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Abstract

This paper deals with the design of output feedback event-triggered controllers

equipped with generalized holding devices. Both emulation and co-design set-

tings are explored. Specifically, a robust observer-based event-triggered con-

troller with a dwell time logic is proposed to achieve closed-loop stability. The

closed-loop system is modeled as a hybrid system and analyzed via Lyapunov

theory for hybrid systems. Sufficient conditions in the form of matrix inequal-

ities are given to ensure global exponential stability and input-to-state stabil-

ity with respect to measurement disturbances for the closed-loop system. The

proposed conditions enable the design of the controller gains, event-triggering

mechanism, and of general holding devices, thereby including classical zero-

order-holder devices. Convex optimization schemes address the implicit objec-

tive consisting of reducing the number of updates of the control input. The

effectiveness of the conditions are illustrated through an illustrative example

borrowed from the literature.
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1. Introduction

1.1. Background

An effective way to deal with computational and communication resources

in control and network control systems consists of exploiting event-triggering

mechanisms to reduce control updates and measurements transmissions. In par-5

ticular, differently from traditional periodic implementations, the use of event-

triggered schemes enables to update control inputs only when specific state-

dependent events occur; see, e.g., [1], [2], [3], [4], [5] and references therein. One

of the main challenges in the design of event-triggered control architectures con-

sists of jointly design a continuous-time control law and a triggering rule with10

the objective of reducing the number of control input updates, while preserving

stability and/or performance. Another fundamental challenge in the design of

event-triggered architectures consists of ensuring a strictly positive lower bound

in between transmission events, i.e., the so-called event separation property [6],

which is paramount for implementation.15

Due to their inherent nature, event-triggered control architectures heavily

rely on the use of measurements. Therefore, when only limited information

is available, as in the case of output feedback control, the problem of event-

triggered control becomes visibly harder. In particular, when the plant state is

not fully available, the avoidance of Zeno behaviors in event-triggered control20

architectures turns out to be a major problem. For this reason, the design of

output feedback event-triggered controllers has attracted a lot of attention in

the community; see, e.g., [7], [8], [9], [10], [11], [12], just to mention a few. In

these papers, stability analysis is addressed via the use of Lyapunov theory for

hybrid dynamical systems or impulsive systems. A common feature found in all25

the works mentioned so far is the use of zero-order-holder devices to generate

inter-event control signals. In this paper, we propose an alternative route and

consider the use of generalized holding devices that can be tuned to improve the

behavior of the closed-loop system. The potential benefit of using generalized

holding devices to enlarge inter-event times has been already highlighted in [13],30
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[14], [15]. Similar considerations appeared in our prior work on observer design

in the presence of sporadic measurements [16].

1.2. Contributions

In this work, we present a systematic approach for the design of event-

triggered control architectures with generalized holding devices and show how35

this may lead to a dramatic improvement in reducing the number of update

events. More precisely, we consider a setup in which controller and sensors are

co-located, while the communication between plant and controller occurs only

at some time instances that need to be scheduled. Similar setups have been

already considered in [17, 18, 19, 20]. We assume that the plant is equipped40

with a general holding device that is able to generate a control signal in between

communications events. In this setting, we consider an event-triggered controller

hinging upon a classical observer-based controller. The proposed triggering

mechanism relies on the plant state estimate provided by the observer and on

the state of a copy of the holding device at the plant end to generate control input45

transmission events. For the proposed architecture, our main contributions are

as follows:

• We provide general sufficient conditions for closed-loop exponential sta-

bility. To this end, we make use of Lyapunov theory for hybrid systems

in the framework in [21].50

• By relying on the proposed general sufficient conditions, we provide quadratic

conditions in the form of matrix inequalities to ensure closed-loop global

exponential stability;

• We show that the satisfaction of the above quadratic conditions ensures

that the closed-loop system is input-to-state stable with respect to mea-55

surement noise;

• Building upon the use of convex optimization techniques, some optimal

designs are proposed for the considered controller with the objective of
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reducing the number of transmission events. Both emulation and co-design

scenarios are addressed.60

The effectiveness of the methodology, as well as some interesting comparisons

are illustrated in a numerical example borrowed from the literature.

1.3. Paper outline

The paper is organized as follows. Preliminaries on hybrid systems and the

notation considered in the paper are included in Section 2. In Section 3, the65

class of systems and controllers under consideration together with the event-

triggering mechanism are described. Both emulation and co-design problems

are stated and then some structural properties of the closed-loop system are

summarized. In Section 4, sufficient conditions for global exponential stability

of the closed-loop system are presented and particularized to special case of70

quadratic Lyapunov functions. Section 5 proposes the main results to deal first

with the emulation problem and next with the co-design problem. Section 6

shows that the closed-loop system enjoys some robustness properties in presence

of measurement noise. In Section 7, the approach proposed is illustrated through

an example of the literature, allowing to provide some interesting comparisons.75

2. Notation and Preliminaries

2.1. Notation

The symbol N denotes the set of nonnegative integers, R≥0 represents the

set of nonnegative real numbers, Rn is the n-dimensional Euclidean space, and

Rn×m represents the set of the n×m real matrices. The symbol Sn+ stands for80

the set of n× n symmetric positive definite matrices, while Dn
+ denotes the set

of n×n diagonal positive definite matrices. The identity matrix is denoted by I.

For a matrix A ∈ R
n×m, AT denotes the transpose of A, spec(A) is the spectrum

of A, ‖A‖ is the spectral norm of A, and, when n = m, HeA = A +AT. For a

vector x ∈ Rn, |x| denotes the Euclidean norm. We use the equivalent notation85

for vectors (x, y) = [xT yT]T. For a symmetric matrix, A, positive definiteness
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(negative definiteness) and positive semidefiniteness (negative semidefiniteness)

are denoted, respectively, by A ≻ 0 (A ≺ 0) and A � 0 (A � 0). In partitioned

symmetric matrices, the symbol • stands for symmetric blocks. The matrix
⊕n

i=1 Ai is the block-diagonal matrix having A1, A2, . . . , An as diagonal blocks.90

The symbol 〈·, ·〉 denotes the standard inner product in Rn. Given a symmetric

matrix Q ∈ Rn×n, we use the notation cone+(Q) := {x ∈ Rn : xTQx ≥ 0}

and cone−(Q) := {x ∈ Rn : xTQx ≤ 0}, while λmax(Q) and λmin(Q) stand,

respectively, for the largest and smallest eigenvalue of Q. Given x ∈ Rn and a

nonempty set A ⊂ R
n, the distance of x to A is defined as |x|A = inf

y∈A
|x − y|.95

Given a set S, we denote by coS the convex-hull of S and by S its closure. The

symbol S1×S2 denotes the Cartesian product of the sets S1 and S2. Given a set

S ⊂ X×Y , we define ΠX(S) := {x ∈ X : (x, y) ∈ S}. The symbol TS(x) stands

for the tangent cone of the set S ⊂ Rn at x ∈ S; see [21, Definition 5.12, page

103]. Given a locally Lipschitz continuous function V : Rn → R, we denote by100

∂V (x) ⊂ Rn the Clarke generalized gradient of V at x. The symbol K∞ stands

for set of functions from R≥0 to R≥0 that are continuous, zero at zero, strictly

increasing, and unbounded. Let β : R≥0 × R≥0 → R≥0, we say that β ∈ KL if

for all r⋆, s⋆ ∈ R≥0 one has that: r 7→ β(r, s⋆) is nondecreasing, s 7→ β(r⋆, s) is

nonincreasing, lim
r→0+

β(r, s⋆) = 0, and lim
s→∞

β(r⋆, s) = 0.105

2.2. Preliminaries on hybrid systems

We consider hybrid systems with state x ∈ Rn of the form

H





ẋ = f(x) x ∈ C

x+ = g(x) x ∈ D
(1)

In particular, we denote f : Rn → Rn as the flow map, C ⊂ Rn as the flow

set, g : Rn → Rn as the jump map, and D ⊂ Rn as the jump set. A set

E ⊂ R≥0 × N is a hybrid time domain if it is the union of a finite or infinite

sequence of intervals [tj , tj+1] × {j}, with the last interval (if existent) of the110

form [tj , T ) with T finite or T = ∞. Given a hybrid time domain E, we denote

supj E = sup{j ∈ N : ∃t ∈ R≥0 s.t. (t, j) ∈ E}. A function φ : domφ → Rn is
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a hybrid arc if domφ is a hybrid-time domain and φ(·, j) is locally absolutely

continuous for each j. A hybrid arc φ is a solution to (1) if it satisfies the

dynamics of (1). A solution φ to (1) is maximal if it cannot be extended and115

is complete if domφ is unbounded. In particular, given S ⊂ Rn, we denote by

SH(S) the set of maximal solutions φ to H with φ(0, 0) ∈ S; see [21] for more

details on solutions to hybrid systems.

