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Abstract This work focuses on document fragments

association using Deep Metric Learning methods. More

precisely, we are interested in ancient papyri fragments

that need to be reconstructed prior to their analysis

by papyrologists. This is a challenging task to automa-

tize using machine learning algorithms because labeled

data is rare, often incomplete, imbalanced and of in-

consistent conservation states. However, there is a real

need for such software in the papyrology community as

the process of reconstructing the papyri by hand is ex-

tremely time consuming and tedious. In this paper, we

explore ways in which papyrologists can obtain useful

matching suggestion on new data using Deep Convolu-

tional Siamese-Networks. We emphasize on low-to-no

human intervention for annotating images. We show

that the from-scratch self-supervised approach we pro-
pose is more effective than using knowledge transfer

from a large dataset, the former achieving a top-1 ac-

curacy score of 0.73 on a retrieval task involving 800

fragments.
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Fig. 1 Example of fragments of papyri (source : the GE-
SHAEM Project, geshaem.huma-num.fr)

1 Introduction and context

Through the study of ancient documents, archaeologists

want to understand how ancient human societies were

organized. They want to get a better understanding of

the cultural, administrative, societal and economical as-

pects of the day to day lives of the people living at the

time the documents were redacted. When very ancient

documents are found, they often have been the subject

https://morphoboid.labri.fr/self-supervised-papyrus.html
https://morphoboid.labri.fr/self-supervised-papyrus.html
geshaem.huma-num.fr
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of important degradation due to their storage condi-

tions and the passing of time. Documents can be torn

into multiple pieces, some pieces might be missing and

the text can sometime be nearly erased (see Fig. 1).

Studying the content of these documents requires a

reconstruction step of the documents from their frag-

ments, without knowing which fragments come together

as a single document. This is analogous to having a bag

of puzzles in which all the pieces are mixed together and

without knowing if all the pieces are present. When

there are thousands of fragments which likely consti-

tutes several hundreds of documents, the human time

needed to perform the reconstruction step is enormous

and the process is extremely tedious.

With the improvements of machine learning meth-

ods over the last decades, it has become possible to

design software approaches to help solving the task of

automatic fragment association. Several specificities of

the data we are working with make this process very dif-

ficult, such as the fact that fragments coming from the

same papyrus may sometime look similar, and some-

time look different. The same goes for fragments that

do not come from the same papyrus. They are similar

in the sense that they are all documents, but the tex-

tures, colors and shapes of the fragments can be very

different, as well as the sizes, colors and styles of the

writings which can vary a lot. Moreover, two fragments

originating from the same document can look different

because of different conservation conditions (see Fig. 2).

On the contrary, two fragments originating from differ-

ent papyri can look the same because they were written

close together in time by the same person with the same

material, and conserved in similar conditions (see Fig.

3).

Fig. 2 Example of two fragments that belong to the same
papyrus, but look different (with respect to color, texture,
papyrus fiber and writing style)

One can see that trying to design hand crafted meth-

ods to classify these fragments would be very difficult.

Discriminative features must be very fine in order not to

be tricked by lots of subtle similar looking but dissimilar

examples and vice versa. Today, Deep Learning meth-

Fig. 3 Example of two fragments that belong to different pa-
pyri, but look similar (with respect to color, texture, papyrus
fiber and writing style)

ods provide a very powerful medium for automatically

discovering fine discriminative features with respect to

the data available.

As we don’t know in advance the number of docu-

ments (classes) that we will have to classify the frag-

ments in, we cannot use standard Deep Learning clas-

sification schemes. We chose to work with Deep Metric

Learning (DML) methods [18], which are Deep learning

methods for learning similarity between inputs of arbi-

trary data. In substance, we want to train a DML model

so that it outputs a large score between two fragments

originating from the same document, and a low score

for two fragments originating from different documents.

Our ideal goal would be to learn a general DML

model capable of correctly associating fragments on any

data. Unfortunately, this would require an enormous

amount of very diverse annotated data that is simply

not available. However, with sufficient training data we

can train a DML that performs well on a given dataset.

Using transfer learning, or more precisely domain adap-

tation, the information learned on this dataset can be

used on another dataset with insufficient training data

on its own. This approach still implies that some anno-

tations are available on the target dataset to perform

the fine-tuning, and since we want as little human an-

notation work as possible, we also explore the idea of

self-supervised learning.

The experiments carried out in this paper are made

on two datasets. We use the HisFrag database [40], a

very large and annotated semi-synthetic document frag-

ments database as the training base, and a papyrus

database created from a subset of the Papyrus Collec-

tion of the University of Michigan 1 that we created.

The paper is organized as follows :

In section 2, we give an overview of existing works

that use DML, transfer learning and self-supervised ap-

1 Found here : https://quod.lib.umich.edu/a/apis (ac-
cessed October 28, 2020)
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proaches in the context of historical documents infor-

mation retrieval. Section 3 describes in details the two

datasets, and how we created the Michigan dataset.

In section 4, we present our training and evaluation

protocols. We then present in section 5 the baseline

results with and without domain-adaptation. Finally,

we present in section 6 our self-supervised learning ap-

proach.

In summary, our main contributions are the following :

1. We provide a challenging and sizeable papyrus frag-

ments dataset containing 4579 fragments constitut-

ing 1118 papyri, tailored for fragment retrieval tasks.

It is based on the University of Michigan Papyrus

Collection, pre-processed and ready to use.

2. We propose self-supervised Deep Metric Learning

method able to provide useful suggestions of frag-

ment association to papyrologists, that does not need

any manual annotation work.

– We evaluate the proposition on two datasets,

with two convolutional neural networks architec-

tures

– We compare our self-supervised approach with a

domain adaptation approach

– We provide insight on how this could be useful

for papyrologists in a realistic use case

2 Related Works

Information retrieval in the context of historical hand-

written or printed documents has recently received a lot

of attention by the document image processing com-

munity. For instance, a number of competitions were

launched with interests in writer identification, page re-

trieval, content classification and more [40] [10] [6] [5].

