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This paper deals with the design of output feedback event-triggered controllers equipped with generalized holding devices. Both emulation and co-design settings are explored. Specifically, a robust observer-based event-triggered controller with a dwell time logic is proposed to achieve closed-loop stability. The closed-loop system is modeled as a hybrid system and analyzed via Lyapunov theory for hybrid systems. Sufficient conditions in the form of matrix inequalities are given to ensure global exponential stability and input-to-state stability with respect to measurement disturbances for the closed-loop system. The proposed conditions enable the design of the controller gains, event-triggering mechanism, and of general holding devices, thereby including classical zeroorder-holder devices. Convex optimization schemes address the implicit objective consisting of reducing the number of updates of the control input. The effectiveness of the conditions are illustrated through an illustrative example borrowed from the literature.

Introduction

Background

An effective way to deal with computational and communication resources in control and network control systems consists of exploiting event-triggering mechanisms to reduce control updates and measurements transmissions. In particular, differently from traditional periodic implementations, the use of eventtriggered schemes enables to update control inputs only when specific statedependent events occur; see, e.g., [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF], [START_REF] Åström | Event based control[END_REF], [START_REF] Heemels | Periodic event-triggered control for linear systems[END_REF], [START_REF] Tallapragada | On event triggered tracking for nonlinear systems[END_REF], [START_REF] Hetel | Recent developments on the stability of systems with aperiodic sampling: An overview[END_REF] and references therein. One of the main challenges in the design of event-triggered control architectures consists of jointly design a continuous-time control law and a triggering rule with the objective of reducing the number of control input updates, while preserving stability and/or performance. Another fundamental challenge in the design of event-triggered architectures consists of ensuring a strictly positive lower bound in between transmission events, i.e., the so-called event separation property [START_REF] Borgers | Event-separation properties of eventtriggered control systems[END_REF], which is paramount for implementation.

Due to their inherent nature, event-triggered control architectures heavily rely on the use of measurements. Therefore, when only limited information is available, as in the case of output feedback control, the problem of eventtriggered control becomes visibly harder. In particular, when the plant state is not fully available, the avoidance of Zeno behaviors in event-triggered control architectures turns out to be a major problem. For this reason, the design of output feedback event-triggered controllers has attracted a lot of attention in the community; see, e.g., [START_REF] Postoyan | A framework for the observer design for networked control systems[END_REF], [START_REF] Abdelrahim | Stabilization of nonlinear systems using event-triggered output feedback controllers[END_REF], [START_REF] Abdelrahim | Co-design of output feedback laws and event-triggering conditions for the L 2 -stabilization of linear systems[END_REF], [START_REF] Seuret | A nonsmooth hybrid invariance principle applied to robust event-triggered design[END_REF], [START_REF] Moreira | Observer-based event-triggered control in the presence of cone-bounded nonlinear inputs[END_REF], [START_REF] Ghodrat | On the event-triggered controller design[END_REF], just to mention a few. In these papers, stability analysis is addressed via the use of Lyapunov theory for hybrid dynamical systems or impulsive systems. A common feature found in all the works mentioned so far is the use of zero-order-holder devices to generate inter-event control signals. In this paper, we propose an alternative route and consider the use of generalized holding devices that can be tuned to improve the behavior of the closed-loop system. The potential benefit of using generalized holding devices to enlarge inter-event times has been already highlighted in [START_REF] Lunze | A state-feedback approach to event-based control[END_REF], [START_REF] Garcia | Model-based event-triggered control for systems with quantization and time-varying network delays[END_REF], [START_REF] Postoyan | A framework for the eventtriggered stabilization of nonlinear systems[END_REF]. Similar considerations appeared in our prior work on observer design in the presence of sporadic measurements [START_REF] Ferrante | L 2 state estimation with guaranteed convergence speed in the presence of sporadic measurements[END_REF].

Contributions

In this work, we present a systematic approach for the design of eventtriggered control architectures with generalized holding devices and show how this may lead to a dramatic improvement in reducing the number of update events. More precisely, we consider a setup in which controller and sensors are co-located, while the communication between plant and controller occurs only at some time instances that need to be scheduled. Similar setups have been already considered in [START_REF] Heemels | An introduction to eventtriggered and self-triggered control[END_REF][START_REF] Heemels | Model-based periodic eventtriggered control for linear systems[END_REF][START_REF] Forni | Event-triggered transmission for linear control over communication channels[END_REF][START_REF] Tarbouriech | Observer-based event-triggered control co-design for linear systems[END_REF]. We assume that the plant is equipped with a general holding device that is able to generate a control signal in between communications events. In this setting, we consider an event-triggered controller hinging upon a classical observer-based controller. The proposed triggering mechanism relies on the plant state estimate provided by the observer and on the state of a copy of the holding device at the plant end to generate control input transmission events. For the proposed architecture, our main contributions are as follows:

• We provide general sufficient conditions for closed-loop exponential stability. To this end, we make use of Lyapunov theory for hybrid systems in the framework in [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, Stability, and Robustness[END_REF].

• By relying on the proposed general sufficient conditions, we provide quadratic conditions in the form of matrix inequalities to ensure closed-loop global exponential stability;

• We show that the satisfaction of the above quadratic conditions ensures that the closed-loop system is input-to-state stable with respect to measurement noise;

• Building upon the use of convex optimization techniques, some optimal designs are proposed for the considered controller with the objective of reducing the number of transmission events. Both emulation and co-design scenarios are addressed.

The effectiveness of the methodology, as well as some interesting comparisons are illustrated in a numerical example borrowed from the literature.

Paper outline

The paper is organized as follows. Preliminaries on hybrid systems and the notation considered in the paper are included in Section 2. In Section 3, the class of systems and controllers under consideration together with the eventtriggering mechanism are described. Both emulation and co-design problems are stated and then some structural properties of the closed-loop system are summarized. In Section 4, sufficient conditions for global exponential stability of the closed-loop system are presented and particularized to special case of quadratic Lyapunov functions. Section 5 proposes the main results to deal first with the emulation problem and next with the co-design problem. Section 6

shows that the closed-loop system enjoys some robustness properties in presence of measurement noise. In Section 7, the approach proposed is illustrated through an example of the literature, allowing to provide some interesting comparisons.

Notation and Preliminaries

Notation

The symbol N denotes the set of nonnegative integers, R ≥0 represents the set of nonnegative real numbers, R n is the n-dimensional Euclidean space, and R n×m represents the set of the n × m real matrices. The symbol S n + stands for the set of n × n symmetric positive definite matrices, while D n + denotes the set of n× n diagonal positive definite matrices. The identity matrix is denoted by I.

For a matrix A ∈ R n×m , A T denotes the transpose of A, spec(A) is the spectrum of A, A is the spectral norm of A, and, when n = m, He A = A + A T . For a vector x ∈ R n , |x| denotes the Euclidean norm. We use the equivalent notation for vectors (x, y) = [x T y T ] T . For a symmetric matrix, A, positive definiteness (negative definiteness) and positive semidefiniteness (negative semidefiniteness) are denoted, respectively, by A ≻ 0 (A ≺ 0) and A 0 (A 0). In partitioned symmetric matrices, the symbol • stands for symmetric blocks. The matrix n i=1 A i is the block-diagonal matrix having A 1 , A 2 , . . . , A n as diagonal blocks.

The symbol •, • denotes the standard inner product in R n . Given a symmetric matrix Q ∈ R n×n , we use the notation cone

+ (Q) := {x ∈ R n : x T Qx ≥ 0} and cone -(Q) := {x ∈ R n : x T Qx ≤ 0}, while λ max (Q) and λ min (Q) stand,
respectively, for the largest and smallest eigenvalue of Q. Given x ∈ R n and a nonempty set A ⊂ R n , the distance of x to A is defined as

|x| A = inf y∈A |x -y|.
Given a set S, we denote by co S the convex-hull of S and by S its closure. The symbol S 1 × S 2 denotes the Cartesian product of the sets S 1 and S 2 . Given a set S ⊂ X × Y , we define Π X (S) := {x ∈ X : (x, y) ∈ S}. The symbol T S (x) stands for the tangent cone of the set S ⊂ R n at x ∈ S; see [21, Definition 5.12, page 103]. Given a locally Lipschitz continuous function V : R n → R, we denote by ∂V (x) ⊂ R n the Clarke generalized gradient of V at x. The symbol K ∞ stands for set of functions from R ≥0 to R ≥0 that are continuous, zero at zero, strictly increasing, and unbounded. Let β : R ≥0 × R ≥0 → R ≥0 , we say that β ∈ KL if for all r ⋆ , s ⋆ ∈ R ≥0 one has that: r → β(r, s ⋆ ) is nondecreasing, s → β(r ⋆ , s) is nonincreasing, lim r→0 + β(r, s ⋆ ) = 0, and lim s→∞ β(r ⋆ , s) = 0.

