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Abstract

In the context of cardiac muscle modeling, the availability of the myosin heads in the sarcomeres
varies over the heart cycle contributing to the Frank-Starling mechanism at the organ level. In this
paper, we propose a new approach that allows to extend the Huxley’57 muscle contraction model
equations to incorporate this variation. This extension is built in a thermodynamically consistent
manner, and we also propose adapted numerical methods that satisfy thermodynamical balances at
the discrete level. Moreover, this whole approach — both for the model and the numerics — is devised
within a hierarchical strategy enabling the coupling of the microscopic sarcomere-level equations with
the macroscopic tissue-level description. As an important illustration, coupling our model with a
previously proposed simplified heart model, we demonstrate the ability of the modeling and numerical
framework to capture the essential features of the Frank-Starling mechanism.

Keywords – Cardiac modeling, numerical methods, biomechanics, Frank-Starling mechanism, multi-
scale modeling

1 Introduction
Cardiac muscles are made of a set of fibers themselves composed of elementary contractile units in series
called sarcomeres. The sarcomeres are mainly made of two types of protein filaments: myosin filaments
(also called thick filaments) and actin filaments (also called thin filaments). The myosin heads of the
thick filaments interact with the actin sites of the thin filament in a cycle that involves, among other
stages, the attachment of the myosin head on an actin site, the production of force and the detachment
of the myosin heads. The macroscopic muscle shortening is then the result of the microscopic relative
sliding between the myosin and actin filaments. At rest, the binding of the myosin heads on the actin
sites is prevented. The contraction is triggered by the release in the muscle cell cytosol of calcium ions
that bind to the actin sites and activate them, ultimately allowing the attachment of myosin heads. The
thin filament activation is a transient process composed of an activation phase when calcium is released
and a deactivation phase when calcium is taken from the cytosol.

In living conditions, the heart contraction is regulated by two main pathways: an intrinsic one,
which varies the force as a function of the sarcomere stretch – a higher sarcomere length being generally
associated with a higher force – and an extrinsic pathway corresponding to the control of the nervous
system through neuroendocrine mediators [Silverthorn et al., 2009]. These two regulations modulate the
force developed by the muscle cells. At the organ level, the intrinsic regulation results in the so-called
Frank-Starling effect [Frank, 1895; Patterson & Starling, 1914]. This regulation ensures that there is a
monotone relation between the end-diastolic volume and the ejection pressure [de Tombe et al., 2010].
It implies that the ejected volume (called stroke volume) varies in the same way as the filling volume.

The exact origin of these intrinsic variations is still the subject of active research [de Tombe & ter
Keurs, 2016; Sequeira & Velden, 2017]. In all generality, the modulation of the force with the sarcomere
length may result either from an change in the force generated by each cross-bridge or from a change in
the number of attached cross-bridges (or from both mechanisms combined). The works of Wannenburg
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et al. [1997], Amiad Pavlov & Landesberg [2016] and Caremani et al. [2016] show that the cross-bridge
properties are not affected by variations of the sarcomere length or the level of calcium supply, leading to
the conclusion that neither is the force developed by each cross-bridge. This statement has been recently
further supported by a direct assessment of the non-variation of the cross-bridge force with the level of
thin filament activation that has been performed by Pinzauti et al. [2018]. As a result, the force variation
with the sarcomere length is only due to a change in the number of cross-bridges formed. This effect
itself may have two distinct origins: a variation of the number of available myosin heads or a change
in the level of the thin filament activation. In this paper, we focus on the variation of the number of
available myosin heads as a function of the sarcomere length.

To isolate the effects of this variation, we consider experimental data in which the possibility of a
variation of the thin filament activation is eliminated. To create these conditions, experimentalists either
used skinned cells so that they can artificially maintain the “intracellular” calcium concentration at a
high value ensuring that all actin sites are activated [Kentish et al., 1986; Dobesh et al., 2002], or force
a large enough release of calcium in intact cells and maintain this state [ter Keurs et al., 2008], in which
case the cells are said to be in a tetanised state. The experimental results show a monotonous increase
of the force with increasing sarcomere length that is solely due to the thick filament activation variation
(the experimental data points are presented in Figure (8)b).

The time scale of the force adaptation to the sarcomere length has been studied by [Mateja &
de Tombe, 2012]. Comparing the force dynamics for muscle samples starting at different sarcomere
lengths and brought to the same sarcomere length just before activation, they observe no significant
difference in the muscle behavior for pre-activation length changes as fast as 5 ms. This shows that
the regulation dynamics occurs at a much lower time scale. The time scale of the attachment and
detachment rates being 25 ms and 100 ms, respectively, if the calibration focuses on the tension rise
dynamics [de Tombe & Stienen, 2007], and 4 ms and 16 ms, respectively, if the calibration focuses on
the classical force-velocity curve [Kimmig & Caruel, 2019], the thick filament regulation thus occurs at
a time scale that is smaller than that of the attachment-detachment process. As was also concluded by
[Mateja & de Tombe, 2012], we will thus assume that the regulation mechanism can be considered as
instantaneous.

Muscle contraction is often described by a family of models deriving from the seminal Huxley’57
model [Huxley, 1957; Eisenberg et al., 1980; Piazzesi & Lombardi, 1995; Marcucci & Truskinovsky, 2010;
Marcucci & Yanagida, 2012; Caruel et al., 2019; Kimmig & Caruel, 2019]. To account for the regulation
mechanisms involving the variation of the thick and thin filament level of activation, modifications of the
Huxley’57 model equations have been previously proposed [Zahalak & Motabarzadeh, 1997; Chapelle
et al., 2012]. They consist in modifying the expression of the law of mass action that describes the
attachment-detachment process. However, this approach suffers from some limitations. In particular,
it fails to be thermodynamically compatible. An alternative approach has been proposed by Marcucci
et al. [2017] to model the varying thick filament activation. It considers the newly discovered myosin head
state called off-state (as opposed to the classical on-state) in which the myosin head is folded back on the
thick filament backbone. The on- and off- states are related by chemical transitions. A myosin head in
the off-state cannot participate in the attachment-detachment process; to do so it must first transition to
the on-state. It remains nevertheless unclear — because of a lack of data for cardiac muscle — whether
the time scale of the on-off transition is compatible with the time scale of the length dependent thick
filament activation.

In this paper, we propose an original and general paradigm that extends the Huxley’57 model equa-
tions to include the varying myosin heads availability. We introduce two groups of myosin heads and
deduce the governing equations from conservation laws. The consistency with the thermodynamic prin-
ciples of this modeling framework is then demonstrated. Note that we focus on the modeling of the thick
filament activation mechanism, the thin filament activation being phenomenologically represented. The
regulation of the myosin availability contributes to the Frank-Starling mechanism, which operates at the
organ level. We thus want to link our new model with a numerical heart model to evaluate its capability
to transfer properties from the micro-scale to the macro-scale. Such a multi-scale approach has indeed
shown essential for performing physiologically relevant simulations in various area of cardiac modeling
[Sugiura et al., 2012; Chabiniok et al., 2012; Baillargeon et al., 2014; Rossi et al., 2014; Chabiniok et al.,
2016; Hirschvogel et al., 2017; Quarteroni et al., 2017; Niestrawska et al., 2020]. This motivates the
introduction of dedicated discretization methods of our model that we design with the aim of satisfying
discretized versions of the thermodynamical principles. Some elements of validation of our model are
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presented with the simulation of heartbeats. These results are obtained through the coupling of our
model with a simplified geometry heart model [Caruel et al., 2013a].

This paper is organized as follows. In Section 2, we briefly recall the Huxley’57 model and present
the derivation of our new paradigm. The thermodynamic principles associated with this new model
are established in Section 3. In Section 4, we explore the limits of our model and its relation with the
previously proposed formulations. Adapted numerical methods are developed for our model in Section 5
and the thermodynamic compatibility of the discretization scheme is justified. The model calibration
and the numerical results illustrating the ability of the model to reproduce the Frank-Starling mechanism
are finally presented in Section 6.

2 Model presentation
Our goal is to propose a modeling framework that is able to incorporate the variation of the myosin
heads availability into the classical equations describing the actin-myosin interaction. We first summarize
present the muscle contraction models based on the seminal work of A.F. Huxley [Huxley, 1957]. Then,
we introduce our formalism and derive the equations governing the dynamics of the system from the
conservation of myosin heads. Finally, we put our new approach into perspective by comparing it to
existing formulations.

2.1 Contraction model - Huxley’57 model family
The mathematical description of muscle contraction has its origin in the seminal work of Huxley [1957],
which has been abundantly extended since then [Huxley & Simmons, 1971; Eisenberg & Hill, 1978;
Eisenberg et al., 1980; Piazzesi & Lombardi, 1995; Zahalak, 2000] but remains the standard framework
of modern models [Caremani et al., 2015; Marcucci et al., 2016; Caruel et al., 2019]. In particular, this
approach has proven to be well-adapted to the modeling of mammals cardiac muscles [Månsson, 2010;
Pertici et al., 2018; Kimmig & Caruel, 2019]. This family of models considers a collection of chemical
states representing attached and detached myosin heads, interacting with each other according to the
law of mass action. A general presentation of the Huxley’57 model and its extensions can be found in
[Kimmig et al., 2019].

We will restrict our presentation to a two-state model – with one attached state and one detached state
– which is sufficiently refined to capture the essential features of cardiac muscle contraction [Kimmig &
Caruel, 2019]. However, the modeling ingredient presented in the present work could be easily extended to
any model derived from the Huxley’57 model. The dynamics of attachment and detachment is described
in the framework of the so-called sliding filament theory. The myosin and actin filaments are assumed
to be rigid, meaning that the distance between consecutive myosin heads or consecutive actin sites is
constant. Moreover, we assume that each myosin head interacts with its nearest actin site only. Actin
sites are uniformly distributed along the actin filament and are separated by a distance da. Myosin heads
are also uniformly distributed along the myosin filament but with a different spatial periodicity. The
approach is centered on the myosin heads and a myosin head is parametrized by the distance between
its rest position and its nearest actin site. This distance is denoted by s (see Figure 1) and we denote
the interval of possible values of s by [s−, s+] with s+ − s− = da. Note that this interval may be non-
symmetric. Due to the difference in spatial periodicity between the actin and the myosin filaments, all
positions s ∈ [s−, s+] of the myosin heads are equiprobable in the population.

We now consider the subset of myosin heads located at distance s to their nearest actin site. The
energy of the attached heads is given by w1(s) and that of the detached heads by w0, which does not
depend on the spatial variable. When a myosin head detaches, it uses an energy input µT brought by
ATP to retrieve its original energy level. The transitions between the attached and the detached states
are governed by the transition rate k+(s) for the attachment and k−(s) for the detachment. We assume
that these two transitions are each associated with a reverse transition (see Figure 1) whose rate satisfies
the detailed balance [Hill, 1977]

k+(s)

krev+ (s)
= exp

[w0 − w1(s)

kBT

]
,

k−(s)

krev− (s)
= exp

[w1(s) + µT − w0

kBT

]
,

where T is the temperature and kB the Boltzmann constant.
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Figure 1: Presentation of the two-state model. Top: transitions between the attached state and the
detached state and the associated transition rates. Bottom left: detached state model parametrization.
Bottom right: attached state model parametrization.

The probability of being attached for a head in this subset at time t is denoted by P1(s, t) and we
denote by P0(s, t), the probability of being detached. The conservation of matter leads to the following
dynamics equations, for all t > 0 and all s ∈ [s−, s+]{

∂tP1(s, t) + ẋc∂sP1(s, t) =
(
k+(s) + krev− (s)

)
P0(s, t)−

(
k−(s) + krev+ (s)

)
P1(s, t),

∂tP0(s, t) + ẋc∂sP0(s, t) =
(
k+(s) + krev− (s)

)
P0(s, t)−

(
k−(s) + krev+ (s)

)
P1(s, t),

(1)

where xc is defined as the sarcomere extension and ẋc is its time derivative. Note that the Eulerian
nature of this description leads to the presence of transport terms which take into account the change in
position when the myosin and actin filaments slide along each other with the velocity ẋc.

The single actin site assumption implies that the probability of being attached must vanish on the
boundaries of the interval [s−, s+]. As proposed by Kimmig et al. [2019], we choose periodic bound-
ary conditions P1(s−, t) = P1(s+, t) and enforce the property P1(s−, t) = P1(s+, t) = 0 through an
appropriate choice of the transition rates.

Enforcing the necessary initial conditions P1(s, t = 0) +P0(s, t = 0) = 1, s ∈ [s−, s+], the probability
P0 is given for all t > 0 and for all s ∈ [s−, s+] by P0(s, t) = 1− P1(s, t) and (1) becomes{

∂tP1(s, t) + ẋc∂sP1(s, t) =
(
k+(s) + krev− (s)

)
P0(s, t)−

(
k−(s) + krev+ (s)

)
P1(s, t),

P0(s, t) = 1− P1(s, t).

Note that the original Huxley’57 model equations can be straightforwardly retrieved by defining the
aggregated attachment rate f and detachment rate g by∣∣∣∣∣f(s) = k+(s) + krev− (s),

g(s) = k−(s) + krev+ (s).

2.2 Incorporation of the variations in myosin availability level in the model
equations

As part of the intrinsic regulation of the thick filament, the sarcomere stretch directly influences the
level of availability of the myosin heads. To build our model, we extend the two-state model presented
in Section 2.1. In addition to its natural assumptions, we assume that only a subpart of the myosin
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heads population is available for attachment, while the remaining part is not available. Depending on
their availability status, the myosin heads are grouped into two pools. In each pool, myosin heads can
be attached or detached. The repartition of the heads between the two pools depends on the sarcomere
stretch. For thermodynamical reasons, heads that are not available for attachment are not strictly
prevented from attaching, but their attachment rate is much reduced compared to heads available for
attachment. We also assume that heads change from one pool to the other independently of their
attachment state (attached or detached). In this exchange process, we do not track the myosin heads
individually but instead focus on average quantities. We thus propose a homogenized description of
the myosin heads within the pools. Since we know that the thick filament regulation occurs at a fast
time scale compared to the cycling time scale, the transfers between pools are supposed to take place
instantaneously.

It is important to note that this modeling framework is not specific to any particular mechanism
underlying the regulation of the myosin heads availability, but is instead fully general.

To describe the state of a myosin head, we introduce an additional – discrete and deterministic –
internal variable γ that is equal to one if the head is available for attachment and equal to zero if it is
not. As a consequence, we are now considering P1(s, t, γ) the probability of being attached for the subset
of heads located at a distance s to their nearest actin site and belonging to the pool γ at time t. The
probability of being detached for the same subset is denoted by P0(s, t, γ); it is linked to P1 through the
relationship

P1(s, t, γ) + P0(s, t, γ) = 1, s ∈ [s−, s+], t > 0, γ ∈ {0, 1}.
Note that γ is somewhat comparable to s meaning that both can change when following actual myosin
heads, albeit γ is discrete while s is continuous.

We call scaled number of heads the number of heads considered divided by the total number of
heads (sum of the number of heads in each pool). The scaled number of heads available for attachment
is denoted by n0(ec). It solely depends on the relative extension ec, which is linked to the relative
displacement of the rigid filaments xc by xc = `hsec, where `hs is the half-sarcomere slack length. The
latter is defined as the half-sarcomere length corresponding to zero passive force in the sarcomere. The
total probability of being attached is obtained as the weighted average between the two pools. It is given
by

P1(s, t) = n0P1(s, t, 1) + (1− n0)P1(s, t, 0). (2)

The energy levels of the attached and detached states are the same in each pool because the transfer
of a myosin head from one pool to the other is not associated with any energy input. The attached
and detached state energy levels are still denoted by w1(s) and w0, respectively. However, myosin heads
experience two distinct chemical cycles in the two pools. The transitions rates are still defined as in
Figure 1, but are now indexed by the variable γ. They satisfy the detailed balance in each pool, i.e.

k+,γ(s)

krev+,γ(s)
= exp

[w0 − w1(s)

kBT

]
,

k−,γ(s)

krev−,γ(s)
= exp

[w1(s) + µT − w0

kBT

]
, γ ∈ {0, 1}. (3)

The non-availability of the myosin heads in the pool γ = 0 is modeled with the choice k+,1 � k+,0.
To describe the dynamics of the system, we write the conservation of myosin heads in a closed system.