Along with these competitions, new datasets are pub-

lished, which constitute an invaluable source of high

quality data on which researchers of the community can

compare their methods with each others. This grow-

ing interest has led to the publication of numerous and

diverse approaches for solving these tasks. While non

Deep Learning based methods are still proposed [5],

there is a growing trend of using the power of Deep

Learning based methods, as in many other computer

science fields [24]. Even with the growing amount of

annotated data available in this field, there is most of

the time not enough data to properly train Deep Learn-

ing models with the goal of generalization. Meaning

obtaining a single model that performs well on differ-

ent datasets and different types of documents. Thus,

the community turns to solutions employing transfer-

learning or domain-adaptation, such as in [43] and [41],

or employing unsupervised [4], semi-supervised [17] or

self-supervised learning [33] [30] [28].

When trying to perform information retrieval, the

specific sub-domain that is used most of the time is

Deep Metric learning (DML) [18]. The idea of this con-

cept is to learn a distance metric given specific data.

The data specifies what samples are “close” (or simi-

lar) or “far away” (or dissimilar) from each other. This

can be implicitly deduced from the labels, two samples

that have the same label can be considered as “close”.

The DML model then learns what features are relevant

to extract, and learns to project these features in a la-

tent space in which similar samples are close together in

the sense of a geometrical distance metric, such as the

Euclidian distance and vice versa. This approach has

the advantage that it does not require the knowledge

of the number of classes in advance to train as in more

“traditional” Deep Learning classification methods. In-

deed, the only labels needed are the similarity for each

given pairs.

Siamese Neural Networks are Deep Metric Learn-

ing approaches that have been originally introduced by

[2] for signature verification. They are a special kind of

neural network architecture in which there are two iden-

tical branches with shared weights during training and

prediction. Each branch outputs a feature vector (em-

beddings) when given an input. Works in the domain

of ancient document making use of Siamese Networks

include [44], which works on ancient manuscript doc-

uments, [31] which works with ostraca fragments, an

unusual support, and [36], working on ancient papyrus

fragments. More recently, [13] introduced Triplet Net-

works, a variant of the Siamese Networks. Instead of

using similar and dissimilar pairs, the network is given

a triplet with an Anchor sample, a Positive sample and

a Negative sample. Optimizing a loss function based

on both the distance between Anchor/Positive and An-

chor/Negative every time the loss is computed is ex-

pected to improve intra-class compactness and inter-

class separability [18] compared to losses in which the

similar and dissimilar examples are considered sepa-

rately. Triplet mining strategies such as batch-hard and

batch-all have also been introduced along with the triplet

losses in order to optimize the learning process by se-

lecting triplets that are most likely to significantly con-

tribute to the convergence at a given training step. Dif-

ferent loss functions on triplets have been proposed,

but the most widely used is the Triplet loss as defined

in [39].

The first appearance of the notion of self-supervised

learning is from [34], where the authors describe a pro-

cess for recognizing vowel sounds using a self-supervised
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learning method. It is usually considered as a subset of

unsupervised learning. In recent years, there has been

many proposals using this approach for feature learn-

ing in a broad sense [26], [32], [37] [16]. When working

in a self-supervised framework, we train the models us-

ing a pretext-task that can be trained from the unla-

beled data itself. The pretext-task must be designed in

such a way that forces the models to learn useful rep-

resentations that relate to the task we actually want to

achieve, the target-task (sometimes called downstream-

task). Examples of pretext-tasks are recovering color

from grayscale images [46], [22] and recovering the rela-

tive positions of patches in an image [8]. When working

with video and/or audio, we can cite visual-audio corre-

spondence verification [21], where one of the two modal-

ities is used as a supervision signal for the other modal-

ity and temporal context structure [29], where the su-

pervision signal is the temporal order of the frames in

a video.

In document information retrieval, the authors of

[4] propose an interesting and promising approach us-

ing clustered SIFT descriptors ([25]) as pretext-task la-

bels for writer retrieval. The authors of [33] generate

simulated-shredded documents to train a model for re-

constructing mixed strip-shredded text documents. An

other interesting approach is proposed in [9], where the

authors apply various random transformations to the

unlabelled source images to create a variety of images

that compose a surrogate class, then used for supervised

training.

3 Datasets

In the field of ancient documents reconstruction, it is

very difficult to find databases of scales sufficient to

train deep neural networks. This is why we chose to

contribute by building our own learning database based

on the Papyrus collection of the University of Michigan.

A significant pre-processing phase is necessary in order

to extract a useful working database for deep learning.

This pre-processing is detailed in section 3.2.

Another useful source of data comes from the 2020

ICFHR HisFragIR20 competition [40] 2. The competi-

tion provides a training set containing about 17222 la-

beled document from scans of ancient documents that

have been artificially torn into 100000 fragments. The

test set is composed of 2732 documents artificially torn

into 20019 fragments

2 https://lme.tf.fau.de/competitions/hisfragir20-
icfhr-2020-competition-on-image-retrieval-for-historical-
handwritten-fragments

The two databases are very different quantitatively

and qualitatively. The Hisfrag dataset is much larger

and the numbers of fragments per papyri is different, as

can be seen in Table 1 and Fig. 4. Moreover, there are

differences in the aspects of the fragments themselves

between the Michigan dataset, the Hisfrag train dataset

and the Hisfrag test dataset, as can be seen on Figs. 5

and 6.

Hisfrag train Hisfrag test Michigan

Nb papyri 17222 2732 1118
Nb fragments 101706 20019 4579
mean frags/papy 5.9 7.3 4.4
std frags/papy 9.7 2.9 6.4

Table 1 Summary of the number of papyri and fragment for
each datasets (after pre-processing)

Fig. 4 Distribution of the number of fragments per papyri
on the Michigan and Hisfrag databases. In red, the Hisfrag
database and in blue the Michigan database

3.1 The Hisfrag database

The Hisfrag database does not need any pre-processing,

it is given by the authors as a collection of images whose

file names encode the labels.

The database was created by building artificial frag-

ments from document images using an algorithm ex-

plained in [40]. As can be seen on Fig. 6, the training

and test sets look very different. This is because the au-

thors chose to make them from different images sources.

The images from which the training set is made come

from the Historical-IR19 [5] dataset, while the images

from which the test set is made are from the University
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Fig. 5 Random sampling of fragments in the Michigan
dataset

Fig. 6 Random sampling of fragments in the Hisfrag train
dataset (left) and the Hisfrag test dataset (right)

Library Basel 3. See Table 1 for numerical details on

both datasets.