In this paper, we consider the following notion of exponential stability for

the hybrid system H in (1).120

Definition 2.1 (Global exponential stability [22]). Let A ⊂ Rn be closed. The

set A is said to be globally exponentially stable (GES) for H if there exist positive

real numbers κ, λ, such that every maximal solution φ to H is complete and

|φ(t, j)|A ≤ κe−λ(t+j)|φ(0, 0)|A ∀(t, j) ∈ domφ (2)

♦

In this paper, we also consider the following specific class of hybrid systems

with inputs:

Hη





ẋ = f(x, η) (x, η) ∈ Cη

x+ = g(x) (x, η) ∈ Dη

(3)

where η ∈ R
nη , f : Rn+nη → R

n, Cη ⊂ R
n+nη , g : Rn+nη → R

n, and Dη ⊂

Rn+nη . We say that η : E → Rnη is a hybrid input if E is a hybrid time domain

and for all j, t 7→ η(t, j) is Lebesgue measurable and locally essentially bounded.

A hybrid arc φ and a hybrid input η with dom η = domφ is a solution pair to125

(3) if it satisfies its dynamics; see [23] for a formal definition of solution pair to

hybrid systems with inputs. We consider the following notion of input-to-state

stability for (3).

Definition 2.2. Let A ⊂ Rn be closed. Hybrid system (3) is said to be input-to-

state stable ( ISS) with respect to η relatively to the set A if there exist β ∈ KL

and µ ∈ K∞ such that every maximal solution pair (φ, η) to (3) is complete and

for all (t, j) ∈ domφ it satisfies:

|φ(t, j)|A ≤ β(|φ(0, 0)|A, t+ j) + µ(‖η‖∞) (4)
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♦

The L∞ norm of (t, j) 7→ η(t, j) is defined as:

‖η‖∞ := lim
T→T⋆

max

{
ess. sup |η(s, k)|

(s,k)∈dom η\Γ(η),s+k≤T

, sup |η(s, k)|
(s,k)∈Γ(η),s+k≤T

}

where Γ(η) := {(t, j) ∈ dom η : (t, j + 1) ∈ dom η} and T ⋆ := sup{t+ j : (t, j) ∈130

dom η}; see [23] for further details.

3. Modeling and problem formulation

3.1. Description of the setup and hybrid modeling

We consider the following LTI plant:

P




ẋp = Axp + Bup

yp = Cxp

(5)

where xp ∈ Rnp is the plant state, up ∈ Rnu is the plant control input, and

yp ∈ Rny a measured output. Matrices A ∈ Rnp×np , B ∈ Rnp×nu , and C ∈

Rny×np are assumed to be known. In this paper, we are interested in the event-

triggered implementation of Luenberger-like observer-based controllers, that is,

controllers of the form:

O





˙̂xp = Ax̂p +Byc + L(uc − Cx̂p)

yc = Kx̂p

(6)

where yc ∈ Rnu is the controller output, uc ∈ Rny is the controller input, and

K ∈ Rnu×np and L ∈ Rnp×ny are some gains to be designed to ensure closed-135

loop asymptotic stability. When the controller and the plant are colocated, the

interconnection between plant and controller is realized by simply setting up =

yc and uc = yp. In this paper, we consider a setup in which the controller and

sensors are colocated, i.e., the controller has access to the plant output yp, while

the communication between plant and controller occurs only at some sporadic140

time instances to be scheduled. This prevents from continuously feeding the

plant using the controller output yc.
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Remark 1. The setup considered in this paper has been already studied in the

literature; see, e.g., [17, 18, 19, 20], just to mention a few. This setting is

relevant when, due to technological constraints, data from sensors need to be145

broadcast towards the controller through a data network. Possible practical ap-

plications in which this situation may occur is the case of mobile robotic systems

in which controllers are located onboard, while measurements (for example of

position and speed) are obtained via a camera and sent wirelessly to the robot.

Another possible application pertains to large scale or distributed systems in150

which actuation and measuring do not happen at the same place.

We assume that the plant is equipped with a holding device S that is able

to generate a control signal in between communications events. Every time a

transmission occurs, the state of S is updated with the estimate of the plant

state x̂p transmitted by the controller. More specifically

S




θ̇ = Hθ

θ+ = x̂p when a transmission occurs

(7)

where θ ∈ Rnp is the state of the holding device and H is a parameter to

be designed. In this setting, the interconnection between the plant and the

controller is obtained by selecting

up = Kθ (8)

and modifying the observer dynamics in (6) as follows:

˙̂xp = Ax̂p +BKθ + L(yp − Cx̂p) (9)

In particular, instead of considering up = yc = Kx̂p as classically done in (6),

we consider (8).

Remark 2. As a matter of fact, the holding device is colocated with the plant,

hence the controller does not have access to the state θ. On the other hand, a155

copy of the holding device can be embedded in the controller to generate an esti-

mate of the signal θ to be fed to the observer. Every time a transmission occurs,
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both holding devices are updated with value of the state x̂. Notice that, although

the two devices may be potentially initialized to different values, after the first

transmission occurs they synchronize. Therefore, for the sake of simplicity, we160

assume that both the holding devices are identically synchronized.

The closed-loop system under consideration in this paper is the interconnec-

tion of (5), (7), (8) and (9). Therefore, the interconnection can be modeled as:





ẋp = Axp +BKθ

˙̂xp = Ax̂p +BKθ + LC(xp − x̂p)

θ̇ = Hθ



x+
p = xp

x̂+
p = x̂p

θ+ = x̂p

when a transmission occurs

(10)

Our goal is to design the proposed architecture, that is, the gains K, L, and

H and a transmission policy ensuring closed-loop stability while reducing the

number of communications events.

Remark 3. In this work, we assume that the plant is equipped with a generalized165

holding device parametrized via the matrix H. Obviously, if H = 0 the proposed

holding device turns out to be a standard zero-order-holder (ZOH) device. In

this sense, our approach encompasses more classical approaches, thereby pro-

viding more flexibility in the tuning of the controller. However, notice that the

use of generalized holding device leads to an increased complexity in terms of170

implementation.

