
HAL Id: hal-03260609
https://hal.science/hal-03260609

Submitted on 16 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MAccS: a Tool for Reachability by Design
Guillaume Verdier, Jean-Baptiste Raclet

To cite this version:
Guillaume Verdier, Jean-Baptiste Raclet. MAccS: a Tool for Reachability by Design. 11th Inter-
national Symposium on Formal Aspects of Component Software (FACS 2014), Sep 2014, Bertinoro,
Italy. pp.191–197, �10.1007/978-3-319-15317-9_12�. �hal-03260609�

https://hal.science/hal-03260609
https://hal.archives-ouvertes.fr


MAccS: A Tool for Reachability by Design

Guillaume Verdier(B) and Jean-Baptiste Raclet

IRIT/CNRS, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France
{verdier,raclet}@irit.fr

Abstract. MAccS is a tool for the modular design of complex IT
systems. Component specifications are given in the form of marked accep-
tance specifications which are acceptance specifications, an extension of
modal specifications, enriched with reachability constraints on states.
The tool supports the crucial operators for a complete specification the-
ory: satisfaction checking, consistency, refinement, product, quotient and
conjunction. These operators can be used to build larger systems by com-
posing or decomposing component specifications while ensuring some
reachability properties.

1 Introduction

The basic idea underlying modular design is to break down complex systems into
individual components that can be implemented concurrently or possibly taken
off-the-shelf, and later composed to obtain the targeted system. This approach
can be supported by a specification theory in which a formalism is defined for the
component specifications together with dedicated operators allowing to perform
different steps of a system design flow.

The tool MAccS implements a specification theory based on marked accep-

tance specifications (MAS) [1]. As an example of MAS, consider the specification
Server shown in Fig. 1. It consists of a finite deterministic transition system with,
associated to any state q, a set Acc(q) of sets of actions that may be enabled in
a model of the specification. In general terms, a MAS characterizes a (possibly
infinite) set of finite transition systems called its models. Now Fig. 2 depicts two
models of Server (for a formal definition of satisfaction, see [1]). In each state of
the model, the set of outgoing transitions must be an element of the acceptance
set of the specification. For example, the state 2 of the MAS Server allows either
to do only one transition labeled response or two transitions labeled response
and ban. In the model on the right of Fig. 2, the state 2 chose this last option
(both response and ban) while the state 4 only realizes the transition response.

Observe that logout and ban are optional respectively in state 1 and in state 2
of Server as these actions are not present in all sets in Acc(1) and Acc(2) and
thus may not be present in some models of the specification. Moreover, state
3 of Server is marked to encode the constraint that it must be reached in any

Source code of MAccS, screenshots and more examples are available at http://irit.
fr/Guillaume.Verdier.



0 1 2

3

login
read, post

response

logout ban

Acc(0) = {{login}}
Acc(1) = {{read, post}, {read, post, logout}}
Acc(2) = {{response}, {response, ban}}
Acc(3) = {∅}

Fig. 1. A MAS Server

0 1 2

3

login
read, post

response

logout

0 1 2

34

5
login read, post ban

response

read, post

response

Fig. 2. Two models of the MAS Server

model. As a result, although the actions logout and ban are optional, at least
one of the two must be present in any model of Server. This kind of constraint
entails that MAS are more expressive than modal transition systems (MTS) [2].
In this case, marking the state 3 is used to express the termination of the service,
as the marked state has no outgoing transition, but one may also mark some
states with outgoing transitions to ensure the reachability of checkpoints or a
liveness property.

Consequently, the MAS Server specifies the behavior of a forum-like site:
after having logged in, one can read messages or post a new message and may
eventually log out. The server may also eventually decide to ban users.

A specification theory must support a set of crucial operators to be regarded
as complete [3]. This is the case for the one implemented in MAccS which sup-
ports satisfaction checking, consistency and refinement for substitutability. It
also supports product for the composition of MAS, quotient for the decompo-
sition of MAS and conjunction for the merge of viewpoints modeled as MAS.
These operators preserve the reachability of marked states and thus guarantee
by design some reachability properties.

2 The Tool MAccS

MAccS offers a Graphical User Interface (GUI) featuring an interactive view of
transition systems and MAS allowing to edit them easily and a sidebar to select
and apply different operations defined on MAS. MAccS is also available as a
library for integration in other programs or automatic processing.

MAccS is written in standard C++; the graphs underlying the transition
systems and MAS are handled by the Boost Graph Library [4]. The GUI is



init {{login}}

wait {{read,post},{read,post,logout}}

...

init -login-> wait

wait -read-> reply

reply -response-> wait

...

Fig. 3. Excerpt of the textual form of the MAS given in Fig. 1

made with the framework Qt and Dot [5] is used to generate the layout of the
transition systems and MAS. MAccS does not make use of platform-specific
libraries and should thus compile and run on most desktop operating systems.

In addition to being created and modified through the GUI, the transition
systems and MAS may be written in a simple textual format. An excerpt of this
format is shown in Fig. 3 which corresponds to the MAS Server in Fig. 1. It is
also possible to import and export them from and to the Dot format [5].