This makes for a very challenging dataset, which is

reflected by the results of the competition. Indeed, the

winner of the competition only achieved 22.6% of mean

average precision, a 36.4% Top-1 Accuracy, a Pr@10

of 31.2% and a Pr@100 of 58.9% on the page retrieval

task.

3 https://www.unibas.ch/

3.2 Pre-processing the Michigan database

The Michigan papyrus collection is public domain and

free to use for educational and research purposes under

a Creative Commons Attribution 4.0 license. It contains

a total of 17029 images of documents written in differ-

ent languages. We choose to only use the 14890 Greek

Papyri to avoid the possibility of a language related

bias when learning and because it is by far the most

represented language in the database, the second most

represented being Coptic with only 1140 images.

From these 14890 images, we remove 515 negative

and infrared images. We also remove 8185 duplicate

images that are different images of sub parts of the

same papyrus. At this step, we are left with 6190 color

images.

The fragments can either be already separated in

different images, or be in the same image. In the latter

case, we have to separate them in different images. The

images we get from the collection each contain a ruler

and a color reference scale that we also have to remove.

See Fig. 7 and Fig. 8 for an example of pre-processing.

We also want to know the real size of the papyri (in

centimeters) in order to rescale them all at the same res-

olution (pixel density). As the images of the database

have been taken at different times, with different cam-

eras and different zoom levels depending on the size of

the considered papyrus, we use the ruler and the color

scale (See Fig. 7). Making the assumption that their

physical size is the same across every pictures, we de-

termine that the height (or width, depending on the

orientation) of one color rectangle of the scale is 23mm

by looking at the ruler next to it. Then, we use a simple

color matching heuristic to isolate a color rectangle in

each image, compute the contours of the shape and get

a geometric representation4. At this point, we can de-

termine the orientation and length of the rectangle in

pixels, and simply divide this length by its real length

in centimeters to obtain the pixels per centimeters den-

sity value. We store the pixels per centimeters value of

each image in a json file.

After separating the fragments contained in single im-

ages, we are left with 6607 images of fragments, which

belong to 3823 papyri. Within the remaining papyri, we

are only interested in the ones that are composed of at

least two fragments. As can be seen on Fig. 4, papyri

composed of only one fragment are a significant portion

of the dataset, but cannot be used as real ground truth

data. As in the Hisfrag dataset, we do not include such

papyri in our dataset. In the end, we are left with 1118

4 using OpenCV : https://opencv.org/, accessed November
3, 2020
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papyri composed of 4579 fragments, each papyrus being

composed of at least two fragments.

Fig. 7 Pre-processing the Michigan database : The original
image

Fig. 8 Pre-processing the Michigan database : The frag-
ments extracted into two images

4 Learning a similarity score using Deep

Metric Learning

4.1 Global architecture

In order to learn a similarity score between two in-

puts, we use Siamese Neural Networks. After the fea-

ture extraction parts, we chose to compute the absolute

element-wise difference of the two output vectors - the

embeddings - and to feed this difference into two dense

layers of size 512 that are connected to a sigmoid neu-

ron as the final output. We also tried to concatenate the

output vectors, but noticed it produced a symmetry is-

sue : swapping the input images resulted in different

final output scores. Using dense layers with a sigmoid

output allows us to optimize using the Binary Cross

Entropy loss function. It would also have been possible

to use a loss function that optimizes directly the dis-

tance between the two embeddings, such as the Con-

trastive Loss [11]. As the two approaches coexist in the

literature, we decided to use the first one. The output

corresponds to the probability of the two inputs being

similar (1 : similar, 0 : dissimilar). The loss function

then uses this output to guide the optimizer in tuning

the weights of the network with the goal of minimizing

the score when the two inputs are dissimilar, and max-

imizing it when they are similar. Fig. 9 illustrates the

architecture.

Fig. 9 An abstract illustration of our siamese models

As said in Section. 2, triplet networks and/or triplet

type losses may improve the performance of a model

compared to pure siamese approaches. They have in

particular shown their effectiveness in the people re-

identification task [39]. As the main contribution of this

paper is a method that can be used to work with little to

no labeled data, we decided to focus our testing on the

capacity of our approach to learn in a self-supervised

way with or without fine-tuning, this is why triplet net-
works were not considered and we decided to test two

convolutional networks (VGG16 and ResNet50) and one

architecture : the Siamese Network.

4.2 Testing different architectures

When working with images, the branches of the Siamese

Network most often are convolutional neural networks

with flattened outputs. Thus, we can use any state of

the art convolutional neural network by removing the

final dense layers and keeping only the convolutional

parts (the feature extraction part). In Fig. 9, this means

replacing the two CNN blocs by the same convolu-

tional part of different networks. In this work, we use

the convolutional parts of VGG16 [23] and Resnet50

[12]. After flattening, the dimensions of the 1D layers

are respectively 2048 and 8192. We chose these two ar-

chitectures for their tried and tested feature extraction

abilities, and their convenient availability in the Deep
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Learning framework we work with.

VGG16 Architecture

VGG16 is a conventional (to today’s standards) convo-

lutional neural network stacking convolutional and max

pooling layers with increasing feature maps depth and

fully connected layers at the end. It was designed for

the ImageNet dataset [7] and obtained state of the art

classification accuracy at the time of its publication. It

is still a widely used architecture today, as it is simple,

available in many deep learning frameworks and yields

good results.

Resnet50 Architecture

Deep Residual Networks such as Resnet50 were intro-

duced as a solution to the vanishing gradient problem

that occurs with neural networks getting deeper, limit-

ing the learning abilities of such deep networks. They

work by introducing Residual Blocks to the network ar-

chitecture, which consists in adding a “shortcut” con-

nection between layers. The authors [12] demonstrated

that much deeper networks could be successfully trained

using this method than without.

4.3 Batch constitution

The composition of the mini-batches and the patch

extraction process are critical aspects of our training

methodology. We discuss here why we have to build

balanced mini-batches for training as well as why and

how we select the most relevant patches to represent

the fragments.

Balancing the mini-batches

In order to train the Siamese Networks, we construct

similar input pairs and dissimilar input pairs. During

training, the pairs are fed to the network, a similar-

ity score is outputted which we compare to the ground

truth, 1 if the pair is similar and 0 if the pair is dissim-

ilar, to compute the loss function.