Remark 4. The proposed generalized holding device, up to a simple modification

of the jump map, can be used to model more classical holders as, e.g., the so-

called delayed First Order Holder.175

The last ingredient that needs to be introduced is the law triggering the

communications events. To prevent from the occurrence of Zeno behaviors,
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we follow the general approach in [19] and consider the following dwell-time

event-triggered logic:





τ̇ = 1− dz
(

τ
τD

)
τ ∈ [0, τD] ∨ (x̂p, yp, θ) ∈ F

τ+ = 0 τ ∈ [τD, 2τD] ∧ (x̂p, yp, θ) ∈ J

(11)

where τD > 0 is a design parameter and the function dz: R → R is defined as

dz(s) = 0 if s ∈ [−1, 1] and dz(s) = sign(s)(|s| − 1) otherwise. Communication

events are generated when τ ∈ [τD, 2τD] and (x̂p, yp, θ) ∈ J . The sets F and J

define the event-triggering policy and are part of the design parameters. The

introduction of the timer τ prevents from the existence of Zeno solutions, by

enforcing a minimum strictly positive dwell-time in between consecutive com-

munication events, i.e., τD. Notice that the set [0, 2τD] is forward invariant for

the τ -dynamics. Combining (10) and (11), the closed-loop system reads:





ẋp = Axp +BKθ

˙̂xp = (A− LC)x̂p + LCxp +BKθ

θ̇ = Hθ

τ̇ = 1− dz
(

τ
τD

)
(x̂p, yp, θ, τ) ∈ C





x+
p = xp

x̂+
p = x̂p

θ+ = x̂p

τ+ = 0

(x̂p, yp, θ, τ) ∈ D

(12)

where

C :=
({

(x̂p, xp, θ) ∈ R
3np : (x̂p, Cxp, θ) ∈ F

}
× [0, 2τD]

)
∪ (R3np × [0, τD])

D :=
{
(x̂p, xp, θ) ∈ R

3np : (x̂p, Cxp, θ) ∈ J
}
× [τD, 2τD]

Remark 5. The proposed event-triggering policy depends only on the informa-

tion actually available at the controller end, that is, the plant output yp, the

controller state x̂p, and the state of the holding device θ.

To ensure that the closed-loop system has nontrivial solutions from any

initial condition in R3np × [0, 2τD], it has to be F ∪ J = R2np+ny . In this
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paper, with the objective of devising a constructive approach for the design of

the proposed event-triggered controller, we pick those sets as follows:

F := cone−(Q) J := cone+(Q) = R2np+ny \ F

where Q = QT ∈ R(2np+ny)×(2np+ny) is to be designed.

At this stage, let us define the following change of variables (e, θ̃) := (xp −

x̂p, θ− x̂p). Then, by taking as state vector x = (x̂p, e, θ̃, τ) =: (ζ, τ), the closed-

loop system can be modeled as the following hybrid system in the framework

[21] briefly recalled in Section 2.2:





ζ̇ = Fclζ

τ̇ = 1− dz
(

τ
τD

) τ ∈ [0, τD] ∨ ζ ∈ F̂





ζ+ = Gclζ

τ+ = 0
τ ∈ [τD, 2τD] ∧ ζ ∈ Ĵ

(13a)

where:

F̂ := cone−(C̆TQC̆) Ĵ := R3np \ F̂ (13b)

Fcl :=




A+BK LC BK

0 A− LC 0

H −A−BK −LC H −BK




C̆ :=




I 0 0

C C 0

I 0 I


 , Gcl :=




I 0 0

0 I 0

0 0 0




(13c)

For easiness of exposition, we represent closed-loop system (13) in the following

compact form: 


ẋ = f(x) x ∈ Ĉ

x+ = g(x) x ∈ D̂
(14a)

11



where

Ĉ := (F̂ × [0, 2τD]) ∪ (R3np × [0, τD])

f(x) :=


 Fclζ

1− dz
(

τ
τD

)

 ∀x ∈ Ĉ

D̂ := (R3np × [0, 2τD]) \ Ĉ

g(x) :=


Gclζ

0


 ∀x ∈ D̂

(14b)

Before concluding this subsection, next, we outline some structural properties180

for the closed-loop system (14).

Property 3.1. For any ξ ∈ Ĉ ∪ D̂, there exists a nontrivial solution φ to (14)

such that φ(0, 0) = ξ. Furthermore, let φ be any maximal solution to (14).

Then, the following items hold:

(a) φ is complete;185

(b) φ is non Zeno. In particular, (t, j) ∈ domφ implies j ≤ 1
τD

t+ 1.

�

The proof of Property 3.1 is reported in Appendix A.

3.2. Problem formulation

The goal of this paper is to characterize exponential stability of the ζ substate

of the closed loop (14), uniformly in τ . The fact that τ evolves in the compact set

[0, 2τD] simplifies this task and allows stating it as a suitable stability property

for the compact set (attractor):

A := {0} × [0, 2τD] ⊂ R
3np+1 (15)

More specifically, we provide sufficient conditions for the solution to the190

following two problems.

Problem 3.1 (Emulation-based Control Design). Given K and L, design H,

τD, and Q such that the set A defined in (15) is GES for the closed-loop system

(14) and the number of transmission events is minimized.
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Problem 3.2 (Co-Design). Design K, L, H, τD, and Q such that the set195

A defined in (15) is GES for the closed-loop system (14) and the number of

transmission events is minimized.

Remark 6. Notice that hybrid system (14) is well-posed in the sense of [21,

Definition 6.2]. Among other things, this implies that nominal global asymptotic

stability of the set A (established in Theorem 4.1; see Section 4) is structurally200

robust with respect to small perturbations, in the sense of [21, Corollary 7.23].

This makes the use of our results appealing in practice.

Remark 7. In practice, the generalized holding device and the controller are

likely to be implemented in a digital system. In this setting, the natural robust-205

ness of (14) highlighted in Remark 6 can be used to ensure a safe sampled-data

implementation of the proposed controller; see, e.g., [24, 25] for similar issues.

4. Closed-loop Stability Analysis

In this section, we provide sufficient conditions for global exponential sta-

bility of the closed-loop system. To this end, consider the following property,210

whose role is clarified later.

Property 4.1. There exist continuously differentiable functions V1 : R
2np → R

and V2 : R
np → R such that the following items hold:

(i) there exist positive scalars ω1, ω2, β1, and β2 such that:

ω1|(x̂p, e)|
2 ≤V1(x̂p, e) ≤ ω2|(x̂p, e)|

2 ∀(x̂p, e) ∈ R
2np (16a)

β1|θ̃|
2 ≤V2(θ̃) ≤ β2|θ̃|

2 ∀θ̃ ∈ R
np (16b)

(ii) Let

U (x) := V1(x̂p, e) + V2(θ̃)e
ρ(τD−τ) ∀x ∈ R

3np+1

S (ζ) := U (x) |x=(ζ,τD) ∀ζ ∈ R
3np

(16c)
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There exist positive scalars ρ and λ such that1

〈∇U (x), f(x)〉 ≤ −λU (x) ∀x ∈ R
3np × [0, τD] (16d)

〈∇S (ζ), Fclζ〉 ≤ −λS (ζ) ∀ζ ∈ F̂ (16e)

Next, we give the main result of this section.

Theorem 4.1. Let Property 4.1 hold. Then, the set A defined in (15) is GES215

for hybrid system (14).

Proof. The proof of the result hinges upon Theorem A.1 in the Appendix. In

particular, for all x ∈ R
3np+1 define:

W (x) := V1(x̂p, e) + V2(θ̃)e
ρmax{0,τD−τ} (17)

We show that under the hypotheses of Property 4.1, (A.1) holds for the function

W defined above. In particular, thanks to (16a) and (16b), (A.1a) holds with

p = 2, α1 := min{ω1, β1}, and α2 := max{ω2, β2e
ρτD}. Now observe that for all

x ∈ R
3np+1

W (x) =





U (x) if τ ∈ [0, τD)

S (ζ) elsewhere

where, for all x ∈ R3np+1, U (x) and S (ζ) are defined in (16c). Define

Ẇ (x) := sup
χ∈∂W (x),f∈{f(x)}∩T

Ĉ
(x)

〈χ, f〉

We show that the satisfaction of Property 4.1 ensures that (A.1b) holds with

α3 = λ. To this end, first notice that for all x ∈ R3np+1:

∂W (x) =





∇U (x) if τ < τD

(∇S (ζ), 0) if τ > τD

co{∇U (x), (∇S (ζ), 0)} if τ = τD

To conclude this first part of the proof, we analyze the above three cases sepa-

rately. Pick x = (ζ, τ) ∈ Ĉ.

