
HAL Id: hal-03260611
https://hal.science/hal-03260611

Submitted on 16 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Stepwise Refinement Based Development of
Self-Organizing Multi-Agent Systems: Application to

the Foraging Ants
Zeineb Graja, Frédéric Migeon, Christine Maurel, Marie-Pierre Gleizes,

Ahmed Hadj Kacem

To cite this version:
Zeineb Graja, Frédéric Migeon, Christine Maurel, Marie-Pierre Gleizes, Ahmed Hadj Kacem. A
Stepwise Refinement Based Development of Self-Organizing Multi-Agent Systems: Application to the
Foraging Ants. 2nd International workshop on Engineering Multi-Agent Systems (EMAS 2014), May
2014, Paris-, France. �10.1007/978-3-319-14484-9_3�. �hal-03260611�

https://hal.science/hal-03260611
https://hal.archives-ouvertes.fr

A Stepwise Refinement Based Development

of Self-Organizing Multi-Agent Systems:

Application to the Foraging Ants

Zeineb Graja1,2, Frédéric Migeon2, Christine Maurel2,
Marie-Pierre Gleizes2, and Ahmed Hadj Kacem1

1 Research on Development and Control of Distributed Applications Laboratory
(ReDCAD)

Faculty of Economics and Management
University of Sfax, Tunisia

zeineb.graja@redcad.org, ahmed.hadjkacem@fsegs.rnu.tn
2 Institute for Research in Computer Science in Toulouse (IRIT)

Paul Sabatier University
Toulouse, France

{graja,migeon,maurel,gleizes}@irit.fr

Abstract. This paper proposes a formal modeling for Self-Organizing
Multi-Agent Systems (SOMAS) based on stepwise refinements, with the
Event-B language and the Temporal Logic of Actions (TLA). This mod-
eling allows to develop this kind of systems in a more structured manner.
In addition, it enables to reason, in a rigorous way, about the correctness
of the derived models both at the individual level and the global level.
Our work is illustrated by the foraging ants case study.

Keywords: Self-organizing MAS, foraging ants, formal verification,
refinement, Event-B, TLA.

1 Introduction

Self-Organizing Multi-Agent Systems (SOMAS) are made of a set of autonomous
entities (called agents) interacting together and situated in an environment. Each
agent has a limited knowledge about the environment and possesses its own
goals. The global function of the overall system emerges from the interactions
between the individual entities composing the system as well as interactions
between the entities and the environment. Thanks to their self-organizing mech-
anisms, SOMAS are able to adjust their behavior and cope with the environment
changes [14].

When designing this kind of systems, two levels of observation are generally
distinguished: the micro-level which corresponds to the agents local behavior
and the macro-level which describes the emergent global behavior.

One of the main challenges when engineering a SOMAS is about giving
assurances and guarantees related to its correctness, robustness and resilience.
Correctness refers to fulfillment of the different constraints related to the

agents activities. Robustness ensures that the system is able to cope with changes
and perturbations [5]. Whereas resilience informs about the capability of the sys-
tem to adapt when robustness fails or a better performance is possible [2].

In order to promote the acceptance of SOMAS, it is essential to have effec-
tive tools and methods to give such assurances. Some works propose using test
and simulation techniques [3], others define metrics for evaluating the resulting
behavior of the system [9]. Our proposal to deal with SOMAS verification is to
take advantage of formal methods. We propose a formal modeling for the local
behavior of the agents based on stepwise refinement steps and the Event-B for-
malism [1]. Our refinement strategy guarantees the correctness of the system. In
order to prove the desired global properties related to robustness and resilience,
we make use of Lamport’s Temporal Logic of Actions (TLA) and its fairness-
based proof rules. The use of TLA was recently proposed in [8] in the context of
population protocols to prove liveness and convergence properties and fits well
with SOMAS. Our work is illustrated with the foraging ants case study.

This paper is organized as follows. Section 2 presents a background related
to the Event-B language, the main principles on which it is based and TLA. In
section 3, our refinement strategy of SOMAS is presented. An illustration of this
strategy on the foraging ants is given in section 4. Section 5 presents a summary
of related works dealing with verification of SOMAS. Section 6 concludes the
paper and draws future perspectives.

2 Background

2.1 Event-B

The Event-B formalism was proposed by J.R. Abrial [1] as an evolution of the
B language. It allows a correct-by-construction development for distributed and
reactive systems. Event-B uses set theory as a modeling notation which enables,
contrary to process algebra approaches, to support scalable solutions for system
modeling. In order to make formal verification, Event-B is based on theorem
proving. This technique avoids the problem of explosion in the number of the
system states encountered with the model checkers.

The concept used to make a formal development is that of a model. A model
is formed of components which can be of two types: machine and context. A
context is the static part of the model and may include sets and constants defined
by the user with their corresponding axioms. A machine is the dynamic part of
the model and allows to describe the behavior of the designed system. It is
composed by a collection of variables v and a set of events ev_i. The variables
are constrained by conditions called invariants. The execution of the events
must preserve these invariants. A machine may see one or more contexts, this
will allow it to use all the elements defined in the seen context(s). The structures
of a machine and an event in Event-B are described as follows.