Preliminaries on hybrid systems

We consider hybrid systems with state x ∈ R n of the form

H    ẋ = f (x) x ∈ C x + = g(x) x ∈ D (1) 
In particular, we denote f : R n → R n as the flow map, C ⊂ R n as the flow set, g : R n → R n as the jump map, and D ⊂ R n as the jump set. A set 

E ⊂ R ≥0 × N is a hybrid time domain if it
sup j E = sup{j ∈ N : ∃t ∈ R ≥0 s.t. (t, j) ∈ E}. A function φ : dom φ → R n is
a hybrid arc if dom φ is a hybrid-time domain and φ(•, j) is locally absolutely continuous for each j. A hybrid arc φ is a solution to (1) if it satisfies the dynamics of [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF]. A solution φ to ( 1) is maximal if it cannot be extended and is complete if dom φ is unbounded. In particular, given S ⊂ R n , we denote by S H (S) the set of maximal solutions φ to H with φ(0, 0) ∈ S; see [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, Stability, and Robustness[END_REF] for more details on solutions to hybrid systems.

In this paper, we consider the following notion of exponential stability for the hybrid system H in (1).

Definition 2.1 (Global exponential stability [START_REF] Teel | Lyapunov-based sufficient conditions for exponential stability in hybrid systems[END_REF]). Let A ⊂ R n be closed. The set A is said to be globally exponentially stable ( GES) for H if there exist positive real numbers κ, λ, such that every maximal solution φ to H is complete and

|φ(t, j)| A ≤ κe -λ(t+j) |φ(0, 0)| A ∀(t, j) ∈ dom φ (2) 

♦

In this paper, we also consider the following specific class of hybrid systems with inputs:

H η    ẋ = f (x, η) (x, η) ∈ C η x + = g(x) (x, η) ∈ D η (3) 
where η ∈ R nη , f : R n+nη → R n , C η ⊂ R n+nη , g : R n+nη → R n , and D η ⊂ R n+nη . We say that η : E → R nη is a hybrid input if E is a hybrid time domain and for all j, t → η(t, j) is Lebesgue measurable and locally essentially bounded.

A hybrid arc φ and a hybrid input η with dom η = dom φ is a solution pair to

(3) if it satisfies its dynamics; see [START_REF] Cai | Characterizations of input-to-state stability for hybrid systems[END_REF] for a formal definition of solution pair to hybrid systems with inputs. We consider the following notion of input-to-state stability for (3).

Definition 2.2. Let A ⊂ R n be closed. Hybrid system (3) is said to be input-tostate stable ( ISS) with respect to η relatively to the set A if there exist β ∈ KL and µ ∈ K ∞ such that every maximal solution pair (φ, η) to (3) is complete and for all (t, j) ∈ dom φ it satisfies:

|φ(t, j)| A ≤ β(|φ(0, 0)| A , t + j) + µ( η ∞ ) (4) 

♦

The L ∞ norm of (t, j) → η(t, j) is defined as:

η ∞ := lim T →T ⋆ max ess. sup |η(s, k)| (s,k)∈dom η\Γ(η),s+k≤T , sup |η(s, k)| (s,k)∈Γ(η),s+k≤T
where Γ(η) := {(t, j) ∈ dom η : (t, j + 1) ∈ dom η} and T ⋆ := sup{t + j : (t, j) ∈ dom η}; see [START_REF] Cai | Characterizations of input-to-state stability for hybrid systems[END_REF] for further details.

Modeling and problem formulation

Description of the setup and hybrid modeling

We consider the following LTI plant:

P    ẋp = Ax p + Bu p y p = Cx p (5) 
where x p ∈ R np is the plant state, u p ∈ R nu is the plant control input, and 

y p ∈ R ny a measured output. Matrices A ∈ R np×np , B ∈ R np×nu
y c = K xp (6) 
where y c ∈ R nu is the controller output, u c ∈ R ny is the controller input, and K ∈ R nu×np and L ∈ R np×ny are some gains to be designed to ensure closedloop asymptotic stability. When the controller and the plant are colocated, the interconnection between plant and controller is realized by simply setting u p = y c and u c = y p . In this paper, we consider a setup in which the controller and sensors are colocated, i.e., the controller has access to the plant output y p , while the communication between plant and controller occurs only at some sporadic time instances to be scheduled. This prevents from continuously feeding the plant using the controller output y c .

Remark 1. The setup considered in this paper has been already studied in the literature; see, e.g., [START_REF] Heemels | An introduction to eventtriggered and self-triggered control[END_REF][START_REF] Heemels | Model-based periodic eventtriggered control for linear systems[END_REF][START_REF] Forni | Event-triggered transmission for linear control over communication channels[END_REF][START_REF] Tarbouriech | Observer-based event-triggered control co-design for linear systems[END_REF], just to mention a few. This setting is relevant when, due to technological constraints, data from sensors need to be broadcast towards the controller through a data network. Possible practical applications in which this situation may occur is the case of mobile robotic systems in which controllers are located onboard, while measurements (for example of position and speed) are obtained via a camera and sent wirelessly to the robot.

Another possible application pertains to large scale or distributed systems in which actuation and measuring do not happen at the same place.

We assume that the plant is equipped with a holding device S that is able to generate a control signal in between communications events. Every time a transmission occurs, the state of S is updated with the estimate of the plant state xp transmitted by the controller. More specifically

S      θ = Hθ θ + = xp when a transmission occurs (7) 
where θ ∈ R np is the state of the holding device and H is a parameter to be designed. In this setting, the interconnection between the plant and the controller is obtained by selecting

u p = Kθ (8) 
and modifying the observer dynamics in (6) as follows:

ẋp = Ax p + BKθ + L(y p -C xp ) (9) 
In particular, instead of considering u p = y c = K xp as classically done in (6), we consider (8).

Remark 2. As a matter of fact, the holding device is colocated with the plant, hence the controller does not have access to the state θ. On the other hand, a copy of the holding device can be embedded in the controller to generate an estimate of the signal θ to be fed to the observer. Every time a transmission occurs, both holding devices are updated with value of the state x. Notice that, although the two devices may be potentially initialized to different values, after the first transmission occurs they synchronize. Therefore, for the sake of simplicity, we assume that both the holding devices are identically synchronized.

The closed-loop system under consideration in this paper is the interconnection of ( 5), ( 7), ( 8) and [START_REF] Abdelrahim | Co-design of output feedback laws and event-triggering conditions for the L 2 -stabilization of linear systems[END_REF]. Therefore, the interconnection can be modeled as:

         ẋp = Ax p + BKθ ẋp = Ax p + BKθ + LC(x p -xp ) θ = Hθ          x + p = x p x+ p = xp θ + = xp
when a transmission occurs [START_REF] Seuret | A nonsmooth hybrid invariance principle applied to robust event-triggered design[END_REF] Our goal is to design the proposed architecture, that is, the gains K, L, and H and a transmission policy ensuring closed-loop stability while reducing the number of communications events. Remark 3. In this work, we assume that the plant is equipped with a generalized holding device parametrized via the matrix H. Obviously, if H = 0 the proposed holding device turns out to be a standard zero-order-holder (ZOH) device. In this sense, our approach encompasses more classical approaches, thereby providing more flexibility in the tuning of the controller. However, notice that the use of generalized holding device leads to an increased complexity in terms of implementation.

Remark 4. The proposed generalized holding device, up to a simple modification of the jump map, can be used to model more classical holders as, e.g., the socalled delayed First Order Holder.