For that purpose, we consider the sub-ensemble of heads that, in each pool, are located at a distance s
to their nearest actin site. We describe the dynamics of these heads following them “in their motion”.
We obtain the following dynamics for all s ∈ [s−, s+]

d

dt
P1(s, t, 1) =

(
k+,1(s) + krev−,1(s)

)
P0(s, t, 1)−

(
k−,1(s) + krev+,1(s)

)
P1(s, t, 1),

d

dt
P1(s, t, 0) =

(
k+,0(s) + krev−,0(s)

)
P0(s, t, 0)−

(
k−,0(s) + krev+,0(s)

)
P1(s, t, 0),

P0(s, t, γ) = 1− P1(s, t, γ).

(4)

Equation (4) uses total derivatives, which follow the myosin heads in their evolution. To fully establish
the system dynamics, we need to make these total derivatives explicit. Note that γ is a discrete parameter
and thus cannot be treated with the classical chain rule formula. We consider the ensemble of heads
located at distance s of the nearest actin site, and that are in the pool γ = 1. The probability of being
attached for this ensemble of heads at time t is given by P1(s, t, 1).
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At time t+τ , we denote by P̂1 the probability of being attached for this very same ensemble of heads,
now at distance s+ δ from the nearest actin site. Because of the system evolution happening between t
and t+ τ , some of the heads in the ensemble considered, which are in the pool of available heads (γ = 1)
at time t, may move to the pool of unavailable heads (γ = 0) at time t + τ . This has to be taken into
account in the computation of P̂1.

We define

|x|+ =

{
x if x ≥ 0,

0 otherwise,
and |x|− =

{
−x if x ≤ 0,

0 otherwise,

so that
x = |x|+ − |x|−. (5)

The scaled number of heads in the ensemble considered that are in the pool γ = 1 being given by n0,
the scaled number of heads switching from the pool γ = 0 to the pool γ = 1 between the times t and
t + τ is given by |ṅ0|+τ + o

(
τ
)
and the scaled number of heads switching from the pool γ = 1 to the

pool γ = 0 in the same time interval is given by |ṅ0|−τ + o
(
τ
)
.

We first consider the case where ṅ0 > 0. Note that, with our homogenized description, this implies
that there is no head switching from the pool γ = 1 to the pool γ = 0. At time t+ τ , the myosin heads
in the ensemble considered are the heads of the pool γ = 1 minus the heads that switched from the pool
γ = 0 in the time interval τ . The count of attached heads thus gives

n0P̂1 =
[
n0 + |ṅ0|+τ

]
P1(s+ δ, t+ τ, 1)− |ṅ0|+τP1(s, t, 0) + o

(
τ
)

+ o
(
δ
)
. (6)

At the first order, (6) becomes

n0P̂1 = n0P1(s+ δ, t+ τ, 1) + |ṅ0|+τ
[
P1(s, t, 1)− P1(s, t, 0)

]
+ o
(
τ
)

+ o
(
δ
)
. (7)

We now consider the case where ṅ0 < 0. At time t+ τ , the myosin heads in the ensemble considered
are the heads of the pool γ = 1 plus the heads that switched to the pool γ = 0 in the time interval τ .
We thus have

n0P̂1 =
[
n0 − |ṅ0|−τ

]
P1(s+ δ, t+ τ, 1) + |ṅ0|−τP1(s, t, 1) + o

(
τ
)

+ o
(
δ
)
. (8)

At the first order, (8) becomes

P̂1 = P1(s+ δ, t+ τ, 1) + o
(
τ
)

+ o
(
δ
)
. (9)

Altogether, for ṅ0 positive or negative, (7) and (9) yield

P̂1 = P1(s+ δ, t+ τ, 1) +
|ṅ0|+
n0

τ
[
P1(s, t, 1)− P1(s, t, 0)

]
+ o
(
τ
)

+ o
(
δ
)
.

We obtain

d

dt

(
P1(s, t, 1)

)
= lim
τ→0

P̂1(s, t)−P1(s, t, 1)

τ
= ∂tP1(s, t, 1) + ẋc∂sP1(s, t, 1) +

|ṅ0|+
n0

[
P1(s, t, 1)− P1(s, t, 0)

]
.

Considering the sub-ensemble of heads that are located at distance s, at time t and in the pool γ = 0,
we similarly establish that

dP1(s, t, 0)

dt
= ∂tP1(s, t, 0) + ẋc∂sP1(s, t, 0) +

|ṅ0|−
1− n0

[
P1(s, t, 0)− P1(s, t, 1)

]
.

Finally, combining (4) and the total derivative expressions, we obtain the complete system of evolution
equations

∂tP1(s, t, 1) + ẋc ∂sP1(s, t, 1) +
|ṅ0|+
n0

[
P1(s, t, 1)− P1(s, t, 0)

]
=
(
k+,1(s) + krev−,1(s)

)
P0(s, t, 1)−

(
k−,1(s) + krev+,1(s)

)
P1(s, t, 1),

∂tP1(s, t, 0) + ẋc ∂sP1(s, t, 0) +
|ṅ0|−
1− n0

[
P1(s, t, 0)− P1(s, t, 1)

]
=
(
k+,0(s) + krev−,0(s)

)
P0(s, t, 0)−

(
k−,0(s) + krev+,0(s)

)
P1(s, t, 0),

P0(s, t, γ) = 1− P1(s, t, γ).

(10)
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We emphasize that, as in the original two-state model, the boundary conditions are chosen periodic
for both pools, i.e. P1(s−, t, γ) = P1(s+, t, γ). The property that no head should be attached on the
boundaries of interval [s−, s+] – which intrinsically comes with the assumption that the myosin heads can
only attach to their nearest actin site – is ensured by the choice of appropriate transition rate parameter
functions satisfying the conditions for all γ ∈ {0, 1} [Kimmig et al., 2019]∣∣∣∣∣∣∣∣∣∣

lim
s→s−

k+,γ(s) = lim
s→s+

k+,γ(s) = lim
s→s−

krev−,γ(s) = lim
s→s+

krev−,γ(s) = 0,

lim
s→s−

0∫
s

(
k−,γ(s) + krev+,γ(s)

)
= lim
s→s+

s∫
0

(
k−,γ(s) + krev+,γ(s)

)
= +∞.

(11)

The active force per myosin head developed by the system aggregates the contributions of the myosin
heads in the two pools. It is given by

τc(t) =
1

da

s+∫
s−

[
n0P1(s, t, 1) + (1− n0)P1(s, t, 0)

]
∂sw1(s) ds.

We point out that, in the framework presented here, we do not track the availability of the myosin
heads individually, but we consider instead an average behavior for the population of myosin heads.
Moreover, we assume that the heads switch pools randomly, i.e. all heads have the same probability to
switch from one pool to another. A study of the common points and differences with models that do not
consider this assumption is presented in Section 4.

2.3 Comparison with previous formulations
In this section, we compare our model with previous attempts of incorporating the thick filament acti-
vation mechanisms into the Huxley’57 model equation. Following the classical model presentation, we
will write the two-state model equations with the aggregated transition rates, i.e.∣∣∣∣∣fγ(s) = k+,γ(s) + krev−,γ(s),

gγ(s) = k−,γ(s) + krev+,γ(s).

As in our model, Peskin [1975], Zahalak & Motabarzadeh [1997] and Chapelle et al. [2012] consider
that the fraction of myosin heads that are available for attachment is n0. In the conservation of myosin
heads, the flux of attachment is then assumed to be f

[
n0−P1

]
and the model dynamics is thus governed

by the equation

∂tP1(s, t) + ẋc∂sP1(s, t) = f(s)
[
n0(ec)− P1(s, t)

]
− g(s)P1(s, t). (12)

We can first note that the modeling assumption underlying the definition of the attachment flux is
only valid if n0 − P1 represents the apparent activity of the myosin heads, i.e. n0 − P1 ≥ 0. However,
the latter property may not be ensured by the dynamics (12) possibly leading to the non-validity of the
model in some phases of the simulated contraction.

We assume that the property n0 ≥ P1 holds in the rest of this section. The probability of attachment
P1 is given by (2) in our proposed formulation using two pools of myosin heads. We differentiate P1 with
respect to time and obtain

∂tP1(s, t) = ṅ0

[
P1(s, t, 1)− P1(s, t, 0)

]
+ n0∂tP1(s, t, 1) + (1− n0)∂tP1(s, t, 0).

7



Substituting the time derivatives from (10), we obtain

∂tP1(s, t) + ẋc∂sP1(s, t) = ṅ0

[
P1(s, t, 1)− P1(s, t, 0)

]
+ n0

(
f1(s)

(
1− P1(s, t, 1)

)
− g1(s)P1(s, t, 1)

− |ṅ0|+
n0

[
P1(s, t, 1)− P1(s, t, 0)

])
+ (1− n0)

(
f0(s)

(
1− P1(s, t, 0)

)
− g0(s)P1(s, t, 0)

− |ṅ0|−
1− n0

[
P1(s, t, 0)− P1(s, t, 1)

])
.

(13)

Using the property (5), (13) becomes

∂tP1(s, t) + ẋc∂sP1(s, t) = n0

(
f1(s)

(
1− P1(s, t, 1)

)
− g1(s)P1(s, t, 1)

)
+ (1− n0)

(
f0(s)

(
1− P1(s, t, 0)

)
− g0(s)P1(s, t, 0)

)
.

(14)

The spirit of our model is that the myosin heads belonging to the pool γ = 0 have a reduced
probability of being attached, i.e. P1(s, t, 0) ≈ 0. This property can be obtained with various choices
of the transition rates, for instance with f1 = f , f0 � f1 and g1 = g0 = g or with f1 = f0 = f and
g1 = g � g0.

With the approximation P1(s, t, 0) ≈ 0, we have P1(s, t) ≈ n0P1(s, t, 1). Equation (14) yields

∂tP1(s, t) + ẋc∂sP1(s, t) ≈ f(s)
(
n0 − P1(s, t)

)
+ g(s)P1(s, t),

and we retrieve the original modified Huxley equation (12).
The previously proposed formulations are thus enclosed in our model and are equivalent in the

limit when P1(s, t, 0) goes to zero. Our approach provides a more rigorous modeling framework having
all apparent activities of the myosin heads considered in the flux of matter unconditionally positive.
Moreover, as we will see in the next section, it is thermodynamically consistent, whereas previously
proposed formulations do not satisfy the second principle because they break the detailed balance. The
non-satisfaction of the second principle can also be qualitatively interpreted. Decreasing n0 from the
value 1 puts a fraction of myosin heads in a state where they are not allowed to attach and they are
constrained in a single state: the detached state. Putting the heads in this situation increases the
level of information on the system and is thus associated with a negative entropy creation, which is in
contradiction with the second principle.

3 Thermodynamics
We want to derive, from the proposed evolution equations, the first and second thermodynamic balances
for our system, which will show the consistency of the newly introduced modeling ingredients. To that
purpose, we extend, for equations containing the pool exchange term, the approach proposed by Hill
[1977] for the original family of Huxley’57 models.

We recall here a property that is fundamental in our analysis: the choice of transitions rates (11)
ensures that

P1(s = s−, t, γ) = P1(s = s+, t, γ) = 0, t ≥ 0, γ ∈ {0, 1}.
For all results presented in this section, the detailed calculations can be found in Appendix A.1.
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3.1 First principle
To establish the thermodynamic balances, we consider a population of myosin heads. The average energy
per myosin head is defined by

U(t) =
1

da

s+∫
s−

[
w1(s)P1(s, t) + w0P0(s, t)

]
ds,

=
1

da

s+∫
s−

[
w1(s)

(
n0(t)P1(s, t, 1) +

(
1− n0(t)

)
P1(s, t, 0)

)
+ w0

(
n0(t)P0(s, t, 1) +

(
1− n0(t)

)
P0(s, t, 0)

)]
ds. (15)

We differentiate with respect to time, using the calculations made in [Hill, 1977] and [Kimmig et al., 2019]
for the treatment of the chemical reaction and the transport terms and noting that the contributions
arising from the pool exchange term cancel out with the property (5). Defining∣∣∣∣∣∣∣∣∣∣∣∣∣

J+(s, t, γ) = k+,γ(s)P0(s, t, γ)− krev+,γ(s)P1(s, t, γ),

J−(s, t, γ) = k−,γ(s)P1(s, t, γ)− krev−,γ(s)P0(s, t, γ),

J−(t) =
1

da

s+∫
s−

[
n0(t)J−(s, t, 1) +

(
1− n0(t)

)
J−(s, t, 0)

]
ds,

namely, J+ the net flux of the attachment reaction, J− the the net flux of the detachment reaction and
J− the average net flux of ATP consumption we finally have

U̇(t) = Ẇ(t) + Ė(t) + Q̇(t), (16)

with ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ẇ(t) = ẋcτc(t),

Ė(t) = µTJ−(t),

Q̇(t) =
1

da

s+∫
s−

(
n0

[
(w1(s)− w0)J+(s, t, 1) + (w0 − (w1(s) + µT ))J−(s, t, 1)

]
+ (1− n0)

[
(w1(s)− w0)J+(s, t, 0)

+ (w0 − (w1(s) + µT ))J−(s, t, 0)
])

ds.

The variation rate of energy is thus separated into different contributions: a mechanical power Ẇ, a
flux of chemical energy brought by ATP Ė and a thermal transfer flux Q̇. Note that all the terms are
counted positive when the flux of energy is entering the system. As expected, the pool exchange terms
do not contribute in the energy balance since the state energy levels are the same in both pools.

3.2 Second principle
The average entropy per myosin head is defined as the weighted average between the entropy in each
pool. It is given by

S(t) = −kB
da

s+∫
s−

(
n0

[
P1(s, t, 1) lnP1(s, t, 1) + P0(s, t, 1) lnP0(s, t, 1)

]
+ (1− n0)

[
P1(s, t, 0) lnP1(s, t, 0) + P0(s, t, 0) lnP0(s, t, 0)

])
ds.
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Our system is maintained at constant temperature by the environment, it can thus be more easily
described by the adapted thermodynamics potential: the Helmholtz free energy. It is given by

F(t) = U(t)− TS(t),

We thus formally have
d

dt
F(t) =

d

dt
U(t)− T d

dt
S(t). (18)

The free energy can also be expressed in terms of the chemical potentials∣∣∣∣µ1(s, t, γ) = w1(s) + kBT ln[P1(s, t, γ)], γ ∈ {0, 1}
µ0(s, t, γ) = w0 + kBT ln[P0(s, t, γ)], γ ∈ {0, 1}.

as

F(t) =
1

da

s+∫
s−

(
n0

[
P1(s, t, 1)µ1(s, t, 1) + P0(s, t, 1)µ0(s, t, 1)

]
+ (1− n0)

[
P1(s, t, 0)µ1(s, t, 0) + P0(s, t, 0)µ0(s, t, 0)

])
ds. (19)

Differentiating with respect to time, using the calculations performed in [Hill, 1977] and [Kimmig et al.,
2019], and using the property (5), we obtain

d

dt
F(t) = Ẇ(t) + Ė(t)

+
1

da

s+∫
s−

(
n0

[
J−(s, t, 1)

[
µ0(s, t, 1)−

(
µ1(s, t, 1) + µT

)]
+ J+(s, t, 1)

[
µ1(s, t, 1)− µ0(s, t, 1)

]]
+ (1− n0)

[
J−(s, t, 0)

[
µ0(s, t, 0)−

(
µ1(s, t, 0) + µT

)]
+ J+(s, t, 0)

[
µ1(s, t, 0)− µ0(s, t, 0)

]])
ds

− kBT

da

s+∫
s−

[
|ṅ0|+

[
ln

(
P1(s, t, 0)

P1(s, t, 1)

)
P1(s, t, 0)

+ ln

(
1−P1(s, t, 0)

1−P1(s, t, 1)

)(
1−P1(s, t, 0)

)]
+ |ṅ0|−

[
ln

(
P1(s, t, 1)

P1(s, t, 0)

)
P1(s, t, 1)

+ ln

(
1−P1(s, t, 1)

1−P1(s, t, 0)

)(
1−P1(s, t, 1)

)]]
ds.