Machine M
SEES

CMi

VARIABLES

Vi

INVARIANTS

Inv(Vi)
EVENT ev_1
...
EVENT ev_i

END

EVENT ev_i
ANY

p
WHERE

grd_evi : G_evi(p, v)
THEN

act_evi : A_evi(p, v, v′)
END

An event is defined by a set of parameters p, the guard G_evi(p, v) which
gives the necessary conditions for its activation and the action A_evi(p, v, v′)
which describes how variables v are substituted in terms of their old values and
the parameters values. The action may consist in several assignments which can
be either deterministic or non-deterministic. A deterministic assignment, having
the form x := E(p, v), replaces values of variables x with the result obtained
from the expression E(p, v). A non-deterministic assignment can be of two forms:
1) x :∈ E(p, v) which arbitrarily chooses a value from the set E(p, v) to assign
to x and 2) x : | Q(p, v, v′) which arbitrarily chooses to assign to x a value
that satisfies the predicate Q. Q is called a before-after predicate and expresses
a relation between the previous values v (before the event execution) and the
new ones v′ (after the event execution).

Proof Obligations. Proof Obligations (POs) are associated with Event-B ma-
chines in order to prove that they satisfy certain properties. As an example, we
mention the Preservation Invariant INV and the Feasibility FIS POs. INV
PO is necessary to prove that invariants hold after the execution of each event.
Proving (or discharging) FIS PO means that when an event guard holds, every
action can be executed. This PO is generated when actions are non-deterministic.

Refinement. This technique, allowing a correct by construction design, consists
in adding details gradually while preserving the original properties of the system.
The refinement relates two machines, an abstract machine and a concrete one.
Data refinement consists in replacing the abstract variables by the concrete
ones. In this case, the refinement relation is defined by a particular invariant
called gluing invariant. The refinement of an abstract event is performed by
strengthening its guard and reducing non determinism in its action. The ab-
stract parameters can also be refined. In this case, we need to use witnesses

describing the relation between the abstract and the concrete parameters. The
correctness of the refinement is guaranteed essentially by discharging POs GRD
and SIM . GRD states that the concrete guard is stronger than the abstract one.
SIM states that the abstract event can simulate the concrete one and preserves
the gluing invariant. An abstract event can be refined by more than one event.
In this case, we say that the concrete event is split. In the refinement process,
new events can be introduced. In order to preserve the correctness of the model,
we must prove that these new introduced events do not take the control for ever;
i.e. they will terminate at a certain point or are convergent. This is ensured by

the means of a variant –a numerical expression or a finite set– that should be
decreased by each execution of the convergent events.

B-event is supported by the Rodin platform1 which provides considerable
assistance to developers by automating the generation and verification of all
necessary POs.

2.2 Temporal Logic of Actions (TLA)

TLA combines temporal logic and logic of actions for specifying and reasoning
about concurrent and reactive discrete systems [11]. Its syntax is based on four
elements: 1) constants, and constant formulas - functions and predicates - over
these, 2) state formulas for reasoning about states, expressed over variables as
well as constants, 3) transition or action formulas for reasoning about (before-
after) pairs of states, and 4) temporal predicates for reasoning about traces
of states; these are constructed from the other elements and certain temporal
operators [8]. In the remainder of this section, we give some concepts that will
be used further in section 4.

Stuttering Step. A stuttering step on an action A under the vector variables
f occurs when either the action A occurs or the variables in f are unchanged.
We define the stuttering operator [A] as: [A]f =̂ A ∨ (f ′ = f). 〈A〉 asserts that
A occurs and at least one variable in f changes.
〈A〉f =̂ A ∧ (f ′ �= f).

Fairness. Fairness asserts that if a certain action is enabled, then it will even-
tually be executed. Two types of fairness can be distinguished: 1) Weak Fairness
for action A denoted WFf (A); which asserts that an operation must be executed
if it remains possible to do so for a long enough time and 2) Strong Fairness for
action A denoted SFf (A); asserts that an operation must be executed if it is
often enough possible to do so [11]. Formally WFf (A) and SFf (A) are defined
as follows.

WFf (A) =̂ ♦�Enabled〈A〉f ⇒ �♦〈A〉f
SFf (A) =̂ �♦Enabled〈A〉f ⇒ �♦〈A〉f

� and ♦ are temporal operators. �P called alwaysP means that P is always
true in a given sequence of states. ♦P called eventually P means that P will
hold in some state in the future.
Enabled〈A〉f asserts that it is possible to execute the action 〈A〉f . In addition,
we define the leads to operator: P � Q =̂ �(P ⇒ ♦Q), meaning that whenever
P is true, Q will eventually become true.

Proof Rules for Simple TLA. We consider the two proof rules WF1 and SF2
given below. WF1 gives the conditions under which weak fairness assumption
of action A is sufficient to prove P � Q. Condition WF1.1 describes a progress
step where either state P or Q can be produced. Condition WF1.2 describes
the inductive step where 〈A〉f produces state Q. Condition WF1.3 ensures that

1 http://www.event-b.org/

〈A〉f is always enabled. SF1 gives the necessary conditions to prove P � Q
under strong fairness assumption. The two first conditions are similar to WF1.
The third condition ensures that 〈A〉f is eventually, rather than always, enabled.