The last ingredient that needs to be introduced is the law triggering the communications events. To prevent from the occurrence of Zeno behaviors, we follow the general approach in [START_REF] Forni | Event-triggered transmission for linear control over communication channels[END_REF] and consider the following dwell-time event-triggered logic:

     τ = 1 -dz τ τD τ ∈ [0, τ D ] ∨ (x p , y p , θ) ∈ F τ + = 0 τ ∈ [τ D , 2τ D ] ∧ (x p , y p , θ) ∈ J (11) 
where τ D > 0 is a design parameter and the function dz : R → R is defined as 10) and ( 11), the closed-loop system reads:

dz(s) = 0 if s ∈ [-1,
               ẋp = Ax p + BKθ ẋp = (A -LC)x p + LCx p + BKθ θ = Hθ τ = 1 -dz τ τD (x p , y p , θ, τ ) ∈ C                x + p = x p x+ p = xp θ + = xp τ + = 0 (x p , y p , θ, τ ) ∈ D (12) 
where

C := (x p , x p , θ) ∈ R 3np : (x p , Cx p , θ) ∈ F × [0, 2τ D ] ∪ (R 3np × [0, τ D ]) D := (x p , x p , θ) ∈ R 3np : (x p , Cx p , θ) ∈ J × [τ D , 2τ D ]
Remark 5. The proposed event-triggering policy depends only on the information actually available at the controller end, that is, the plant output y p , the controller state xp , and the state of the holding device θ.

To ensure that the closed-loop system has nontrivial solutions from any initial condition in R 3np × [0, 2τ D ], it has to be F ∪ J = R 2np+ny . In this paper, with the objective of devising a constructive approach for the design of the proposed event-triggered controller, we pick those sets as follows: 2np+ny) is to be designed.

F := cone -(Q) J := cone + (Q) = R 2np+ny \ F where Q = Q T ∈ R (2np+ny)×(
At this stage, let us define the following change of variables (e, θ) := (x pxp , θxp ). Then, by taking as state vector x = (x p , e, θ, τ ) =: (ζ, τ ), the closedloop system can be modeled as the following hybrid system in the framework [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, Stability, and Robustness[END_REF] briefly recalled in Section 2.2:

   ζ = F cl ζ τ = 1 -dz τ τD τ ∈ [0, τ D ] ∨ ζ ∈ F    ζ + = G cl ζ τ + = 0 τ ∈ [τ D , 2τ D ] ∧ ζ ∈ J (13a) 
where:

F := cone -( CT Q C) J := R 3np \ F (13b) 
F cl :=      A + BK LC BK 0 A -LC 0 H -A -BK -LC H -BK      C :=      I 0 0 C C 0 I 0 I      , G cl :=      I 0 0 0 I 0 0 0 0      (13c) 
For easiness of exposition, we represent closed-loop system (13) in the following compact form:

     ẋ = f (x) x ∈ C x + = g(x) x ∈ D (14a) 
where

C := ( F × [0, 2τ D ]) ∪ (R 3np × [0, τ D ]) f (x) :=   F cl ζ 1 -dz τ τD   ∀x ∈ C D := (R 3np × [0, 2τ D ]) \ C g(x) :=   G cl ζ 0   ∀x ∈ D (14b) 
Before concluding this subsection, next, we outline some structural properties for the closed-loop system [START_REF] Garcia | Model-based event-triggered control for systems with quantization and time-varying network delays[END_REF].

Property 3.1. For any ξ ∈ C ∪ D, there exists a nontrivial solution φ to [START_REF] Garcia | Model-based event-triggered control for systems with quantization and time-varying network delays[END_REF] such that φ(0, 0) = ξ. Furthermore, let φ be any maximal solution to [START_REF] Garcia | Model-based event-triggered control for systems with quantization and time-varying network delays[END_REF].

Then, the following items hold:

(a) φ is complete; (b) φ is non Zeno. In particular, (t, j) ∈ dom φ implies j ≤ 1 τD t + 1.
The proof of Property 3.1 is reported in Appendix A.

Problem formulation

The goal of this paper is to characterize exponential stability of the ζ substate of the closed loop [START_REF] Garcia | Model-based event-triggered control for systems with quantization and time-varying network delays[END_REF], uniformly in τ . The fact that τ evolves in the compact set [0, 2τ D ] simplifies this task and allows stating it as a suitable stability property for the compact set (attractor):

A := {0} × [0, 2τ D ] ⊂ R 3np+1 (15) 
More specifically, we provide sufficient conditions for the solution to the following two problems. This makes the use of our results appealing in practice.

Remark 7. In practice, the generalized holding device and the controller are likely to be implemented in a digital system. In this setting, the natural robustness of ( 14) highlighted in Remark 6 can be used to ensure a safe sampled-data implementation of the proposed controller; see, e.g., [START_REF] Sanfelice | Lyapunov analysis of sample-and-hold hybrid feedbacks[END_REF][START_REF] Brentari | A class of hybrid velocity observers for angular measurements with jumps[END_REF] for similar issues.

Closed-loop Stability Analysis

In this section, we provide sufficient conditions for global exponential stability of the closed-loop system. To this end, consider the following property, whose role is clarified later.

Property 4.1. There exist continuously differentiable functions V 1 : R 2np → R and V 2 : R np → R such that the following items hold:

(i) there exist positive scalars ω 1 , ω 2 , β 1 , and β 2 such that:

ω 1 |(x p , e)| 2 ≤V 1 (x p , e) ≤ ω 2 |(x p , e)| 2 ∀(x p , e) ∈ R 2np (16a)
β 1 | θ| 2 ≤V 2 ( θ) ≤ β 2 | θ| 2 ∀ θ ∈ R np (16b) (ii) Let U (x) := V 1 (x p , e) + V 2 ( θ)e ρ(τD -τ ) ∀x ∈ R 3np+1 S (ζ) := U (x) | x=(ζ,τD) ∀ζ ∈ R 3np (16c) 
There exist positive scalars ρ and λ such that1 

∇U (x), f (x) ≤ -λU (x) ∀x ∈ R 3np × [0, τ D ] (16d) ∇S (ζ), F cl ζ ≤ -λS (ζ) ∀ζ ∈ F (16e)
Next, we give the main result of this section. Proof. The proof of the result hinges upon Theorem A.1 in the Appendix. In particular, for all x ∈ R 3np+1 define:

W (x) := V 1 (x p , e) + V 2 ( θ)e ρ max{0,τD-τ } (17) 
We show that under the hypotheses of Property 4.1, (A.1) holds for the function W defined above. In particular, thanks to (16a) and (16b), (A.1a) holds with p = 2, α 1 := min{ω 1 , β 1 }, and α 2 := max{ω 2 , β 2 e ρτD }. Now observe that for all

x ∈ R 3np+1 W (x) =      U (x) if τ ∈ [0, τ D ) S (ζ) elsewhere
where, for all x ∈ R 3np+1 , U (x) and S (ζ) are defined in (16c). Define

Ẇ (x) := sup χ∈∂W (x),f ∈{f (x)}∩T C (x) χ, f
We show that the satisfaction of Property 4.1 ensures that (A.1b) holds with α 3 = λ. To this end, first notice that for all x ∈ R 3np+1 :

∂W (x) =            ∇U (x) if τ < τ D (∇S (ζ), 0) if τ > τ D co{∇U (x), (∇S (ζ), 0)} if τ = τ D
To conclude this first part of the proof, we analyze the above three cases sepa-

rately. Pick x = (ζ, τ ) ∈ C. • Case 1. Assume τ ∈ [0, τ D ). Then, one has Ẇ (x) = ∇U (x), f (x)
Hence, using (16d) one gets Ẇ (x) ≤ -λW (x).

• Case 2. Assume τ ∈ (τ D , 2τ D ]. Then, ζ ∈ F and Ẇ (x) = ∇S (ζ), F cl ζ .
Using (16e), one gets Ẇ (x) ≤ -λW (x)

• Case 3. Assume τ = τ D .
Observe that in this case:

∂W (x)= co{∇U (x),(∇S (ζ), 0)}
Now the following two sub-cases need to be considered:

220 (3.a) Assume ζ ∈ F.
In this case, notice that:

Ẇ (x) = sup χ∈∂W (x) χ, f (x) = max{ ∇S (ζ), F cl ζ , ∇S (ζ), F cl ζ -ρV 2 ( θ)} = ∇S (ζ), F cl ζ
Thus, thanks to (16e), Ẇ (x) ≤ -λW (x).

