N
N

N

HAL

open science

A Comparative Study of RELAX and SysML/KAOS
Manzoor Ahmad, Jean-Michel Bruel

» To cite this version:

Manzoor Ahmad, Jean-Michel Bruel. A Comparative Study of RELAX and SysML/KAOS. [Rapport
de recherche] IRIT : Institut de Recherche Informatique de Toulouse. 2014, pp.1-10. hal-03260606

HAL Id: hal-03260606
https://hal.science/hal-03260606

Submitted on 16 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03260606
https://hal.archives-ouvertes.fr

A Comparative Study of RELAX and SysML/KAOS

Manzoor AHMAD, Jean-Michel BRUEL

Abstract:

This report explains two methods used for defining Non Functional Requirements (NFRs). Of the two
methods one is RELAX which is a requirements engineering language; used to divide requirements
into invariant and RELAX-ed. RELAX-ed requirements can be functional or non functional and is an
enhanced form of the original requirement. SysML/KAOS has introduced the concept of goals in
SysML; infect the meta model of SysML is extended with the concept of goals.

Existing approaches for defining NFRs:

In order to define non functional requirements, different questions need to be considered. Following
are some of them:

* Which process to use for defining NFRs?
¢ Which formalism to use to specify NFRs and the links between them?
e How to treat the impact of NFRs on functional requirements?

Approach by Chung [1]:

It is based on i* approach, used to define NFRs in the form of goal graphs. Put differently a goal
should be either satisfied or unsatisfied and nothing else, in every possible imaginable situation. In
this context a set of “sub goals” is introduced to satisfy a given goal, where the relationship between
sub goals and its parent goal is etiher AND or OR. When the relationship is AND, the goal is satisfied if
all of its sub goals are; when the relationship is OR, the goal is satisfied if any of its sub goals is.

The i* model is defined by the concept of softgoal which is a NFR that must be satisfied [2]. The
authors in [1] are of the view that it is not always possible to satisfy a goal so they have introduced
the notion of softgoal for an NFR. A softgoal does not have a clear cut criteria of satisfaction. One
softgoal is decomposed into other softgoals and they are linked by the contribution type AND or OR.
The decomposition ends when operational softgoals are attained.

Approach by Cysneiros [3]:

This approach is also based on i* model, it defines how to discover NFRs and study their impact on
the conceptual models. It defines a set of rules to realize the traceability between requirement
analysis and the UML conceptual models.

An NFR graph is created for each NFR, where this NFR is the root of the graph. This graph is further
decomposed to express all the operationalizations that are necessary to satisfy the NFR. After having
these graphs, one can search for the possible interdependencies among them which can contribute
positively or negatively to another NFR. For example an NFR pointing out that the software might
need a high level of security may have a negative impact (a negative interdependency) on another
NFR like usability.

The Two Approaches:
The next sections explain the two approaches that we have studied with the help of examples.
1. RELAX [4]:

RELAX is a new requirements engineering language for Dynamic Adaptive Systems (DASs), where
explicit constructs are included to handle uncertainty. The need for DASs is typically due to two key
sources of uncertainty: First is the uncertainty due to changing environmental conditions, such as
sensor failures, noisy networks, malicious threats, and unexpected (human) input; the term
environmental uncertainty is used to capture this class of uncertainty. A second form of uncertainty
is behavioral uncertainty, whereas environmental uncertainty refers to maintaining the same
requirements in unknown contexts, behavioral uncertainty refers to situations where the
requirements themselves need to change. It is difficult to know all requirements changes at design
time and, in particular, it may not be possible to enumerate all possible alternatives.

Typically textual requirements prescribe behavior using a modal verb such as SHALL that defines
functionality that a software system must always provide. For self-adaptive systems however,
environmental uncertainty may mean that it is not always possible to achieve all of those SHALL
statements; or behavioral uncertainty may allow for trade-offs between SHALL statements to relax
noncritical statements in favor of other, more critical ones. Therefore RELAX identifies two types of
requirements: one that can be relaxed in favor of other ones called variant or relaxed and other that
should never change called invariant.

The following requirements are taken from an AAL (Ambient Assisted Living) case study [13].