After creating (or importing) some transition systems or some MAS, several
operations are available that we now introduce briefly.

Satisfaction checking. As mentioned in the introduction, a MAS characterizes a
set of transition systems. One may first test in MAccS if a transition system M
is a model of a given MAS S.

For example, it can be verified that the left-hand side transition system in
Fig. 2 is a model of the MAS Server in Fig. 1. It corresponds to the implemen-
tation of Server in which users are never banned: after the login transition, the
set {read, post, logout} was selected from the Acc(1) and the set {response} was
chosen from Acc(2).

Refinement of MAS. Refinement allows one to replace, in any context, a specifi-
cation by a more detailed version of it. Substitutability of a MAS S2 by a MAS
S1 is allowed when every model satisfying the refinement S1 also satisfies the
larger specification S2. Inclusion of the sets of models, also referred as thorough
refinement in the literature, can be tested for two MAS in MAccS thus enabling
to decide refinement.

Product of MAS. Two MAS S1 and S2 may be composed using the product

operation (denoted ⊗), which synchronizes their actions. However, reachability
is not compositional in general meaning that there may exist some models M1

of S1 and M2 of S2 such that from some states of M1 × M2 no pair of marked
states can be reached.

In order to enable the concurrent implementation of MAS while guaranteeing
some reachability constraints, we have proposed in [1] a compatible reachability

criterion which is a precondition for the computation of S1 ⊗ S2 and allows to
check if a pair of marked states is always reachable in the product of any two
models of the MAS.



0′ 1′ 2′

3′

login
read, post

response

logout ban

Acc(0′) = {{login}}
Acc(1′) = {{read, post, logout}}
Acc(2′) = {{response, ban}}
Acc(3′) = {∅}

Fig. 4. MAS Client

0,0′ 1,1′ 2,2′

3,3′

login

read, post

response

logout ban

Acc(0, 0′) = {{login}}
Acc(1, 1′) = {{read, post}, {read, post, logout}}
Acc(2, 2′) = {{response}, {response, ban}}
Acc(3, 3′) = {∅}

Fig. 5. Result of Server ⊗ Client

For example, the MAS Server given in Fig. 1 and Client given in Fig. 4 have
a compatible reachability and their product is shown in Fig. 5.

When some MAS S1 and S2 do not have a compatible reachability, MAccS
proposes to compute the largest refinement S′

2 of S2 such that S1 and S′
2 have

a compatible reachability.

Quotient of MAS. Conversely, we may decompose specifications with the quo-

tient operation. Intuitively, it is the opposite of the product: given two MAS S
and S1, the MAS S/S1 is such that any of its models composed with any model
of S1 is a model of S. It also allows component reuse as S1 may be typically the
specification associated to a grey box component available off-the-shelf.

For example, consider the MAS ROServer in Fig. 6. This specification cor-
responds to a read-only forum: logged users may read messages and log out, but
if they try to post a message, the server will ban them.

0′ 1′ 2′

3′ 4′

5′

login
read

response

post

logout
response

read, post
ban

logout

Acc(0′) = {{login}}
Acc(1′) = {{read, post}, {read, post, logout}}
Acc(2′) = {{response}}
Acc(3′) = {{response, ban}}
Acc(4′) = {{read, post}, {read, post, logout}}
Acc(5′) = {∅}

Fig. 6. Specification ROServer



Now the Fig. 7 shows the quotient of Server and ROServer. Note that a
priority P is generated to enforce the eventual choice of the transition labeled
ban in any model M/ and thus guarantee that, regardless of the implementation
choices that are made when building a model M of ROserver, M × M/ will
satisfy the reachability constraint included in Server. A screenshot of MAccS
with the result of this quotient is shown in Fig. 8.

0,0′ 1,1′ 2,2′

2,3′ 1,4′

3,5′

login
read

response
post

logout

response

read, post
ban

logout

Acc(0, 0′) = {{login}}
Acc(1, 1′) = {{read, post}, {read, post, logout}}
Acc(2, 2′) = {{response}}
Acc(2, 3′) = {{response}, {response, ban}}
Acc(1, 4′) = {{read, post}, {read, post, logout}}
Acc(3, 5′) = {∅}

P = {{((2, 3′), ban)}}

Fig. 7. Result of Server/ROServer

Fig. 8. Screenshot of MAccS with the result of Server/ROServer



Conjunction and consistency of MAS. It is a current practice to attach to a given
(sub)system several specifications, each of them describing a different aspect or
viewpoint of the (sub)system. These specifications have to be interpreted in a
conjunctive way.

The tool MAccS addresses viewpoint-design by implementing a conjunction
operator for MAS: given two MAS S1 and S2, the MAS S1 ∧ S2, whose set of
models is exactly the intersection of the set of models of S1 and S2, can be
computed. If this intersection is empty, the two MAS are declared inconsistent.