(20)

Combining (20) with (18) and the first principle (16), we obtain the second principle

d

dt
S(t) =

Q̇
T

+ Ṡprod(t),
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defining the rate of entropy production as

Ṡprod(t) = − 1

T

1

da

s+∫
s−

(
n0

[
J−(s, t, 1)

[
µ0(s, t, 1)−

(
µ1(s, t, 1) + µT

)]
+ J+(s, t, 1)

[
µ1(s, t, 1)− µ0(s, t, 1)

]]
+ (1− n0)

[
J−(s, t, 0)

[
µ0(s, t, 0)−

(
µ1(s, t, 0) + µT

)]
+ J+(s, t, 0)

[
µ1(s, t, 0)− µ0(s, t, 0)

]])
ds

+
kB
da

s+∫
s−

[
|ṅ0|+

[
ln

(
P1(s, t, 0)

P1(s, t, 1)

)
P1(s, t, 0) + ln

(
1−P1(s, t, 0)

1−P1(s, t, 1)

)(
1−P1(s, t, 0)

)]
+ |ṅ0|−

[
ln

(
P1(s, t, 1)

P1(s, t, 0)

)
P1(s, t, 1) + ln

(
1−P1(s, t, 1)

1−P1(s, t, 0)

)(
1−P1(s, t, 1)

)]]
ds.

The second principle is thus satisfied if the above defined entropy production rate is always positive.
The establishment of the second principle requires convexity inequalities that we present first. For

all (x, y) ∈]0, 1[2, we have the classical convexity inequality∣∣∣∣∣∣∣∣
ln y − lnx ≥ 1

y

[
y − x

]
,

ln(1− y)− ln(1− x) ≥ 1

1− y
[
x− y

]
.

(21a)

(21b)

Multiplying (21a) by y, (21b) by 1− y, and summing, we obtain

y ln
(y
x

)
+ (1− y) ln

(
1− y
1− x

)
≥ 0 (22)

or equivalently

y ln

(
x

y

)
+ (1− y) ln

(
1− x
1− y

)
≤ 0. (23)

As was shown in [Hill, 1977], the integrand of the first integral term of Ṡprod is always positive if the
transition rates satisfy the detailed balance (3). Indeed, we have

k+,γ(s)P0(s, t, γ)

krev+,γ(s)P1(s, t, γ)
= exp

(w0 − w1(s)

kBT

)
exp

(
kBT

ln
[
P0(s, t, γ)− P1(s, t, γ)

]
kBT

)
= exp

(µ0(s, t, γ)−
(
µ1(s, t, γ) + µT

)
kBT

)
. (24)

Since we have J−(s, t, γ) = k−,γ(s)P1(s, t, γ) − krev−,γ(s)P0(s, t, γ), we conclude from (24) that J− and
µ0(s, t, 1)−

(
µ1(s, t, 1) +µT

)
are of opposite sign. Therefore, the product of these two factors is negative

and contribute positively to the entropy production with the minus sign in front of the integral. Similarly,
the product of J+ and µ1(s, t, 1) − µ0(s, t, 1) is also always negative and contributes positively to the
entropy production. Moreover, using the convexity inequality (22), we deduce that the second integral
term of Ṡprod is always positive. As a consequence, we have Ṡprod ≥ 0 and the model is compatible with
the second principle.

One can note that the entropy creation is composed of two contributions. The first one involves the
attachment and detachment fluxes and corresponds to the chemical creation of entropy. The second
one is an entropy creation term induced by the averaging process introduced in our model by the pool
exchange terms. Indeed, at each time, we mix the probability of being attached (resp. detached) of
the heads switching from one pool to another and the heads remaining in their initial pool. There is a
loss of information on the system and thus a creation of entropy. An illustration of this phenomenon is
presented in Section 4.1.
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4 Range of validity and limitations
In this section, we investigate the behavior of our newly proposed model and in particular of the conse-
quences of the homogenized myosin heads description in the pools instead of an individual description.
To do so, we first numerically investigate the behavior of the pool exchange term in our equations. Then,
to put our model in perspective, we compare our formulation with two ways of treating the myosin heads
individually. Finally, we numerically compare our newly proposed formulation with the integration of
the thick filament activation into the Huxley’57 model equations previously proposed in [Zahalak &
Motabarzadeh, 1997; Chapelle et al., 2012].

To place the focus on the variations of the myosin head availability, we assume that the filaments
do not slide along each other (ẋc = 0). In these conditions, the distance to the nearest actin site s is
a parameter. We consider the representative subset of the myosin heads population that is located at
distance s to its nearest actin site (for a value of s for which P1(s) is non-zero in isometric conditions)
and the reference to the parameter s will be omitted in the rest of this section. Note that, for the sake
of compactness, we will use the aggregated transition rates fγ and gγ in this section.

4.1 Impact of the homogenized description in the pool model
We first want to isolate the effect of the pool exchange operator, We thus assume that the attachment-
detachment dynamics is prevented (k+,γ = k−,γ = 0, α ∈ {0, 1}, γ ∈ {0, 1}).

The only effect at play is a transfer between the two pools when n0 varies. We will assume here that
n0 has an explicit dependency on time. We choose that, in the initial situation, P1(t = 0, 1) = 0.9 and
P1(t = 0, 0) = 0.1.

We prescribe a periodic oscillatory evolution for n0 (see Figure 2), i.e. in each period, we alternatively
transfer heads from one pool to the other. The simulation results are presented in Figure 2.
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Figure 2: Illustration of the homogenization effect of the pool model. We consider here that the sliding
velocity ẋc vanishes and the attachment-detachment dynamics is blocked k+,γ = k−,γ = 0. (a) Prescribed
evolution for n0. (b), (c) & (d) Model outputs.

When n0 increases, heads are transferred from the pool γ = 0 to the pool γ = 1. Since P1(t, 0) ≤
P1(t, 1), the heads arriving in the pool γ = 1 have a lower probability of being attached than the
myosin heads already present in this pool. As a result the average probability of being attached in
the pool γ = 1 decreases. Heads remaining in the pool γ = 0 are not mixed with any transferring
myosin heads. Their probability of being attached P1(t, 0) is left unchanged. When n0 decreases,
the opposite effect takes place. Heads are transferred from the pool γ = 1 to the pool γ = 0 and
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P1(t, 0) increases. Since the attachment-detachment dynamics is prevented, the total probability of
being attached P1(t) = n0(t)P1(t, 1) +

(
1− n0(t)

)
P1(t, 0) remains constant.

Repeating this process, the probability of being attached in each pool converges to the total proba-
bility of being attached P1(t). The exchanges between the pools tend to homogenize the probability of
being attached between the two pools. This mixing effect is associated with a loss of information that is
revealed in the entropy balance (see Section 3.2).

4.2 Comparison with individual description of the myosin heads
Our formulation (10) proposes a homogenized description of the myosin heads within the pools. To assess
the impact of this assumption, we compare this homogenized formulation with stochastic individual
descriptions of the myosin heads when the myosin heads availability varies. The heads are still separated
into two pools, which defines their attachment-detachment dynamics, but their probability of being
attached is tracked individually.

This comparison is not only an opportunity to put our modeling assumptions into perspective but
also a way to determine if the distinction between different potential underlying mechanisms for the
transition from one pool to the other matters in physiological conditions.

4.2.1 Heads switching pool chosen randomly

We first assume that the heads switching from one pool to the other are randomly chosen (i.e. all heads
in the pool have the same probability to switch pools). The heads in the sarcomere therefore do not
interact with each other. Any myosin head in the considered subset can attach and detach (the internal
variable α is equal to one when the myosin head is attached, and to zero if it is detached) and switch
between the pool of available heads (γ = 1) and the pool of non-available myosin heads (γ = 0). Its
state at time t is described by (αt, γt).

In order for this new model to be comparable with our homogenized formulation, we want the scaled
number of heads in the pool γ = 1 to be controlled and equal to n0(t). In this stochastic model, this
translates into the expected property P

[
γt = 1

]
= n0(t) and P

[
γt = 0

]
= 1− n0(t).

Let us assume that this property holds and examine the resulting requirements on transition proba-
bilities for the variable γt. Considering a small time interval τ , we would have

P
[
γt+τ = 1|γt = 0

]
=

P
[
γt+τ = 1, γt = 0

]
P
[
γt = 0

] =
|ṅ0(t)|+
1− n0(t)

τ + o
(
τ
)
.

Similarly, we would also obtain

P
[
γt+τ = 0|γt = 1

]
=

P
[
γt+τ = 0, γt = 1

]
P
[
γt = 0

] =
|ṅ0(t)|−
n0(t)

τ + o
(
τ
)
.

We now choose these transition probabilities for the variable γ. They imply that that the property
P
[
γt = 1

]
= n0(t) holds and we prescribe the initial condition P

[
γ0 = 1

]
= n0(0).

The complete system of probability transitions for the state of the myosin head is given by∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P
[
αt+τ = 1, γt+τ = 1|αt = 0, γt = 1

]
= f1 τ + o

(
τ
)
,

P
[
αt+τ = 0, γt+τ = 1|αt = 1, γt = 1

]
= g1 τ + o

(
τ
)
,

P
[
αt+τ = 1, γt+τ = 0|αt = 0, γt = 0

]
= f0 τ + o

(
τ
)
,

P
[
αt+τ = 0, γt+τ = 0|αt = 1, γt = 0

]
= g0 τ + o

(
τ
)
,

P
[
αt+τ = 1, γt+τ = 1|αt = 1, γt = 0

]
=
|ṅ0(t)|+
1− n0(t)

τ + o
(
τ
)
,

P
[
αt+τ = 0, γt+τ = 1|αt = 0, γt = 0

]
=
|ṅ0(t)|+
1− n0(t)

τ + o
(
τ
)
,

P
[
αt+τ = 1, γt+τ = 0|αt = 1, γt = 1

]
=
|ṅ0(t)|−
n0(t)

τ + o
(
τ
)
,

P
[
αt+τ = 0, γt+τ = 0|αt = 0, γt = 1

]
=
|ṅ0(t)|−
n0(t)

τ + o
(
τ
)
.

(25)
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The various states in which a myosin heads can be, and the transitions between them, are summarized
in Figure 3.

α = 1
γ = 1

α = 1
γ = 0

α = 0
γ = 1

α = 0
γ = 0

f1g1f0g0

|ṅ0|+
1− n0

|ṅ0|−
n0

|ṅ0|+
1− n0

|ṅ0|−
n0

Figure 3: Diagram representation of the stochastic model tracking the myosin heads individually in the
pools and using the random exchange paradigm.

We now want to analytically compare this model and the homogenized pool model. For this, we
establish the Kolmogorov-forward-like equations associated with the system (25) [Le Bris & Lelievre,
2009] (the detailed calculations are presented in Appendix A.5). They take the form of the partial
differential equations∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂tP1(t, 1) = −|ṅ0(t)|+
n0(t)

[
P1(t, 1)− P1(t, 0)

]
− g1P1(t, 1) + f1P0(1),

∂tP1(t, 0) = − |ṅ0(t)|−
1− n0(t)

[
P1(t, 0)− P1(t, 1)

]
− g0P1(t, 0) + f0P0(t, 0),

P0(t, 1) = 1− P1(t, 1),

P0(t, 0) = 1− P1(t, 0),

(26)

which are identical to (10) in the conditions considered (no filament sliding). The random exchange
stochastic model and the homogenized pool model are thus equivalent.

4.2.2 Last-in first-out

It is also possible to consider that the heads are switching from one pool to the other in a last-in first-out
manner. This would be a natural mechanism if an overlap effect is at the origin of the variations of
myosin heads availability. In this case, the heads are, in some ways, interacting with each other through
the memory of the transition order.

We assume that the subset of myosin heads considered contains N elements indexed by i of state
(αti, γ

t
i ). They are shared in the two pools in the following manner

γti =

{
1, if i ≤ bNn0(t)c
0, otherwise,

where b•c denotes the floor function. Then, in each pool, we have the dynamics∣∣∣∣∣∣∣∣∣∣
P
[
αt+τi = 1|αti = 0, γti = 1

]
= f1 τ + o

(
τ
)
,

P
[
αt+τi = 0|αti = 1, γti = 1

]
= g1 τ + o

(
τ
)
,

P
[
αt+τi = 1|αti = 0, γti = 0

]
= f0 τ + o

(
τ
)
,

P
[
αt+τi = 0|αti = 1, γti = 0

]
= g0 τ + o

(
τ
)
.

(27)

We do not attempt here to derive a counterpart to (26) for this model. We will simulate numerically the
system of equations (27) to compare the last-in first-out model with other modeling strategies.
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4.2.3 Numerical simulation

We have formally proven the equivalence between the homogenized description of the myosin heads
availability and the individual description with a random pool exchange paradigm (see Section 4.2.1).
In this section, we will additionally numerically compare the homogenized pool description with the
individual description of the myosin head availability using the last-in first-out exchange paradigm.

To simulate stochastically the latter model with an individual description of the myosin heads, we
consider N myosin heads. In the simulation results, we approximate the probabilities Pt

[
α, γ

]
= P

[
αt =

α, γt = γ
]
with the empirical probabilities

Pt
[
α, γ

]
=

1

N

N∑
i=1

1{αt=α,γt=γ}(α
t
i, γ

t
i ).

We prescribe the time evolution of n0 with variations that reproduce that of a heartbeat with physiological
time scales. Starting from a steady-state where n0 is constant with a value of 0.80 – heads are mainly
available for attachment – the scaled number of available myosin heads is decreased to the value 0.20
– heads are mainly unavailable for attachment – in 0.1 s corresponding to the systole. This phase is then
followed by a plateau in which n0 is maintained constant for 0.2 s. The thick filament activation n0 is
then brought back to its original value in 0.1 s. This corresponds to the diastole.

For a physiological simulation, we also need to select meaningful values for the transition rates.
The physiological values of the attachment f and detachment g rates for cardiac muscle remain subject
to debate [Månsson, 2010; Kimmig & Caruel, 2019]. Indeed, classically, muscle contraction models –
deriving from Huxley’57 model – cannot reproduce at the sarcomere level both the force-velocity relation
and the tension rise dynamics, showing that this description of the cycling process actually encompasses
other molecular mechanisms whose dynamics is aggregated to the attachment and detachment rates.
Depending on which physiological indicators is privileged for the model calibration, different values of
the transition rates are obtained with a factor six difference. In this section, we will test both options.

On the one hand, we have the transition rates proposed by [Kimmig et al., 2019] when favoring
the force-velocity curve. The attachment rate is f1 = f1 = 250 s−1 and the detachment rate is g1 =
g1 = 60 s−1. To take into account that heads in the pool γ = 0 attach with a lower probability, we use
f0 = 0.01f1 and g0 = g1. We call this choice of parameters the reference. On the other hand, if we
focus on the tension rise dynamics, we typically have f1 = f1/6 = 41.6 s−1 and the detachment rate
is g1 = g1/6 = 10 s−1 (see for instance [de Tombe & Stienen, 2007]) and again we use the assumption
f0 = 0.01f1 and g0 = g1. We additionally consider a non-physiological calibration for illustration
purposes with f1 = f1/50 = 5 s−1 and g1 = g1/50 = 1.2 s−1 The simulation results for the two models
considered and the three tested calibrations are presented in Figure 4.

We first comment on the evolution of the system with the two sets of physiological rates (Figure 4
left and middle columns). In the initial state, heads in both pools are attached with the steady-state
probability P1(γ, t) = fγ/(fγ + gγ). During the systole, some heads switch from the pool γ = 1 to
the pool γ = 0. Since the probability of being attached is higher in the pool γ = 1 than in the pool
γ = 0, P1(γ = 0) increases. The probability of being attached in the pool γ = 1 remains unchanged.
For both models, heads that change pools are equivalent, and therefore the way of choosing them does
not matter and the evolution of P1(γ = 0) is the same for the two models. As soon as the heads stop
being transferred into the other pool, the attachment-detachment dynamics leads to a return to the
steady-state value of P1(γ = 0). Here, the time scale of the attachment-detachment dynamics is short
compared to the duration of the plateau. At the end of the latter phase the heads thus have a probability
of being attached in both pools that is almost equal to the steady-state probability. There is no memory
of the “pool of origin”. In the diastole, heads switch from the pool γ = 0 to the pool γ = 1. We have
P1(γ = 1) > P1(γ = 0), which implies that P1(γ = 1) decreases while P1(γ = 0) is almost constant.
Since the state in the two models were the same at the end of the plateau, the evolution of P1(γ = 1) is
the same for the two models.