1There is no loss of generality in using the same scalar λ in both the inequalities (16d)-(16e).
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• Case 1. Assume τ ∈ [0, τD). Then, one has

Ẇ (x) = 〈∇U (x), f(x)〉

Hence, using (16d) one gets Ẇ (x) ≤ −λW (x).

• Case 2. Assume τ ∈ (τD, 2τD]. Then, ζ ∈ F̂ and Ẇ (x) = 〈∇S (ζ), Fclζ〉.

Using (16e), one gets

Ẇ (x) ≤ −λW (x)

• Case 3. Assume τ = τD. Observe that in this case:

∂W (x)=co{∇U (x),(∇S (ζ), 0)}

Now the following two sub-cases need to be considered:220

(3.a) Assume ζ ∈ F̂ . In this case, notice that:

Ẇ (x) = sup
χ∈∂W (x)

〈χ, f(x)〉 = max{〈∇S (ζ), Fclζ〉,

〈∇S (ζ), Fclζ〉 − ρV2(θ̃)}

= 〈∇S (ζ), Fclζ〉

Thus, thanks to (16e), Ẇ (x) ≤ −λW (x).

(3.b) Assume ζ /∈ F̂ . Then, from item (i) of Lemma A.1 in Appendix A,

TĈ(x) ⊂ R3np × R≤0. Thus, due to the definition of the flow map f ,

one has:

{f(x)} ∩ TĈ(x) = ∅

which gives Ẇ (x) = −∞.

The above analysis enables to conclude that (A.1b) holds with α3 = λ. We

now ultimate the proof by showing that (A.1c) holds. To this end, it suffices to

observe that for all x ∈ D̂

W (g(x)) = V1(x̂p, e), W (x) = V1(x̂p, e) + V2(θ̃)

Thus, for all x ∈ D̂

W (g(x)) − W (x) = −V2(θ̃) ≤ 0

15



namely, (A.1c) holds for W . Hence, by recalling Property 3.1, all the assump-

tions of Theorem A.1 are fulfilled and the result is established.

Remark 8. The construction of the Lyapunov function W used in the proof of225

Theorem 4.1 draws inspiration from [19]. Nevertheless, the introduction of the

locally Lipschitz term max{0, τD − τ} enables to get a condition on the decrease

of W in the set F̂ that is independent from the scalars ρ and τD.

The result given next shows that under some mild conditions on the flow

dynamics of the closed-loop system, it is always possible to find ρ and τD pos-

itive such that (16d) holds. For easiness of exposition, consider the following

partitioning of the matrix Fcl defined in (13c):


 Ac Bc

Bs As


 :=




A+BK LC BK

0 A− LC 0

H −A−BK −LC H −BK


 (18)

Proposition 4.1. Suppose that there exist continuously differentiable functions

V1 : R
2np → R and V2 : R

np → R and positive scalars ω1, ω2, β1, β2, ι1, ι2, γ1,

and γ2 such that (16a) and (16b) hold and for all (x̂p, e, θ̃) ∈ R3np :

〈
∇V1(x̂p, e), Ac


x̂p

e



〉

︸ ︷︷ ︸
V̇1(ζ)

≤ −ι1(x̂
T

p x̂p + eTe)

〈∇V2(θ̃), Asθ̃〉︸ ︷︷ ︸
V̇2(ζ)

≤ ι2θ̃
Tθ̃

(19a)

|∇V1(x̂p, e)| ≤ γ1|(x̂p, e)|

|∇V2(θ̃)| ≤ γ2|θ̃|

(19b)

Then, there exist ρ, τD > 0 such that (16d) holds.

Proof. Let U be defined as in (16c). Then, simple calculations show that for

16



all (ζ, τ) ∈ R3np × [0, τD]

〈∇U (x), f(x)〉 = ˙V1(ζ) + 〈∇V1(x̂p, e), Bcθ̃〉

eρ(τD−τ)


 ˙V2(ζ) +

〈
∇V2(θ̃), Bs


x̂p

e



〉

− ρV2(θ̃)




Hence, by using (16b) and (19a), for all x ∈ R
3np × [0, τD]

〈∇U (x), f(x)〉 ≤ − ι1|(x̂p, e)|
2 + |∇V1(x̂p, e)||Bcθ̃|

+ eρτD


ι2|θ̃|

2 + |∇V2(θ̃)|

∣∣∣∣∣∣
Bs


x̂p

e



∣∣∣∣∣∣




− ρβ1|θ̃|
2

which, thanks to (19b), yields for all x ∈ R3np × [0, τD]

〈∇U (x), f(x)〉 ≤ − ι1|(x̂p, e)|
2 + γ1|(x̂p, e)||Bcθ̃|

+


ι2|θ̃|

2 + γ2|θ̃|

∣∣∣∣∣∣
Bs


x̂p

e



∣∣∣∣∣∣


 eρτD

− ρβ1|θ̃|
2

Let ̟1, ̟2 > 0 be two scalars to be selected later. From Young inequality, the

latter inequality gives, for all x ∈ R3np × [0, τD]:

〈∇U (x), f(x)〉 ≤

ς1︷ ︸︸ ︷(
−ι1 +

γ2
1

2̟1
+

̟2

2
|Bs|

2eρτD
)
|(x̂p, e)|

2

+ eρτD
(
ι2 +

γ2
2

2̟2
− e−ρτDρβ1 +

e−ρτD̟1

2
|Bc|

2

)

︸ ︷︷ ︸
ς2

|θ̃|2
(20)

Let

σ1 := ι2 +
γ2
2

2̟2
+

̟1

2
‖Bc‖

2, σ2 :=

(
ι1 −

γ2
1

2̟1

)
2

̟2‖Bs‖2

Select ̟1, ̟2, and ρ such that230

1 < σ2 <
β1

σ1
ρ (21)
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this is always possible by picking ρ and ̟1 large enough and ̟2 small enough.

Select

τD ∈

(
0,

1

ρ
ln(σ2)

)
(22)

The bound in (21) ensures that the interval in (22) is nonempty. Moreover, the

bounds in (21) and (22) guarantee that ς1 and ς2 in (20) are strictly negative.

Taking ς̄ = min{|ς1|, |ς2|}, from (20) it follows that, for all (ζ, τ) ∈ R3np × [0, τD]

〈∇U (x), f(x)〉 ≤ −ς̄(|(x̂p, e)|
2 + |θ̃|2)

Now using the fact that for all (ζ, τ) ∈ R3np × [0, τD], U (ζ, τ) ≤ ω2|(x̂p, e)|2 +

β2|θ̃|2, taking λ = ς̄
max{ω2,β2}

, one has that for all (ζ, τ) ∈ R3np × [0, τD]

〈∇U (x), f(x)〉 ≤ −λU (x)

This concludes the proof.

Remark 9. When A + BK and A − LC are Hurwitz and V1 and V2 are pos-

itive definite quadratic functions, it is easy to check that the assumptions in

Proposition 4.1 hold.

4.1. Quadratic Conditions235

The applicability of Theorem 4.1 requires one to find functions V1 and V2

fulfilling Property 4.1. This is in general a nontrivial task. To overcome this

problem, we select V1 and V2 as quadratic functions and recast the conditions

in Property 4.1 into some matrix inequalities. This approach is formalized in

the result given below.240

Theorem 4.2. If there exist τD, ρ, σ > 0, X,Y ∈ S
np

+ , E ∈ R
np×np, and

R ∈ S
np

+ such that:

P ≻ 0 (23a)

HeΨ(τD)− σC̆TQC̆ ≺ 0 (23b)

HeΨ(0)− Ω(0) ≺ 0 (23c)

HeΨ(τD)− Ω(τD) ≺ 0 (23d)

18



where for all τ ∈ [0, τD]:

Ψ(τ) :=




X(A+BK) XLC + E(A− LC) XBK

ET(A+BK) ETLC + Y (A− LC) ETBK

eρ(τD−τ)R(H −A−BK) −eρ(τD−τ)RLC eρ(τD−τ)R(H −BK)




(24)

Ω(τ) := ρeρ(τD−τ)(0⊕ 0⊕R) (25)

and

P :=


X E

• Y


 (26)

Then, the set A defined in (15) is GES for hybrid system (14).