Here, an issue arises : if we build all the possible

pairs, there are far more dissimilar pairs than similar

pairs. This is due to the nature of the data we work

with, there are many classes and few samples in each

classes.

If the network is given an immense majority of dis-

similar pairs during training, it will only learn to always

output the same result [15]. To tackle this issue, we

chose to build balanced mini-batches during training,

i.e. each mini-batch contains as many similar pairs as

dissimilar pairs. This is effectively equivalent to either

over-sampling the minority class or under-sampling the

majority class.

Another solution is to weight the loss function, giv-

ing more importance in the computation of the loss to

the minority class. However, we noticed empirically that

weighing the loss function performed worse than the

balanced mini-batches solution on our data and mod-

els.

Extracting the most relevant patches

We use a patch based approach to train our mod-

els. The idea is to represent a fragment as a collection

of patches which are, hopefully, representative of the

full fragment. This also allows us to control the patch

extraction process to remove as much background and

borders as possible as we can’t rely on the shape of the

fragments (overlapping fibers, degraded contours, miss-

ing fragments ... ). Moreover, this makes for a simpler

way to feed the data to the networks, as all the inputs

are of the same size, while the full images vary a lot

in size and shapes. As well as these data specific and

practical considerations, Bondi et al. [1] suggests that

this approach should yield very similar performance as

using full size images (as long as a sufficient number

of well chosen patches are selected), while greatly re-

ducing the number of features extracted per training

sample making the task of the classifier easier.

We describe here our process for extracting useful

patches from the fragment images. First, we extract as

many non-overlapping patches of size 64x64 pixels as

possible for each image. There is no overlap between

fragments in the data as they are torn papyri. In order

to be representative of the actual data, the patches need

to be non overlapping. This also forces the network not

to learn some kind of local pattern matching. Then, we

rank the patches based on their content. We make the

hypothesis that patches containing more text are more

informative than patches containing more papyrus tex-

ture. Consequently, we designed a score function based

on the proportion of background (i.e. the part of the

image that is not papyrus) and the proportion of text.

The score function is defined as follows :

patchScore =
nbTextPx

totalNbPx
+ (1 − nbBackgroundPx

totalNbPx
)

Where nbTextPx is the number of pixels that con-

stitute text, nbBackgroundPx is the number of pixels

that constitute background and totalNbPx is the total

number of pixels in the patch.

Finally, we select the n patches with the highest

scores. In the end, we have n patches representing each

fragment. We empirically chose n = 5, as it seems to
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be representative enough to obtain decent results, while

not being too large. Indeed, when evaluating the mod-

els, we have to compute the similarity score on all pos-

sible pairs of patches. Choosing a higher n value results

in a quadratic increase of the number of computations,

which quickly results in an enormous amount of compu-

tation time. Fig. 10 illustrates the patch extraction and

labeling process with papyrus-level information avail-

able (we know from which papyrus a fragment comes

from).

Fig. 10 Patches extraction and labeling process with
papyrus-level information. Green and red links indicate re-
spectively a similar pair and a dissimilar pair.

4.4 Evaluation method

We evaluate our models on a hold-out test set that has

never been used during training. As explained previ-

ously, during training we have to balance the batches

for the network to converge. However, when evaluating

the performances of the models for a retrieval task, we

have to consider all the possible fragments pairs in the

test dataset. For each fragment, we compute the score

between this fragment and every other fragments. This

score is computed by taking the average of the scores

of each pair of patches between these two fragments.

With this, we build a 2D “similarity matrix” for all the

fragments of the test set and a similar “ground truth

matrix” telling for each pair of fragments if they be-

long or not to the same papyrus. From these matrices,

we can compute all the metrics described below.

4.4.1 Hisfrag competition metrics

The Hisfrag competition used 4 metrics to evaluate the

performances of the competitors in the retrieval task.

Mean Average Precision (mAP) : Each fragment

is compared with every other fragment : this is a query.

The average precision of a query is defined as follows :

AP =
1

R

S∑
r=1

Pr(r) × rel(r)

Where R is the number of relevant fragments, S is the

size of the query (list of scores), Pr(r) is the precision

at rank r and rel(r) is a function returning 1 if the frag-

ment at rank r is relevant and 0 otherwise. We take the

average of the APs returned for each query to obtain

the Mean Average Precision (mAP). This metric gives

an idea of how good the model is at ranking similar ex-

amples higher than dissimilar examples. A high mAP

means a greater chance of the best ranked fragments

begin relevant fragments.

Top-1 Accuracy : We look at the best ranked frag-

ment for each query. If this fragment is relevant, the

score for this query is 1, otherwise it is 0. We take the

average of this score for each query to get the Top-1 Ac-

curacy. This metric gives an indication of what is the

probability that the best ranked fragment is a relevant

fragment, which is very useful for papyrologists.

Precision at 10 and 100 (pr@10 and pr@100) :

For each (sorted) query, we compute :

Pr@k =
Rk

min(RN , k)

Where Rk is the number of relevant fragments up to

rank k and N is the total number of fragments in the

query. We average the scores of each query to get the

global Pr@k score. The meaning of the min() denom-

inator is that if we retrieve all the relevant fragments,

we want a perfect score (a score of 1), so we divide

by the minimum between the total number of relevant

fragments RN and the size of the query k. This metric

gives an indication of the proportion of relevant frag-

ments retrieved for a query of size k.

4.4.2 Metrics relevance for evaluating the task

Choosing the right metrics for the task we want to eval-

uate is critical in order to get a good idea of the perfor-

mances of the models, particularly when dealing with

a large imbalance between classes. We are in this case,

as there is a much greater number of possible dissimilar

pairs than of possible similar pairs. The metrics chosen

for the Hisfrag competition are relevant and standard

for the retrieval task we are tackling [27]. One can note

that the Average Precision (AP) of a query approxi-

mates the area under curve of the precision/recall curve
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[40], which is a good metric in our context according to

[38]. Precision at k is also relevant, especially from a us-

ability by experts perspective as it gives an indication

of the expected number of relevant associations among

the top k documents.

Conversely, using a ROC plot in this context can be

misleading [38]. Similarly, looking only at the accuracy

for a given decision threshold could be extremely mis-

leading. If we imagine a model that has only learned to

always output that the two images are dissimilar, hav-

ing (for example) 1000 dissimilar pairs and 100 similar

pairs in the test set would still yield an accuracy score

over 90%.