WF1
WF1.1 P ∧ [N]f ⇒ (P ′ ∨Q′)
WF1.2 P ∧ 〈N ∧A〉f ⇒ Q′

WF1.3 P ⇒ Enabled〈A〉f

�[N]f ∧WFf (A) ⇒ P � Q

SF1
SF1.1 P ∧ [N]f ⇒ (P ′ ∨Q′)
SF1.2 P ∧ 〈N ∧A〉f ⇒ Q′

SF1.3 �P ∧�[N]f ⇒ ♦Enabled〈A〉f

�[N]f ∧ SFf (A) ⇒ P � Q

3 Formal Modeling of Self-Organizing MAS

The formal modeling is based on two levels of abstraction; i.e. the micro level
which corresponds to the local behavior of the agents and the macro level which
describes the global behavior of the system. In this subsection, we identify the
main properties that must be ensured when designing a SOMAS according to
these levels. We give also a refinement strategy allowing to ensure the proof of
these properties.

3.1 Formal Modeling of the Agents Local Behavior

The main concern at this level is the design of the behavior of the agents and
their interactions. In a very abstract way, the behavior of each agent is composed
by three steps: the agent senses information from the environment (perception
step), makes a decision according to these perceptions (decision step) and fi-
nally performs the chosen action (action step). We refer to these steps as the
perceive− decide− act cycle. Thus, an agent is characterized by the representa-
tions of the environment that it possesses (rep), a set of decision rules telling it
which decisions to make (decisions), the set of actions it can perform (actions)
and the set of operations (perceptions) allowing it to update its representations
of the environment. Moreover, an agent is identified by its intrinsic characteris-
tics such as the representations it has on itself (prop), its sensors (sensors) and
its actuators (actuators). More formally, an agent is described by the following
expression:

agent � < prop, rep, sensors, actuators, decisions, actions, perceptions >

In Event-B, the characteristics of agents, their representations of the environ-
ment, sensors and actuators are modeled by means of variables. Whereas their de-
cisions, actions and update operations are formalized by events. Hence, a before-

after predicate can be associated with each one of them. As a consequence, the
decisions of each agent ag, belonging to the set of agents noted Agents, can be
considered as a set of before-after-predicates denoted Decide_i(ag, d, d′), where
d is the set of variables corresponding to the properties and actuators of ag.
Moreover, the actions of each agent ag can be considered as a set of before-

after predicates having the form Act_i(ag, a, a′), where a is the set of variables

corresponding to the properties and sensors of ag. Indeed, an action event is
responsible for getting the agent to the perception step. Since the actions of
an agent can affect its local environment, the set a can also contain variables
describing the environment state. Finally, perceptions is the event enabling an
agent to update its perceptions. It is described by the before-after predicate:
Perceive(ag, rep, rep′). The local agents behavior described earlier is said "cor-
rect", if the following properties are satisfied.

– LocProp1: the behavior of each agent is complied with the perceive-decide-act

cycle.
– LocProp2: the agent must not be deadlocked in the decision step, i.e. the

made decision must enable the agent to perform an action.

LocProp2 � ∀ag · ag ∈ Agents∧Decide_i(ag, d, d′) = TRUE ⇒
∃Act_i · Act_i ∈ actions ∧G_Act_i(ag, a) = TRUE

– LocProp3: the agent must not be deadlocked in the perception step; i.e. the
updated representations should allow it to make a decision.

LocProp3 � ∀ag · ag ∈ Agents∧ Perceive_i(ag, rep, rep′) = TRUE ⇒
∃Decide_i ·Decide_i ∈ decisions ∧G_Decide_i(ag, d) = TRUE

3.2 Global Properties of the Macro-level

At the macro level, the main concern is to prove that the agents behavior, de-
signed at the micro-level, will lead to the desired global properties. The aim is
to discover, in the case of proof failure, design errors and thus make the neces-
sary corrections at the micro-level. One of the most relevant global properties
that should be proved, when designing self-organizing systems, is robustness.
Serugendo ([5]) defines four attributes for the analysis of robustness:

– Convergence2: indicates the system ability to reach its goal,

– Stability: informs about the system capacity to maintain its goal once reached,
– Speed of convergence, and
– Scalability: shows if the system is affected by the number of agents.

Besides robustness, resilience represents another relevant property that should
be analyzed for SOMAS. Resilience refers to the ability of the system to self-
adapt when facing changes and perturbations. The analysis of resilience allows
assessment of the aptitude of self-organizing mechanisms to recover from errors
without explicitly detecting an error ([5],[2]).
In this paper, we only focus on proving the stability property. We give an ex-
ample from the foraging ants case study and some guidelines to prove it in the
next section. The formalization and proof of the remaining properties is still an
ongoing work.

2 Convergence here is different from the convergence of an event in Event-B, i.e.
termination.

3.3 The Refinement Strategy

The formal development of SOMAS begins by a very abstract model representing
the system as a set of agents operating according to the Perceive-Decide-Act

cycle. This abstract model guarantees LocProp1. An overview of this machine
is given in figure 1.

Machine Agents0
SEES

Context0
VARIABLES

stepAgent
INVARIANTS

defStepAg : stepAgent ∈ Agents → Steps
EVENTS

INITIALISATION

THEN

initStep : stepAgent := Agents × {perceive}
END

EVENT Perceive
EVENT Decide
EVENT Act
ANY

agent
WHERE

checkStep : agent ∈ Agents ∧ stepAgent(agent) = act
THEN

updStepAg : stepAgent(agent) := perceive
END

END

Fig. 1. The Agents0 machine

The first refinement consists in identifying the different actions performed by
the agents. Thus, the refinement of the machine Agents0 by Agents1 is achieved
by splitting the Act event into the different actions an agent can perform. This
refinement should ensure LocProp2. Figure 2 is an excerpt from the Agents1
machine modeling the actions of an agent.