(3.b) Assume ζ / ∈ F . Then, from item (i) of Lemma A.1 in Appendix A,

T C (x) ⊂ R 3np × R ≤0 .
Thus, due to the definition of the flow map f , one has:

{f (x)} ∩ T C (x) = ∅ which gives Ẇ (x) = -∞.
The above analysis enables to conclude that (A.1b) holds with α 3 = λ. We now ultimate the proof by showing that (A.1c) holds. To this end, it suffices to observe that for all x ∈ D

W (g(x)) = V 1 (x p , e), W (x) = V 1 (x p , e) + V 2 ( θ)
Thus, for all x ∈ D The result given next shows that under some mild conditions on the flow dynamics of the closed-loop system, it is always possible to find ρ and τ D positive such that (16d) holds. For easiness of exposition, consider the following partitioning of the matrix F cl defined in (13c):

W (g(x)) -W (x) = -V 2 ( θ)
  A c B c B s A s   :=      A + BK LC BK 0 A -LC 0 H -A -BK -LC H -BK      (18) 
Proposition 4.1. Suppose that there exist continuously differentiable functions

V 1 : R 2np → R and V 2 : R np → R and positive scalars ω 1 , ω 2 , β 1 , β 2 , ι 1 , ι 2 , γ 1 ,
and γ 2 such that (16a) and (16b) hold and for all (x p , e, θ) ∈ R 3np :

∇V 1 (x p , e), A c   xp e   V1(ζ) ≤ -ι 1 (x T p xp + e T e) ∇V 2 ( θ), A s θ V2(ζ) ≤ ι 2 θT θ (19a) |∇V 1 (x p , e)| ≤ γ 1 |(x p , e)| |∇V 2 ( θ)| ≤ γ 2 | θ| (19b)
Then, there exist ρ, τ D > 0 such that (16d) holds.

Proof. Let U be defined as in (16c). Then, simple calculations show that for

all (ζ, τ ) ∈ R 3np × [0, τ D ] ∇U (x), f (x) = V 1 (ζ) + ∇V 1 (x p , e), B c θ e ρ(τD-τ )   V 2 (ζ) + ∇V 2 ( θ), B s   xp e   -ρV 2 ( θ)  
Hence, by using (16b) and (19a), for all

x ∈ R 3np × [0, τ D ] ∇U (x), f (x) ≤ -ι 1 |(x p , e)| 2 + |∇V 1 (x p , e)||B c θ| + e ρτD   ι 2 | θ| 2 + |∇V 2 ( θ)| B s   xp e     -ρβ 1 | θ| 2
which, thanks to (19b), yields for all

x ∈ R 3np × [0, τ D ] ∇U (x), f (x) ≤ -ι 1 |(x p , e)| 2 + γ 1 |(x p , e)||B c θ| +   ι 2 | θ| 2 + γ 2 | θ| B s   xp e     e ρτD -ρβ 1 | θ| 2
Let ̟ 1 , ̟ 2 > 0 be two scalars to be selected later. From Young inequality, the latter inequality gives, for all x ∈ R 3np × [0, τ D ]:

∇U (x), f (x) ≤ ς1 -ι 1 + γ 2 1 2̟ 1 + ̟ 2 2 |B s | 2 e ρτD |(x p , e)| 2 + e ρτD ι 2 + γ 2 2 2̟ 2 -e -ρτD ρβ 1 + e -ρτD ̟ 1 2 |B c | 2 ς2 | θ| 2 (20) 
Let

σ 1 := ι 2 + γ 2 2 2̟ 2 + ̟ 1 2 B c 2 , σ 2 := ι 1 - γ 2 1 2̟ 1 2 ̟ 2 B s 2
Select ̟ 1 , ̟ 2 , and ρ such that

1 < σ 2 < β 1 σ 1 ρ (21) 
this is always possible by picking ρ and ̟ 1 large enough and ̟ 2 small enough.

Select

τ D ∈ 0, 1 ρ ln(σ 2 ) (22) 
The bound in [START_REF] Goebel | Hybrid Dynamical Systems: Modeling, Stability, and Robustness[END_REF] ensures that the interval in ( 22) is nonempty. Moreover, the bounds in ( 21) and ( 22) guarantee that ς 1 and ς 2 in (20) are strictly negative.

Taking ς = min{|ς 1 |, |ς 2 |}, from (20) it follows that, for all (ζ, τ ) ∈ R 3np × [0, τ D ] ∇U (x), f (x) ≤ -ς(|(x p , e)| 2 + | θ| 2 )
Now using the fact that for all (ζ, τ

) ∈ R 3np × [0, τ D ], U (ζ, τ ) ≤ ω 2 |(x p , e)| 2 + β 2 | θ| 2 , taking λ = ς max{ω2,β2} , one has that for all (ζ, τ ) ∈ R 3np × [0, τ D ] ∇U (x), f (x) ≤ -λU (x)
This concludes the proof.

Remark 9. When A + BK and A -LC are Hurwitz and V 1 and V 2 are positive definite quadratic functions, it is easy to check that the assumptions in Proposition 4.1 hold.

Quadratic Conditions
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The applicability of Theorem 4.1 requires one to find functions V 1 and V 2 fulfilling Property 4.1. This is in general a nontrivial task. To overcome this problem, we select V 1 and V 2 as quadratic functions and recast the conditions in Property 4.1 into some matrix inequalities. This approach is formalized in the result given below. 

P ≻ 0 (23a) He Ψ(τ D ) -σ CT Q C ≺ 0 (23b) He Ψ(0) -Ω(0) ≺ 0 (23c) He Ψ(τ D ) -Ω(τ D ) ≺ 0 (23d)
where for all τ ∈ [0, τ D ]:

Ψ(τ ) :=      X(A + BK) XLC + E(A -LC) XBK E T (A + BK) E T LC + Y (A -LC) E T BK e ρ(τD-τ ) R(H -A -BK) -e ρ(τD-τ ) RLC e ρ(τD -τ ) R(H -BK)      (24) 
Ω(τ

) := ρe ρ(τD-τ ) (0 ⊕ 0 ⊕ R) (25) 
and

P :=   X E • Y   (26) 
Then, the set A defined in (15) is GES for hybrid system [START_REF] Garcia | Model-based event-triggered control for systems with quantization and time-varying network delays[END_REF].

Proof. The proof hinges upon Theorem 4.1. In particular, we show that under the hypotheses of the statement, all the inequalities in ( 16) hold with

V 1 (x p , e) :=   xp e   T P   xp e   , V 2 ( θ) := θT R θ ( 27 
)
where P is defined in [START_REF] Kheloufi | On lmi conditions to design observer-based controllers for linear systems with parameter uncertainties[END_REF]. Notice that since P, R ≻ 0, (16a) and (16b) hold with ω 1 = λ min (P ) , ω 2 = λ max (P )

β 1 = λ min (R), β 2 = λ max (R)
Let U and S be defined as in (16c) with V 1 and V 2 as in [START_REF] Donkers | Output-based event-triggered control with guaranteed L ∞ -gain and improved and decentralized event-triggering[END_REF]. Then

∇U (x), f (x) = ζ T He Ψ(τ )ζ -ρe -ρτ V 2 ( θ) = ζ T (He Ψ(τ ) -Ω(τ )) ζ ∀x ∈ R 3np × [0, τ D ] ∇S (ζ), F cl ζ = ζ T He Ψ(τ D )ζ ∀ζ ∈ R 3np (28)
where, for all τ ∈ [0, 2τ D ], Ψ(τ ) is defined in [START_REF] Sanfelice | Lyapunov analysis of sample-and-hold hybrid feedbacks[END_REF]. Hence, thanks to the Sprocedure, the satisfaction of (23b) implies that

ζ T He Ψ(τ D )ζ < 0 ∀ζ ∈ F \ {0}
which in turn implies that there exists λ 1 > 0 small enough such that:

ζ T He Ψ(τ D )ζ ≤ -λ 1 ζ T (P ⊕ R)ζ = -λ 1 S (ζ) ∀ζ ∈ F (29a)
To conclude the proof, observe that there exists a function κ :

[0, τ D ] → [0, 1] such that for all τ ∈ [0, τ D ] He Ψ(τ ) -Ω(τ ) = κ(τ )(He Ψ(0) -Ω(0)) + (1 -κ(τ ))(He Ψ(τ D ) -Ω(τ D ))
Therefore, from (23c) and (23d), it follows that there exist λ 2 > 0 small enough such that:

ζ T (He Ψ(τ ) -Ω(τ ))ζ ≤ -λ 2 ζ T ζ ∀x ∈ R 3np × [0, τ D ]
At this stage recall that, from (16a) and (16b), for all

x ∈ R 3np × [0, τ D ] U (ζ) = V 1 (x p , e) + e ρ(τD-τ ) V 2 ( θ) ≤ α 2 ζ T ζ
with α 2 := max{ω 2 , β 2 e ρτD }. Hence, combining the latter two relationships, one gets

ζ T (He Ψ(τ ) -Ω(τ ))ζ ≤ - λ 2 α 2 U (ζ) ∀x ∈ R 3np × [0, τ D ] (29b) 
Therefore, by taking λ = min{λ 1 , λ 2 α -1 2 } and recalling [START_REF] Lofberg | YALMIP: A toolbox for modeling and optimization in MAT-LAB[END_REF], the satisfaction of (29a) and (29b) yields (16d) and (16e). This concludes the proof.

Remark 10. Following the discussion in Remark 9, it is easy to check that when A + BK and A -LC are Hurwitz, (23c) and (23d) are always feasible when τ D is taken small enough. Therefore, since (23c) does not depend on τ D either ρ, the satisfaction of (23c) with A + BK and A -LC Hurwitz is enough to ensure the feasibility of the conditions of Theorem 4.2. This fact follows from the selection of the Lyapunov function W in Theorem 4.1; see also Remark 8.

Controller Design

Before stating the main results of this section, let us consider the following preliminary result that enables one to eliminate the scalar variable σ introduced by the S-procedure in (23b). (i) There exist Q = Q T ∈ R (2np+ny)×(2np+ny) and σ ∈ R ≥0 such that (23b)

holds;

(ii) There exists Q = Q T ∈ R (2np+ny)×(2np+ny) such that (23b) holds with σ = 1.

Proof. The implication (ii) =⇒ (i) is trivial. To show that (i) =⇒ (ii), first note that if (23b) holds with σ ≥ 0, then it must hold with σ ′ := σ + σ ε > 0 where σ ε > 0 small enough exists due to the strict inequality in (23b). As a consequence, (ii) holds with Q ′ = σ ′ Q and σ = 1. This concludes the proof.

Sufficient Conditions for Emulation-based Design

In this first subsection, we provide sufficient conditions for the solution to Problem 3.1. In particular, under the assumption that the gains K and L are given, we provide sufficient conditions for the design of the event-triggering policy, i.e., the matrix Q and the holding device S in the form of some linear matrix inequalities. Proposition 5.1. Let K ∈ R nu×np and L ∈ R np×ny be given. Suppose that there exist ρ > 0 and matrices X, Y ∈ S np

+ , E ∈ R 2np×2np , R ∈ S np + , Z ∈ R np×np , and Q = Q T ∈ R (2np+ny)×(2np+ny) such that: He Φ(τ D ) -CT Q C ≺ 0 (30a) He Φ(0) -Ω(0) ≺ 0 (30b) He Φ(τ D ) -Ω(τ D ) ≺ 0 ( 30c 
)
where C is defined in (13c) and for all τ ∈ [0, τ D ], Ω(τ ) is defined as in [START_REF] Brentari | A class of hybrid velocity observers for angular measurements with jumps[END_REF] and

Φ(τ ) :=      X(A + BK) XLC + E(A -LC) XBK E T (A + BK) E T LC + Y (A -LC) E T BK e ρ(τD-τ ) Z -e ρ(τD-τ ) RLC e ρ(τD -τ ) (RA + Z)      (30d) Pick H = A + BK + R -1 Z.
Then, the set A defined in [START_REF] Postoyan | A framework for the eventtriggered stabilization of nonlinear systems[END_REF] is GES for the closed-loop system [START_REF] Garcia | Model-based event-triggered control for systems with quantization and time-varying network delays[END_REF].

Proof. The proof follows easily from Theorem 4.2 by observing that setting

Z = R(H -A -BK)
in the expression of Φ(τ ) in (30d) gives the matrix Ψ(τ ) in [START_REF] Sanfelice | Lyapunov analysis of sample-and-hold hybrid feedbacks[END_REF].

Remark 11. In some specific cases, due to technological reasons, it may be 275 preferable to consider a zero-order-holder (ZOH) device, i.e., H = 0. This can be easily achieved by enforcing Z = -R(A+BK) in Proposition 5.1. This shows that the methodology we propose in this paper encompasses the use of classical holding devices.
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In this section, we show how the conditions proposed in this paper can be used to solve Problem 3.2.

Proposition 5.2. Suppose that there exist ρ, τ D ∈ R >0 and matrices W, Y ∈

S np + , L ∈ R np×ny , F ∈ R nu×np , Z ∈ R np×np , and Q = Q T ∈ R (2np+ny)×(2np+ny) such that: He Π(τ D ) -Υ T QΥ ≺ 0 (31a) He Π(0) -Σ(0) ≺ 0 (31b) He Π(τ D ) -Σ(τ D ) ≺ 0 ( 31c 
)
where

Υ := I ⊕ C ⊕ I and for all τ ∈ [0, τ D ] Π(τ ) :=      AW + BF LC BF 0 Y (A -LC) 0 e ρ(τD -τ ) Z -e ρ(τD-τ ) LC (AW + Z)e ρ(τD-τ )      Σ(τ ) := ρe ρ(τD-τ ) (0 ⊕ 0 ⊕ W ) (31d) Pick K = F W -1 , H = A + BF W -1 + ZW -1
, and

Q =      W -1 0 0 -C I 0 -W -1 0 W -1      T Q      W -1 0 0 -C I 0 -W -1 0 W -1     
Then, the set A defined in [START_REF] Postoyan | A framework for the eventtriggered stabilization of nonlinear systems[END_REF] is GES for the closed-loop system [START_REF] Garcia | Model-based event-triggered control for systems with quantization and time-varying network delays[END_REF].

Proof. To prove the claim, we show that the satisfaction of (31) implies that [START_REF] Cai | Characterizations of input-to-state stability for hybrid systems[END_REF] holds with E = 0, X = R = W -1 , and L, K and H given as in the 285 statement of the result.

Proof of (31a) =⇒ (30a). Let Ξ :

= W -1 ⊕ I ⊕ W -1 . Then, for all τ ∈ [0, τ D ] ΞΠ(τ )Ξ =      W -1 (A + BF W -1 ) W -1 LC W -1 BF W -1 0 Y (A -LC) 0 e ρ(τD-τ ) W -1 ZW -1 -e ρ(τD-τ ) W -1 LC W -1 (A + ZW -1 )e ρ(τD -τ )      (32) 
Hence, thanks to the proposed selection for H and F , it follows that

ΞΠ(τ )Ξ =      W -1 (A + BK) W -1 LC W -1 BKW -1 0 Y (A -LC) 0 e ρ(τD-τ ) W -1 (H -A -BK) -e ρ(τD-τ ) W -1 LC W -1 (H -BK)e ρ(τD-τ )      (33) 
which reads as the matrix Ψ(τ ) in ( 24) with X = R = W -1 and E = 0.

Moreover, using the relationship between Q and Q it follows that:

Q =      W 0 0 CW I 0 W 0 W      T Q      W 0 0 CW I 0 W 0 W      Γ Thus, by noticing that ΥΞ = Γ -1 C, one gets ΞΥ T QΥΞ = CT Q C (34)
Combining ( 33) and (34) and taking X = R = W -1 and E = 0 in [START_REF] Sanfelice | Lyapunov analysis of sample-and-hold hybrid feedbacks[END_REF], yields:

Ξ(Π(τ ) -Υ T QΥ)Ξ = Φ(τ ) -CT Q C ∀τ ∈ [0, τ D ]
Thus, (31a) impies (30a), as to be proven.