1.1. RELAXED Requirements:
1.1.1. Requirement 1:

Marry should have minimum liquid intake.

After RELAX:

Mary SHALL maintain liquid intake AS CLOSE AS POSSIBLE To ideal.
ENV: Fluid intake that is necessary

MON: Sensor enabled cups, fluid monitoring cups and faucet sensors

REL: Sensor enabled cups, fluid monitoring cups and faucet sensors all interact to collaboratively
determine Mary’s daily liquid intake.

1.1.2. Requirement 2:
The Fridge shall read, store and communicate RFID information on food packages.
After RELAX:
The fridge SHALL detect and communicate information with AS MANY food packages AS POSSIBLE.
Another variant of this requirement can be:
The fridge shall detect AS MANY information AS POSSIBLE for each food package.
ENV: Food locations, foot item information (type, calories), food state (spoiled and unspoiled)

MON: RFID readers, Cameras, Weight sensors

REL: RFID tags provide food locations and food information; Cameras provide food locations
(Cameras provide images that can be analyzed to estimate food locations), Weight sensors provide
food information (whether eaten or not)

DEP: R2 negatively impact R3
Negatively signifies that it will be harder to satisfy R3 while relaxing R2.

This requirement is considered RELAX-ed as the RE must ask itself if the system will not work if this
requirement in not fulfilled or is it possible for the system to continue to operate at a reduced
capacity e.g. if we are unable to find complete food information. Less than full capacity might help in
the functioning of the system to handle an emergency situation. By declaring this requirement as
RELAX-ed, the system will be flexible enough to divert some resources in this way. Thereby adapting
R2; an adaptive system can balance resources in order to optimize global system parameters. The
DEP field is updated as the requirements are RELAX-ed.

1.1.3. Requirement 3:

The fridge SHALL suggest a diet plan with total calories AS CLOSE AS POSSIBLE TO the daily ideal
calories. The fridge SHALL adjust the diet plan in line with Mary's actual calorie consumption.

ENV: Mary's daily calorie consumption.
MON: RFID readers and weight sensors in fridge and trash can.

REL: RFID readers and weight sensors provide consumed items; items vanish from fridge and the
items (if uneaten) or the packaging (if eaten) appears in trash can.

1.2. Invariant Requirements:

1.2.1.Requirement 4:

The System SHALL raises an alarm if no activity by Mary is detected within a predefined time during
normal waking hours.

Discussion:

By looking at the Mary case study from the point of view of RELAX and KAQOS, we can say that the
ENV, MON and REL uncertainty factors of RELAX are not only giving us the same information as the
Responsibility model of KAOS but rather complements it by giving us the means of how to achieve
that desired functionality.

Uncertainty factors especially ENV and MON attributes are particularly important for documenting
whether the system has the means for monitoring the important aspects of the environment. By
collecting these ENV and MON attributes, we can build up a model of the environment in which the
system will operate, as well as a model of how the system monitor its environment. Sources of
uncertainty can include: contention for resources, adverse environmental conditions, timing of
events and the duration of conditions.

Once the requirements engineer determines that a certain level of flexibility can be tolerated in
requirements then it is up to the downstream developers including designers and developers to
incorporate the most suitable adaptive mechanisms to support the required functionality.

2. Goal Oriented Techniques for Requirements Engineering
2.1. Why Use Goal Oriented Techniques for Requirements Engineering [5]:

There are a number of claims of advantages made from GORE (Goal Oriented Requirements
Engineering) literature [6], Following is the summary:

2.1.1. Requirement Completeness and Pertinence
Goals enable the sufficient completeness and pertinence of a requirements specification.

2.1.2. Rationale for Requirement
A requirement exists because it satisfies its higher goals. Any requirement which does not contribute
to any goal will not be considered at all. For this reason every requirement will have a rationale for it.
Explaining requirements to stakeholders is another important issue. Goals provide the rationale for
requirements.

2.1.3. Traceability
Goal graphs provide traceability links like from low level requirements to high level objectives and
from organizational to business context.

2.1.4. Conflict Management
Contributions among goals (positive or negative) can be modeled and managed. In this way conflicts
can be identified and resolved.