In the second refinement step, we specify the events corresponding to the
decisions that an agent can make. In addition, we describe the rules allowing
the agent to decide. We also introduce the actuators of the agents. By using
witness, we connect the actions introduced in the previous refinement with the
corresponding decisions defined in this stage of refinement. Figure 3 describes
how the decision and action events are refined.

In the third refinement, the perceptions of the agents and the necessary events
to update them are identified. As a consequence the different events related to
the decisions and actions are refined and property LocProp3 should be satisfied.

Figure 4 shows an excerpt from the Agents3 machine that refines the Agents2.
The gluInvSensorsPercept invariant is a gluing invaraint making connection
between the perception and the activation of the agent’s sensors. In the context
Context3, we define the ability AbilityT oPerceive (used in the Perceive event
in the figure 4 allowing the agent to determine the state of its local environment
based on the global system state.

Machine Agents1
SEES

Context1
EVENTS

...
EVENT Act_Action_i
REFINES Act
ANY

agent
action

WHERE

checkStep : agent ∈ Agents ∧ stepAgent(agent) = act
checkAction : action = Action_i

THEN

updStepAg : stepAgent(agent) := perceive
END

END

Fig. 2. The refinement of the event Act in the Agents1 machine

EVENT Decide_Perform_Action_i
REFINES Decide
ANY

agent
WHERE

checkStep : agent ∈ Agents ∧ stepAgent(agent) = decide
THEN

updStepAg : stepAgent(agent) := act
updActAg : actuators(agent) := enabled

END

EVENT Act_Action_i
REFINES Act_Action_i
ANY

agent
WHERE

checkStep : agent ∈ Agents ∧ stepAgent(agent) = act
checkActuator : actuators(agent) = enabled

WITH

action : action =
Act_Action_i ⇔ actuators(agent) = enabled

THEN

updStepAg : stepAgent(agent) := perceive
END

Fig. 3. The refinement of the Act and Decide events in the Agents2 machine

4 Application to the Foraging Ants

The case study is a formalization of the behavior of a foraging ants colony.
The system is composed of several ants moving and searching for food in an
environment. Their main goal is to bring all the food placed in the environment
to their nest. Ants do not have any information about the locations of the sources
of food, but they are able to smell the food which is inside their perception field.
The ants interact with one another via the environment by dropping a chemical
substance called pheromone. In fact, when an ant discovers a source of food,
it takes a part of it and comes back to the nest by depositing pheromone for
marking food paths. The perturbations coming from the environment are mainly

Machine Agents3
SEES

Context3
VARIABLES

sensors
rep
ActualSysState

INVARIANTS

defSensorAg : sensors ∈ Agents → Activation
defRepAg : rep ∈ Agents → V alue
defGlobalStateSys : ActualSysState ∈ SysStates
gluInvSensorsPercept : ∀ag·ag ∈ Agents⇒

(stepAgent(ag) = perceive
⇔sensors(ag) = enabled)

EVENTS

EVENT Perceive
REFINES Perceive
ANY

agent
WHERE

grdAgent : agent ∈ Agents
grdChekSensors : sensors(agent) = enabled

THEN

updStepAg : stepAgent(agent) := decide
updRepAg : rep(agent) :=

AbilityToPerceive(ActualSysState)
updSensorAg : sensors := disabled

END

END

Fig. 4. Refinement of the Perceive event in the machine Agents3

pheromone evaporation and appearance of obstacles. The behavior of the system
at the micro-level is described as follows. Initially, all ants are in the nest. When
exploring the environment, the ant updates its representations in its perception
field and decides to which location to move. When moving, the ant must avoid
obstacles. According to its smells, three cases are possible:

1. the ant smells food: it decides to take the direction in which the smell of
food is stronger (even if it smells some pheromone).

2. the ant smells only pheromone: it decides to move towards the direction in
which the smell of pheromone is stronger.

3. the ant doesn’t smell anything: it chooses its next location randomly.

When an ant reaches a source of food on a location, it collects it and comes
back to the nest. If some food remains in this location, the ant drops pheromone
when coming back. Arriving at the nest, the ant deposits the harvested food and
begins another exploration. In addition to the properties LocProp1, LocProp2
and LocProp3 (described in section 3), the following properties should be verified
at the micro-level.

– LocInv1: the ant should avoid obstacles
– LocInv2: a given location cannot contain both obstacle and food.

The main global properties associated with the foraging ants system are de-
scribed in the following3.

– C1: the ants are able to reach any source of food
– C2: the ants are able to bring all the food to the nest
– S1: when a source of food is detected, the ants are able to focus on its

exploitation
– R1: the ants focusing on exploiting a source of food, are able to continue

their foraging activity when this source of food suddenly disappear from the
environment.

In the remainder of this section, we only focus on the properties related to the
correctness (LocProp1, LocProp2, LocProp3, LocInv1 and LocInv2) and the
stability (S1) of the system. The proofs of convergence and resilience are still an
ongoing work. The next section illustrates the proposed refinement strategy.