Proof of (31b)-(31c) =⇒ (30b)-(30c). This implication can be easily proven by observing that, for all τ ∈ [0, τ D ], when R = W -1 , ΞΣ(τ )Ξ = Ω(τ ). This concludes the proof.

Notice that when L and ρ are fixed, the conditions provided by Proposition 5.2 are linear matrix inequalities. Therefore, provided that an observer gain is selected, Proposition 5.2 can be efficiently used to solve Problem 3.2 by performing a line search on the scalar ρ. In practice, this limitation can be easily overcome by selecting the gain L so to ensure suitable convergence properties for the estimation error e. This approach is illustrated in Section 7. It is worthwhile to mention that the design of observer-based controllers via linear matrix inequalities is an open problem also in the context of linear systems; see, e.g., [START_REF] Kheloufi | On lmi conditions to design observer-based controllers for linear systems with parameter uncertainties[END_REF].

Optimal Design of the Event-Triggered Controller

In this section, we show how the proposed approach can be embedded into computationally tractable optimization problems aimed at reducing the number of sampling events. Overall, the event-triggering policy is characterized by two parameters, the dwell-time parameter τ D and the matrix Q defining the triggering policy itself. Obviously, the value of τ D is directly connected with the number of expected sampling events. More precisely, the larger τ D , the larger the time in between consecutive samplings. Therefore, the design of the triggering policy needs to be performed to maximize the value of τ D .

Concerning the selection of the matrix Q, understanding how this affects the sampling frequency is in general a nontrivial problem. On the other hand, as unrevealed in the proof of Theorem 4.1, the event-triggering policy is designed to ensure the decrease of the function W defined in [START_REF] Heemels | An introduction to eventtriggered and self-triggered control[END_REF] in the flow set C. As a matter of fact, as shown in Proposition 4.1, this decrease can be essentially ensured by properly selecting the matrix Q so to enforce a bound on the growth of the function S , i.e., (16e). Namely, restricting the attention to the quadratic case analyzed in Section 4.1, the matrix Q should be designed to ensure that the following implication holds:

ζ ∈ cone -( CT Q C) \ {0} =⇒ T (ζ) := ζ T He Ψ(τ D )ζ < 0 ( 35 
)
where Ψ is defined [START_REF] Sanfelice | Lyapunov analysis of sample-and-hold hybrid feedbacks[END_REF]. Obviously, the above bound may hold in a set

F S ⊃ cone -( CT Q C) with F S ∩ int J = ∅.
When this happens, update events can be generated needlessly. Building upon this observation, our idea to decrease the number of sampling events consists of designing the event-triggering policy so to minimize Ψ(τ D ) -CT Q C . Next, we show how suitable optimization problems can be associated to the design results in Section 5.1 and Section 5.2.

Optimal Emulation-based Design
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When the controller gains K and L are given, the design conditions of the event-triggering policy given in Proposition 5.1 can be embedded into the following optimization problem:

minimize ρ,X,Y,E,R,Z,Q,γ -γ subject to (23) 
Ψ(τ D ) -CT Q C γI (36) 
In particular, notice that since the satisfaction of (30a) implies that Ψ(τ D ) -CT Q C ≺ 0, the formulation of the above minimization problem ensures that

γI Ψ(τ D ) -CT Q C ≺ 0
This shows that the maximization of γ leads to the minimization of Ψ(τ D ) -

CT Q C .

Optimal Co-Design

In the setting of Section 5.2, due to the congruence transformations and change of variables performed in Proposition 5.2, the formulation of an optimization problem similar to (36) is not straightforward. More specifically, in the case of Proposition 5.2, the relationship between the event-triggering policy parameters and the function T in (35) is not explicit. On the other hand, by retracing the steps presented in the proof of Proposition 5.2, it turns out that (35) can be formulated as:

ζ ∈ cone -(ΞΥ T QΥΞ) \ {0} =⇒ ζ T ΞΠ(τ D )Ξζ < 0 (37) 
where Ξ := W -1 ⊕ I ⊕ W -1 and, for all τ ∈ [0, τ D ], Π is defined in (31d).

This shows that in this setting, the design of the event-triggering law can be performed so to minimize Ξ(Π(τ D ) -Υ T QΥ)Ξ . This naturally leads to the following optimization problem:

minimize ρ,W,Y,Z, Q,F,L -γ subject to (31) 
Π(τ D ) -Υ T QΥ γI W δI (38) 
where δ > 0 is a small scalar to be selected. Also in this case, the formulation of the above optimization problem assures that

Ξ(Π(τ D ) -Υ T QΥ)Ξ ≤ δ -1 Π(τ D ) -Υ T QΥ ≤ δ -1 |γ|
Thereby showing the relevance of the proposed optimization with respect to the considered objective. 

Robustness to measurement noise

In this section, we show that under the assumptions of Theorem 4.2, the closed-loop system enjoys some appealing robustness properties with respect to measurement noise. In particular, let us assume that the plant output y p is affected by a measurement noise η, i.e., y p = Cx p + η. In this case, by defining

F n := cone -     CT Q C CT JQ • J T QJ     (39) 
with J := 0 I 0 T , the closed-loop system can be modeled via the following hybrid system with state x = (x p , e, θ, τ ) defined previously and input η:

     ẋ = f n (x, η) (x, η) ∈ C n x + = g(x) (x, η) ∈ D n (40) 
where for all (x, η)

∈ C n := ( F n × [0, 2τ D ]) ∪ (R 3np+ny × [0, τ D ]
) the flow map is defined as:

f n (x, η) :=           F cl ζ +      L -L -L      N cl η 1 -dz τ τD          
the jump set is defined as

D n := (R 3np+ny × [0, 2τ D ]) \ C n ,

and the jump map

g being unchanged with respect to [START_REF] Garcia | Model-based event-triggered control for systems with quantization and time-varying network delays[END_REF].

Robustness of the closed-loop system with respect to the exogenous input η is established in the result given next. Proof. To prove the result, we show that under [START_REF] Cai | Characterizations of input-to-state stability for hybrid systems[END_REF], all the conditions in Theorem A.2 hold with W defined as in [START_REF] Heemels | An introduction to eventtriggered and self-triggered control[END_REF] and V 1 and V 2 as in [START_REF] Donkers | Output-based event-triggered control with guaranteed L ∞ -gain and improved and decentralized event-triggering[END_REF]. In particular, since, as established in the proof of Theorem 4.1, (A.1a) and (A.3c) follows directly from the positive definiteness of V 1 and V 2 , to complete the proof, it suffices to show that (A.3b) holds2 . Let U and S be defined as in (16c). Then, for all (x, η) ∈ C n :

∇U (x), f n (x, η) =   ζ η   T   He Ψ(τ ) -Ω(τ ) P N cl • 0   M1(τ )   ζ η   ∀x ∈ R 3np × [0, τ D ], η ∈ R ny ∇S(ζ), F cl ζ + N cl η =   ζ η   T   He Ψ(τ D ) P N cl • 0   M2   ζ η   ∀ζ ∈ R 3np , η ∈ R ny
where, for all τ ∈ [0, τ D ], Ω(τ ) and Ψ(τ ) and are defined, respectively, in [START_REF] Brentari | A class of hybrid velocity observers for angular measurements with jumps[END_REF] and [START_REF] Sanfelice | Lyapunov analysis of sample-and-hold hybrid feedbacks[END_REF] and

P :=   X E • Y   ⊕ R
As a first step, we show that the satisfaction of (23c) and (23d) implies that for

all x ∈ R 3np × [0, τ D ], η ∈ R ny   ζ η   T M 1 (τ )   ζ η   ≤ -λ 1 ζ T P ζ + µ 1 η T η (41) 
for some positive scalars λ 1 , µ 1 . To this end, observe that, as shown in the proof of Theorem 4.2, the satisfaction of (23c) and (23d) assures that for all

τ ∈ [0, τ D ] M 1 (τ ) -   -λ1 P P N cl • 0   M ′ 1 0 (42) 
for some λ1 > 0. At this stage, pick λ 1 ∈ (0, λ1 ) and