Proof. The proof hinges upon Theorem 4.1. In particular, we show that under

the hypotheses of the statement, all the inequalities in (16) hold with

V1(x̂p, e) :=


x̂p

e



T

P


x̂p

e


 , V2(θ̃) := θ̃TRθ̃ (27)

where P is defined in (26). Notice that since P,R ≻ 0, (16a) and (16b) hold

with

ω1 = λmin (P ) , ω2 = λmax (P )

β1 = λmin(R), β2 = λmax(R)

Let U and S be defined as in (16c) with V1 and V2 as in (27). Then

〈∇U (x), f(x)〉 = ζT HeΨ(τ)ζ − ρe−ρτ
V2(θ̃) = ζT (HeΨ(τ) − Ω(τ)) ζ ∀x ∈ R

3np × [0, τD]

〈∇S (ζ), Fclζ〉 = ζT HeΨ(τD)ζ ∀ζ ∈ R
3np

(28)

where, for all τ ∈ [0, 2τD], Ψ(τ) is defined in (24). Hence, thanks to the S-

procedure, the satisfaction of (23b) implies that

ζT HeΨ(τD)ζ < 0 ∀ζ ∈ F̂ \ {0}

which in turn implies that there exists λ1 > 0 small enough such that:

ζT HeΨ(τD)ζ ≤ −λ1ζ
T(P ⊕R)ζ = −λ1S (ζ) ∀ζ ∈ F̂ (29a)
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To conclude the proof, observe that there exists a function κ : [0, τD] → [0, 1]

such that for all τ ∈ [0, τD]

HeΨ(τ)− Ω(τ) = κ(τ)(He Ψ(0)− Ω(0)) + (1− κ(τ))(He Ψ(τD)− Ω(τD))

Therefore, from (23c) and (23d), it follows that there exist λ2 > 0 small enough

such that:

ζT(HeΨ(τ)− Ω(τ))ζ ≤ −λ2ζ
Tζ ∀x ∈ R

3np × [0, τD]

At this stage recall that, from (16a) and (16b), for all x ∈ R3np × [0, τD]

U (ζ) = V1(xp, e) + eρ(τD−τ)
V2(θ̃) ≤ α2ζ

Tζ

with α2 := max{ω2, β2e
ρτD}. Hence, combining the latter two relationships, one

gets

ζT(HeΨ(τ)− Ω(τ))ζ ≤ −
λ2

α2
U (ζ) ∀x ∈ R

3np × [0, τD] (29b)

Therefore, by taking λ = min{λ1, λ2α
−1
2 } and recalling (28), the satisfaction

of (29a) and (29b) yields (16d) and (16e). This concludes the proof.

Remark 10. Following the discussion in Remark 9, it is easy to check that

when A + BK and A − LC are Hurwitz, (23c) and (23d) are always feasible245

when τD is taken small enough. Therefore, since (23c) does not depend on τD

either ρ, the satisfaction of (23c) with A+BK and A−LC Hurwitz is enough

to ensure the feasibility of the conditions of Theorem 4.2. This fact follows from

the selection of the Lyapunov function W in Theorem 4.1; see also Remark 8.

5. Controller Design250

Before stating the main results of this section, let us consider the following

preliminary result that enables one to eliminate the scalar variable σ introduced

by the S-procedure in (23b).

Lemma 5.1. Let τD, ρ ∈ R>0, and P ∈ S
np

+ be given. The following items are

equivalent:255
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(i) There exist Q = QT ∈ R(2np+ny)×(2np+ny) and σ ∈ R≥0 such that (23b)

holds;

(ii) There exists Q = QT ∈ R(2np+ny)×(2np+ny) such that (23b) holds with

σ = 1.

Proof. The implication (ii) =⇒ (i) is trivial. To show that (i) =⇒ (ii), first260

note that if (23b) holds with σ ≥ 0, then it must hold with σ′ := σ + σε > 0

where σε > 0 small enough exists due to the strict inequality in (23b). As a

consequence, (ii) holds with Q′ = σ′Q and σ = 1. This concludes the proof.

5.1. Sufficient Conditions for Emulation-based Design

In this first subsection, we provide sufficient conditions for the solution to265

Problem 3.1. In particular, under the assumption that the gains K and L

are given, we provide sufficient conditions for the design of the event-triggering

policy, i.e., the matrix Q and the holding device S in the form of some linear

matrix inequalities.

Proposition 5.1. Let K ∈ Rnu×np and L ∈ Rnp×ny be given. Suppose that

there exist ρ > 0 and matrices X,Y ∈ S
np

+ , E ∈ R2np×2np , R ∈ S
np

+ , Z ∈

Rnp×np , and Q = QT ∈ R(2np+ny)×(2np+ny) such that:

HeΦ(τD)− C̆TQC̆ ≺ 0 (30a)

HeΦ(0)− Ω(0) ≺ 0 (30b)

HeΦ(τD)− Ω(τD) ≺ 0 (30c)

where C̆ is defined in (13c) and for all τ ∈ [0, τD], Ω(τ) is defined as in (25)

and

Φ(τ) :=




X(A+BK) XLC + E(A− LC) XBK

ET(A+BK) ETLC + Y (A− LC) ETBK

eρ(τD−τ)Z −eρ(τD−τ)RLC eρ(τD−τ)(RA+ Z)


 (30d)

Pick H = A + BK + R−1Z. Then, the set A defined in (15) is GES for the270

closed-loop system (14).
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Proof. The proof follows easily from Theorem 4.2 by observing that setting

Z = R(H − A−BK) in the expression of Φ(τ) in (30d) gives the matrix Ψ(τ)

in (24).

Remark 11. In some specific cases, due to technological reasons, it may be275

preferable to consider a zero-order-holder (ZOH) device, i.e., H = 0. This can

be easily achieved by enforcing Z = −R(A+BK) in Proposition 5.1. This shows

that the methodology we propose in this paper encompasses the use of classical

holding devices.

5.2. Sufficient conditions for co-design280

In this section, we show how the conditions proposed in this paper can be

used to solve Problem 3.2.

Proposition 5.2. Suppose that there exist ρ, τD ∈ R>0 and matrices W,Y ∈

S
np

+ , L ∈ Rnp×ny , F ∈ Rnu×np, Z ∈ Rnp×np , and Q̃ = Q̃T ∈ R(2np+ny)×(2np+ny)

such that:

HeΠ(τD)−ΥTQ̃Υ ≺ 0 (31a)

HeΠ(0)− Σ(0) ≺ 0 (31b)

HeΠ(τD)− Σ(τD) ≺ 0 (31c)

where Υ := I⊕ C ⊕ I and for all τ ∈ [0, τD]

Π(τ) :=




AW +BF LC BF

0 Y (A− LC) 0

eρ(τD−τ)Z −eρ(τD−τ)LC (AW + Z)eρ(τD−τ)




Σ(τ) := ρeρ(τD−τ)(0⊕ 0⊕W )

(31d)

Pick K = FW−1, H = A+BFW−1 + ZW−1, and

Q =




W−1 0 0

−C I 0

−W−1 0 W−1




T

Q̃




W−1 0 0

−C I 0

−W−1 0 W−1




Then, the set A defined in (15) is GES for the closed-loop system (14).
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Proof. To prove the claim, we show that the satisfaction of (31) implies that

(23) holds with E = 0, X = R = W−1, and L, K and H given as in the285

statement of the result.