5 Baseline, with and without domain

adaptation

5.1 Baseline results

For computation time reasons, all the results described

in this section were evaluated on subsets of the test

datasets. For each dataset, we use 100 papyri, which

constitute a set of about 800 fragments for the Hisfrag

dataset, and a set of about 450 fragments for the Michi-

gan dataset.

As a baseline, we train and evaluate our models on

the two datasets in a “normal” way, meaning without

fine-tuning nor self-supervised learning. For the Hisfrag

dataset, we split 10000 papyri (≈ 60000 fragments) into

9000 training papyri (≈ 54000 fragments), 1000 valida-

tion papyri (≈ 6000 fragments) and we evaluate on the

separate Hisfrag test set. For the Michigan dataset, we

split 1000 papyri (≈ 4500 fragments) into 800 train-

ing papyri (≈ 3500 fragments), 100 validation papyri

(≈ 450 fragments) and 100 test papyri (≈ 450 frag-

ments) for evaluation. On both datasets, we extract 5

patches of size 64× 64 per fragment. Patches of size 32

are too small to contain full characters, and patches of

size 128 don’t allow us to fit enough images in the GPU

memory for efficient training.

We train for 100 epochs for each model with bal-

anced mini-batches of size 128. The optimizer is Adam

[19] with a decreasing learning rate (starting at 0.001,

ending at 0.00005). In addition to looking at training

and validation accuracies during training, we compute

a histogram of the scores returned by the model at each

epoch on a validation batch (see Fig. 11). This allows

a quick visual understanding of how good the model

is at separating similar pairs from dissimilar pairs. In

the example on Fig. 11, the model learned to correctly

attribute high scores to similar pairs, and low scores to

dissimilar pairs most of the time.

mAP top-1 pr@10 pr@100

His
VGG16 0.67 0.87 0.75 0.92
Resnet50 0.61 0.83 0.71 0.82

Mich
VGG16 0.41 0.68 0.47 0.85
Resnet50 0.54 0.67 0.59 0.92

Table 2 Baseline results. Here, we directly train for the task
of determining if two fragments come from the same papyrus,
therefore using the papyrus-level information available. The
results were computed on about 800 fragments from the His-
frag dataset, and about 450 fragments from the Michigan
dataset.

Looking at Table 2, we see that the models perform

differently depending on the datasets. VGG16 seems

to work best with the Hisfrag dataset while Resnet50

seems to work better on the Michigan dataset. Glob-

ally, the results are quite worse when working with the

Michigan dataset than with the Hisfrag dataset, even

though the data seems more challenging because of the

differences between the global aspect of the fragments

in the train and test sets. This is most likely an effect

of the magnitude of data used for training the models,

obviously more data is better.

Fig. 11 Example of histogram of the scores computed on a
batch (size 128) of the validation set during training of the
VGG16 model on the Hisfrag dataset. There are actually two
histograms. The red and blue histograms correspond to scores
that were attributed to sample pairs that where respectively
similar and dissimilar

The VGG16 based model trained and evaluated on

the Hisfrag dataset reaches an average top-1 score of

0.87. This means that on average, for a given query, the

probability of the best ranked fragment being relevant

is 87%. To put this into perspective, the expected prob-

ability of the best ranked fragment being relevant when

ranking randomly is 7.3
800 = 0.009125 ≈ 0.9%. With 7.3
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being the average number of fragments per papyrus on

the Hisfrag test set, and 800 being the number of frag-

ments considered in this test.

The relatively low mAP scores indicate that there

is a non-negligible amount of non-relevant fragments

that are ranked better than relevant-fragments. A high

false positive rate is expected by the sheer number of

comparisons that are being computed. Indeed, with 800

fragments, we perform 800× 799 = 639200 predictions.

Even assuming a theoretical quasi-perfect model that

would mistakenly give a high relevance score to a non-

relevant fragments pair in 0.1% of the cases, we would

still have 639200 × 0.001 = 639.2 false positives. This

is why we are more interested in the top-1 and pr@k

scores, as they are a better reflection of the real-world

usability of the models by papyrologists trying to re-

construct the papyri.

In order to give a correct interpretation of the pr@10

and pr@100 scores, we have to remember that, for ex-

ample, the Hisfrag test subset we compute the scores

on is of size 800. Thus, a single query is made of 799

comparisons (we obviously don’t compare the fragment

to itself). On average, we expect 7.3 comparisons (see

Table 1) to be positive (i.e. the compared fragment is

relevant).

Given the definition of the pr@k metric explained in

section. 4.4.1, the pr@k score could have two meanings.

On the one hand, if k is inferior to the actual num-

ber of relevant fragments to be retrieved, we are com-

puting the proportion of relevant fragments retrieved

with respect to k. In this case, a score of 1 means the

first k fragments retrieved are all relevant, but other

relevant fragments could exist on lower ranks. On the
other hand, if k is superior to the actual number of

relevant fragments to be retrieved, we are computing

the proportion of relevant fragments retrieved with re-

spect to the actual number of relevant fragments to be

retrieved. In this case, a score of 1 means that all the

possible relevant fragments have been retrieved within

the first k fragments, but non-relevant fragments could

exist within these k fragments.

Going back to the results presented on Table 2, a

pr@10 score of 0.75 on the Hisfrag dataset with the

VGG16 based model means that within the 10 best

ranked fragments, we have recovered on average 75% of

all the relevant fragments (assuming 7.3 fragments per

papyri on average). We can give the same interpretation

for the pr@100 score of 0.92, within the 100 best ranked

fragments, we have recovered on average 92% of all the

relevant fragments.

Fig. 12 shows four samples of queries results on the

Hisfrag test database. We can see that the model seems

to work better on fragments that are less degraded

Fig. 12 Examples of 4 queries up to rank 10. For each query
(in columns), the first fragment (outlined in blue) is the query
fragment and the others are the 10 best ranked fragments by
decreasing score. Outlined in green and red are respectively
relevant and irrelevant fragments. The images of the frag-
ments have been resized without keeping their aspect ratio
for this visualization.

