

)2 + 1

2
α1

i α
1
c

(
gc − gi

)2
]

= ∑
c

∫
Ω

α0
cα

1
c∑

k
(
α0

k +α1
k

) (
gc − fc

)2 +∑
c

∑
i 6=c

∫
Ω

α1
cα

0
i∑

k
(
α0

k +α1
k

) (
gc − fi

)2

+ ∑
c

∑
i<c

∫
Ω

α0
i α

0
c∑

k
(
α0

k +α1
k

) (
fc − fi

)2 +∑
c

∑
i<c

∫
Ω

α1
i α

1
c∑

k
(
α0

k +α1
k

) (
gc − gi

)2 . (13)

Considering only the terms such that i = c in the previous expression of Functional F (first
term) allows to retrieve a functional similar to the one used in the usual frameworks for the
displacement measurement step (see (4) and (5)).

Let us stress again that relying on a substitute image Î in a displacement measurement
perspective shows the benefit to have a much richer functional than the usual ones. In (13),
there are indeed terms proportional to

(
fc − fi

)2 and
(
gc − gi

)2 which are similar to a shape
measurement (see Section 3). The stereo correspondence is thus preserved. There are also terms
proportional to

(
gc − fi

)2 , i 6= c (spatio-temporal cross-correlations) which have no counterparts
in the usual frameworks.

4.2. Data assimilation displacement measurements

In this section, we investigate the possibility to minimise Functional F defined in (6) with respect

to every argument (i.e.,
(
U t

)
0≤t≤Nt−1 ,

(
p

c

)
1≤c≤Nc

, Î ) and show to which extent this functional

is suitable for performing data assimilation by, once again, establishing the link with usual
frameworks. Here, by data assimilation, we mean benefitting from all available observations
to evaluate quantities of interest (i.e., for instance in DIC, displacements, camera parameters,
substitute image). A key element in such an approach is the level of confidence associated with
observations that we have already discussed.

In what follows, to reduce the amount of notation, we will simply write I t
c instead of I t

c ◦P c◦φUt
.

With such notations, the expression of Î is simply

Î =

Nt−1∑
t=0

Nc∑
c=1

αt
c I t

c

Nt−1∑
s=0

Nc∑
i=1

αs
i

.

Note that this expression for Î , stemming from the minimisation of Functional F (6), is very close
to the heuristic approach used in [12]. In the context of heat haze effects, relying on a substitute
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image based on all available pictures is essential as the confidence associated with the reference
picture is low. Then we can develop Functional F from (6) (similar treatment as in Section 4.1.2):

F =
Nt−1∑
t=0

Nc∑
c=1

∫
Ω
αt

c

((
I t

c

)2 −2I t
c Î + Î 2

)
=

∫
Ω

∑
t

∑
c
αt

c

(
I t

c

)2 − Î 2
∑

t

∑
c
αt

c

=
∫
Ω

1∑
r
∑

j α
r
j

(∑
t

∑
c

∑
s

∑
i
αs

iα
t
c

(
I t

c

)2 −∑
t

∑
c

∑
s

∑
i
αs

iα
t
c I t

c I s
i

)

= 1

2

∑
t

∑
c

∑
s

∑
i

∫
Ω

αs
iα

t
c∑

r
∑

j α
r
j

(
I t

c − I s
i

)2
.

Finally, Functional F can be split in different parts (s 6= t and s = t ):

F =∑
t

 ∑
s<t

 ∑
c

∫
Ω

αs
cα

t
c∑

r
∑

j α
r
j

(
I t

c − I s
c
)2

︸ ︷︷ ︸
Similar to a displacement

measurement functional

+∑
c

∑
i 6=c

∫
Ω

αs
iα

t
c∑

r
∑

j α
r
j

(
I t

c − I s
i

)2

︸ ︷︷ ︸
Spatio-temporal

cross-correlations

 +∑
c

∑
i<c

∫
Ω

αt
iα

t
c∑

r
∑

j α
r
j

(
I t

c − I t
i

)2

︸ ︷︷ ︸
Similar to a shape

measurement functional

 .

(14)

This final expression for Functional F clearly establishes the link with usual frameworks. We can
see that it includes usual shape measurements (see (1)) at all times, together with terms similar
to displacement measurements (see (4) or (5)) for all pairs of times, as well as spatio-temporal
cross-correlations (comparing I t

c to I s
i , with cameras i 6= c, (spatial) and times s 6= t (temporal)).

Once again, it is much richer than the usual functionals.