Proof of (31a) =⇒ (30a). Let Ξ := W−1⊕ I⊕W−1. Then, for all τ ∈ [0, τD]

ΞΠ(τ)Ξ =



W−1(A+BFW−1) W−1LC W−1BFW−1

0 Y (A− LC) 0

eρ(τD−τ)W−1ZW−1 −eρ(τD−τ)W−1LC W−1(A+ ZW−1)eρ(τD−τ)




(32)

Hence, thanks to the proposed selection for H and F , it follows that

ΞΠ(τ)Ξ =




W−1(A+BK) W−1LC W−1BKW−1

0 Y (A− LC) 0

eρ(τD−τ)W−1(H −A−BK) −eρ(τD−τ)W−1LC W−1(H −BK)eρ(τD−τ)




(33)

which reads as the matrix Ψ(τ) in (24) with X = R = W−1 and E = 0.

Moreover, using the relationship between Q and Q̃ it follows that:

Q̃ =




W 0 0

CW I 0

W 0 W




T

Q




W 0 0

CW I 0

W 0 W




︸ ︷︷ ︸
Γ

Thus, by noticing that ΥΞ = Γ−1C̆, one gets

ΞΥTQ̃ΥΞ = C̆TQC̆ (34)

Combining (33) and (34) and taking X = R = W−1 and E = 0 in (24), yields:

Ξ(Π(τ) −ΥTQ̃Υ)Ξ = Φ(τ)− C̆TQC̆ ∀τ ∈ [0, τD]

Thus, (31a) impies (30a), as to be proven.

Proof of (31b)-(31c) =⇒ (30b)-(30c). This implication can be easily proven

by observing that, for all τ ∈ [0, τD], when R = W−1, ΞΣ(τ)Ξ = Ω(τ). This

concludes the proof.290
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Notice that when L and ρ are fixed, the conditions provided by Proposi-

tion 5.2 are linear matrix inequalities. Therefore, provided that an observer

gain is selected, Proposition 5.2 can be efficiently used to solve Problem 3.2 by

performing a line search on the scalar ρ. In practice, this limitation can be

easily overcome by selecting the gain L so to ensure suitable convergence prop-295

erties for the estimation error e. This approach is illustrated in Section 7. It is

worthwhile to mention that the design of observer-based controllers via linear

matrix inequalities is an open problem also in the context of linear systems; see,

e.g., [26].

5.3. Optimal Design of the Event-Triggered Controller300

In this section, we show how the proposed approach can be embedded into

computationally tractable optimization problems aimed at reducing the num-

ber of sampling events. Overall, the event-triggering policy is characterized by

two parameters, the dwell-time parameter τD and the matrix Q defining the

triggering policy itself. Obviously, the value of τD is directly connected with305

the number of expected sampling events. More precisely, the larger τD, the

larger the time in between consecutive samplings. Therefore, the design of the

triggering policy needs to be performed to maximize the value of τD.

Concerning the selection of the matrix Q, understanding how this affects the

sampling frequency is in general a nontrivial problem. On the other hand, as

unrevealed in the proof of Theorem 4.1, the event-triggering policy is designed

to ensure the decrease of the function W defined in (17) in the flow set Ĉ. As

a matter of fact, as shown in Proposition 4.1, this decrease can be essentially

ensured by properly selecting the matrix Q so to enforce a bound on the growth

of the function S , i.e., (16e). Namely, restricting the attention to the quadratic

case analyzed in Section 4.1, the matrix Q should be designed to ensure that

the following implication holds:

ζ ∈ cone−(C̆TQC̆) \ {0} =⇒ T (ζ) := ζT HeΨ(τD)ζ < 0 (35)

where Ψ is defined (24). Obviously, the above bound may hold in a set FS ⊃
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cone−(C̆TQC̆) with FS ∩ int Ĵ 6= ∅. When this happens, update events can be310

generated needlessly. Building upon this observation, our idea to decrease the

number of sampling events consists of designing the event-triggering policy so to

minimize ‖Ψ(τD)− C̆TQC̆‖. Next, we show how suitable optimization problems

can be associated to the design results in Section 5.1 and Section 5.2.

5.3.1. Optimal Emulation-based Design315

When the controller gains K and L are given, the design conditions of the

event-triggering policy given in Proposition 5.1 can be embedded into the fol-

lowing optimization problem:

minimize
ρ,X,Y,E,R,Z,Q,γ

−γ

subject to (23)

Ψ(τD)− C̆TQC̆ � γI

(36)

In particular, notice that since the satisfaction of (30a) implies that Ψ(τD) −

C̆TQC̆ ≺ 0, the formulation of the above minimization problem ensures that

γI � Ψ(τD)− C̆TQC̆ ≺ 0

This shows that the maximization of γ leads to the minimization of ‖Ψ(τD) −

C̆TQC̆‖.

5.3.2. Optimal Co-Design

In the setting of Section 5.2, due to the congruence transformations and

change of variables performed in Proposition 5.2, the formulation of an opti-

mization problem similar to (36) is not straightforward. More specifically, in

the case of Proposition 5.2, the relationship between the event-triggering policy

parameters and the function T in (35) is not explicit. On the other hand, by

retracing the steps presented in the proof of Proposition 5.2, it turns out that

(35) can be formulated as:

ζ ∈ cone−(ΞΥTQ̃ΥΞ) \ {0} =⇒ ζTΞΠ(τD)Ξζ < 0 (37)
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where Ξ := W−1 ⊕ I ⊕ W−1 and, for all τ ∈ [0, τD], Π is defined in (31d).

This shows that in this setting, the design of the event-triggering law can be

performed so to minimize ‖Ξ(Π(τD) − ΥTQ̃Υ)Ξ‖. This naturally leads to the

following optimization problem:

minimize
ρ,W,Y,Z,Q̃,F,L

−γ

subject to (31)

Π(τD)−ΥTQ̃Υ � γI

W � δI

(38)

where δ > 0 is a small scalar to be selected. Also in this case, the formulation

of the above optimization problem assures that

‖Ξ(Π(τD)−ΥTQ̃Υ)Ξ‖ ≤ δ−1‖Π(τD)−ΥTQ̃Υ‖ ≤ δ−1|γ|

Thereby showing the relevance of the proposed optimization with respect to the

considered objective.320

6. Robustness to measurement noise

In this section, we show that under the assumptions of Theorem 4.2, the

closed-loop system enjoys some appealing robustness properties with respect to

measurement noise. In particular, let us assume that the plant output yp is

affected by a measurement noise η, i.e., yp = Cxp + η. In this case, by defining

F̂n := cone−




C̆

TQC̆ C̆TJQ

• JTQJ




 (39)

with J :=
[
0 I 0

]T
, the closed-loop system can be modeled via the following

hybrid system with state x = (x̂p, e, θ̃, τ) defined previously and input η:




ẋ = fn(x, η) (x, η) ∈ Ĉn

x+ = g(x) (x, η) ∈ D̂n

(40)
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where for all (x, η) ∈ Ĉn := (F̂n × [0, 2τD])∪ (R3np+ny × [0, τD]) the flow map is

defined as:

fn(x, η) :=




Fclζ +




L

−L

−L




︸ ︷︷ ︸
Ncl

η

1− dz
(

τ
τD

)




the jump set is defined as D̂n := (R3np+ny × [0, 2τD]) \ Ĉn, and the jump map

g being unchanged with respect to (14).

Robustness of the closed-loop system with respect to the exogenous input η

is established in the result given next.325

Proposition 6.1. If there exist τD, ρ, σ > 0, X,Y ∈ S
np

+ , E ∈ Rnp×np , and

R ∈ S
np

+ such that (23) holds, then (40) is input-to-stable with respect to the

input η relatively to the set A in (15).