(columns 1 and 3). This is not surprising, as we see

on Fig. 6 that the Hisfrag training set is mainly com-

posed of less degraded fragments (first column), while

the Hisfrag test set contains a majority of more de-

graded fragments.
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5.2 Using a model trained on another dataset

A common approach when working with a small dataset

is to use the “learning power” of a larger dataset to

pre-train a model, then fine-tune this model with data

from the smaller dataset. The goal is to learn robust

low level feature extractors (the first convolutional lay-

ers) on the large dataset, and retrain the classification

part (the fully connected layers) using some of the data

we are interested in. In general, this is called transfer-

learning, or knowledge transfer. For example, it is very

common to “kickstart” the learning process ([35], [45],

[14]) by using a model pre-trained on ImageNet [7], tak-

ing advantage of the robust convolution kernels learned

from such a large dataset. The authors of [41] report im-

proved performance when using transfer learning from

ImageNet in the context of content-based image re-

trieval. After some experiments, we could not get the

models to converge as well using pre-trained with Im-

ageNet weights as when training from scratch. We de-

cided to leave it aside for now, as this is an optimiza-

tion whose absence does not impact the validity of the

approach. We are more interested in the sub domain

of transfer-learning that is domain-adaptation. This is

the same idea, but using data from the same domain

to create the pre-trained model to fine tune with our

data. Domain-adaptation techniques can be unsuper-

vised, semi-supervised of fully supervised depending on

the availability and amount of target data. Different

approaches exist, including iteratively labeling the tar-

get data with ”pseudo-labels” [42] and using adversarial

learning where the the features from both source and

target dataset are pushed into a common latent space

where they are optimized to be indistinguishable [3].

We first evaluate the ability of each model pre-trained

on the Hisfrag dataset to predict on the Michigan dataset

as is. We take the models trained in section 5.1 on the

Hisfrag dataset and apply our evaluation protocol on

the Michigan dataset in the same conditions. We see on

the first two lines of Table 3 that this simple approach

yields much worse results than when predicting using a

model trained with the Michigan dataset as shown in

the baseline results in Table. 2.

Then, we select a small number of annotated data

(50 papyri, ≈ 220 fragments) from the Michigan dataset

to fine tune the pre-trained models (domain-adaptation).

We chose to use a small number of papyri because in

order to be useful to papyrologists, the methods we pro-

pose have to require as little human labeling work as

possible. This approach would not be very useful in a

real case scenario if the experts had to label thousands

of their images for the method to work. For the sake of

completeness however, we also applied the fine-tuning

process with 1000 Michigan papyri. We initialize the

networks with the weights from the pre-trained mod-

els, freeze the convolutional layers and start training

with 50 and 1000 papyri. We then evaluate in the same

conditions as before.

Here, the results improved compared to above, but

are still quite far from the baseline. Interestingly, and

contrary to what could have been expected, performing

fine-tuning with as many papyri as in the baseline did

not improve the results here, but rather degraded them

quite significantly for both architectures (third line of

Table 3). Indeed, with a maximum mAP of 0.45 with

Resnet50, there is almost a 10 points reduction of per-

formance compared to the baseline mAP of 0.54%. We

can also note that going from 50 to 1000 papyri led

to a marginal improvement with VGG16, but a signifi-

cant one with Resnet50. Further study would be needed

to understand such different behaviours from the two

architectures. However, as this approach requires ac-

cess to a large annotated dataset for pre-training and

non negligible expert annotation work to generate the

data for fine-tuning, we chose to explore another ap-

proach. In the next section, we show that we can get

even closer to the baseline by training the models in

a self-supervised way, removing these two constraining

requirements.

mAP top-1 pr@10 pr@100

no fine tuning
VGG16 0.21 0.37 0.29 0.59
Resnet50 0.26 0.47 0.31 0.63

fine tuning
VGG16 0.34 0.60 0.41 0.79
Resnet50 0.31 0.56 0.37 0.72

fine tuning 2
VGG16 0.35 0.62 0.42 0.81
Resnet50 0.45 0.74 0.49 0.86

Table 3 Evaluating the models trained on the Hisfrag
dataset on the Michigan dataset without and with fine-
tuning. First line without fine tuning, second line is fine-tuned
with 50 papyri and last line is fine-tuned with 1000 papyri.
(fine tuning 2)

6 Self-supervised learning

In this section, we use the terms papyrus-level informa-

tion and fragment-level information. Having papyrus-

level information available indicates that we know the

“real” ground truth, meaning that we know from which

papyrus comes a given fragment (and consequently, we

know from which papyrus comes a given patch). Hav-

ing only fragment-level information means that we only
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know from which fragment comes a patch.

The baseline results presented before assume that

ground truth at the papyrus-level is available for train-

ing. In a real-world situation however, papyrologists

working on new-found papyrus fragments need solu-

tions that requires as little manual annotation as pos-

sible for these solutions to be useful. We explore the

possibility of training the models in a context where no

papyrus-level ground truth is available. We use a self-

supervised learning approach. In this domain, we call

the pretext task the task we are solving during train-

ing, which is different from the target task that is the

task we ultimately want to solve. Solving the pretext

task needs to require an understanding of the data that

will be relevant to solve the target task [20]. The power

of this approach comes from the possibility of design-

ing a pretext task from the data itself, without addi-

tional labeling. Here, our pretext task is to determine

if two patches come from the same fragment, and our

target task is to determine if two fragments come from

the same papyrus. To build the pretext task dataset,

we label the patches with the identifiers of the individ-

ual fragments, rather than from the papyri themselves

because this information is unknown in this case (see

Fig. 13). This has the side effect of mislabeling a small

portion of the possible pairs with respect to the actual

ground truth (dotted red lines on Fig. 13).

We first estimate the amount of mislabelings in-

duced by the self-supervised ground truth generation

approach. We then experiment with different versions

of this approach, with an emphasis on being true to the

real conditions in which the papyrologists would use the

models.

6.1 Estimating the quantity of mislabelings

Looking at Fig. 13 we see that patches 1 and 2 belong

to the same fragment, so they are considered “similar”

(green link) while patches 1 and 3 belong to different

fragments so they are considered dissimilar (dotted red

link) even though the two fragments come from the

same papyrus. Patches 4 and 5 are rightly considered

dissimilar because they come from different fragments

that belong to different papyri.

We build our balanced training batches by first sam-

pling a random patch in the whole pool of patches.