4.1 Formalization of the Ants Local Behavior

Abstract Model: the initial machine Ants0 describes an agent (each agent is
an ant) operating according to the Perceive-Decide-Act cycle. It contains three
events Perceive, Decide and Act describing the agent behavioral rules in each
step. At this very abstract level, these events are just responsible for switching an
agent from one step to another. The current cycle step of each agent is depicted
by the variable stepAgent defined as follows.

inv1 : stepAgent ∈ Ants → Steps

where Ants defines the set of the agents and Steps is defined by the axiom axm1.
The partition operator allows the enumeration of the different steps of an ant.

axm1 : partition(Steps, {perceive}, {decide}, {act})

As an example, we give below the event Act modeling the action step. The only
action specified at this level is to switch the ant to the perception step.

EVENT Act
ANY

ant
WHERE

grd12 : ant ∈ Ants ∧ stepAgent(ant) = act
THEN

act1 : stepAgent(ant) := perceive
END

The proof obligations related to this machine concern essentially preservation
of the invariant inv1 by the three events. All of them are generated and proved
automatically under the Rodin platform.

First Refinement: In the first refinement Ants1, we add the variables QuFood,
Obstacles modeling respectively the food and the obstacles distribution in the

3 C refers to Convergence, S to Stability and R to Resilience.

environment, currentLoc and load which give respectively the current location
and the quantity of food loaded of each ant. Invariants inv5 and inv3 guaran-
tee the properties LocInv1 and LocInv2 respectively. The notation dom is the
domain of a function. ⊲− denotes a range subtraction. Thus, QuFood⊲− {0} is a
subset of the relation QuFood that contains all pairs whose second element is
not equal to zero.

inv1 : QuFood ∈ Locations → N

inv2 : Obstacles ⊆ Locations \ {Nest}
inv3 : Obstacles ∩ dom(QuFood⊲− {0}) = ∅

inv4 : currentLoc ∈ Ants → Locations
inv5 : ∀ant·ant ∈ Ants ⇒ currentLoc(ant) /∈ Obstacles
inv6 : load ∈ Ants → N

Moreover, the Act event is refined by the four following events:

1. Act_Mov: the ant moves in the environment
2. Act_Mov_Drop_Phero: the ant moves and drops pheromone when coming

back to the nest
3. Act_Harv_Food: the ant picks up food
4. Act_Drop_Food: the ant drops of food at the nest

In the following, the event Act_Mov is presented as an action event example.

EVENT Act_Mov
REFINES Act

ANY

ant, loc, decideAct
WHERE

grd12 : ant ∈ Ants ∧ stepAgent(ant) = act
grd34 : loc ∈ Next(currentLoc(ant)) ∧ decideAct = move

THEN

act12 : stepAgent(ant) := perceive||currentLoc(ant) := loc
END

The parameter loc is the next location to which the ant will move. It is the
result of the decision process. This decision process will be modeled in the next
refinement. The parameter decideAct is also an abstract parameter that will
be refined in the next step. It indicates what type of decision can lead to the
execution of the Act_Mov event.

The majority of the generated POs are related to proving the refinement cor-
rectness (the SIM PO) and the preservation of invariants. With the presented
version of the Act_Mov event, it is impossible to discharge the inv5 preservation
PO (inv5 states that an ant cannot be in a location containing obstacles). In
fact, if loc belongs to the set Obstacles, Act_Mov will enable ant to move to a
location containing an obstacle, which is forbidden by inv5. In order to discharge
the inv5 preservation PO, we need to add the guard grd5 : loc /∈ Obstacles to
Act_Mov event. Finally, in order to guarantee the property LocProp2 for the
Act_Mov event, it is necessary to add another event Act_Mov_Impossible
that refines Act and allows to take into account the situation where the move
to loc is not possible because of obstacles. Act_Mov_Impossible will just al-
low ant to return to the perception step. The same reasoning is applied for

Act_Mov_Drop_Phero. For Act_Harv_Food, we should consider the case
where the food disappears before that the ant takes it.
The Rodin tool generates 35 proof obligations for the correctness of the refine-
ment. 85% of them are proved automatically and the rest has been proven using
the interactive proof environment.

Second Refinement: The second refinement Ants2 serves to create the links
between the decision made and the corresponding action. We add the actua-
tors of an ant: paw, exocrinGland, mandible as well as the ant’s characteristic
nextLocation which is updated when taking a decision. The Decide event is split
into five events:

1. Dec_Mov_Exp: decide to move for exploring the environment
2. Dec_Mov_Back: decide to come back to the nest
3. Dec_Mov_Drop_Back: decide to come back wile dropping pheromone
4. Dec_Harv_Food: decide to take the food
5. Dec_Drop_Food: decide to drop food in the nest

As an example, we give the event Dec_Mov_Exp above.

EVENT Dec_Mov_Exp
REFINES Decide

ANY

ant, loc
WHERE

grd12 : ant ∈ Ants ∧ stepAgent(ant) = decide
grd3 : loc ∈ Next(currentLoc(ant)) ∧ loc �= Nest

THEN

act123 : stepAgent(ant) := act||nextLocation(ant) := loc||paw(ant) := activate
END

As a result of event Dec_Mov_Exp execution, the ant chooses its next location
and activates its paws. What is necessary now, is to link the activation of the
paws with the triggering of the move action. Thus, we need to refine the event
Act_Mov by adding a Witness relating the parameter decideAct in the event
Act_Mov with the variable paw.