2.1.5. Managing Requirements Evolution
The higher-level a goal is the more stable it is likely to be. Goals are thus essential elements for
managing requirements evolution.

2.2. SysML and KAOS:

SysML and KAOS have some advantages and weak points, but these are complementary to each
other based on the following points:

* Requirements description: A textual description in SysML and a description in the form of
goals in KAOS.

e Relation between requirements: SysML has contain and derive relations; these relations do
not have a precise semantics which leads into confusion. KAOS has refinement relations
AND/OR.

e Traceability relations: Satisfy and verify relations in SysML allow to define traceability. KAOS
does not have explicit relations.

e Tools: A number of tools exist for SysML; most of them are open source. KAOS propose a tool
Objectiver which is proprietary.

2.3. Why SysML/KAOS?

In KAOS, non functional properties are taken into account only at the architectural level. Due to the
complexity of the systems, non functional properties should be processed much more early; at the
same level of abstraction as functional properties which will allow taking into account these
properties for the evaluation of alternate options, risk and conflict analysis.

2.4. SysML/KAOS Approach [7]:

Its main objective is to implement the extended meta model and to provide an environment for
modeling functional and non functional requirements. Functional requirements are treated in [8], in
this work non functional requirements are treated and the impact of these on functional
requirements. The main idea is to extend the SysML language with the most relevant concepts of
commonly used requirements engineering approaches.

Figure 1 shows the extended meta model of SysML/KAQS. The meta-class NON FUNCTIONAL GOAL
represents the non functional goal, it is specified as a sub-class of the meta-class GOAL which itself is
a sub-class of the meta-class REQUIREMENT of SysML. A Non Functional Goal represents a quality
that the future system must have in order to satisfy a functional requirement.

The NFGTYPE specify the type of NFR and the attribute TOPIC that represent the domain concept
concerned by this type of requirement. An NFR can thus be represented with the following syntax:
NFGType [Topic]. (Mary case study example)

An NFG can either be an abstract goal (meta-class Abstract NFG), or an elementary goal (meta-class
Elementary NFG). An abstract NFG can be refined further into sub-goals. The hierarchies of goals are
modeled using Refinement association which becomes an Association Class between the abstract
goal and its sub-goals. A goal that cannot be further refined is an Elementary Goal. Once the
refinement is done, the next step is to identify different solutions to attain the elementary goals,
which will allow to choose from these solutions the one that could be implemented in the system to
be developed.

A Contribution Goal (meta-class Contribution Goal) is a third type of goal that is used to
operationalize an elementary goal as shown in the figure 1. For example, the elementary goal
Confidentilité which can be satisfied by using the contribution goals using a PIN code or use an
additional identifier. These two contribution goals are associated to the Confidentilité elementary
goal.

Refinement of NFG can be performed on two basis: NFG Type and Topic. The NFG Securité is refined
(AND Refinement) on the basis of NFG Type into three sub goals: Disponibilité, Intégrité and
Confidentialité as shown in the figure 2. The NFG Disponibilité is refined (OR Refinement) into two
sub goals on the basis of Topic. The NFG Bonne Precision is refined (AND Refinement) into two sub
goals on the basis of Topic. The sub goal Confidentilité can be satisfied by a positive and direct
contribution from one of the Contribution Goals i.e. using PIN Code, compare the signatures and add
an additional identifier.

* = Relationship

Requirement | -target L.

DesignElement 5

Non Functional Goal

-

Elementary NFG
+MNatureONFR

+MNFGType
+Topic

Refinement

+RefinementType i
+DesignRationale

Abstract NFG

Impact il

+ContributionType Contribution

+ontributionMature

+RefiREMERE -«

+ContributionMature

+ContributionType

Contribution Goal

Fig. 1 Extended SysML Meta Model

/ Sécurité [Données de localisation] /

/ Confidentialité [Données de localisation] /
A \
JMiliser un code "PIN"

/Exiger un identifiant additionnel / Bonne Précision [Données de localisation] /

/ Disponibilitd [Données de localisation] /

/inhégrihé [Données de Iocalisation]/

+ /Zomparer les signatures

<<Cr>> / Bonne Précision [Données GPS] /

/ Disponibilité [Données de localisation GPS] / /Bonne Précision [Données WPS] /‘