Then, we sample a similar patch (a patch coming from

the same fragment) half of the time, and a dissimilar

patch half of the time. When sampling the dissimilar

patch, it is possible to sample a patch coming from the

same papyrus, but a different fragment, this would be

Fig. 13 Patches extraction and labeling process in “self-
supervised learning mode”. Green and red links indicate re-
spectively a similar pair and a dissimilar pair. The dotted red
lines indicate that these links actually are labeling errors with
respect to the ground truth.

a case of a mislabeled pair (e.g. patches 1 and 3 in Fig.

13). We can compute an estimation of how many pairs

will be statistically mislabeled this way:

Let’s take 10000 papyri in the Hisfrag train dataset.

According to Table 1, we will get on average 10000 ×
5.9 = 59000 fragments because each papyrus contains

5.9 fragments on average. If we extract 5 patches per

fragment, we have on average 5 × 5.9 = 29.5 patches

per papyrus, and in total, we have 5 × 59000 = 295000

patches. The probability of sampling a patch coming

from the same papyrus but not from the same fragment

(mislabeling) is the following :

Pmis =
29.5 − 5

295000 − 5
= 8.3e− 05

With a batch of size 128, we sample 64 dissimilar pairs,

so when creating a batch, the probability of it contain-

ing a mislabeled pair is :

Pmis−batch = Pmis × 64 ≈ 0.005

As this probability is very low, we hypothesize that it

should not affect the training performances much.

6.2 Self-supervised learning vs domain adaptation

First, we train each model from scratch with fragment-

level ground truth, however we evaluate at the papyrus-

level, as before. We evaluate in the same way as with

previous experiments from section 5.1, only, the models

never had access to papyrus-level ground truth during

training. With this experiment, we evaluate the abil-

ity of the models to generalize the target-task from the

pretext-task. That is, given only fragment-level informa-

tion, can the models learn to determine if two fragments
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belong with each other. Table 4 shows the results with

the models trained on the same amount of data as sec-

tion 5.1 Table. 2.

mAP top-1 pr@10 pr@100

His
VGG16 0.38 0.73 0.47 0.72
Resnet50 0.41 0.51 0.48 0.78

Mich
VGG16 0.38 0.61 0.43 0.84
Resnet50 0.30 0.43 0.39 0.76

Mich 2
VGG16 0.32 0.32 0.38 0.78
Resnet50 0.43 0.75 0.47 0.84

Table 4 Self-supervised learning results. The models were
trained with fragment-level information only, and evaluated
on the papyrus-level target-task with 100 papyri. First line on
the Hisfrag dataset, second line on the Michigan dataset. The
third line corresponds to the Hisfrag model fine-tuned using
only fragment-level information from the Michigan dataset.

It is not surprising to obtain worse results in self-

supervised mode than when training with the papyrus-

level information as in section 5.1 (on average, −0.19 for

the mAP, −0.19 for the top-1, −0.19 for the pr@10 and

−0.05 for the pr@100 ) as the latter directly optimizes

for the target-task. However, it is interesting to note

that the self-supervised approach performs a little bit

better than the domain adaptation approach fine tuned

with 50 papyri (≈ 220 fragments) with papyrus-level

information reported in Table. 3. Indeed, the approach

yielding the results of Table. 3 required a pre-training

step with a large dataset, then a fine-tuning step on 50

annotated papyri, while the self-supervised approach is

standalone (as it does not require pre-training on an-

other annotated dataset) and does not require any an-

notation on the data we want to predict on. We see

again that the Hisfrag dataset seems to perform better

due to difference in the amount of training data, but

interestingly the gap in performance with the Michigan

dataset is smaller. This could be an effect of the differ-

ences in aspect between the training and testing data

of the Hisfrag dataset which is exacerbated here.

We can notice another interesting thing when com-

paring the third line of Table. 4 with the third line of

Table. 3. On Table. 4, the same pre-trained model is

used as in Table. 3, but the fine-tuning is done using

only fragment-level information. The performances ob-

tained are very close (for Resnet50 for example, −0.02

for the mAP, −0.01 for the top-1 accuracy, −0.02 for

the pr@10 and −0.02 for the pr@100 ), meaning that

in this case, it is a lot more interesting to use the

self-supervised approach combined with the pre-trained

model on the Hisfrag dataset rather than having to an-

notate 1000 papyri.

Fig. 14 shows sample queries on the Hisfrag test

dataset using the Resnet50 model trained on Hisfrag

Fig. 14 Examples of 4 queries up to rank 10. For each query
(in columns), the first fragment (outlined in blue) is the query
fragment and the others are the 10 best ranked fragments by
decreasing score. Outlined in green and red are respectively
relevant and irrelevant fragments. The images of the frag-
ments have been resized without keeping their aspect ratio
for this visualization.

(with 0.41 mAP). We see on these samples that the

query images are challenging in the sense that they

are quite degraded, but the self-supervised model still

manages to rank in the top-10 at least one matching

fragment (framed in green) from the 799 fragments in
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the query. Moreover, even the false positives (framed in

red) actually look quite similar to the query fragment

(at least to a moderately trained eye), which testifies

to the challengingness of the data.

6.3 Exploring a more realistic use case

The most useful approach for papyrologists would be

to be able to learn a model in a self-supervised fashion

on the unlabeled data they want to work on, and to

extract predictions on this very data. Contrary to the

previous experiments, we experiment here with training

from scratch with different fragments corpus sizes, and

predicting on the same data the models were trained on.

Here we are not trying to estimate how well the model

has generalized on the target-task, but rather how it can

infer papyrus-level matches with limited fragment-level

only information as training examples.

We have to keep in mind two effects working against

each other. The more data we use for training, the bet-

ter the models should perform, but also the harder the

retrieval task is. According to the results reported in

Table. 5, on the Michigan dataset, there seems to be a

“sweet spot” for the VGG16 model around 400 frag-

ments where it had enough data to make sensible pre-

dictions, and a sufficiently low number of retrieval can-

didates. When increasing the number of fragments, we

notice a drop in retrieval performance. This is an effect

of the lack of training data relative to the scale of the

retrieval task, we can compare the last two lines of Ta-

ble. 5 with the last two lines of Table. 4 to corroborate

this, as in both cases we evaluate on 100 papyri. In the

latter, the models were trained using 800 papyri which

amounts to about 3500 fragments, which is almost 5

times more data as in the former.