EVENT Act_Mov
REFINES Act_Mov

ANY

ant
WHERE

grd123 : ant ∈ Ants ∧ stepAgent(ant) = perceive ∧ loc ∈ Next(currentLoc(ant))
grd4 : paw(ant) = activate

WITNESSES

decideAct : decideAct = Move ⇔ paw(ant) = activate
loc : loc = nextLocation(ant)

THEN

act12 : stepAgentCycle(ant) := perceive||currentLoc(ant) := nextLocation(ant)
act3 : paw(ant) := disabled

END

The Rodin tool generates 62 proof obligations for the correctness of the refine-
ment. 79% of them are proved automatically and the rest has been proven using
the interactive proof environment.

Third Refinement: At this level of refinement (Ants3), the ants representa-
tions about the environment are introduced . Every ant can sense food smell
(food) as well as pheromone scent (pheromone). We introduce also the vari-
able DePhero modeling the distribution of pheromone in the environment. The
event Perceive (here above) is refined by adding the necessary event actions for
updating the perceptions of an ant.

EVENT Perceive
REFINES Perceive

ANY

ant, loc, fp, php
WHERE

grd123 : ant ∈ Ants ∧ stepAgent(ant) = perceive ∧ loc = currentLoc(ant)
grd45 : fp ∈ Locations × Locations
→ N ∧ fp = FPerc(QuFood)
grd67 : php ∈ Locations × Locations
→ N ∧ php = PhPerc(DePhero)

THEN

act1 : stepAgentCycle(ant) := decide
act2 : food(ant) := {loc
→ fp(loc
→ dir)|dir ∈ Next(loc)}
act3 : pheromone(ant) := {loc
→ php(loc
→ dir)|dir ∈ Next(loc)}

END

FPerc (guard grd45) and PhPerc (guard grd67)4 models the ability of an ant
to smell respectively the food and the pheromone situated in its perception
field. They are defined in the accompanying context of Ants3. After execution
of the event Perceive, the ant acquires a knowledge about the food smell and
pheromone scent for each direction from its current location. Moreover, we split
the event Dec_Mov_Exp into three events:

1. Dec_Mov_Rand: decide to move to a location chosen randomly because no
scent is smelt

2. Dec_Mov_Fol_F : decide to move towards the direction where the food
smell is maximum

3. Dec_Mov_Fol_Ph: decide to move towards the direction in which the
pheromone smell is maximum

This split guarantees the LocProp3 property for the decision concerning the
move. The event Act_Mov is also refined in order to take into account these
different decisions. The Rodin tool generates 59 proof obligations for the cor-
rectness of the refinement. 40% of them are proved automatically.

4.2 Formalization of the Ant Global Properties

The three refinement steps described in the last section have enabled us to
specify a correct individual behavior for the ants. Let us now focus on the ability
of the modeled behavior to reach the desired global properties. As we already
mentioned, the focus of this paper is on the stability property (S1) which informs
about the capability of ants to exploit entirely a source of food detected.

Recall in the machine Ants3, we have three events describing an exploration
movement namely Act_Mov_Fol_F , Act_Mov_Fol_Ph, Act_Mov_Rand

4 In the guards grd45 and grd67,
→ denotes a partial function.

plus the event Act_Harv_Food corresponding to the action of picking up food.
All these events are defined according to the parameter loc which refers to any
location. In order to prove the stability property, we refine these events by instan-
tiating the parameter loc with a precise location of food loc1. This refinement
gives rise to the machine Ants4. Our aim is to prove that once loc1 is reached,
the quantity of food in it will decrease until reaching zero. In Event-B, this kind
of reasoning is possible by proving convergence (or termination) of the event
responsible for decreasing this value, i.e. the event Act_Harv_Food. For car-
rying out the proof of termination in Event-B, we need to use a variant, i.e. a
natural number expression or a finite set and prove that event Act_Harv_Food
decreases it in each execution. Finding an implicit variant is trivial under weak
fairness assumptions on the actions of this event ([8]). In our case, the non-
determinism introduced by the movement actions makes such an assumption
impossible. Indeed, Act_Harv_Food is not always enabled since once an ant
reaches a source of food, the others can need time to reach this source.

For proving convergence, our work is inspired by the proofs done by D. Méry
and M. Poppleton in [8] where they demonstrate how to prove convergence under
fairness assumption by the use of the Temporal Logic of Actions (TLA) [11] and
Event-B.

Let us consider the two states P and QHarvest describing the quantity of food
on loc1 and defined as follows:

P =̂ InvAnts4∧QuFood(loc1) = n+1, QHarvest =̂ InvAnts4∧QuFood(loc1) = n

InvAnts4 denotes the conjunction of invariants of machine Ants4. Proving the
termination of Act_Harv_Food is reformulated by the formula:

P � QHarvest.

We define N and AHarvest as follows.

N =̂ Act_Harv_Food ∨Act_Mov_Fol_F ∨
Act_Mov_Fol_Ph ∨Act_Mov_Rand and
AHarvest =̂ Act_Harv_Food.