The situation is different with the non-physiological transition rates (Figure 4 right column). The
attachment-detachment dynamics time scale is not short compared to the plateau duration. Therefore,
in the pool γ = 0 heads that swapped pools during the systole have a higher probability of being attached
than the other heads of the pool. With the homogenized model, the probability P1(γ = 0) is not affected
by the pool exchange in the diastole, since heads that leave the pool have the average probability of being
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Figure 4: Model comparison between the homogenized treatment of the myosin heads changing pools,
and individual tracking of those heads with the last-in first-out paradigm (quantities computed from
10000 stochastic trajectories). Note that the time scale of the transition between the pools is 0.15 s. The
time scale of the attachment-detachment process is given by the duration of a cycle, i.e. f−1 + g−1.
Left column: simulation with reference transition rates targeting the force-velocity curve [Kimmig &
Caruel, 2019]. The time scale of the attachment-detachment process is 0.02 s. Center column: reference
transition rates divided by a factor six to mimic the calibration proposed by de Tombe & Stienen [2007]
aiming at capturing the force rise dynamics. The time scale of the attachment-detachment process is
0.12 s. Right column: reference transition rates divided by a factor 50 to illustrate the competition
between the attachment-detachment time scale and the pool exchange time scale in the model. The time
scale of the attachment-detachment process is 1 s.
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attached and it is governed solely by the attachment-detachment dynamics. With the last-in first-out
paradigm, the heads that switch from the pool γ = 0 to the pool γ = 1 are exactly those that were in
the pool γ = 1 at the beginning of the simulation and they are precisely the heads that have a higher
probability of being attached. As a result, the probabilities P1(γ = 1) and P1(γ = 0) retrieve their initial
level – up to attachment-detachment transitions that have occurred in the plateau. In this configuration,
the last-in first-out paradigm and the homogenized pool model provide different outputs that affect the
total probability of being attached P1, which will yield variations of the ultimate quantity of interest:
the active force.

In a nutshell, the last-in first-out pool exchange paradigm differs from the homogenized model (or
equivalently the random pool exchange paradigm) when the dynamics of the exchanges between the
pools is fast or of similar rate compared to the attachment-detachment dynamics. The two paradigms
are equivalent otherwise. It is a priori not possible to know which exchange paradigm – random, last-in
first-out, or another paradigm – is at play at the microscopic level. However, this does not harm our
modeling approach because the two formulations are equivalent when physiological values of the transition
rates and physiological variation time scales of the parameter function n0 are considered. Therefore, our
homogenized formulation is fully valid in the context of cardiac muscle modeling, regardless of the
uncertainty on the physiological transition rates.

In another situation where the difference between both paradigms may matter, additional experimen-
tal data should be sought. It would require structural experimental measurements that are capable of
distinguishing the behavior of neighboring heads in a dynamical manner. To the best of our knowledge,
state-of-the-art structural measurements for cardiac muscle cells can only deal with steady states and
characterize the global behavior of the myosin heads population [Reconditi et al., 2017].

4.3 Comparison with previously proposed formulation to incorporate the
thick filament regulation in the Huxley’57 models family

We now compare our formulation (10), aiming at a proper treatment of the myosin heads availability
in the realm of the Huxley’57 contraction model family, with previous formulations (12) [Zahalak &
Motabarzadeh, 1997; Chapelle et al., 2012].

We consider again a system where n0 is prescribed and we use the same time evolution of this input
function as that presented in Figure 4. The results are shown in Figure 5. We can note that the two
formulations depart from each other when P1(γ = 0) becomes significant.

With the model proposed by [Chapelle et al., 2012], a fraction 1−n0 of myosin heads is not allowed to
attach. In the new formulation, it is equivalent to assuming that P1(γ = 0) = 0. When the attachment-
detachment dynamics is fast compared to the pool dynamics, the myosin heads in the pool γ = 0 quickly
detach and this assumption is approximately valid (see Figure 5(a)). The two formulations provide
results that differ by about 10% during systole.

However, when the cycling time scale is large compared to the myosin availability variations, we
may have P1(γ = 0) significantly different from 0. In this case, the two formulations largely differ (see
Figure 5(b)).

5 Numerical methods
In this section, we present the numerical method designed to simulate the newly introduced model (10)
and derive the discretized version of the thermodynamical balances that can be obtained at the micro-
scopic and the macroscopic levels. To benefit from the separation of time scales between the microscopic
contraction model (∼10 ms) and the macroscopic heart model (∼1 s), we propose a double time step
discretization scheme. We denote by δt and ∆t the microscopic and macroscopic time steps, respectively,
with the convention that Nδt = ∆t (with N ∈ N∗). This double time step scheme allows to properly cap-
ture the physical mechanisms occurring at the microscopic level while avoiding unnecessary resolutions
of the macroscopic equations.

5.1 Microscopic numerical scheme
We first present the numerical scheme for the microscopic dynamics.
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Figure 5: Comparison between the proposed thick filament activation description and that previously
used by [Zahalak & Motabarzadeh, 1997; Chapelle et al., 2012]. (a) Transition rates given by [Kimmig
& Caruel, 2019]. (b) Non-physiological transition rates 50 times slower than that of [Kimmig & Caruel,
2019].
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The simulation range [s−, s+] is discretized by a regular grid of discretization length δs and with the
choice s0 = s− and s` = s+. For the sake of compactness of the notation, we denote P1(s− + iδs, n∆t+

kδt, 1) by an,ki and P1(s− + iδs, n∆t+ kδt, 0) by bn,ki , n ∈ N, k ∈ [[0, N ]].
For the chemical reaction term, we use an implicit scheme, and an upwind implicit scheme for the

transport term as proposed by [Kimmig et al., 2019]. The pool exchanges terms are treated with a
semi-explicit, semi-implicit scheme. The choice of such a scheme is justified by the fact that it allows to
establish a discrete energy balance (see Section 5.1.2).

Note that the presentation will be restricted to positive sliding velocities ẋc but the results can be
straightforwardly extended to negative sliding velocities by reversing the space shift in the transport
term so that the scheme keeps its upwind nature.

We denote the discrete sliding velocity by

v
n+ 1

2 ]
c = `hs(e

n+1
c − enc )/∆t (28)

and we assume that it is positive (i.e. en+1
c − enc ≥ 0). We define nn0 = n0(enc ).

The discretization scheme then reads

an,k+1
i − an,ki

δt
= −|n

n+1
0 − nn0 |+
nn,k+1

0 ∆t

[
an,ki − bn,ki

]
+ (k+,1,i + krev−,1,i)(1− an,k+1

i )

− (k−,1,i + krev+,1,i)a
n,k+1
i − vn+ 1

2 ]
c

an,k+1
i − an,k+1

i−1

δs
, i ∈ [[1, `]]

bn,k+1
i − bn,ki

δt
= − |n

n+1
0 − nn0 |−

(1− nn,k+1
0 )∆t

[
bn,ki − an,ki

]
+ (k+,0,i + krev−,0,i)(1− bn,k+1

i )

− (k−,0,i + krev+,0,i)b
n,k+1
i − vn+ 1

2 ]
c

bn,k+1
i − bn,k+1

i−1

δs
, i ∈ [[1, `]]

(29)

with the definitions∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k+,1,i = k+,1(s− + iδs) and krev+,1,i = krev+,1(s− + iδs), i ∈ [[1, `]]

k+,0,i = k+,0(s− + iδs) and krev+,0,i = krev+,0(s− + iδs), i ∈ [[1, `]]

k−,1,i = k−,1(s− + iδs) and krev−,1,i = krev−,1(s− + iδs), i ∈ [[1, `− 1]]

k−,0,i = k−,0(s− + iδs) and krev−,0,i = krev−,0(s− + iδs), i ∈ [[1, `− 1]]

k−,1,` = 200 k−,1,`−1 and krev+,1,` = 200 krev+,1,`−1,

k−,0,` = 200 k−,0,`−1 and krev+,0,` = 200 krev+,0,`−1,

and
nn,k0 = nn0 + k

δt

∆t

(
nn+1

0 − nn0
)
.

We define the aggregated attachment and detachment rate by fγ,i = k+,γ,i + krev−,γ,i and gγ,i = k−,γi +
krev+,γ,i, respectively. Note that the numerical detachment rates differ from their analytical counterparts,
which go to infinity on the boundaries of the interval [s−, s+]. Indeed, as proposed by Kimmig et al.
[2019], we use instead a consistent finite approximation. The choice of the boundary conditions follows
that of Kimmig et al. [2019] as well. We prescribe periodic boundary conditions for an,k and bn,k. We
have an,k0 = an,k` and bn,k0 = bn,k` . The initialization of the discretization is done such that a0,0

0 = a0,0
` = 0

and b0,00 = b0,0` = 0. Moreover, we prescribe that a0,0
i and b0,0i ∈ [0, 1], i ∈ [[1, `]] to be consistent with the

definition of a0,0
i and b0,0i as probabilities.

Defining ∣∣∣∣∣∣∣∣∣
αn+ 1

2 ] = `hs(e
n+1
c − enc )/∆t · δt/δs,

β
n+ 1

2 ]
1,i = δt

(
k+,1,i + krev+,1,i + k−,1,i + krev−,1,i

)
+ αn+ 1

2 ],

β
n+ 1

2 ]
0,i = δt

(
k+,0,i + krev+,0,i + k−,0,i + krev−,0,i

)
+ αn+ 1

2 ],

the numerical scheme can be written in a vectorial form using the state vector

Pn,k =
[
an,k1 . . . an,k` bn,k1 . . . bn,k`

]T
.
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The system (29) becomes

(Id + In+ 1
2 ])Pn,k+1 = (Id − En,k+1)Pn,k + δtf ,

where Id is the 2`× 2` identity matrix

In+ 1
2 ]=



β
n+ 1

2 ]
1,1 −αn+ 1

2 ]

−αn+ 1
2 ] β

n+ 1
2 ]

1,2

. . . . . .

−αn+ 1
2 ] β

n+ 1
2 ]

1,`

β
n+ 1

2 ]
0,1 −αn+ 1

2 ]

−αn+ 1
2 ] β

n+ 1
2 ]

0,2

. . . . . .

−αn+ 1
2 ] β

n+ 1
2 ]

0,`


,

E1 =



1 −1

1 −1

1 −1

1 −1


, E0 =


−1 1

−1 1

−1 1

−1 1


,

f =
[
f1,1, f1,2, . . . , f1,`, f0,1, f0,2, . . . , f0,`

]T
,

and En,k+1 =
|nn+1

0 − nn0 |+
nn,k+1

0

δt

∆t
E1 +

|nn+1
0 − nn0 |−

1− nn,k+1
0

δt

∆t
E0.

5.1.1 Uniform positivity and boundeness

We want to ensure that, at all time steps and discretized positions of s in the interval [s−, s+], the
numerical solutions an,ki and bn,ki satisfy the property

0 ≤ an,ki ≤ 1 and 0 ≤ bn,ki ≤ 1 ⇐⇒ 0 ≤ Pn,k ≤ 1, n ∈ N, k ∈ [[0, N ]],

where vector inequalities should be understood component by component. This property allows to keep
the interpretation of an,ki and bn,ki as probabilities, but it is also essential from a numerical point of
view since the calculation of some thermodynamic quantities requires to evaluate the logarithm of the
probabilities of being attached.

We proceed by induction and we assume that

0 ≤ Pn,k ≤ 1. (30)

We introduce the vector 1−Pn,k. Its dynamics is governed by

(Id + In+ 1
2 ])(1−Pn,k+1) = (Id − En,k+1)(1−Pn,k) + δtg.

We want to show that ∣∣∣∣∣ 0 ≤ Pn,k+1,

0 ≤ 1−Pn,k+1.
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We know from [Kimmig et al., 2019], that the matrix Id + In+ 1
2 ] preserves the positivity – ie. ∀P ∈

R2`, (Id + In+ 1
2 ])P ≥ 0⇒ P ≥ 0. Therefore, the desired property 0 ≤ Pn,k+1 ≤ 1 is obtained if

(Id − En,k+1)Pn,k + δtf ≥ 0 and (Id − En,k+1)(1−Pn,k) + δtg ≥ 0.

A sufficient condition is given by∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 ≤
(

1− δt |n
n+1
0 − nn0 |+
nn,k+1

0 ∆t

)
an,ki + δt

|nn+1
0 − nn0 |+
nn,k+1

0 ∆t
bn,ki + δtf1,i

0 ≤ δt |n
n+1
0 − nn0 |+
nn,k+1

0 ∆t
an,ki +

(
1− δt |n

n+1
0 − nn0 |−

(1− nn,k+1
0 )∆t

)
bn,ki + δtf0,i

0 ≤
(

1− δt |n
n+1
0 − nn0 |+
nn,k+1

0 ∆t

)
(1− an,ki ) + δt

|nn+1
0 − nn0 |+
nn,k+1

0 ∆t
(1− bn,ki ) + δtg1,i

0 ≤ δt |n
n+1
0 − nn0 |+
nn,k+1

0 ∆t
(1− an,ki ) +

(
1− δt |n

n+1
0 − nn0 |−

(1− nn,k+1
0 )∆t

)
(1− bn,ki ) + δtg0,i.

(31)

The induction hypothesis (30) gives 0 ≤ an,ki ≤ 1 and 0 ≤ bn,ki ≤ 1. It is thus sufficient, in order to have
the property (31), that δt satisfies the (non-optimal) CFL-like condition

δt ≤ min
( nn0
|nn+1

0 − nn0 |+
∆t,

1− nn+1
0

|nn+1
0 − nn0 |−

∆t
)
. (32)

In all numerical results presented in what follows, we will make sure that this condition is satisfied.

5.1.2 First principle

We now aim at establishing a discrete counterpart to the continuous first principle (16). We only present
here the main results; their detailed proof is given in Section A.6.1. We discretize the attached state
energy level on [s−, s+] by ∣∣∣∣∣w1,i = w1(s− + iδs), i ∈ [[1, `− 1]]

w1,` = 150w1,`−1.

We define the discrete average energy per myosin head by

Un,k =
δs

da

∑̀
i=1

[
w1,i

(
nn,k0 an,ki + (1− nn,k0 )bn,ki

)
+ w0

(
nn,k0 (1− an,ki ) + (1− nn,k0 )(1− bn,ki )

)]
.

Defining the attachment-detachment fluxes as∣∣∣∣∣∣∣∣∣∣∣

Jn,k+,1,i = k+,1,ia
n,k
i − krev+,1,i(1− an,ki ),

Jn,k+,0,i = k+,0,ib
n,k
i − krev+,0,i(1− bn,ki ),

Jn,k−,1,i = k−,1,i(1− an,ki )− krev−,1,ian,ki ,

Jn,k−,1,i = k−,0,i(1− bn,ki )− krev−,0,ibn,ki ,

(33)

we obtain the first principle formulation at local time steps

Un,k+1 − Un,k
δt

=
Wn,k+1 −Wn,k

δt
+
Qn,k+1 −Qn,k

δt
+
En,k+1 − En,k

δt
, (34)

with ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Wn,k+1 −Wn,k

δt
= v

n+ 1
2 ]

c τn,k+1
c ,

Qn,k+1 −Qn,k
δt

=
δs

da

∑̀
i=1

[(
nn,k+1

0 Jn,k+1
+,1,i + (1− nn,k+1

0 )Jn,k+1
+,0,i

)
(w1,i − w0)

+
(
nn,k+1

0 Jn,k+1
−,1,i + (1− nn,k+1

0 )Jn,k+1
−,0,i

)(
w0 − (w1,i + µT )

)]
,

En,k+1 − En,k
δt

= µT
δs

da

∑̀
i=1

(
nn,k+1

0 Jn,k+1
−,1,i + (1− nn,k+1

0 )Jn,k+1
−,0,i

)
,
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where the force per myosin head τn,k+1
c is defined by

τn,k+1
c =

δs

da

∑̀
i=1

w1,i+1 − w1,i

δs

(
nn,k+1

0 an,k+1 + (1− nn,k+1
0 )bn,k+1

)
.

5.1.3 Second principle

As for the first principle, we only present here the results; their detailed proof is given in Section A.6.2.
To derive a discrete version of the second principle, we first define the chemical potentials in each

pool ∣∣∣∣∣∣∣∣∣∣∣∣

µn,kα=1,γ=1,i = µn,k1,1,i = w1,i + kBT ln an,ki ,

µn,kα=1,γ=0,i = µn,k1,0,i = w1,i + kBT ln bn,ki ,

µn,kα=0,γ=1,i = µn,k0,1,i = w0 + kBT ln(1− an,ki ),

µn,kα=0,γ=0,i = µn,k0,0,i = w0 + kBT ln(1− bn,ki ).