O 1 := 1 λ1 -λ 1 N T cl P N cl
Then, via Schur complement, it can be shown that

M ′ 1 -   -λ 1 P 0 • O 1   0
Hence, combining the above bound with (42) shows that (41) holds with µ 1 = λ max (O 1 ). Now we show that the satisfaction of (23a) implies that for all

(ζ, η) ∈ F s   ζ η   T M 2   ζ η   ≤ -λ 2 ζ T P ζ + µ 2 η T η (43) 
for some positive scalars λ 2 , µ 2 . Observe that

M 2 -σ   CT Q C CT JQ • J T QJ   Q ′ =   He Ψ(τ D ) -σ CT Q C P N cl -σ CT JQ • -σJ T QJ   M3
From (23a), there exists λ2 > 0 such that

M 3 -   -λ2 P P N cl -σ CT JQ • -σJ T QJ   0 (44)
Pick λ 2 ∈ (0, λ2 ) and let

O 2 = -σJ T QJ + ( P N cl -σ CT JQ) T P -1 ( P N cl -σ CT JQ) λ2 -λ 2
Then, by Schur complement, it can be easily shown that:

  -λ 2 P P N cl -σ CT JQ • -σJ T QJ   -   -λ2 P 0 • O 2   0 
Hence, combining the above bound with (44), it follows that for all (ζ, η) ∈

R 3np+ny   ζ η   T (M 2 -σQ ′ )   ζ η   ≤ -λ 2 ζ T P ζ + η T O 2 η
which, thanks to the S-procedure, yields:

  ζ η   T M 2   ζ η   ≤ -λ 2 ζ T P ζ + η T O 2 η ∀(ζ, η) ∈ F n
The latter shows that (43) holds with µ 2 = λ max (O 2 ). To conclude the proof, it suffices to observe that, similarly as in the proof of Theorem 4.1, thanks to item (ii) of Lemma A.1 in Appendix A, the satisfaction of ( 41) and (43) assures that (A.3b) holds with W defined as in [START_REF] Heemels | An introduction to eventtriggered and self-triggered control[END_REF], V 1 and V 2 as in [START_REF] Donkers | Output-based event-triggered control with guaranteed L ∞ -gain and improved and decentralized event-triggering[END_REF], and We revisit [27, Example 2] in which the plant data is

A =   0 1 -2 3   , B =   0 1   , C = -1 4
We consider the same observer gain in [ 

           (45) 
It is interesting to remark that, although no specific structure is imposed to the matrix H, the solution to the proposed optimization is such that H ≈ A+BK. Namely, the holding device mimics the dynamics of the plant controlled hand, numerical experiments show that when the parameter τ D is small, the matrix H may be unrelated to the "closed-loop" matrix A + BK. In Figure 1 we report the norm of the matrix A + BK -H for different values of τ D when K and H are designed via the solution to optimization problem (38). Figure 1 clearly points out that, in this example, when τ D gets larger A + BK ≈ H. It is interesting to notice that for τ D = 0.1, spec(H) = {0.18 ± 1.5i}, i.e., the flow 350 dynamics of the holding device are exponentially unstable.

To show the effectiveness of the proposed optimization strategy, we compare the above optimal controller and a controller obtained directly via the conditions in Proposition 5.2. To this end, we performed 100 simulations 5 over a horizon of 50 seconds. In these simulations, x(0, 0) = (ξ, 0, 0, 0) and ξ is selected randomly on a ball of radius 100. In Table 1, we report the average number of sampling events N u and the average of the average inter-event time T D . Numerical results show that the selected nonoptimal controller leads to almost periodic sampling with an average sampling period T D ≈ τ D . On the other hand, the controller designed via the proposed optimization leads to a larger average sampling period. Namely, in this example, the proposed optimal design enables one to decrease the average sampling rate about 73% with respect to the dwell-

time τ D . Controller N u T D Optimal 20 1.7339
Nonoptimal 39 1.1755 

Numerical Simulations

In Figure 2, we report a numerical simulation of a solution φ to the closedloop system, for the controller parameters in (45). The picture clearly points out that the proposed design strategy leads to a dramatic reduction of the number of sampling events compared to a periodic implementation with sampling time

τ D = 1.
To illustrate the results in Section 6, in Figure 3 we report a numerical simulation of a solution φ to hybrid system (40) in the presence of a constant noise signal for different amplitudes of the noise. As foreseen by our ISS analysis, |φ| A is bounded and converges in a neighborhood of zero whose size depends on the noise amplitude. 

Conclusion

In this paper, robust observer-based event-triggered control design has been Assume that any maximal solution to (1) is complete. If there exist N > 0 and τ D > 0 such that, for each maximal solution φ to (1), (t, j) ∈ dom φ implies 405 j ≤ 1 τD t + N . Then, A is globally exponentially stable for (1).

Proof. The proof follows the same lines as [15, proof of Theorem 1]. In particular, let us define the following restriction of (1):

H r    ẋ ∈ {f (x)} ∩ T C (x)
x ∈ C

x + = g(x)

x ∈ D and observe that (1) and H r have the same (nontrivial) solutions; see for example [START_REF] Sanfelice | Invariance principles for hybrid systems with connections to detectability and asymptotic stability[END_REF]. Pick any maximal solution to H r . Then, following the same steps as in The proof of the result given next follows similar steps as in the proof of Theorem A.1 and so it is omitted.

Theorem A.2. Consider system (3). Let A ⊂ R n be closed. Suppose that there exist a locally Lipschitz continuous function W : R 3np+1 → R positive scalars α 1 , α 2 , α 3 , and p, and µ ∈ K ∞ such that: The following items hold:

α 1 |x| p A ≤ W (x) ≤ α 2 |x| p A ∀x ∈ Π R n (C η ) ∪ Π R n (D η ) (A.
(i) Let x ∈ (R 3np \ F ) × {τ D }. Then T C (x) ⊂ R 3np × R ≤0 (ii) Let x ∈ (Π R 3np (R 3np+ny \ F n ) × {τ D }). Then T Π R 3np ( Cn) (x) ⊂ R 3np × R ≤0
Proof. We prove only item (i), the proof of item (ii) follows the same steps. By 

ω τ = lim k→∞ τ k -τ D σ k ≤ 0
This contradicts the fact that ω ∈ R 3np × R >0 . Thus, due to T C (x) being nonempty, the proof is concluded.

  , and C ∈ R ny×np are assumed to be known. In this paper, we are interested in the eventtriggered implementation of Luenberger-like observer-based controllers, that is, controllers of the form: Ax p + By c + L(u c -C xp )

1 ]

 1 and dz(s) = sign(s)(|s| -1) otherwise. Communication events are generated when τ ∈ [τ D , 2τ D ] and (x p , y p , θ) ∈ J . The sets F and J define the event-triggering policy and are part of the design parameters. The introduction of the timer τ prevents from the existence of Zeno solutions, by enforcing a minimum strictly positive dwell-time in between consecutive communication events, i.e., τ D . Notice that the set [0, 2τ D ] is forward invariant for the τ -dynamics. Combining (

Theorem 4 . 1 .

 41 Let Property 4.1 hold. Then, the set A defined in (15) is GES 215 for hybrid system[START_REF] Garcia | Model-based event-triggered control for systems with quantization and time-varying network delays[END_REF].

Remark 8 .

 8 ≤ 0 namely, (A.1c) holds for W . Hence, by recalling Property 3.1, all the assumptions of Theorem A.1 are fulfilled and the result is established. The construction of the Lyapunov function W used in the proof of 225 Theorem 4.1 draws inspiration from [19]. Nevertheless, the introduction of the locally Lipschitz term max{0, τ Dτ } enables to get a condition on the decrease of W in the set F that is independent from the scalars ρ and τ D .

240 Theorem 4 . 2 .

 42 If there exist τ D , ρ, σ > 0, X, Y ∈ S np + , E ∈ R np×np, and R ∈ S np + such that:

Lemma 5 . 1 .

 51 Let τ D , ρ ∈ R >0 , and P ∈ S np + be given. The following items are equivalent:

  320

Proposition 6 . 1 .

 61 If there exist τ D , ρ, σ > 0, X, Y ∈ S np + , E ∈ R np×np, and R ∈ S np + such that (23) holds, then (40) is input-to-stable with respect to the input η relatively to the set A in (15).