By applying SF1, we prove P � QHarvest:

SF1.1 P ∧ [N]QuFood(loc1) ⇒ (P ′ ∨Q′

Harvest)
SF1.2 P ∧ 〈N ∧ AHarvest〉QuFood(loc1) ⇒ Q′

Harvest

SF1.3 �P ∧�[N]QuFood(loc1) ⇒ ♦Enabled〈AHarvest〉QuFood(loc1)

SF1.H �[N]QuFood(loc1) ∧ SFQuFood(loc1)(Aharvest) ⇒ P � QHarvest

Condition SF1.1 describes a progress step where either state P or QHarvest

can be produced.
Condition SF1.2 describes the inductive step where 〈AHarvest〉QuFood(loc1)

produces state QHarvest.
Condition SF1.3 ensures that 〈AHarvest〉QuFood(loc1) will be eventually en-

abled. Note that both conditions SF1.1 and SF1.2 do not contain any temporal

operator. As a consequence, they are expressible in Event-B. SF1.3 is a temporal
formula that can be expressed in the leads to form. Thus, we can define SF1.31
as:

SF1.31 =̂ �[N]QuFood(loc1) ⇒ P � ♦Enabled〈AHarvest〉QuFood(loc1)

To demonstrate that condition SF1.31 is true, we need to prove that the formula
♦Enabled〈AHarvest〉QuFood(loc1) holds.

Ants are able to reach food thanks to their movements for following food.
Thus if we assume that once an ant smells food, it will be able to follow it
(we do not consider case where food disappears suddenly), we can argue that
the event Act_Harv_Food is always eventually Enabled. Consequently, we can
prove SF1.31 under weak fairness assumption.
We consider:
QfollowFood =̂ Enabled〈AHarvest〉QuFood(loc1) and
AFollowFood =̂ Act_Follow_Food.
We apply WF1:

WF1.311 P ∧ [N]QuFood(loc1) ⇒ (P ′ ∨Q′

FollowFood)
WF1.312 P ∧ 〈N ∧AFollowFood〉QuFood(loc1) ⇒ Q′

FollowFood

WF1.313 P ⇒ Enabled〈AFollowFood〉QuFood(loc1)

WF1.31 �[N]QuFood(loc1) ∧WFQuFood(loc1)(AFollowFood) ⇒ P � QFollowFood

WF1.311,WF1.312 and WF1.313 do not contain any temporal operator, so that
they are directly expressible in Event-B.

5 Related Work

Related work cited in this section deals in the first part, with the formal mod-
eling and verification of self-organization. The second part is devoted to the
presentation of works using Event-B for the development of adaptive systems.

Formal Modeling of Self-organizing Systems
In [6], Gardelli uses stochastic Pi-Calculus for modeling SOMAS for intrusion
detection. This formalization was used to perform simulations using the SPIM
tool to assess the impact of certain parameters, such as the number of agents and
frequency of inspections, on the system behavior. In [4], a hybrid approach for
modeling and verifying self-organizing systems has been proposed. This approach
uses stochastic simulations to model the system described as Markov chains and
the technique of probabilistic model checking for verification. To avoid the state
explosion problem, encountered with model-checkers, the authors propose to use
approximate model-checking based on simulations. The approach was tested for
the problem of collective sorting using the PRISM tool. Konur and colleagues
([10]) use also the PRISM tool and probabilistic model checking to verify the
behavior of robot swarm, particularly foraging robots. The authors verify proper-
ties expressed by PCTL logic (Probabilistic Computation Tree Logic) for several
scenarios. These properties provide information, in particular, on the probabil-
ity that the swarm acquires a certain amount of energy for a certain number of

agents and in a certain amount of time. Simulations were also used to show the
correlation between the density of foraging robots in the arena and the amount
of energy gained.

Most of the works exposed above use the model checking technique to evaluate
the behavior of the system and adjust its parameters. Although they were able
to overcome the state explosion problem and prove the effectiveness of their
approaches, these works do not offer any guidance to help the designer to find
the source of error in case of problems and to correct the local behavior at the
micro level. For the purpose of giving more guidance for the designer, we find
that the use of Event-B language and its principle of refinement are very useful.

Formal Modeling Using the Event-B Language
In [13], the authors propose a formal modeling framework for critical MAS,
through a series of refinement step to derive a secure system implementation.
Security is guaranteed by satisfying three properties: 1) an agent recovering from
a failure cannot participate in a cooperative activity with others, 2) interactions
can take place only between interconnected agents and 3) initiated cooperative
activities should complete successfully. This framework is applied to model crit-
ical activities of an emergency. Event-B modeling for fault tolerant MAS was
proposed in [12]. The authors propose a refinement strategy that starts by speci-
fying the main purpose of the system, defines the necessary agents to accomplish
it, then introduces the various failures of agents and ends by introducing the
communication model and error recovery mechanisms. The refinement process
ensures a set of properties, mainly 1) reachability of the main purpose of the
system, 2) the integrity between agents local information and global information
and 3) efficiency of cooperative activities for error recovery. The work of Hoang
and Abrial in [7] was interested in checking liveness properties in the context of
the nodes topology discovery in a network.

The proposed refinement strategy allows to prove the stability property, indi-
cating that the system will reach a stable state when the environment remains
inactive. The system is called stable if the local information about the topology
in each node are consistent with the actual network topology.