We define the entropy per myosin head as

Sn,k = −kB
δs

da

∑̀
i=1

[
nn,k0

(
an,ki ln an,ki + (1− an,ki ) ln(1− an,ki )

)
+ (1− nn,k0 )

(
bn,ki ln bn,ki + (1− bn,ki ) ln(1− bn,ki )

)]
.

Note that the entropy is well-defined for an,k ∈ [0, 1] and bn,k ∈ [0, 1].
Using the numerical scheme (29), we obtain the second principle inequality

Sn,k+1 − Sn,k
δt

≥ 1

T

Qn,k+1 −Qn,k
δt

, for an,k ∈ [0, 1] and bn,k ∈ [0, 1], n ∈ N, k ∈ [[0, N ]]. (36)

If the property an,k ∈]0, 1[ and bn,k ∈]0, 1[, n ∈ N, k ∈ [[0, N ]] holds, we can give an explicit expression
of the entropy creation and we have

Sn,k+1 − Sn,k
δt

=
Sn,k+1
prod − Sn,kprod

δt
+

1

T

Qn,k+1 −Qn,k
δt

, (37)
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with

Sn,k+1
prod − Sn,kprod

δt
=

−
(
nn,k+1

0

1

T

δs

da

∑̀
i=1

[
Jn,k+1

+,1,i

(
µn,k+1

1,1,i − µn,k+1
0,1,i

)
+ Jn,k+1
−,1,i

(
µn,k+1

0,1,i − µn,k+1
1,1,i − µT

)]

+ (1− nn,k+1
0 )

1

T

δs

da

∑̀
i=1

[
Jn,k+1

+,0,i

(
µn,k+1

1,0,i − µn,k+1
0,0,i

)
+ Jn,k+1
−,0,i

(
µn,k+1

0,0,i − µn,k+1
1,0,i − µT

)])

− vn,k+ 1
2 ]

c kB

(
nn,k+1

0

1

da

∑̀
i=1

[
an,k+1
i ln

(
an,k+1
i+1

an,k+1
i

)
+ (1− an,k+1

i ) ln

(
1− an,k+1

i+1

1− an,k+1
i

)]

+ (1− nn,k+1
0 )

1

da

∑̀
i=1

[
bn,k+1
i ln

(
bn,k+1
i+1

bn,k+1
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δs

da
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[
bn,ki ln

(
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bn,ki
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+ (1− bn,ki ) ln

(
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1− bn,ki
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− kB
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∑̀
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an,ki ln
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an,ki

bn,k+1
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+ (1− an,ki ) ln

(
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i
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satisfying the inequality
Sn,k+1
prod − Sn,kprod

δt
≥ 0.

If we re-write the second principle under the form of an inequality on the free energy, we have for
an,k ∈ [0, 1] and bn,k ∈ [0, 1]

Fn,k+1 −Fn,k
δt

=
Un,k+1 − Un,k

δt
− T S

n,k+1 − Sn,k
δt

≤ W
n,k+1 −Wn,k

δt
+
En,k+1 − En,k

δt

5.2 Numerical illustration
To illustrate the discrete thermodynamic balance, we perform a simulation of the equations (29) in a
single time step scheme, i.e. δt = ∆t. The evolution of the sliding velocity is prescribed over time.
Note that this is equivalent to imposing the extension enc from an initial condition e0

c because these
two quantities are linked through (28). We choose here the initial condition e0

c = 0.06 and a time step
∆t = 0.01 ms. The myosin head population is initially in a configuration in which all heads are detached.

The simulation starts with an isometric tension rise phase; the extension enc remains constant. After
a duration that is sufficient for the active force to reach its peak isometric value, the sarcomere is
progressively shortened until reaching a steady-state shortening velocity of −1 µm s−1.

The dependency between the scaled number of available heads n0 and the extension ec is the same as
the function that is used for the simulation of physiological heartbeats, which is presented in Figure 8(a).
For the simulation, we use the transition rates and energy levels presented in Figure 12.

The results are presented in Figure 6. It can first be checked that the CFL condition (32) is satisfied in
this simulation. In the initial isometric phase, myosin heads attach and the developed force increases. In
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the shortening phase, the tension decreases due to two factors. When the sarcomere shortens, the force is
reduced compared to isometric conditions following the classical force-velocity relation. Simultaneously,
the decrease of the sarcomere extension implies a decrease in the number of available myosin heads (as
shown by the decrease of n0(ec)) and thus of the force.

Being able to write consistent thermodynamical balances at the discrete level allows to investigate the
elements of the energy transduction performed by the molecular motors. The work production, which is
zero in the absence of displacement, increases as the muscle starts to shorten. Note that the work rate
is negative because, in our length-controlled numerical experiment, the mechanical energy is transferred
from the system to the environment. We now consider the consumption of chemical energy brought by
ATP. As myosin heads start to cycle in the tension rise phase, the consumption of ATP increases. In the
shortening phase, myosin heads are transported in a region where the detachment rate is higher. The
cycling rate increases, leading to a higher consumption of ATP. We can note that the consumption of
ATP is always strictly positive, even when no work is produced. This highlights the active nature of
muscle contraction, i.e. the force is developed “in exchange” of a continuous supply in chemical energy.
One can also note that, as expected, the entropy production term is always positive. Note that with the
initial conditions (a0

i = b0i = 0, i ∈ [[1, `]]), the entropy creation term is not well defined at the initial
time. After the first time step, the numerical noise combined with the non-divergence of the detachment
rates on the boundaries of the interval [s−, s+] implies that we have, for all n > 0 and all i ∈ [[0, `]], the
property ani ∈]0, 1[ and bni ∈]0, 1[. The entropy creation term is thus defined for n > 0.

Note that a proof of the established discrete thermodynamic principles is presented in Appendix A.6.

5.3 Link with discrete macroscopic model: a multi-time step strategy
5.3.1 Macroscopic time scheme

We recall here the time scheme proposed in Kimmig et al. [2019] to discretize the macroscopic part of
the system (43) and we extend it to embed the microscopic time scale dynamics in a multi-time step
manner.

The numerical scheme reads

yn+1 − yn

∆t
= vn+ 1

2 =
vn+1 + vn

2∫
Ω0

ρ0
vn+1 − vn

∆t
·w dΩ +

∫
Ω0

Σn+ 1
2 ] :Den+ 1

2 ] ·w dΩ = Pn+ 1
2

ext (w), w ∈ Vad

with Σn+ 1
2 ] =

∂Ψ

∂e

∣∣∣n+ 1
2 ]

+ η
en+1 − en

∆t
+

T
n+ 1

2 ]

fib

(1 + 2f0 · en · f0)
1
2

f0 ⊗ f0

T
n+ 1

2 ]

fib = ν
ėn+1
c − ėnc

∆t
+ Tn+1

c = Ese
n+ 1

2
s

with Tn+1
c = ρsurf

δt

∆t

N−1∑
k=0

τn,k+1
c

(38a)

(38b)

(38c)

where we define

vn+ 1
2 =

vn+1 − vn

δt
, en+ 1

2 ] = e(yn+ 1
2 ), ėn+ 1

2 ] =
en+1 − en

δt
,

D en+ 1
2 ] ·w =

1

2

(
∇w + (∇w)T + (∇yn+ 1

2 )T · ∇w + (∇w)T · ∇yn+ 1
2

)
,

and
∂Ψ

∂e

∣∣∣n+ 1
2 ]

=
∂Ψ

∂e
(en+ 1

2 ]) +

(
Ψ(en+1)−Ψ(en)

δt
− ∂Ψ

∂e
(en+ 1

2 ]) : ėn+ 1
2 ]

)
ėn+ 1

2 ]

ėn+ 1
2 ] : ėn+ 1

2 ]
.

The question that arises, when linking the time micro- and macro-dynamics, is how to properly define
the macroscopic active tension Tn+1

c as a function of the microscopic variables. The choice made in (38c)
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Figure 6: Simulation of the microscopic contraction model (10) with an prescribed extension enc time
evolution using the numerical scheme (29). (a) Sliding velocity. (b) Ratio of heads in the pool γ = 1.
(c) Normalized average force per myosin head. (d) Work rate per myosin head. (e) Energy input rate
per myosin head. (f) Entropy production rate per myosin head multiplied by the temperature.
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will be motivated in the subsequent paragraph with the use of the discrete thermodynamic balance to
lead this choice.

It is important to note that the equations in (38) must be written at each quadrature point. For the
sake of compactness, this spatial dependency is omitted here.

5.3.2 Microscopic first principle at global time steps

We first extend the first thermodynamical balance of the microscopic dynamics. At a macroscopic time
step, we have

Un+1 − Un
∆t

=
δt

∆t

N−1∑
k=0

Un,k+1 − Un,k
δt

.

Using the micro time step energy balance (34), we have

Un+1 − Un
∆t

=
δt

∆t

N−1∑
k=0

v
n+ 1

2 ]
c τn,k+1

c +
δt

∆t

N−1∑
k=0

[
Qn,k+1 −Qn,k

δt
+
En,k+1 − En,k

δt

]

=
Wn+1 −Wn

∆t
+
Qn+1 −Qn

∆t
+
En+1 − En

∆t

where we define the macroscopic force by

Tn+1
c =

δt

∆t

N−1∑
k=0

τn,k+1
c =

δt
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da
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i=1
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(
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0 an,k+1 + (1− nn,k+1
0 )bn,k+1

)
and the macroscopic time step work flux per myosin head by

Wn+1 −Wn

∆t
= v

n+ 1
2 ]

c Tn+1
c .

We can note that the force at macroscopic time step is not the force corresponding to the simultaneous
microscopic time step but the time average of the microscopic time force over the macro time step. The
energy balance thus allows to properly perform the link between time scales.

5.3.3 Microscopic second principle at global time steps

Then, we extend the second thermodynamical balance of the microscopic dynamics. At a macroscopic
time step, we have

Fn+1 −Fn
∆t

=
δt

∆t

N−1∑
k=0

Fn,k+1 −Fn,k
δt

.

Using the micro time step free energy inequality (36), we have

Fn+1 −Fn
∆t

≤ δt

∆t

N−1∑
k=0

Wn,k+1 −Wn,k

δt
+
δt

∆t

N−1∑
k=0

En,k+1 − En,k
δt

≤ W
n+1 −Wn

∆t
+
En+1 − En

∆t
, (39)

with the definition of the macroscopic time step energy input flux

En+1 − En
∆t

=
δt

∆t

N−1∑
k=0

En,k+1 − En,k
δt

.

The inequality on the free-energy is thus straightforwardly transferred to the macroscopic time scale.
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5.3.4 Discrete time Clausius-Duhem relation for the complete model

Having a microscopic discrete model, which satisfies the macroscopic time step inequality (39), we can
apply and adapt the thermodynamic balance obtained in [Kimmig et al., 2019] for the micro-macro
coupled model. We have

Kn+1 −Kn
δt

+

∫
Ω0

[Ψn+1 −Ψn

δt
+ Es

|en+1
s |2 − |ens |2

2δt
+ ρv

Fn+1 −Fn
δt

]
dΩ

≤ Pn+ 1
2

ext −
∫

Ω0

[
η
|en+1 − en|2

δt2
+ ν

(en+1
c − enc )2

δt2

]
dΩ +

∫
Ω0

ρv
En+1 − En

δt
,

where the density of myosin head per unit volume is defined as ρv = ρsurf/`hs.
In summary, the proposed numerical scheme satisfies discrete thermodynamical balances at the mi-

croscopic time step. A definition of the macroscopic active force guided by thermodynamics allows to
extend these discrete thermodynamic balances to the micro-macro coupled model.

6 Numerical illustration: physiological simulations of a heart-
beat

We now want to show the ability of our model to produce a physiologically relevant behavior in the
context of cardiovascular modeling. To this end, we incorporate our microscopic contraction model in
a macroscopic heart model with a simplified geometry [Caruel et al., 2013a], which is an intermediate
modeling hypothesis between a complete 3D finite element description of the heart and a model with
Laplace estimates [Gsell et al., 2018]. A dedicated – thermodynamically consistent – numerical scheme
is formulated for this model, extending that proposed in [Kimmig et al., 2019] for the system without
the pool exchange terms. The discrete thermodynamic balances at the microscopic level can then be
followed up to the macroscopic level. A detailed presentation of the numerical method proposed was
given in Section 5.

We first need to embed into the model the regulation of the thin filament activation. It is done here
in a phenomenological way. Then, we present the physiological calibration used in our simulations and
the simulation results.

6.1 Modification to account for the thin filament activation
We have presented above a model allowing to capture the varying levels of thick filament activation in
the sarcomere. However, it is not the only regulation mechanism in a physiological contraction. The
thin filament activation level is also varied as a function of the sarcomere stretch (intrinsic regulation)
and the intracellular calcium dynamics depends on the inputs of the neuroendocrine system (extrinsic
regulation) [de Tombe et al., 2010].

Many models have been developed following the seminal work of Rice et al. [2003] for the description
of the thin filament activation underlying mechanisms displaying various levels of refinement and com-
putational efficiency [Rice & de Tombe, 2004; Hussan et al., 2006; Rice et al., 2008; Washio et al., 2011;
Regazzoni et al., 2018]. Moreover, a coupled model of the thin filament activation and the actin-myosin
interaction has been proposed for a special case of thick filament activation model in [Regazzoni et al.,
2020]. In this paper, however, we focus our modeling effort on the activation of the thick filament, and
we treat the activation of the thin filament phenomenologically.

Following the idea proposed by Zahalak & Motabarzadeh [1997] and Chapelle et al. [2012], we place
the impact of the thin filament regulation on the transition rates. We assume that the attachment rate
k+,γ(s) and its reverse krev+,γ(s) is modulated multiplicatively by a phenomenological activation function
u. The complexity of the underlying mechanisms is incorporated into the freedom in the choice of the
activation function u. This function varies between zero and one, representing a level of activation that
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modulates the rate of attachment. The model dynamics equation (10) becomes

∂tP1(s, t, 1) + ẋc ∂sP1(s, t, 1) +
|ṅ0|+
n0

[
P1(s, t, 1)− P1(s, t, 0)

]
=(

u(t)k+,1(s) + krev−,1(s)
)
P0(s, t, 1)−

(
k−,1(s) + u(t)krev+,1(s)

)
P1(s, t, 1),

∂tP1(s, t, 0) + ẋc ∂sP1(s, t, 0) +
|ṅ0|−
1− n0

[
P1(s, t, 0)− P1(s, t, 1)

]
=(

u(t)k+,0(s) + krev−,0(s)
)
P0(s, t, 0)−

(
k−,0(s) + u(t)krev+,0(s)

)
P1(s, t, 0),

P0(s, t, γ) = 1− P1(s, t, γ).

(40)

With this modification that preserves the detailed balance (3), the model remains straightforwardly
compatible with the second principle.

6.2 Model calibration
We now want to calibrate our model. Our objective is to show the ability of the model to semi-
quantitatively capture the Frank-Starling mechanism and not to precisely match physiological pressure-
volume data for a given individual. We thus take the liberty to use data coming from different species.
The heart model parameters, except for the actin-myosin interaction model, are calibrated to represent
a human physiological behavior (patient-specific calibrations can be found in [Le Gall et al., 2020]).
The proposed micro-scale model of the actin-myosin interaction and its regulation provide a detailed
description of the mechanisms involved. The model calibration thus requires accurate data obtained
ex vivo targeting the short time and space scales of the muscle contraction. These data are not avail-
able for human to the best of our knowledge and we will use instead measurements from rats obtained
at sub-physiological temperatures. For the actin-myosin interaction model, we rely on the calibration
proposed in [Kimmig & Caruel, 2019] based on data obtained by physiologists Caremani et al. [2016];
de Tombe & ter Keurs [1992] and adapted for the non-aggregated transition rates for the pool γ = 1 (see
Appendix A.4). For the pool γ = 0, we use the modeling assumption k+,0 = 0.01k+,1 and k−,0 = k−,1.
Note that this calibration allows to capture the force-velocity relation and the isometric indicators (ratio
of attached myosin heads and force per attached myosin head).

We then calibrate the input function n0(ec) and finally define the thin filament activation function
u(t).

6.2.1 Myosin activation function

To relate the measured force to the scaled number of available myosin heads n0, we use experiments
performed on ex vivo muscle cells, which are either intact tetanised cells or skinned cells, measuring the
relation between the steady-state isometric peak force and the sarcomere length in full thin filament
activation conditions, so that the variation in force can be attributed solely to variations in the myosin
heads availability. We aggregate here data collected by Kentish et al. [1986], ter Keurs et al. [2008] and
Dobesh et al. [2002].