Proof. To prove the result, we show that under (23), all the conditions in Theo-

rem A.2 hold with W defined as in (17) and V1 and V2 as in (27). In particular,

since, as established in the proof of Theorem 4.1, (A.1a) and (A.3c) follows di-

rectly from the positive definiteness of V1 and V2, to complete the proof, it

suffices to show that (A.3b) holds2. Let U and S be defined as in (16c). Then,

for all (x, η) ∈ Ĉn:

〈∇U(x), fn(x, η)〉 =


ζ
η



T 
HeΨ(τ)− Ω(τ) P̂Ncl

• 0




︸ ︷︷ ︸
M1(τ)


ζ
η


 ∀x ∈ R3np × [0, τD], η ∈ Rny

〈∇S(ζ), Fclζ +Nclη〉 =


ζ
η



T 
HeΨ(τD) P̂Ncl

• 0




︸ ︷︷ ︸
M2


ζ
η


 ∀ζ ∈ R3np , η ∈ Rny

2The addition of the input η in the jump map of (40) does not affect the change of the

Lyapunov function W across jumps.
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where, for all τ ∈ [0, τD], Ω(τ) and Ψ(τ) and are defined, respectively, in (25)

and (24) and

P̂ :=


X E

• Y


⊕R

As a first step, we show that the satisfaction of (23c) and (23d) implies that for

all x ∈ R3np × [0, τD], η ∈ Rny


ζ
η



T

M1(τ)


ζ
η


 ≤ −λ1ζ

TP̂ ζ + µ1η
Tη (41)

for some positive scalars λ1, µ1. To this end, observe that, as shown in the

proof of Theorem 4.2, the satisfaction of (23c) and (23d) assures that for all

τ ∈ [0, τD]

M1(τ)−


−λ̄1P̂ P̂Ncl

• 0




︸ ︷︷ ︸
M ′

1

� 0
(42)

for some λ̄1 > 0. At this stage, pick λ1 ∈ (0, λ̄1) and

O1 :=
1

λ̄1 − λ1
NT

clP̂Ncl

Then, via Schur complement, it can be shown that

M ′
1 −


−λ1P̂ 0

• O1


 � 0

Hence, combining the above bound with (42) shows that (41) holds with µ1 =

λmax(O1). Now we show that the satisfaction of (23a) implies that for all

(ζ, η) ∈ F̂s 
ζ
η



T

M2


ζ
η


 ≤ −λ2ζ

TP̂ ζ + µ2η
Tη (43)
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for some positive scalars λ2, µ2. Observe that

M2 − σ


C̆

TQC̆ C̆TJQ

• JTQJ




︸ ︷︷ ︸
Q′

=


HeΨ(τD)− σC̆TQC̆ P̂Ncl − σC̆TJQ

• −σJTQJ




︸ ︷︷ ︸
M3

From (23a), there exists λ̄2 > 0 such that

M3 −


−λ̄2P̂ P̂Ncl − σC̆TJQ

• −σJTQJ


 � 0 (44)

Pick λ2 ∈ (0, λ̄2) and let

O2 = −σJTQJ +
(P̂Ncl − σC̆TJQ)TP̂−1(P̂Ncl − σC̆TJQ)

λ̄2 − λ2

Then, by Schur complement, it can be easily shown that:

−λ2P̂ P̂Ncl − σC̆TJQ

• −σJTQJ


−


−λ̄2P̂ 0

• O2


 � 0

Hence, combining the above bound with (44), it follows that for all (ζ, η) ∈

R3np+ny 
ζ
η



T

(M2 − σQ′)


ζ
η


 ≤ −λ2ζ

TP̂ ζ + ηTO2η

which, thanks to the S-procedure, yields:

ζ
η



T

M2


ζ
η


 ≤ −λ2ζ

TP̂ ζ + ηTO2η ∀(ζ, η) ∈ F̂n

The latter shows that (43) holds with µ2 = λmax(O2). To conclude the proof,

it suffices to observe that, similarly as in the proof of Theorem 4.1, thanks330

to item (ii) of Lemma A.1 in Appendix A, the satisfaction of (41) and (43)

assures that (A.3b) holds with W defined as in (17), V1 and V2 as in (27), and

µ(s) := max{µ1s, µ2s}. Hence, by considering a straightforward extension of

Property 3.1, all the assumptions of Theorem A.2 are fulfilled and the result is

established.335
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7. Numerical Example

7.1. Controller Design and Comparisons

We revisit [27, Example 2] in which the plant data is

A =


 0 1

−2 3


 , B =


0
1


 , C =

[
−1 4

]

We consider the same observer gain in [27, Example 2], namely3 L =
[
0 1

]T

and design τD, K, and Q via Proposition 5.2. Numerical tests show that in

this case, the conditions in Proposition 5.2 are feasible for τD up to 1. with

ρ = 14 and using (5.2), one obtains the following numerical values for controller

parameters4:

K =
[
−1.43 −7.85

]
, H =


−2.93× 10−5 1

−3.43 −4.85




Q =




−6330 25322 −6330 0.004592 −0.04636

25322 −1.013× 105 25322 −0.01696 −0.1271

−6330 25322.0 −6330 −0.002928 −0.0123

0.004592 −0.01696 −0.002928 −0.01171 0.01106

−0.04636 −0.1271 −0.0123 0.01106 0.07965




(45)

It is interesting to remark that, although no specific structure is imposed

to the matrix H , the solution to the proposed optimization is such that H ≈

A+BK. Namely, the holding device mimics the dynamics of the plant controlled340

via the state feedback controller u = Kxp. In other words, the designed holding

device behaves as an intersample predictor of the controller plant. This shows

that the use of model-based intersample predictors [18, 13, 30, 15] is somehow

optimal in terms of reduction of the number of sampling events. On the other

3The output feedback controller in [27, Example 2] can be rewritten in the from ẋc =

(Ap + BpK − LCp)xc + Lyp, u = Kxc with K =
[

1 −4
]

, thereby showing that it is an

observer-based controller.
4LMIs are solved with YALMIP [28] and the solver SDPT3 [29].
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Figure 1: ‖H −A− BK‖ vs value of the dwell time parameter τD .

hand, numerical experiments show that when the parameter τD is small, the345

matrix H may be unrelated to the “closed-loop” matrix A + BK. In Figure 1

we report the norm of the matrix A+BK −H for different values of τD when

K and H are designed via the solution to optimization problem (38). Figure 1

clearly points out that, in this example, when τD gets larger A+ BK ≈ H . It

is interesting to notice that for τD = 0.1, spec(H) = {0.18± 1.5i}, i.e., the flow350

dynamics of the holding device are exponentially unstable.

To show the effectiveness of the proposed optimization strategy, we compare

the above optimal controller and a controller obtained directly via the conditions

in Proposition 5.2. To this end, we performed 100 simulations5 over a horizon of

5Simulations of hybrid systems are performed in Matlab via the Hybrid Equations (HyEQ)

Toolbox [31].
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50 seconds. In these simulations, x(0, 0) = (ξ, 0, 0, 0) and ξ is selected randomly355

on a ball of radius 100. In Table 1, we report the average number of sampling

events Nu and the average of the average inter-event time TD. Numerical

results show that the selected nonoptimal controller leads to almost periodic

sampling with an average sampling period TD ≈ τD. On the other hand,

the controller designed via the proposed optimization leads to a larger average360

sampling period. Namely, in this example, the proposed optimal design enables

one to decrease the average sampling rate about 73% with respect to the dwell-

time τD.

Controller Nu TD

Optimal 20 1.7339

Nonoptimal 39 1.1755

Table 1: Numerical values of the average dwell-time TD and of the average number of sampling

updates Nu for 100 simulations with random plant initial conditions.