These works based on the correct by construction approach, often providing
a top-down formalization approach, have the particularity of being exempt from
the combinatorial explosion problem found with the model checking techniques.
They have the advantage of allowing the designer to discover the restrictions
to be imposed to ensure the desired properties. We share the same goals as the
works presented i.e. ensuring liveness properties and simplifying the development
by the use of stepwise refinements. Our refinement strategy was used to guide
the modeling of individual behaviors of agents, unlike the proposed refinement
strategies that use a top-down development of the entire system. We made this
choice to be as closely as possible to the bottom-up nature of self-organizing
systems.

6 Conclusion

We have presented in this paper a formal modeling for SOMAS by means of
Event-B. In our formalization, we consider the system in two abstraction levels:
the micro and macro levels. This abstraction allows to focus the development
efforts on a particular aspect of the system. We propose a stepwise refinement
strategy to build a correct individual behavior. This refinement strategy is ex-
tended in order to prove global properties such as robustness and resilience. Our
proposal was applied to the foraging ants case study. While the proof obligations
were used to prove the correctness of the micro level models, it was necessary
to turn to TLA in order to prove the stability property at the macro-level. We
think that this combination of TLA and Event-B is very promising for formal
reasoning about SOMAS.
Our ambitions for future works are summarized in the following four points:

– Reasoning about the convergence of SOMAS by means of TLA.
– Introduction of the self-organization mechanisms, based on the cooperation

in particular, at the proposed refinement strategy of the local agents behavior
and the analysis of the impact of these mechanisms on the resilience of the
system. For the foraging ants, for example, the objective is to analyze the
ability of the ants to improve the rapidity of reaching and exploiting food
thanks to their cooperative attitude. To achieve this aim, we plan to use a
probabilistic approach coupled with Event-B.

– Definition of design patterns for modeling and refinement of SOMAS and
their application to real case studies.

– Integration of the proposed formal framework within SOMAS development
methods in order to ensure formal proofs at the early stages of the system de-
velopment. This integration will be made by using model-driven engineering
techniques.

References

1. Abrial, J.R.: Modelling in Event-B. Cambridge University Press (2010)

2. Bankes, S.C.: Robustness, adaptivity, and resiliency analysis. In: AAAI Fall Sym-
posium: Complex Adaptive Systems. AAAI Technical Report, vol. FS-10-03. AAAI
(2010)

3. Bernon, C., Gleizes, M.-P., Picard, G.: Enhancing self-organising emergent systems
design with simulation. In: O’Hare, G.M.P., Ricci, A., O’Grady, M.J., Dikenelli,
O. (eds.) ESAW 2006. LNCS (LNAI), vol. 4457, pp. 284–299. Springer, Heidelberg
(2007), http://dblp.uni-trier.de/db/conf/esaw/esaw2006.html#BernonGP06

4. Casadei, M., Viroli, M.: Using probabilistic model checking and simulation for
designing self-organizing systems. In: SAC, pp. 2103–2104 (2009)

5. Serugendo, G.D.M.: Robustness and dependability of self-organizing systems - A
safety engineering perspective. In: Guerraoui, R., Petit, F. (eds.) SSS 2009. LNCS,
vol. 5873, pp. 254–268. Springer, Heidelberg (2009),
http://dx.doi.org/10.1007/978-3-642-05118-0_18

6. Gardelli, L., Viroli, M., Omicini, A.: Exploring the dynamics of self-organising sys-
tems with stochastic π-calculus: Detecting abnormal behaviour in MAS. In: Trappl,
R. (ed.) Cybernetics and Systems 2006, April 18-21, vol. 2, pp. 539–544. Austrian
Society for Cybernetic Studies, Vienna (2006), 18th European Meeting on Cyber-
netics and Systems Research (EMCSR 2006), Proceedings of the 5th International
Symposium “From Agent Theory to Theory Implementation” (AT2AI-5)

7. Hoang, T.S., Kuruma, H., Basin, D.A., Abrial, J.R.: Developing topology discovery
in Event-B. Sci. Comput. Program. 74(11-12), 879–899 (2009)

8. Méry, D., Poppleton, M.: Formal modelling and verification of population proto-
cols. In: Johnsen, E.B., Petre, L. (eds.) IFM 2013. LNCS, vol. 7940, pp. 208–222.
Springer, Heidelberg (2013),
http://dx.doi.org/10.1007/978-3-642-38613-8_15

9. Kaddoum, E., Raibulet, C., George, J.P., Picard, G., Gleizes, M.P.: Criteria for the
evaluation of self-* systems. In: Workshop on Software Engineering for Adaptive
and Self-Managing Systems (2010)

10. Konur, S., Clare, D., Fisher, M.: Analysing robot swarm behaviour via probabilistic
model checking. Robot. Auton. Syst. 60(2), 199–213 (2012)

11. Lamport, L.: The temporal logic of actions. ACM Trans. Program. Lang.
Syst. 16(3), 872–923 (1994)

12. Pereverzeva, I., Troubitsyna, E., Laibinis, L.: Development of fault tolerant MAS
with cooperative error recovery by refinement in Event-B. CoRR abs/1210.7035
(2012)

13. Pereverzeva, I., Troubitsyna, E., Laibinis, L.: Formal development of critical multi-
agent systems: A refinement approach. In: EDCC, pp. 156–161 (2012)

14. Serugendo, G.D.M., Gleizes, M.P., Karageorgos, A.: Self-organization in multi-
agent systems. Knowledge Eng. Review (2005)