With an average top-1 accuracy score of 0.70 with

VGG16 when using about 400 fragments, this configu-

ration seems to be the most promising for papyrologists

who want to use the self-supervised approach. How-

ever, it seems that this approach does not scale well

with the increase of available data, as the additional

“learning power” it provides does not compensate for

the increased retrieval difficulty it provokes.

For the sake of completeness, we do the same experi-

ment (Table 6) with data from the Hisfrag train dataset

to see how the approach performs on a dataset with

different properties (different kind of documents, differ-

ent number of fragments per papyri, different fragment

sizes etc). We see that with 25 papyri, the approach

yields good results, with a top-1 accuracy of 0.75 and a

pr@100 of 0.96. Such a high pr@100 score means that

almost all fragments that had to be retrieved within the

542 fragments of the query have been ranked in the top

paps frags map top-1 pr@10 pr@100

vgg 25 213 0.38 0.61 0.43 0.90
res 25 213 0.33 0.41 0.44 0.83

vgg 50 394 0.44 0.70 0.52 0.87
res 50 394 0.27 0.40 0.36 0.71

vgg 75 651 0.23 0.4 0.29 0.63
res 75 651 0.23 0.27 0.31 0.67

vgg 100 735 0.12 0.21 0.15 0.44
res 100 735 0.19 0.25 0.27 0.56

Table 5 Realistic use case on the Michigan dataset. The
models are trained in self-supervised mode and the scores are
computed on the same data, but with papyrus-level ground
truth.

100, which is a very interesting property. However, it is

difficult to compare the two experiments, as the number

of fragments per papyri is higher in the Hisfrag dataset

than in the Michigan dataset. This first means that for

the same number of papyri, there is more training data

available on the Hisfrag dataset, which improves the ro-

bustness of the trained model. This also means that for

the same number of fragments, there is a lower prob-

ability of mis-association on the Hisfrag dataset than

on the Michigan dataset. But globally, with more frag-

ments more comparisons are computed, which increases

the likelihood of false positives due to the non-perfect

accuracy of the models. Given the results we could ob-

tain on these two datasets which contain different kinds

of documents, different numbers of fragments per docu-

ment and different average fragment sizes, we feel confi-

dent in saying that the approach should transpose well

to other datasets. Further study would be needed to

determine what factors in the data influence the most

the quality of the predictions in order to provide more

precise guidelines depending on data specifics.

paps frags map top-1 pr@10 pr@100

vgg 25 542 0.63 0.75 0.66 0.96
res 25 542 0.57 0.64 0.61 0.91

vgg 50 832 0.39 0.59 0.42 0.8
res 50 832 0.5 0.57 0.58 0.86

vgg 75 1479 0.31 0.54 0.34 0.66
res 75 1479 0.44 0.56 0.52 0.78

vgg 100 1912 0.37 0.64 0.44 0.7
res 100 1912 0.51 0.62 0.6 0.81

Table 6 Realistic use case on the Hisfrag dataset. The mod-
els are trained in self-supervised mode and the scores are
computed on the same data, but with papyrus-level ground
truth.
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We argue that this approach can be used as a match-

ing suggestion tool with expert supervision, as even the

worst results we obtained still significantly reduces the

manual search space for the expert, with 15% of the

relevant fragments in the top-10 and 44% of the rel-

evant fragments in the top-100 (second to last line in

Table. 5), avoiding the need for manually analyzing 735

fragments in order to retrieve some relevant fragments

in this case.

On this topic, our research is part of the GESHAEM

project, a five years scientific research initiative funded

by the European Research Council (ERC) aiming at

studying the Jouguet collection of the Sorbonne 5 for

a better understanding of the early Ptolemaic admin-

istration. The process of digitizing and reconstructing

the papyri of this collection is still in progress, so we

would like to provide the papyrologists working on it

with matching suggestions using the methods we devel-

oped. The quantity of data that will be available after

the digitization campaign should be of the same order

of magnitude (less than 1000 fragments) as the exper-

iments that worked best here. It will be interesting to

see if our predictions are relevant to the papyrologists

and if they provide useful insights to them.

7 Conclusion and future works

In this article, we show that using a Deep Metric Learn-

ing approach is a relevant solution for the fragments re-

trieval problem. We first produced baseline results mak-

ing use of the papyrus-level information available (train-

ing directly on the target-task) with large amounts of

data. We obtained our best results with the convolu-

tional part of VGG16 on the Hisfrag dataset, with a

top-1 accuracy of 0.87. On the Michigan dataset, the

scores were lower due to a much lesser quantity of train-

ing data available. We then explored two ways in which

such method can be used in a realistic scenario, trying

to keep the human annotation work to a minimum. We

showed that the self-supervised approach we propose

outperforms the domain adaptation approach, while re-

quiring no human annotation work and no pre-trained

model, with a best top-1 accuracy of 0.73 on the Hisfrag

dataset. Finally, we experimented with using the self-

supervised approach in a use case where papyrologists

only have access to the unlabelled data they want to re-

construct. The results we obtained suggest that this ap-

proach should provide useful suggestions for papyrolo-

gists wanting to reconstruct new-found fragments, with-

5 http://www.papyrologie.paris-
sorbonne.fr/menu1/jouguet.htm

out having to manually annotate anything, depending

on the properties and the quantity of data available.

In the future, we would like to conduct more thor-

ough experiments on the impact that the patch selec-

tion process has on training the self-supervised mod-

els. Indeed, as [1] suggests, the whole process relies on

the representativity of the patches chosen to represent

the fragment, selecting informative patches within the

fragment (regions that look the most similar or that

look the most dissimilar) could help the self-supervised

model learn more relevant features. The method for de-

termining that two fragments are similar based on the

scores computed on the patches could also be an in-

teresting subject. Right now we use an average of the

scores, but we could add a filtering phase to take out-

liers into account or imagine more sophisticated algo-

rithms. Similarly, it would be interesting to work on

some kind of iterative process to update our rankings

based on the coherence of the associations, as new pre-

dictions are available, and possibly by taking into ac-

count expert input. We are also interested in automatic

batch-level data augmentation at training time on chal-

lenging samples in order to improve training when little

data is available.
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