Note that the extension ec, which we consider as the argument of the thick filament activation function
n0, adds up to the filament self extension es, which depends on the developed active force, to give the
sarcomere extension efib. The latter quantity is the extension that can be directly linked to the sarcomere
length, which is observed experimentally. We thus need to consider the experimental data in the light
of the rheology model (the complete rheology is presented in Appendix A.2 Figure 11). The range of
sarcomere length that is used in experimental conditions spans between 1.65 µm and 2.25 µm. In this
range, the passive force is small compared to the active force (see for instance [ter Keurs et al., 2008,
Fig. 2] or [Caremani et al., 2016, Fig. 1B]). We thus interpret the measured force as resulting solely from
the 1D sarcomere-based branch of the rheology (see Figure 7(a)). Recalling that the sarcomere half-
length corresponding to zero passive force – called slack length – is denoted by `hs, the half-sarcomere
length in steady-state contraction conditions is given by `hs

(
1 + efib

)
with{

efib = ec + es,

Eses = Ťc
(
n0(ec)

)
,
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Figure 7: (a) Part of the half-sarcomere rheology that accounts for the actin and myosin filaments con-
tribution. The spring and dashpot represent the intrinsic elastic and viscous properties of the filament,
while the myosin heads sketch represent the cross-bridges, which are here described with the newly pro-
posed extended Huxley’57-model. (b) Phenomenological thin filament activation function. This function
aggregates the calcium triggered activation and the effects of the intrinsic thin filament regulation.

denoting by Ťc the steady state value of Tc given by

Ťc
(
n0(ec)

)
= ρsurf

1

da

s+∫
s−

[
n0P̌1(s, 1) + (1− n0)P̌1(s, 0)

]
∂sw1(s) ds,

where P̌1(γ) =
fγ

fγ+gγ
is the steady-state solution of (40) with ẋc = 0 and in maximal activation conditions

(n0 = 1 and u = 1). Normalizing the tensions by the maximal isometric tension

T0 = ρsurf
1

da

s+∫
s−

P̌1(s, 1)∂sw1(s) ds,

we seek a function n0(ec) such that the model predicted
(
`hs(efib), Ťc

(
n0(ec)

)
/T0

)
-curve matches the

experimental data. These data corresponding to a complete thin filament activation, the function u is
maintained equal to one here and we simulate the steady-state response in force of the model. As for
most elements of the rheology, the slack length is taken from measurements on human cardiac cells. We
use the value `hs = 1.7 µm [van der Velden et al., 2000]. The calibration results and the validation are
presented in Figure 8.

6.2.2 Actin activation function

The actin activation function u is phenomenologically defined to mimic the transient activation of the
thin filament following the triggering of the action potential in the cell. In a first phase, calcium is released
from the sarcoplasmic reticulum and transiently adsorbed by the thin filament; the level of activation
increases and reaches its maximal value – assumed here to be equal to one. The calcium ions are then
re-uptaken by the sarcoplasmic reticulum and the level of activation decreases until it vanishes. The
liberation of calcium is then prevented during a so-called refractory period, which ensures that the heart
has time to relax before the next contraction. The proposed function u(t) is presented in Figure 7(b).

6.3 Numerical results
At the macroscopic level, de Tombe et al. [2010] characterize the Frank-Starling mechanism by two
features: (1) the stroke volume is increased with an increase of the end-diastolic volume (i.e. increasing
the pre-load) and (2) the stroke volume can be maintained in case of an increased after-load by increasing
the end-diastolic volume. Altogether, they state that a comprehensive view of this mechanism is to say
that there is a single end-systolic pressure-volume relation (ESPVR).
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Figure 8: (a) Calibrated input parameter function n0(ec). (b) Validation of the calibration with the rela-
tion between the sarcomere length and the isometric force in maximal thin filament activation conditions.
Solid line: model prediction. Diamonds: data from skinned rat cells [Dobesh et al., 2002]. Triangles:
data from intact tetanised rat cardiac muscle cells [ter Keurs et al., 2008]. Squares: data from skinned
rat ventricular trabeculae [Kentish et al., 1986].

6.3.1 Physiological pressure-volume loop

The simulation results with the calibrated thick and thin filament activation functions are presented in
Figure 9. We see in the panel (a) that an increase in the pre-load results in an increase of the ejected
blood volume. Our model thus captures the first feature of the Frank-Starling mechanism. In the panel
(b), we show that the second feature is also encompassed in our model.

Additionally, we plot the static (ESPVR) that can be computed from the simplified 0D-model equation
in the static case (see [Caruel et al., 2013a]). The analytical expression of the ESPVR is recalled in
Appendix A.3.
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Figure 9: Relation between the ventricular pressure and the ventricular volume during a simulated
heartbeat (PV-loop). We present here the limit cycle for the pressure-volume relationship. (a) Variation
of the pre-load, which changes the end-diastolic volume. (b) Comparison between a reference and a
case where a higher after-load is compensated by an increased pre-load to maintain the ejected blood
volume constant. (a) & (b) The dashed line represents the static ESPVR. The dotted line represents the
End-Diastolic Pressure Volume Relation (EDPVR).

In a nutshell, our model based on a microscopic description of the actin-myosin interaction coupled
with a macroscopic description of the muscle tissue and embedded into a cardiovascular model is able to
capture the key features of the Frank-Starling mechanism at the macroscopic level.
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6.3.2 Impact of the micro models on the macroscopic physiology

In this section, we want to highlight the impact of the force-velocity relationship captured by the model
for a physiological heartbeat.

We compare the simulations of a heartbeat with two different calibrations of the transition rates. The
isometric values of the transitions rates are either taken from [Kimmig & Caruel, 2019] or mimic those
proposed in [de Tombe & Stienen, 2007] (see Figure 10(a) & (b)). The force-velocity relation associated
with these two model calibrations are presented in Figure 10(c). With the calibration from [Kimmig
& Caruel, 2019], the steady-state force is higher for all velocities than the same relation computed
with the calibration inspired by [de Tombe & Stienen, 2007]. We thus denote this first calibration high
force-velocity (HFV) and as opposed to the low force-velocity calibration (LFV).

Note that both simulations use the calibration of n0 and u presented in Section 6.2.1. In the early
contraction phase, the aortic valve is closed and the muscle works in isometric conditions. As soon as the
valve opens, the heart cavity volume decreases and the sarcomere shortens. This shortening results in
a decrease in the force following the force-velocity curve, under the approximation that the population
probability P1(s, t) quickly converges to its steady-state counterpart (this is true if the cycling time scale
is shorter than the duration of the systole).

We now compare the pressure-volume loops obtained with the two calibrations. When the force-
velocity relation predicts a strong decrease of the force with increasing shortening velocities, the opening
of the valve (and the beginning of the sarcomere shortening) leads to a drastic decrease of the active
force. As a result, the pressure that can be created in the heart cavity is limited due to the limited time
of activation (see Figure 10(d)). This further leads to a reduction of the stroke volume because the heart
is not able to oppose the aortic pressure long enough.
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Figure 10: Comparison of high force-velocity calibration (HFV) with low force-velocity calibration (LFV).
The two calibrations only differ by the choice of the transition rates. We present here the limit cycle for
the pressure-volume relationship. (a) Attachment rates for both calibrations. (b) Detachment rates for
both calibrations. (c) Resulting force-velocity relation with both calibrations. (d) Force-velocity relation
obtained in a heartbeat simulation with both calibrations.
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The force-velocity is thus important in the calibration to allow the heart to eject blood sufficiently
fast while maintaining a high enough blood pressure to avoid the closing of the aortic valve.

7 Conclusion
In this paper, we have presented a new paradigm that extends the family of models derived from the
seminal work of A.F. Huxley [Huxley, 1957] to take into account the activation of the thick filament.
The thermodynamical compatibility of the newly proposed model is established. A discrete counterpart
of the thermodynamics balances is also obtained with a dedicated discretization scheme.

As a consequence of the investigation of our model range of validity, we showed that the inclusion of
a memory effect in the transition between the available and non-available states for the myosin heads is
not useful in physiological conditions. Indeed, the attachment-detachment process occurs fast enough to
eliminate this memory effect.

This work suffers from two main limitations in the context of physiological heart modeling. First, the
activation of the thin filament has been incorporated in a phenomenological way. There remains a need
for the development of a rigorous thin filament activation modeling. Secondly, the extrinsic regulation
controlled by the neuroendocrine system is not considered in this model. A limitation in this regard is
the difficulty to obtain sarcomere level data – with which the microscopic level model can be calibrated
– that also consider the impact of the neuroendocrine system, because extraction of muscle samples
from the body separates them from this system. In our approach, we get around these two limitations
by incorporating these effects phenomenologically into the activation function u. We are then able to
display the ability of our model to capture the two essential features of the Frank-Starling mechanism.

Note that a physiological pressure-volume relation can also be obtained with less refined models of
the actomyosin interaction, for instance models that only track the first two moments of the probability
of being attached P1 [Chapelle et al., 2012]. This is because the heartbeat time scale is long compared
to the actin-myosin interaction time scales and thus capturing the main features of this interaction is
enough to produce physiological results at the heartbeat time scale. However, our framework allows to
better describe the physical mechanisms underlying the contraction and thus allows to take into account
changes in these mechanisms – for instance as a result of pathologies – more easily.

A Appendices

A.1 Proof of the thermodynamical balances at the continuous level
In this section, we detail, for the sake of completness, the derivation of the thermodynamical balances
presented in Section 3.

A.1.1 First principle

The differentiation of the internal energy (15) yields

d

dt
U(t) =

1

da

s+∫
s−

(
ṅ0

[
w1(s)

[
P1(s, t, 1)− P1(s, t, 0)

]
+ w0

[
P0(s, t, 1)− P0(s, t, 0)

]]
+ n0(t)

[
w1(s) ∂tP1(s, t, 1) + w0 ∂tP0(s, t, 1)

]
+
(
1− n0(t)

)[
w1(s) ∂tP1(s, t, 0) + w0 ∂tP0(s, t, 0)

])
ds.

(41)

The treatment of the chemical reaction and the transport terms arising from ∂tP1(s, t, γ) and ∂tP0(s, t, γ)
is given in [Hill, 1977] (see also [Kimmig et al., 2019] for the detailed calculation). Therefore, we just
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detail here the contribution arising from the pool exchange term. Equation (41) becomes

d

dt
U(t) = µTJ−(t) + ẋcτc(t)

+
1

da

s+∫
s−

(
n0

[
(w1(s)− w0)J+(s, t, 1) + (w0 − (w1(s) + µT ))J−(s, t, 1)

]
+ (1− n0)

[
(w1(s)− w0)J+(s, t, 0) + (w0 − (w1(s) + µT ))J−(s, t, 0)

])
ds

+
1

da

s+∫
s−

ṅ0

[
w1(s)

[
P1(s, t, 1)− P1(s, t, 0)

]
+ w0

[
P0(s, t, 1)− P0(s, t, 0)

]]
ds

− 1

da

s+∫
s−

(
n0

[
w1(s)

|ṅ0|+
n0

[
P1(s, t, 1)− P1(s, t, 0)

]
+ w0

|ṅ0|+
n0

[
P0(s, t, 1)− P0(s, t, 0)

]]
+ (1− n0)

[
w1(s)

|ṅ0|−
1− n0

[
P1(s, t, 0)− P1(s, t, 1)

]
+ w0

|ṅ0|−
1− n0

[
P0(s, t, 0)− P0(s, t, 1)

]])
ds.

Using the property (5), the last two integrals in (A.1.1) cancel out. We finally have (16),

U̇(t) = Ẇ(t) + Ė(t) + Q̇(t).

A.1.2 Second principle

We differentiate the free energy defined in (19).
We have

d

dt
F(t) =

1

da

s+∫
s−

(
ṅ0

[
P1(s, t, 1)µ1(s, t, 1) + P0(s, t, 1)µ0(s, t, 1)

− P1(s, t, 0)µ1(s, t, 0)− P0(s, t, 0)µ0(s, t, 0)
]

+ n0

[
P1(s, t, 1) ∂tµ1(s, t, 1) + µ1(s, t, 1) ∂tP1(s, t, 1)

+ P0(s, t, 1) ∂tµ0(s, t, 1) + µ0(s, t, 1) ∂tP0(s, t, 1)
]

+ (1− n0)
[
P1(s, t, 0) ∂tµ1(s, t, 0) + µ1(s, t, 0) ∂tP1(s, t, 0)

+ P0(s, t, 0) ∂tµ0(s, t, 0) + µ0(s, t, 0) ∂tP0(s, t, 0)
])

ds.

The time derivative of the chemical potentials times the probability Pα being given by

Pα(s, t, γ) ∂tµα(s, t, γ) = kBT ∂tPα(s, t, γ)α ∈ {0, 1} and γ ∈ {0, 1},

we obtain that

n0

[
P1(s, t, 1) ∂tµ1(s, t, 1) + P0(s, t, 1) ∂tµ0(s, t, 1)

]
+ (1− n0)

[
P1(s, t, 0) ∂tµ1(s, t, 0) + P0(s, t, 0) ∂tµ0(s, t, 0)

]
= n0kBT ∂t

[
P1(s, t, 1) + P0(s, t, 1)

]
+ (1− n0)kBT ∂t

[
P1(s, t, 0) + P0(s, t, 0)

]
,

which is equal to zero from the conservation of myosin heads. Introducing the dynamics equations (10),
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the time derivative of the free energy becomes

d

dt
F(t) =

1

da

s+∫
s−

(
ṅ0

[
P1(s, t, 1)µ1(s, t, 1) + P0(s, t, 1)µ0(s, t, 1)

− P1(s, t, 0)µ1(s, t, 0)− P0(s, t, 0)µ0(s, t, 0)
]

+ n0

[
µ1(s, t, 1)

(
− ẋc∂sP1(s, t, 1)− |ṅ0|+

n0

[
P1(s, t, 1)− P1(s, t, 0)

]
+
(
k+,1(s) + krev−,1(s)

)(
1− P1(s, t, 1)

)
−
(
k−,1(s) + krev+,1(s)

)
P1(s, t, 1)

)
+ µ0(s, t, 1)

(
ẋc∂sP1(s, t, 1) +

|ṅ0|+
n0

[
P1(s, t, 1)− P1(s, t, 0)

]
−
(
k+,1(s) + krev−,1(s)

)(
1− P1(s, t, 1)

)
+
(
k−,1(s) + krev+,1(s)

)
P1(s, t, 1)

)]
+ (1− n0)

[
µ1(s, t, 0)

(
− ẋc∂sP1(s, t, 0)− |ṅ0|−

1− n0

[
P1(s, t, 0)− P1(s, t, 1)

]
+
(
k+,0(s) + krev−,0(s)

)(
1− P1(s, t, 0)

)
−
(
k−,0(s) + krev+,0(s)

)
P1(s, t, 0)

)
+ µ0(s, t, 0)

(
ẋc∂sP1(s, t, 0) +

|ṅ0|−
1− n0

[
P1(s, t, 0)− P1(s, t, 1)

]
−
(
k+,0(s) + krev−,0(s)

)(
1− P1(s, t, 0)

)
+
(
k−,0(s) + krev+,0(s)

)
P1(s, t, 0)

)])
ds.