5. Discussions

In order to establish the links above between Functional F (6) and usual frameworks, we had to
adopt the same experimental setups. That is, at all times, the number of cameras Nc is the same
and the cameras are assumed to remain in a fixed position all along the experiment. Let us stress
that it does not have to be the case, and that the formulation proposed (6) is easily extended
to arbitrary number of pictures at each time (N t

c ), with moving cameras (p t
c
). This would allow

to consider experimental setups with cameras supported by robotic arms or even drones, for
instance. For these reasons and others that we wish to illustrate in what follows, the functional
proposed (6) opens up new perspectives in terms of experimental setups. It offers much more
flexibility to the experimenter, while providing a much greater robustness, as it increases the
amount of data for each problem (camera calibration, shape, displacement).

First, as already evoked, when considering reference state images fc and deformed ones gc

that see totally disjoint regions of the ROI, the first term in (11), equivalent to usual SDIC frame-
works, becomes zero, as the product α0

cα
1
c equals zero. This kind of situation totally incapacitates

all DIC software (including SDIC and 2D-DIC). This may arise in the case of large rotations as
described in [9]. Yet, Functional F (6) allows to naturally address this issue, thanks to the cross-
correlation terms.

Also, when considering large strains, relying on all available pictures with a weight αt
c depend-

ing on the displacement field U t , as the one that naturally arises in [9] and given here in (7), would
be particularly helpful to perform a finer sampling of the substitute image [10,11]. For large posi-

tive strains,

∣∣∣∣det∇φUt

∣∣∣∣= ∣∣∣det
(
I +∇Ut

)∣∣∣> 1. This assigns a greater level of confidence to the image
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I t
c , which is consistent with the better sampling achieved by the pixels in I t

c of the ROI. In other
words, in the case of large (positive) strains, it is unfortunate, in the current frameworks, to iden-
tify the substitute image in the reference state images only, as the information in deformed state
ones is much more reliable.

On top of that, note that the weighting scheme together with the construction of Functional
F (6) naturally provides a way to merge results from different times and different viewpoints in
order to perform multiscale substitute image identification and, most importantly, multiscale
displacement measurements. That is, cameras with different resolutions imaging the ROI [13].
Currently, the dialogue between measurements performed at two different resolutions is still an
open problem.

Then, regarding camera calibration, some research works identify projection parameters on
the sole basis of reference state images [7]. This camera calibration process, while convenient
from an experimenter perspective, has the major drawback not to calibrate the whole volume
spanned by the object, which can result in a stereo correspondence loss. Identifying camera
parameters based on the minimisation of (6) would allow to calibrate the whole volume spanned
by the ROI, precisely because the minimisation would be performed on all positions occupied by
the object. Also, this would allow to avoid calibrating the stereo rig at different times (based on
targets), as done to prevent temporal drift during long experiments. Regarding this matter, the
last terms in (14), similar to shape measurement functionals, turns out to be useful.

Finally, this formulation is particularly suitable for spatio-temporal regularisation and one
could imagine making use of it to perform SDIC measurements during tests with a single moving
camera, or a rotating object (in a tomograph, for instance) in front of the fixed camera, relying on
similar techniques as in [14].

6. Conclusion

There are two main results associated with the developments presented herein. First, we estab-
lished a link between functionals on which global SDIC usually relies and a functional based on
the sum of errors between a substitute image and observations from all cameras, at all times:
Functional F (6). We showed that the latter is much richer than the formers in a displacement
measurement context. Based on the consideration of large displacements, camera calibration,
and stereo correspondence issues, we illustrated that all the terms usually discarded in SDIC
frameworks are actually extremely useful. For this reason, Functional F (6) appears to (a) be well-
suited to perform data assimilation in SDIC, as expected from the construction of this functional
based on all available data, (b) stand for an interesting perspective in the formulation of the SDIC
problem, as it can be seen as a dense counterpart of bundle adjustment methods [1, 10].

Second, we proposed an interpretation of the weighting scheme used in Functional F (6).
This weight can be thought of as the level of confidence associated with each pixel. From this
interpretation, we gave properties that this weight should satisfy regarding visibility, camera
noise, and surface curvature. Thanks to the link established between this functional and usual
frameworks, we provided a weighting scheme for usual SDIC frameworks consistent with our
previous interpretation.

We did not provide a framework allowing to perform global SDIC based on Functional F (6).
A natural outlook of these theoretical developments is thus to propose a numerical implementa-
tion allowing to minimise efficiently this functional with actual data.
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