µ

  (s) := max{µ 1 s, µ 2 s}. Hence, by considering a straightforward extension of Property 3.1, all the assumptions of Theorem A.2 are fulfilled and the result is established.

340Figure 1 :

 1 Figure 1: H -A -BK vs value of the dwell time parameter τ D .

Figure 2 :

 2 Figure 2: A numerical simulation of the closed-loop system from the initial condition (0.0998, -0.0066, 0, 0, 0, 0) for the gains in (45). For each state trajectory, solid line indicates the first component and dashed line the second component. The plot at the bottom indicates the duration of each flow interval.

Figure 3 :

 3 Figure 3: Numerical simulation of the closed-loop system from the initial condition (0.0998, -0.0066, 0, 0, 0, 0) in the presence of measurement noise for different noise amplitudes: 0.01 (blue line) and 0.001 (black line).

  investigated. Both emulation and co-design problems have been addressed by allowing tunable generalized holding devices. Such holding devices include classical zero-order-hold. Sufficient conditions for closed-loop global exponential stability are given in the form of matrix inequalities. With the objective of reducing the number of updates on the control input, the design of the proposed controller architecture, including the holding devices, is turned into the solution to some optimization problems. This leads to a systematic computationally affordable methodology for the optimal design of the considered event-triggered controller. The effectiveness of the methodology has been illustrated in an example borrowed from the literature. Future research directions include the extension of the proposed approach to more general output feedback dynamic controllers and to scenarios in which the communication between sensors and controllers happens in an event-triggered fashion.A. Ancillary results and proofsProof of Property 3.1. Existence of nontrivial solutions to (14) from any initial condition in ξ ∈ C ∪ D follows from the satisfaction of property (VC) in [21, Proposition 2.10] for all ξ ∈ C \ D. Such a property can be easily proven by observing that flowing from any point in C \ D = (int F × [0, 2τ D ]) ∪ (R 3np × [0, τ D )) is always possible. To prove item (a), first notice that hybrid system (14) satisfies the so-called hybrid basic conditions; see [21, Assumption 6.5]. Indeed, C and D are closed sets and f and g are continuous functions. Thus, since g( D) ⊂ C, from [21, Proposition 6.10], it follows that φ is either complete or blows up in finite time. On the other hand, since f is locally Lipschitz continuous, finite escape times cannot occur. This proves item (a). To conclude the proof, item (b) follows directly from the construction of the dynamics of the timer τ , which enforces a strictly positive uniform lower bound, i.e., τ D on the length of any flow interval of φ. Theorem A.1. Consider system (1). Let A ⊂ R n be closed. Suppose that there exist a locally Lipschitz continuous function W : R 3np+1 → R and positive scalars α 1 , α 2 , α 3 , and p such that: α 1 |x| p A ≤ W (x) ≤ α 2 |x| p A ∀x ∈ C ∪ D (A.1a) sup χ∈∂W (x),s∈{f (x)}∩TC(x) χ, s ≤ -α 3 W (x) ∀x ∈ C (A.1b) W (g(x)) ≤ W (x) ∀x ∈ D (A.1c)

[ 15 ,α 1 1 p

 151 proof ofTheorem 1] it can be shown that (A.1b) and (A.1c) give:W (φ(t, j)) ≤ e -α3t W (φ(0, 0)) ∀(t, j) ∈ dom φ which thanks to (A.1a) yields |φ(t, j)| A ≤ α 2 e -α 3 p t |φ(0, 0)| A ∀(t, j) ∈ dom φ (A.2)Now, pick γ = α3τD 1+τD and M = γN . Then, it can be easily shown that for any maximal solution φ to H, (t, j) ∈ dom φ implies:-α 3 t ≤ Mγ(t + j)Combining the above bound with (A.2) gives, for all (t, j) ∈ dom φ|φ(t, j)| A ≤ e M α 2This concludes the proof.

1 .

 1 3a) sup χ∈∂W (x) s∈{f (x,η)}∩T Π R n (Cη ) (x) χ, f ≤ -α 3 W (x) + µ(|η|) ∀(x, η) ∈ C η (A.3b) W (g(x)) ≤ W (x) ∀(x, η) ∈ D η (A.3c)Assume that any maximal solution pair to (3) is complete and that there exist N > 0 and τ D > 0 such that, for each maximal solution (φ, η) to (3), (t, j) ∈ dom φ implies j ≤ 1 τD t + N . Then, hybrid system H η defined in (3) is ISS with respect to η relatively to the set A. In particular, (4) holds with β(s, k) = e N Let F and F n be defined, respectively, as in (13b) and (39).

  contradiction, assume that there exists ω= (ω ζ , ω τ ) ∈ T C (x) ∩ (R 3np × R >0 ).Then, by definition, there exist sequences{(ζ k , τ k )} ⊂ C and {σ k } ⊂ R >0 with x k := (ζ k , τ k ) → x, σ k → 0 such that: (ω ζ , ω τ ) = lim k→∞ x kx σ kNow observe that since F is closed, without loss of generality, one can assumethat {ζ k } ⊂ R 3np \ F = int J . Hence, since {x k } ⊂ C, it follows that {τ k } ⊂ [0, τ D ].Namely, for all k, τ kτ D ≤ 0, which yields:

  Problem 3.2 (Co-Design). Design K, L, H, τ D , and Q such that the set A defined in[START_REF] Postoyan | A framework for the eventtriggered stabilization of nonlinear systems[END_REF] is GES for the closed-loop system[START_REF] Garcia | Model-based event-triggered control for systems with quantization and time-varying network delays[END_REF] and the number of transmission events is minimized.

	Remark 6. Notice that hybrid system (14) is well-posed in the sense of [21,
	Definition 6.2]. Among other things, this implies that nominal global asymptotic
	stability of the set A (established in Theorem 4.1; see Section 4) is structurally
	robust with respect to small perturbations, in the sense of [21, Corollary 7.23].

Problem 3.1 (Emulation-based Control Design). Given K and L, design H, τ D , and Q such that the set A defined in

[START_REF] Postoyan | A framework for the eventtriggered stabilization of nonlinear systems[END_REF] 

is GES for the closed-loop system

[START_REF] Garcia | Model-based event-triggered control for systems with quantization and time-varying network delays[END_REF] 

and the number of transmission events is minimized.

  27, Example 2], namely 3 L = 0 1 T and design τ D , K, and Q via Proposition 5.2. Numerical tests show that in this case, the conditions in Proposition 5.2 are feasible for τ D up to 1. with

	ρ = 14 and using (5.2), one obtains the following numerical values for controller
	parameters 4 :	
					
	K = -1.43 -7.85 , H = 		-2.93 × 10 -5 -3.43	1 -4.85 
	Q =	         	-6330 25322 -6330 0.004592 -0.01696 25322 -1.013 × 10 5 25322 -6330 25322.0 -6330 -0.002928 -0.01171 0.01106 0.004592 -0.04636 -0.01696 -0.1271 -0.002928 -0.0123
			-0.04636 -0.1271		-0.0123	0.01106	0.07965

Table 1 :

 1 Numerical values of the average dwell-time T D and of the average number of sampling updates N u for 100 simulations with random plant initial conditions.

There is no loss of generality in using the same scalar λ in both the inequalities (16d)-(16e).

The addition of the input η in the jump map of (40) does not affect the change of the Lyapunov function W across jumps.

The output feedback controller in [27, Example 2] can be rewritten in the from ẋc = (Ap + BpK -LCp)xc + Lyp, u = Kxc with K = 1 -4 , thereby showing that it is an observer-based controller.

LMIs are solved with YALMIP[START_REF] Lofberg | YALMIP: A toolbox for modeling and optimization in MAT-LAB[END_REF] and the solver SDPT3[START_REF] Toh | SDPT3 MATLAB software package for semidefinite programming, version 1.3[END_REF].

Simulations of hybrid systems are performed in Matlab via the Hybrid Equations (HyEQ) Toolbox[START_REF] Sanfelice | A toolbox for simulation of hybrid systems in Matlab/Simulink: Hybrid Equations (HyEQ) toolbox[END_REF].
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