(42)

Adapting the calculation performed in [Kimmig et al., 2019] for the derivation of the second principle in
the usual family of Huxley’57 models, we obtain that

1

da

s+∫
s−

(
n0

[
µ1(s, t, 1)

((
k+,1(s) + krev−,1(s)

)(
1− P1(s, t, 1)

)
−
(
k−,1(s) + krev+,1(s)

)
P1(s, t, 1)− ẋc ∂sP1(s, t, 1)

)
+ µ0(s, t, 1)

(
−
(
k+,1(s) + krev−,1(s)

)(
1− P1(s, t, 1)

)
+
(
k−,1(s) + krev+,1(s)

)
P1(s, t, 1) + ẋc ∂sP1(s, t, 1)

)]
+ (1− n0)

[
µ1(s, t, 0)

((
k+,0(s) + krev−,0(s)

)(
1− P1(s, t, 0)

)
−
(
k−,0(s) + krev+,0(s)

)
P1(s, t, 0)− ẋc ∂sP1(s, t, 0)

)
+ µ0(s, t, 0)

(
−
(
k+,0(s) + krev−,0(s)

)(
1− P1(s, t, 0)

)
+
(
k−,0(s) + krev+,0(s)

)
P1(s, t, 0) + ẋc ∂sP1(s, t, 0)

)])
ds

= Ẇ(t) + Ė(t)

+
1

da

s+∫
s−

(
n0

[
J−(s, t, 1)

[
µ0(s, t, 1)−

(
µ1(s, t, 1) + µT

)]
+ J+(s, t, 1)

[
µ1(s, t, 1)− µ0(s, t, 1)

]]
+ (1− n0)

[
J−(s, t, 0)

[
µ0(s, t, 0)−

(
µ1(s, t, 0) + µT

)]
+ J+(s, t, 0)

[
µ1(s, t, 0)− µ0(s, t, 0)

]])
ds.
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Using the calculation made for the derivation of the energy balance, we have

ṅ0

[
P1(s, t, 1)w1(s) + P0(s, t, 1)w0 − P1(s, t, 0)w1(s)− P0(s, t, 0)w0

]
−
(
n0

[
w1(s)

|ṅ0|+
n0

[
P1(s, t, 1)− P1(s, t, 0)

]
− w0

|ṅ0|+
n0

[
P1(s, t, 1)− P1(s, t, 0)

]]
+ (1− n0)

[
w1(s)

|ṅ0|−
1− n0

[
P1(s, t, 0)− P1(s, t, 1)

]
− w0

|ṅ0|−
1− n0

[
P1(s, t, 0)− P1(s, t, 1)

]])
= 0.

Finally, we have using the property (5)

ṅ0kBT
[
P1(s, t, 1) ln

[
P1(s, t, 1)

]
+ P0(s, t, 1) ln

[
P0(s, t, 1)

]
− P1(s, t, 0) ln

[
P1(s, t, 0)

]
− P0(s, t, 0) ln

[
P0(s, t, 0)

]]
− n0kBT

[
ln
[
P1(s, t, 1)

] |ṅ0|+
n0

[
P1(s, t, 1)− P1(s, t, 0)

]
+ ln

[
P0(s, t, 1)

] |ṅ0|+
n0

[
P0(s, t, 1)− P0(s, t, 0)

]]
− (1− n0)kBT

[
ln
[
P1(s, t, 0)

] |ṅ0|−
1− n0

[
P1(s, t, 0)− P1(s, t, 1)

]
+ ln

[
P0(s, t, 0)

] |ṅ0|−
1− n0

[
P0(s, t, 0)− P0(s, t, 1)

]]
= kBT

(
P1(s, t, 1)|ṅ0|−

[
− ln

[
P1(s, t, 1)

]
+ ln

[
P1(s, t, 0)

]]
+ P0(s, t, 1)|ṅ0|−

[
− ln

[
P0(s, t, 1)

]
+ ln

[
P0(s, t, 0)

]]
+ P1(s, t, 0)|ṅ0|+

[
− ln

[
P1(s, t, 0)

]
+ ln

[
P1(s, t, 1)

]]
+ P0(s, t, 0)|ṅ0|+

[
− ln

[
P0(s, t, 0)

]
+ ln

[
P0(s, t, 1)

]])
= −kBT

[
|ṅ0|+

[
ln

(
P1(s, t, 0)

P1(s, t, 1)

)
P1(s, t, 0) + ln

(
1−P1(s, t, 0)

1−P1(s, t, 1)

)(
1−P1(s, t, 0)

)]
+ |ṅ0|−

[
ln

(
P1(s, t, 1)

P1(s, t, 0)

)
P1(s, t, 1) + ln

(
1−P1(s, t, 1)

1−P1(s, t, 0)

)(
1−P1(s, t, 1)

)]]
.
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Altogether, (42) becomes

d

dt
F(t) = Ẇ(t) + Ė(t)

+
1

da

s+∫
s−

(
n0

[
J−(s, t, 1)

[
µ0(s, t, 1)−

(
µ1(s, t, 1) + µT

)]
+ J+(s, t, 1)

[
µ1(s, t, 1)− µ0(s, t, 1)

]]
+ (1− n0)

[
J−(s, t, 0)

[
µ0(s, t, 0)−

(
µ1(s, t, 0) + µT

)]
+ J+(s, t, 0)

[
µ1(s, t, 0)− µ0(s, t, 0)

]])
ds

− kBT

da

s+∫
s−

[
|ṅ0|+

[
ln

(
P1(s, t, 0)

P1(s, t, 1)

)
P1(s, t, 0)

+ ln

(
1−P1(s, t, 0)

1−P1(s, t, 1)

)(
1−P1(s, t, 0)

)]
+ |ṅ0|−

[
ln

(
P1(s, t, 1)

P1(s, t, 0)

)
P1(s, t, 1)

+ ln

(
1−P1(s, t, 1)

1−P1(s, t, 0)

)(
1−P1(s, t, 1)

)]]
ds,

which yields (20).

A.2 Coupling with a macroscopic continuous mechanical model
We now want to couple our model describing the microscopic interaction between actin and myosin to
the macroscopic model of a muscle fibre. Let us define a domain Ω0 in the reference configuration. We
assume that the domain is subjected to a boundary traction tN on the subpart of the boundary ΓN . We
introduce the rheology proposed in [Kimmig et al., 2019] in the realm of finite strains as presented in
Figure 11. The upper branch models the one dimensional half-sarcomere of direction f0.

The length change of the filaments due to their passive properties is accounted for by `s. Defining
the extensions

ec =
xc
`hs

and es =
`s
`hs

,

the rheology assumes the following additive law to define the total 1D extension efib = es + ec. The
tension in the branch is naturally given by

Tfib = Eses = Tc + νėc.

In this context, the filament sliding velocity ẋc, which appears in the microscopic dynamic equation, is
given by `hsėc.

The remaining part of the rheology models the 3D visco-hyperelastic passive properties of the tissue.
The total second Piola-Kirchhoff stress tensor is given by Σ = Σp + Σa with

Σp =
∂Ψ

∂e
+ ηė and Σa =

Tfib
1 + efib

f0 ⊗ f0,

where Ψ is the constitutive hyperelastic potential, η the 3D viscosity coefficient, e is the Green-Lagrange
deformation tensor and f0 the local fiber direction [Kimmig et al., 2019]. Note that the 1D extension
and the 3D Green-Lagrange tensor are linked through the relation

1 + efib = (1 + 2f0 · e · f0)
1
2 .
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The principle of virtual work written on Ω0 yields the macro-micro coupled model

∫
Ω0

ρ0ÿ ·w dΩ +

∫
Ω0

Σ : dye ·w dΩ =

∫
ΓN

tN ·w dΓ, w ∈ Vad,

with Σ =
∂Ψ

∂e
+ ηė +

Tfib
(1 + 2f0 · e · f0)

1
2

f0 ⊗ f0,

Tfib = νėc + Tc = Eses,

with Tc(x, t) =
ρsurf
da

s+∫
s−

[
n0(x, ec)P1(x, s, t, 1)

+
(
1− n0(x, ec))P1(x, s, t, 0)

]∂w1

∂s
(s, t)ds, x ∈ Ω0,

∂P1

∂t
(x, s, t, 1) = −|ṅ0|+

n0

[
P1(x, s, t, 1)− P1(x, s, t, 0)

]
− `hsėc(x, t)

∂P1

∂s
(x, s, t, 1)

+
(
k+,1(s) + krev−,1(s)

)(
1− P1(x, s, t, 1)

)
−
(
k−,1(s) + krev+,1(s)

)
P1(x, s, t, 1)

∂P1

∂t
(x, s, t, 0) = − |ṅ0|−

1− n0

[
P1(x, s, t, 0)− P1(x, s, t, 1)

]
− `hsėc(x, t)

∂P1

∂s
(x, s, t, 0)

+
(
k+,0(s) + krev−,0(s)

)(
1− P1(x, s, t, 0)

)
−
(
k−,0(s) + krev+,0(s)

)
P1(x, s, t, 0)

Es ν

Tc

Ψ

η

es ecTfib

e,Σ

ep,Σp

ea,Σa

Figure 11: Tissue rheology. The upper branch represents the 1D filaments inside the sarcomere, which
comprises the active cross-bridges represented here by the attached myosin heads. The lower branch
represents the 3D passive visco-hyperelastic contribution of the remaining muscle cell constituents to the
mechanical behavior. The rheology being constructed in the framework of finite strains, the constitutive
elements are thus assembled together in a non-linear way.
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A.3 Closed form expression of the ESPVR
The End Systolic Pressure Volume Relation (ESPVR) (V, PV ) is given in a parametric form by

V =
4

3
πR3

0

(
1 + efib −

εh(1 + efib)−2

2R0

)3

,(
1 + efib −

ε

2
(1 + efib)−2

)2(
1 + ε(1 + efib)−3

)
PV = ε

(
1 + efib

)
Σsph,

Σsph =
Ťc
(
n0(ec)

)
1 + efib

+ 4
(
1− (1 + efib)−6

) ∂Ψ

∂J1
+ 2

∂Ψ

∂J4
,

J1 = 2(1 + efib)2 + (1 + efib)−4,

J4 = (1 + efib)2,

efib = ec + es,

Eses = Tc
(
n0(ec)

)
,

where R0 is the radius of the ventricle in rest conditions, ε is the sphere aspect ratio defined as ε = h/R0
with h the ventricle wall thickness in the reference configuration, Σsph an effective stress quantity, J1 and
J4 are the first and fourth reduced invariants of the Cauchy-Green strain tensor, respectively [Caruel
et al., 2013b]. The first equation gives the volume of the spherical ventricle as a function of the fiber
extension accounting for the wall thickness variation, the second one is the relation between the pressure
inside the ventricle and the stress in the ventricular wall (an extension of Laplace’s Law), the third
equation gives the total – active and passive – stress as prescribed by the rheology, the fourth and fifth
equations yield the tensor invariants for the chosen kinematics assumptions, and the sixth and seven
equations reflect the kinematical assumptions and the mechanical equilibrium introduced by the one
dimensional half-sarcomere part of the rheology, respectively.

A.4 Calibration
The calibration used for the cardiac simulation is presented in Table 1. Note that the reverse transi-
tion rates are directly derived from the detailed balance (3). The corresponding energy potentials and
transition rates are displayed in Figure 12.
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Figure 12: (a) Attached and detached energy potentials. (b) Forward transition rates for the pool γ = 1.

A.5 Proof of the equivalence between the random exchange model and the
homogenized pool model

We detail here the proof that the stochastic model described by (25) and the homogenized pool model (10)
are equivalent. For that, we look for the equation satisfied by P

[
αt = α, γt = γ

]
in the stochastic random
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Table 1: Calibration of the model for cardiac data.

Parameter Symbol Value
Energy potentials (see Figure 12(a))

Attached potential energy w1

w1(s) = ŵ1 + αw

(
1/(s+ − s) + 1/(s− s−)

)
αw 5 zJ nm−1

w̃1(s) =



κ/2 (s− s)2 + w1 if s < s1,

κ̃/2 (s− s̃)2 if s > s1,(
κ/2 (s1,` − s)2 + w1

)
φ1(s)

+ κ (s1,` − s)φ2(s)

+
(
κ̃/2 (s1,r − s̃)2

)
φ3(s)

+ κ̃ (s1,r − s̃)φ4(s)

+ w̌1φ5(s) if s ∈ [s, s̃]

ŵ1 62 zJ

κ 0.60 pN nm−1

κ̃ 0.99 pN nm−1

s −12.2 nm

s̃ −1.5 nm

s1,` 1.3 nm

s1,r 2.5 nm

w̌1 5.70 zJ

w1 = −κ/2 (s1 − s)2 + κ̃/2 (s1 − s̃)2 s1 2 nm

Interpolation functions

φ1(s) = (s− s1,r)
2/(s1,r − s1,`)

2 ·
(

2(s− s1,`)/(s1,r − s1,`) + 1
)

φ2(s) = (s− s1,r)
2/(s1,r − s1,`)

2 · (s− s1,`)

φ3(s) = (s− s1,`)
2/(s1,r − s1,`)

2 ·
(

3− 2(s− s1,`)/(s1,r − s1,`)
)

φ4(s) = (s− s1,`)
2/(s1,r − s1,`)

2 · (s− s1,r)

φ5(s) = φ1(s)φ3(s)/(φ1(s1)φ3(s1))

Detached potential energy w0 = ŵ0 ŵ0 −25 zJ

Transition rates (Figure 12(b))

k+,1(s) = kmax exp
[
− λ1(s− sk)8

+αk,att

(
1/(s+ − s)2 + 1/(s− s−)2

)]
k−,1(s) = kmid − (kmid − kmin) exp

[
− λ2(s− sk)8

+αk,det

(
1/(s+ − s)2 + 1/(s− s−)2

)
k+,0(s) = 0.01k+,1(s)

k−,0(s) = k−,1(s)

kmax 206.5 s−1

kmid 413 s−1

kmin 50 s−1

λ1 3.1× 10−6 /nm8

λ2 0.11× 10−6 /nm8

sk 0 nm

αk,att 1 /s/nm2

αk,det 200 /s/nm2

Thermodynamics
Temperature T 310 K

ATP chemical potential µT 100 zJ

Geometrical parameters
Actin position interval left boundary s− −30 nm

Actin position interval right boundary s+ 10 nm

Sarcomere reference length SL 1.70 µm
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exchange model and we compare it to the corresponding equation in the homogenized pool model. To
establish the former equation, we follow the procedure described in Le Bris & Lelievre [2009].

Let φ(α, γ) be a test function. Denoting the joint probability P
[
αt = α, γt = γ

]
by Pt

[
α, γ

]
, we have

d

dt
E
[
φ(αt, γt)

]
=
[
φ(0, 1)− φ(1, 1)

]
g1Pt

[
1, 1
]

+
[
φ(1, 1)− φ(0, 1)

]
f1Pt

[
0, 1
]

+
[
φ(0, 0)− φ(1, 0)

]
g0Pt

[
1, 0
]

+
[
φ(1, 0)− φ(0, 0)

]
f0Pt

[
0, 0
]

+
[
φ(1, 0)− φ(1, 1)

] |ṅ0(t)|−
n0(t)

Pt
[
1, 1
]

+
[
φ(0, 0)− φ(0, 1)

] |ṅ0(t)|−
n0(t)

Pt
[
0, 1
]

+
[
φ(1, 1)− φ(1, 0)

] |ṅ0(t)|+
1− n0(t)

Pt
[
1, 0
]

+
[
φ(0, 1)− φ(0, 0)

] |ṅ0(t)|+
1− n0(t)

Pt
[
0, 0
]
.

(44)

Furthermore, the time derivative of the expectation is also given by

d

dt
E
[
φ(αt, γt)

]
=

∑
α={0,1}

∑
γ={0,1}

(
φ(αt, γt)∂tP

[
αt, γt

])
. (45)

Since the test function can be chosen arbitrary, we can identify the coefficients of (44) and (45). We
obtain ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂tPt
[
1, 1
]

= −g1Pt
[
1, 1
]

+ f1Pt
[
0, 1
]

+
|ṅ0(t)|+
1− n0(t)

Pt
[
1, 0
]
− |ṅ0(t)|−

n0(t)
Pt
[
1, 1
]
,

∂tPt
[
1, 0
]

= −g0Pt
[
1, 0
]

+ f0Pt
[
0, 0
]
− |ṅ0(t)|+

1− n0(t)
Pt
[
1, 0
]

+
|ṅ0(t)|−
n0(t)

Pt
[
1, 1
]
,

∂tPt
[
0, 1
]

= g1Pt
[
1, 1
]
− f1Pt

[
0, 1
]

+
|ṅ0(t)|+
1− n0(t)

Pt
[
0, 0
]
− |ṅ0(t)|−

n0(t)
Pt
[
0, 1
]
,

∂tPt
[
0, 0
]

= g0Pt
[
1, 0
]
− f0Pt

[
0, 0
]
− |ṅ0(t)|+

1− n0(t)
Pt
[
0, 0
]

+
|ṅ0(t)|−
n0(t)

Pt
[
0, 1
]
.