3 Related Work

MAS extend modal transition systems (MTS) [2] by allowing to specify any
combination of actions and not only the sets of actions which belong to an inter-
val defined by may/must transitions. Moreover, the possibility to require some
reachability constraints on states is only available for MAS and also improves
expressivity with respect to MTS.

MAccS is the first tool for MAS with the support of a complete specifica-
tion theory. MTS have been identified as a specification formalism particularly
suitable for interface-based design [3,6], contract-based design [7], software prod-
uct lines description [8] and model merging [9] but only a few tools support
them. The tool MTSA [10] supports refinement, product and conjunction of
MTS but no quotient. The tools MIO workbench [11] and MICA [12] are ded-
icated to MTS enriched with input and output actions. They both support a
complete specification theory but restricted to the modal case and their opera-
tors do not guarantee concurrent reachability. The tool MoTRAS [13] also pro-
poses a complete specification theory for MTS, which are less expressive than
MAS. MoTRAS allows for LTL model-checking of specifications but this is not
enough to go along with reachability constraints as advocated in [1]. Several
non-deterministic MTS variants, namely Disjunctive MTS [14], Boolean MTS
and Parametric MTS [15], which have a similar expressive power as acceptance
specifications (without marked states), are also under the scope of MoTRAS,
but only for a reduced set of operations: there is no quotient for DMTS and
only refinement and the deterministic hull for BMTS and PMTS. Last, the tools
ECDAR [16] and PyECDAR [17] support a complete timed specification theory.

References

1. Verdier, G., Raclet, J.-B.: Quotient of acceptance specifications under reachability
constraints. In: LATA 2015. LNCS, vol. 8977 (2015, to appear)

2. Larsen, K.G., Thomsen, B.: A modal process logic. In: LICS, pp. 203–210, IEEE
(1988)

3. Raclet, J.B., Badouel, E., Benveniste, A., Caillaud, B., Legay, A., Passerone, R.: A
modal interface theory for component-based design. Fundam. In. 108(1–2), 119–
149 (2011)

4. Siek, J., Lee, L.Q., Lumsdaine, A.: The Boost Graph Library. Addison-Wesley,
Boston (2002)



5. Gansner, E.R., North, S.C.: An open graph visualization system and its applica-
tions to software engineering. Softw. Pract. Exp. 30(11), 1203–1233 (2000)

6. Larsen, K.G., Nyman, U., Wa֒sowski, A.: Modal I/O automata for interface and
product line theories. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
64–79. Springer, Heidelberg (2007)

7. Benveniste, A., Caillaud, B., Nickovic, D., Passerone, R., Raclet, J.-B.,
Reinkemeier, P., Sangiovanni-Vincentelli, A., Damm, W., Henzinger, T., Larsen,
K.G.: Contracts for system design. Research report, RR-8147, 65 pp., Nov 2012.
https://hal.inria.fr/hal-00757488

8. Asirelli, P., ter Beek, M.H., Fantechi, A., Gnesi, S.: A logical framework to deal
with variability. In: Méry, D., Merz, S. (eds.) IFM 2010. LNCS, vol. 6396, pp.
43–58. Springer, Heidelberg (2010)

9. Uchitel, S., Chechik, M.: Merging partial behavioural models. In: SIGSOFT FSE,
pp. 43–52, ACM (2004)

10. D’Ippolito, N., Fischbein, D., Chechik, M., Uchitel, S.: MTSA: The modal transi-
tion system analyser. In: ASE, pp.475–476, IEEE (2008)

11. Bauer, S.S., Mayer, P., Legay, A.: MIO workbench: a tool for compositional design
with modal input/output interfaces. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA
2011. LNCS, vol. 6996, pp. 418–421. Springer, Heidelberg (2011)

12. Caillaud, B.: Mica: a modal interface compositional analysis library (Oct 2011).
http://www.irisa.fr/s4/tools/mica

13. Křet́ınský, J., Sickert, S.: MoTraS: a tool for modal transition systems and their
extensions. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp.
487–491. Springer, Heidelberg (2013)

14. Larsen, K.G., Xinxin, L.: Equation solving using modal transition systems. In:
Proceedings of the Fifth Annual IEEE Symposium on Logic in Computer Science,
pp. 108–117, Philadelphia, Pennsylvania, USA, 4–7 June 1990

15. Beneš, N., Křet́ınský, J., Larsen, K.G., Møller, M.H., Srba, J.: Parametric modal
transition systems. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol.
6996, pp. 275–289. Springer, Heidelberg (2011)

16. David, A., Larsen, K.G., Legay, A., Nyman, U., Wa֒sowski, A.: ECDAR: an environ-
ment for compositional design and analysis of real time systems. In: Bouajjani, A.,
Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 365–370. Springer, Heidelberg
(2010)

17. Legay, Axel, Traonouez, Louis-Marie: PyEcdar: towards open source implementa-
tion for timed systems. In: Van Hung, Dang, Ogawa, Mizuhito (eds.) ATVA 2013.
LNCS, vol. 8172, pp. 460–463. Springer, Heidelberg (2013)