/ Disponibilité [Données de localisation Odometre] / \ +

Dégrader confiance

Avoir un GPS défectueun

Fig. 2 Model of the Localisation Non Functional Goals

3. Our Hypothesis:
From the discussion above we have deduced three hypothesis.
3.1. Hypothesis 1:

In order to correlate the two approaches we know that a <<Block>> satisfy <<Requirement>> and an
<<Agent>> satisfy <<Goal>>, so we can deduce a hypothesis from this correlation that a
<<Requirement>> corresponds to a <<Goal>> and a <<Block>> corresponds to an <<Agent>>.

This hypothesis can be verified by the work of Chung [1] and Cysneiros [2] which shows that non
functional requirements can be formulated in the form of goals.

«reguirement>>
Mary Should live a healthy life
Text : "Mary should live a healthy life"
Id:

Mary Diet Plan

<Lrequirement>>
Hypo caloric diet
Text : "Mary should have a hypo

<Lrequirement>>
Minimum liquid intake
Text: "Mary should have a

minimum liquid intake" caloric diet"
Id: Id:
A /'\ S bl
ensor enabled
! | Fridge display
Ksatjsfy>> <«satjsfy>>
| |
| |
<<block>> <<block>>
Sensor enabled cups Fridge display

Fig. 3 SysML Requirement Diagram

Fig. 4 KAOS Responsibility Model

This correlation can be found in figures 3 and 4. Figure 3 shows the SysML requirement diagram. The
main requirement is to keep mary healthy; this requirement is composed of two requirements i.e.
<<Minimum liquid intake>> which is satisfied by the block <<Sensor enabled cups>> and <<Hypo
caloric diet>> which is satisfied by the block <<Fridge display>>. Figure 4 shows the KAOS
responsibility model: here the main goal is to look after the mary diet plan which is decomposed into
two sub goals. The first sub goal is the Minimum liquid intake which is achieved by the agent Sensor
enabled cups and the other sub goal is Hypo caloric diet which is achieved by the agent Fridge
display.

<<requirement>>
Intelligent Fridge

Text:
Id:

<<requirement>>

<<Lrequirement>>

Read store commun...

Integrates with AAL

Text : "read store
communicate RFID
information of food
packages”

Id:

Text : "communicate
with the AAL system
and integrates with it

Id:

A
<<deper}'dency>>

<<Lrequirement>>
Calories consumption

Text: "mary's actual
calories consumption”
Id:

<<requirement>>
Spoiled food

<<requirement>>
Diet plan

<<requirement>>
Normal consumption

Text : "detects the
presence of spoiled
food"

Id:

Text : "discovers and
received diet plan

Id:

Fig. 5 Dependency b/w Requirements

Text : "Fridge display
shows normal
consumption

Id:

Figure 5 shows the concept of dependency. Requirement <<Calories consumption>> is dependent on
requirement <<Read store communicate RFID info>>, this requirement is treated as RELAXE-ed. By
relaxing this requirement it negatively impacts the other requirement; as to calculate the actual

calories consumption we need to have all the information of food packages, which can be achieved
only by having every means to read, store and communicate RFID information on food packages.

3.2. Hypothesis 2:

If a top level goal is RELAX-ed then its sub goals can be RELAX-ed or Invariant and if a top level goal is
Invariant then its sub goals are invariant.

The example of Confidentiality in SysML/KAQOS approach, it is considered as a RELAX-ed goal as we
can achieve this goal by many ways:

2. Using PIN Code
3. Compare the signatures
4. Add an additional identifier

Based on the second case, confidentiality is treated as a RELAX-ed requirement as we need some
kind of relaxation in order to identify the signature.

3.3. Hypotbhesis 3:

Another important aspect of RELAX is that the ENV, MON and REL attributes will be particularly
interesting in building the SysML parametric diagrams so we can for example use mathematical
equations to implement these attributes in the parametric diagram.

4. Relationship b/w SysML/KAOS, SysML and RELAX:The following table shows relationship
between different concepts dealt by SysML, SysML/KAOS and RELAX.