7.2. Numerical Simulations

In Figure 2, we report a numerical simulation of a solution φ to the closed-365

loop system, for the controller parameters in (45). The picture clearly points out

that the proposed design strategy leads to a dramatic reduction of the number

of sampling events compared to a periodic implementation with sampling time

τD = 1.

To illustrate the results in Section 6, in Figure 3 we report a numerical370

simulation of a solution φ to hybrid system (40) in the presence of a constant

noise signal for different amplitudes of the noise. As foreseen by our ISS analysis,

|φ|A is bounded and converges in a neighborhood of zero whose size depends on

the noise amplitude.
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Figure 2: A numerical simulation of the closed-loop system from the initial condition

(0.0998,−0.0066, 0, 0, 0, 0) for the gains in (45). For each state trajectory, solid line indi-

cates the first component and dashed line the second component. The plot at the bottom

indicates the duration of each flow interval.
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Figure 3: Numerical simulation of the closed-loop system from the initial condition

(0.0998,−0.0066, 0, 0, 0, 0) in the presence of measurement noise for different noise amplitudes:

0.01 (blue line) and 0.001 (black line).
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8. Conclusion375

In this paper, robust observer-based event-triggered control design has been

investigated. Both emulation and co-design problems have been addressed by

allowing tunable generalized holding devices. Such holding devices include clas-

sical zero-order-hold. Sufficient conditions for closed-loop global exponential

stability are given in the form of matrix inequalities. With the objective of re-380

ducing the number of updates on the control input, the design of the proposed

controller architecture, including the holding devices, is turned into the solution

to some optimization problems. This leads to a systematic computationally af-

fordable methodology for the optimal design of the considered event-triggered

controller. The effectiveness of the methodology has been illustrated in an385

example borrowed from the literature. Future research directions include the

extension of the proposed approach to more general output feedback dynamic

controllers and to scenarios in which the communication between sensors and

controllers happens in an event-triggered fashion.

A. Ancillary results and proofs390

Proof of Property 3.1. Existence of nontrivial solutions to (14) from any initial

condition in ξ ∈ Ĉ ∪ D̂ follows from the satisfaction of property (VC) in [21,

Proposition 2.10] for all ξ ∈ Ĉ \ D̂. Such a property can be easily proven by

observing that flowing from any point in Ĉ \ D̂ = (int F̂ × [0, 2τD]) ∪ (R3np ×

[0, τD)) is always possible. To prove item (a), first notice that hybrid system395

(14) satisfies the so-called hybrid basic conditions ; see [21, Assumption 6.5].

Indeed, Ĉ and D̂ are closed sets and f and g are continuous functions. Thus,

since g(D̂) ⊂ Ĉ, from [21, Proposition 6.10], it follows that φ is either complete

or blows up in finite time. On the other hand, since f is locally Lipschitz

continuous, finite escape times cannot occur. This proves item (a). To conclude400

the proof, item (b) follows directly from the construction of the dynamics of the

timer τ , which enforces a strictly positive uniform lower bound, i.e., τD on the

length of any flow interval of φ.
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Theorem A.1. Consider system (1). Let A ⊂ Rn be closed. Suppose that

there exist a locally Lipschitz continuous function W : R3np+1 → R and positive

scalars α1, α2, α3, and p such that:

α1|x|
p
A ≤ W (x) ≤ α2|x|

p
A ∀x ∈ C ∪ D (A.1a)

sup
χ∈∂W (x),s∈{f(x)}∩TC(x)

〈χ, s〉 ≤ −α3W (x) ∀x ∈ C (A.1b)

W (g(x)) ≤ W (x) ∀x ∈ D (A.1c)

Assume that any maximal solution to (1) is complete. If there exist N > 0 and

τD > 0 such that, for each maximal solution φ to (1), (t, j) ∈ domφ implies405

j ≤ 1
τD

t+N . Then, A is globally exponentially stable for (1).

Proof. The proof follows the same lines as [15, proof of Theorem 1]. In partic-

ular, let us define the following restriction of (1):

Hr





ẋ ∈ {f(x)} ∩ TC(x) x ∈ C

x+ = g(x) x ∈ D

and observe that (1) andHr have the same (nontrivial) solutions; see for example

[32]. Pick any maximal solution to Hr. Then, following the same steps as in

[15, proof of Theorem 1] it can be shown that (A.1b) and (A.1c) give:

W (φ(t, j)) ≤ e−α3tW (φ(0, 0)) ∀(t, j) ∈ domφ

which thanks to (A.1a) yields

|φ(t, j)|A ≤

(
α2

α1

) 1
p

e−
α3
p

t|φ(0, 0)|A ∀(t, j) ∈ domφ (A.2)

Now, pick γ = α3τD
1+τD

and M = γN . Then, it can be easily shown that for any

maximal solution φ to H, (t, j) ∈ domφ implies:

−α3t ≤ M − γ(t+ j)

Combining the above bound with (A.2) gives, for all (t, j) ∈ domφ

|φ(t, j)|A ≤ eM
(
α2

α1

) 1
p

e−
α3γ(t+j)

p |φ(0, 0)|A

This concludes the proof.
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The proof of the result given next follows similar steps as in the proof of

Theorem A.1 and so it is omitted.

Theorem A.2. Consider system (3). Let A ⊂ Rn be closed. Suppose that

there exist a locally Lipschitz continuous function W : R3np+1 → R positive

scalars α1, α2, α3, and p, and µ ∈ K∞ such that:

α1|x|
p
A ≤ W (x) ≤ α2|x|

p
A ∀x ∈ ΠRn(Cη) ∪ ΠRn(Dη) (A.3a)

sup
χ∈∂W (x)

s∈{f(x,η)}∩TΠ
Rn (Cη )(x)

〈χ, f〉 ≤ −α3W (x) + µ(|η|) ∀(x, η) ∈ Cη (A.3b)

W (g(x)) ≤ W (x) ∀(x, η) ∈ Dη (A.3c)

Assume that any maximal solution pair to (3) is complete and that there exist

N > 0 and τD > 0 such that, for each maximal solution (φ, η) to (3), (t, j) ∈

domφ implies j ≤ 1
τD

t+N . Then, hybrid system Hη defined in (3) is ISS with

respect to η relatively to the set A. In particular, (4) holds with

β(s, k) = e
N

α3τD
1+τD

(
α2

α1

) 1
p

e−
α2
3τD

1+τD
p

ks

�410

Lemma A.1. Let F̂ and F̂n be defined, respectively, as in (13b) and (39).

The following items hold:

(i) Let x ∈ (R3np \ F̂)× {τD}. Then

TĈ(x) ⊂ R
3np × R≤0

(ii) Let x ∈ (Π
R

3np (R3np+ny \ F̂n)× {τD}). Then

TΠ
R
3np (Ĉn)

(x) ⊂ R
3np × R≤0

Proof. We prove only item (i), the proof of item (ii) follows the same steps. By

contradiction, assume that there exists ω = (ωζ , ωτ ) ∈ TĈ(x) ∩ (R3np × R>0).
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Then, by definition, there exist sequences {(ζk, τk)} ⊂ Ĉ and {σk} ⊂ R>0 with

xk := (ζk, τk) → x, σk → 0 such that:

(ωζ , ωτ ) = lim
k→∞

xk − x

σk

Now observe that since F̂ is closed, without loss of generality, one can assume

that {ζk} ⊂ R3np \ F̂ = int Ĵ . Hence, since {xk} ⊂ Ĉ, it follows that {τk} ⊂

[0, τD]. Namely, for all k, τk − τD ≤ 0, which yields:

ωτ = lim
k→∞

τk − τD
σk

≤ 0

This contradicts the fact that ω ∈ R3np × R>0. Thus, due to TĈ(x) being

nonempty, the proof is concluded.
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