Concepts SysML/KAOS SysML RELAX
Requirements Goals Textual Requirements Enhanced Version of
Description Textual Requirements
Relationship AND, OR <<verify>> REL

<<refine>>

Contribution Nature:

Dependency/Impact Positive <<derive>> DEP:
Negative <<contain>> Positive
Contribution Type: Negative

Direct (Explicit)
Indirect (Implicit)
b/w NFG and FG

Monitoring <<contribution goal>> <<satisfy>> MON
Tools Eclipse based Eclipse/Papyrus/Topcased/ | Eclipse based
SysML/KAOS Editor COOL RELAX editor

Table 1. Relationship between different Concepts

The table above shows different concepts handled by each approach. In SysML/KAQOS; requirements
are described in the form of goals, SysML describes requirements in textual form while RELAX
requirements are also in textual form with an enhanced version i.e. requirements divided into
invariant and RELAX-ed requirements with uncertainty factors added to it. SysML/KAOS has no
AND/OR refinement relationships, SysML has verify and refine relationships while for RELAX we have
REL variable which identifies the relationship between ENV and MON. For dependency/Impact
SysML/KAOS deals with it from the point of view of the impact of non-functional goal on functional
goal; this impact can be positive or negative and direct or indirect while for SysML we have the
concept of derive which shows the dependency between requirements, RELAX has the positive and
negative dependency. To deal with monitoring SysML/KAQS has the contribution goal concept which
is used to satisfy a non-functional goal, SysML has satisfy; used when a block satisfies a requirement
while for RELAX we have the concept of MON which is used to measure the environment i.e. ENV.
SysML/KAOS has a tool called SysML/KAQOS editor, SysML has a number of tools e.g. eclipse [9],
papyrus [10], topcased [11] etc and for RELAX we have eclipse based COOL RELAX editor [12].

Conclusion:

After studying the two approaches, we can conclude that these two approaches are complementary
for each other. We can take benefits from goal oriented approaches in defining requirements for self
adaptive systems. The worth of goal oriented techniques for requirements engineering in general can
be found in literature [5] [6]. RELAX can complement goal oriented approaches by providing more
details in the form of ENV, MON and REL while in the same way goal oriented approaches can
complement RELAX in defining requirements for self adaptive systems with the help of precise
definition of positive/negative and direct/indirect impacts.

REFERENCES:
1. Chung et al., Non-functional Requirements in Software Engineering. Kluwer, 1999.

2. Conceptual Modeling: Foundations and Applications - Essays in Honor of John Mylopoulos
(festschrift), LNCS volume 5600. Springer, 2009. 530 pp. ISBN 978-3-642-02462-7.

3. Cysneiros et al., Nonfunctional Requirements: From Elicitation to Conceptual Models. IEEE
TSE, May 2004.

4. Jon Whittle, Pete Sawyer, Nelly Bencomo, Betty H. C. Cheng and Jean-Michel Bruel
RELAX: a language to address uncertainty in self-adaptive systems requirement, RE’09 Special
Issue

5. Axel Van Lamsweerde, "Goal-Oriented Requirements Engineering: A Guided Tour", Fifth
IEEE International Symposium on Requirements Engineering (RE'O1) Toronto, 249-263.

6. Shahzad Anwer, Naveed lkram, "Goal Oriented Requirement Engineering: A Critical Study of
Techniques," 13th Asia Pacific Software Engineering Conference (APSEC'06), pp.121-130.

7. Christophe Gnaho, Farida Semmak: Une extension SysML pour l'ingénierie des exigences non
fonctionnelles orientée but. Ingénierie des Systéemes d'Information 16(1): 9-32 (2011)

8. Laleau R., Semmak F., Matoussi A., Petit D., Hommad A., Tatibouet B., A First Attempt to
Combine SysML Requirements Diagrams and B. In Innovations Systems and Software
Engineering journal. Springer-Verlag 2010.

9. http://www.eclipse.org/

10. http://www.papyrusuml.org

11. http://www.topcased.org/

12. S. Gatti, J. Geisel, S. Labondance, J. Pages, Internal Report M2ICE, UTM 2011.

13. http://www.iese.fraunhofer.de/fhg/iese/projects/med_projects/aal--lab/index.jsp

10