(46)

Noting that we have ∣∣∣∣∣∣∣∣∣∣
Pt
[
1, 1
]

= Pt
[
1|1
]
Pt
[
γ = 1

]
= P1(t, 1)n0(t),

Pt
[
1, 0
]

= Pt
[
1|0
]
Pt
[
γ = 0

]
= P1(t, 0) ·

(
1− n0(t)

)
,

Pt
[
0, 1
]

= Pt
[
0|1
]
Pt
[
γ = 1

]
= P0(t, 1)n0(t),

Pt
[
0, 0
]

= Pt
[
0|0
]
Pt
[
γ = 0

]
= P0(t, 0) ·

(
1− n0(t)

)
.

and with the property
ṅ0(t) = |ṅ0(t)|+ − |ṅ0(t)|−,

the system (46) becomes∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂

∂t
P1(t, 1) = −g1P1(t, 1) + f1P0(t, 1) +

|ṅ0(t)|+
n0(t)

P1(t, 0)− |ṅ0(t)|+
n0(t)

P1(t, 1),

∂

∂t
P1(t, 0) = −g0P1(t, 0) + f0P0(t, 0)− |ṅ0(t)|−

1− n0(t)
P1(t, 0) +

|ṅ0(t)|−
1− n0(t)

P1(t, 1),

∂

∂t
P0(t, 1) = g1P1(t, 1)− f1P0(t, 1) +

|ṅ0(t)|+
n0(t)

P0(t, 0)− |ṅ0(t)|+
n0(t)

P0(t, 1),

∂

∂t
P0(t, 0) = g0P1(t, 0)− f0P0(t, 0)− |ṅ0(t)|−

1− n0(t)
P0(t, 0) +

|ṅ0(t)|−
1− n0(t)

P0(t, 1).

(47)

Moreover, we also have

P1(t, 1) + P0(t, 1) =
Pt
[
1, 1
]

+ Pt
[
0, 1
]

n0(t)
= 1,

P1(t, 0) + P0(t, 0) =
Pt
[
1, 0
]

+ Pt
[
0, 0
]

1− n0(t)
= 1.
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The system (47) becomes∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂

∂t
P1(t, 1) = −|ṅ0(t)|+

n0(t)

[
P1(t, 1)− P1(t, 0)

]
− g1P1(t, 1) + f1P0(t, 1),

∂

∂t
P1(t, 0) = − |ṅ0(t)|−

1− n0(t)

[
P1(t, 0)− P1(t, 1)

]
− g0P1(t, 0) + f0P0(t, 0),

P0(t, 1) = 1− P1(t, 1),

P0(t, 0) = 1− P1(t, 0).

and we retrieve the equation system (10) in the absence of filament sliding. Our averaging assumption
in the homogenized pool formulation is thus equivalent to an individual description of the myosin heads
if the myosin heads that change pools are selected randomly.

A.6 Proof of the thermodynamical balances obtained at the discrete level
In this section, we detail the proof of the discrete thermodynamic balances presented in Section 5. The
calculations are only performed for positive sliding velocities vn+ 1

2 ]
c (i.e. en+1

c ≥ enc )). They can be
straightforwardly extended to negative sliding velocities with a modification of the numerical scheme so
that the transport term remains treated in an upwind manner.

A.6.1 First principle

We first aim at establishing a discrete counterpart to the continuous first principle (16). We discretize
the attached state energy level on [s−, s+] by∣∣∣∣∣w1,i = w1(s− + iδs), i ∈ [[1, `− 1]]

w1,` = 150w1,`−1.

We define the discrete average energy per myosin head by

Un,k =
δs

da

∑̀
i=1

[
w1,i

(
nn,k0 an,ki + (1− nn,k0 )bn,ki

)
+ w0

(
nn,k0 (1− an,ki ) + (1− nn,k0 )(1− bn,ki )

)]
.

We have at local time steps

Un,k+1 − Un,k
δt

=
δs

da

∑̀
i=1

(
w1,i

[
nn,k+1

0

(
an,k+1
i − an,ki

δt

)
+ an,ki

(
nn,k+1

0 − nn,k0

δt

)

+ (1− nn,k+1
0 )

(
bn,k+1
i − bn,ki

δt

)
+ bn,ki

(
(1− nn,k+1

0 )− (1− nn,k0 )

δt

)]

+ w0

[
nn,k+1

0

(
(1− an,k+1

i )− (1− an,ki )

δt

)
+ (1− an,ki )

(
nn,k+1

0 − nn,k0

δt

)

+ (1− nn,k+1
0 )

(
(1− bn,k+1

i )− (1− bn,ki )

δt

)

+ (1− bn,ki )

(
(1− nn,k+1

0 )− (1− nn,k0 )

δt

)])
.

With the fluxes defined in (33) and the calculations done in [Kimmig et al., 2019] we obtain, using the
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periodicity of the solution to handle the discrete transport term,

Un,k+1 − Un,k
δt

=

δs

da

∑̀
i=1

(
w1,i

[
nn,k+1

0

(
− |n

n+1
0 − nn0 |+
nn,k+1

0 ∆t

[
an,ki − bn,ki

])
+ an,ki

(
nn,k+1

0 − nn,k0

δt

)

+ (1− nn,k+1
0 )

(
− |nn+1

0 − nn0 |−
(1− nn,k+1

0 )∆t

[
bn,ki − an,ki

])
+ bn,ki

(
nn,k+1

0 − nn,k0

δt

)]

+ w0

[
nn,k+1

0

( |nn+1
0 − nn0 |+
nn,k+1

0 ∆t

[
an,ki − bn,ki

])
+ (1− an,ki )

(
nn,k+1

0 − nn,k0

δt

)

+ (1− nn,k+1
0 )

( |nn+1
0 − nn0 |−

(1− nn,k+1
0 )∆t

[
an,ki − bn,ki

])
+ (1− bn,ki )

(
nn,k+1

0 − nn,k0

δt

)])

+ v
n+ 1

2 ]
c

δs

da

∑̀
i=1

w1,i+1 − w1,i

δs

(
nn,k+1

0 an,k+1 + (1− nn,k+1
0 )bn,k+1

)
+
δs

da

∑̀
i=1

[(
nn,k+1

0 Jn,k+1
+,1,i + (1− nn,k+1

0 )Jn,k+1
+,0,i

)
(w1,i − w0)

+
(
nn,k+1

0 Jn,k+1
−,1,i + (1− nn,k+1

0 )Jn,k+1
−,0,i

)(
w0 − (w1,i + µT )

)]
+ µT

δs

da

∑̀
i=1

(
nn,k+1

0 Jn,k+1
−,1,i + (1− nn,k+1

0 )Jn,k+1
−,0,i

)
.

Noting that
nn,k+1

0 − nn,k0

δt
=
nn+1

0 − nn0
∆t

,

and with the property (5), the pool exchange terms cancel out. We define the force per myosin head by

τn,k+1
c =

δs

da

∑̀
i=1

w1,i+1 − w1,i

δs

(
nn,k+1

0 an,k+1 + (1− nn,k+1
0 )bn,k+1

)
.

It is the average of the force between the two pools weighted by n0. We finally obtain the first principle
formulation at local time steps

Un,k+1 − Un,k
δt

=
Wn,k+1 −Wn,k

δt
+
Qn,k+1 −Qn,k

δt
+
En,k+1 − En,k

δt
, (48)

with ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Wn,k+1 −Wn,k

δt
= v

n+ 1
2 ]

c τn,k+1
c ,

Qn,k+1 −Qn,k
δt

=
δs

da

∑̀
i=1

[(
nn,k+1

0 Jn,k+1
+,1,i + (1− nn,k+1

0 )Jn,k+1
+,0,i

)
(w1,i − w0)

+
(
nn,k+1

0 Jn,k+1
−,1,i + (1− nn,k+1

0 )Jn,k+1
−,0,i

)(
w0 − (w1,i + µT )

)]
,

En,k+1 − En,k
δt

= µT
δs

da

∑̀
i=1

(
nn,k+1

0 Jn,k+1
−,1,i + (1− nn,k+1

0 )Jn,k+1
−,0,i

)
.
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A.6.2 Second principle

To derive a discrete version of the second principle, we recall the definition of the chemical potentials in
each pool ∣∣∣∣∣∣∣∣∣∣∣∣

µn,kα=1,γ=1,i = µn,k1,1,i = w1,i + kBT ln an,ki ,

µn,kα=1,γ=0,i = µn,k1,0,i = w1,i + kBT ln bn,ki ,

µn,kα=0,γ=1,i = µn,k0,1,i = w0 + kBT ln(1− an,ki ),

µn,kα=0,γ=0,i = µn,k0,0,i = w0 + kBT ln(1− bn,ki ).

We define the entropy per myosin head as

Sn,k
kB

= − δs
da

∑̀
i=1

[
nn,k0

(
an,ki ln an,ki + (1− an,ki ) ln(1− an,ki )

)
+ (1− nn,k0 )

(
bn,ki ln bn,ki + (1− bn,ki ) ln(1− bn,ki )

)]
.

Note that the entropy is well-defined for an,k ∈ [0, 1] and bn,k ∈ [0, 1]. For the derivation of the discrete
second principle, we first assume that an,k ∈]0, 1[ and bn,k ∈]0, 1[. We have

− 1

kB

Sn,k+1 − Sn,k
δt

=
δs

da

∑̀
i=1

[
nn,k+1

0

(an,k+1
i − an,ki

δt
ln an,k+1

i + an,ki
ln an,k+1

i − ln an,ki
δt

)
+ an,ki ln an,ki

nn,k+1
0 − nn,k0

δt

+ nn,k+1
0

( (1− an,k+1
i )− (1− an,ki )

δt
ln(1− an,k+1

i )

+ (1− an,ki )
ln(1− an,k+1

i )− ln(1− an,ki )

δt

)
+ (1− an,ki ) ln(1− an,ki )

nn,k+1
0 − nn,k0

δt

+ (1− nn,k+1
0 )

(bn,k+1
i − bn,ki

δt
ln bn,k+1

i + bn,ki
ln bn,k+1

i − ln bn,ki
δt

)
+ bn,ki ln bn,ki

(1− nn,k+1
0 )− (1− nn,k0 )

δt

+ (1− nn,k+1
0 )

( (1− bn,k+1
i )− (1− bn,ki )

δt
ln(1− bn,k+1

i )

+ (1− bn,ki )
ln(1− bn,k+1

i )− ln(1− bn,ki )

δt

)
+ (1− bn,ki ) ln(1− bn,ki )

(1− nn,k+1
0 )− (1− nn,k0 )

δt

]
.

We now consider the numerical scheme (29). Using the calculation made in [Kimmig et al., 2019], we
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have

− 1

kB

Sn,k+1 − Sn,k
δt

=

− 1

kB

S̃n,k+1
prod − S̃n,kprod

δt
− 1

kBT

Qn,k+1 −Qn,k
δt

+
nn,k+1

0 − nn,k0

δt

δs

da

∑̀
i=1

[
an,ki ln an,ki + (1− an,ki ) ln(1− an,ki )

− bn,ki ln bn,ki − (1− bn,ki ) ln(1− bn,ki )

]
− |n

n,k+1
0 − nn,k0 |+

δt

δs

da

∑̀
i=1

[[
an,ki − bn,ki

]
ln an,k+1

i

+
[
(1− an,ki )− (1− bn,ki )

]
ln(1− an,k+1

i )

]
− |n

n,k+1
0 − nn,k0 |−

δt

δs

da

∑̀
i=1

[[
bn,ki − an,ki

]
ln bn,k+1

i

+
[
(1− bn,ki )− (1− an,ki )

]
ln(1− bn,k+1

i )

]
+
nn,k+1

0 δs

daδt

∑̀
i=1

[
an,ki ln

(
an,k+1
i

an,ki

)
+ (1− an,ki ) ln

(
1− an,k+1

i

1− an,ki

)]

+
(1− nn,k+1

0 )δs

daδt

∑̀
i=1

[
bn,ki ln

(
bn,k+1
i

bn,ki

)
+ (1− bn,ki ) ln

(
1− bn,k+1

i

1− bn,ki

)]
,

with

S̃n,k+1
prod − S̃n,kprod

δt
=

− nn,k+1
0

T

(
δs

da

∑̀
i=1

[
Jn,k+1

+,1,i

(
µn,k+1

1,1,i − µn,k+1
0,1,i

)
+ Jn,k+1
−,1,i

(
µn,k+1

0,1,i − µn,k+1
1,1,i − µT

)]

+
v
n+ 1

2 ]
c kBT

da

∑̀
i=1

[
an,k+1
i ln

(
an,k+1
i+1

an,k+1
i

)
+ (1− an,k+1

i ) ln

(
1− an,k+1

i+1

1− an,k+1
i

)])

− 1− nn,k+1
0

T

(
δs

da

∑̀
i=1

[
Jn,k+1

+,0,i

(
µn,k+1

1,0,i − µn,k+1
0,0,i

)
+ Jn,k+1
−,0,i

(
µn,k+1

0,0,i − µn,k+1
1,0,i − µT

)]

+
v
n+ 1

2 ]
c kBT

da

∑̀
i=1

[
bn,k+1
i ln

(
bn,k+1
i+1

bn,k+1
i

)
+ (1− bn,k+1

i ) ln

(
1− bn,k+1

i+1

1− bn,k+1
i

)])

which is positive from the calculation made in [Kimmig et al., 2019], given that 1 − nn,k+1
0 ≥ 0 and

nn,k+1
0 ≥ 0.
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We first assume that nn,k+1
0 ≥ nn,k0 . We have

1

kB

Sn,k+1 − Sn,k
δt

=

1

kB

S̃n,k+1
prod − S̃n,kprod

δt
+

1

kBT

Qn,k+1 −Qn,k
δt

− nn,k+1
0 − nn,k0

δt

δs

da

∑̀
i=1

[
bn,ki ln

(
an,k+1
i

bn,ki

)
+ (1− bn,ki ) ln

(
1− an,k+1

i

1− bn,ki

)]

+
nn,k0

δt

δs

da

∑̀
i=1

[
an,ki ln

(
an,ki

an+1,k
i

)
+ (1− an,ki ) ln

(
1− an,ki

1− an,k+1
i

)]

+
1− nn,k+1

0

δt

δs

da

∑̀
i=1

[
bn,k+1
i ln

(
bn,k+1
i

bn,ki

)
+ (1− bn,k+1

i ) ln

(
1− bn,k+1

i

1− bn,ki

)]
.

With the property that an,k ∈]0, 1[ and bn,k ∈]0, 1[, we can use the convexity inequalities (22) and (23),
and, noting that we have ∣∣∣∣∣∣∣∣

nn,k+1
0 − nn,k0 ≥ 0,

1− nn,k+1
0 ≥ 0,

nn,k+1
0 ≥ 0,

we obtain

Sn,k+1 − Sn,k
δt

=
Sn,k+1
prod − Sn,kprod

δt
+

1

T

Qn,k+1 −Qn,k
δt

, (49)

with the entropy creation term

1

kB

Sn,k+1
prod − Sn,kprod

δt

=
1

kB

S̃n,k+1
prod − S̃n,kprod

δt

− nn,k+1
0 − nn,k0

δt

δs

da

∑̀
i=1

[
bn,ki ln

(
an,k+1
i

bn,ki

)
+ (1− bn,ki ) ln

(
1− an,k+1

i

1− bn,ki

)]

+
nn,k0

δt

δs

da

∑̀
i=1

[
an,ki ln

(
an,ki

an,k+1
i

)
+ (1− an,ki ) ln

(
1− an,ki

1− an,k+1
i

)]

− 1− nn,k+1
0

δt

δs

da

∑̀
i=1

[
bn,k+1
i ln

(
bn,k+1
i

bn,ki

)
+ (1− bn,k+1

i ) ln

(
1− bn,k+1

i

1− bn,ki

)]
satisfying the inequality

Sn,k+1
prod − Sn,kprod

δt
≥ 0. (50)
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Similarly, we have, for nn,k+1
0 < nn,k0 , the second principle (49) with

1

kB

Sn,k+1
prod − Sn,kprod

δt
=

1

kB

S̃n,k+1
prod − S̃n,kprod

δt

− nn,k+1
0 − nn,k0

δt

δs

da

∑̀
i=1

[
an,ki ln

(
an,ki

bn,k+1
i

)
+ (1− an,ki ) ln

(
1− an,ki

1− bn,k+1
i

)]

− nn,k+1
0

δt

δs

da

∑̀
i=1

[
an,ki ln

(
an,k+1
i

an,ki

)
+ (1− an,ki ) ln

(
1− an,k+1

i

1− an,ki

)]

− 1− nn,k0

δt

δs

da

∑̀
i=1

[
bn,ki ln

(
bn,k+1
i

bn,ki

)
+ (1− bn,ki ) ln

(
1− bn,k+1

i

1− bn,ki

)]
,

which satisfies the positivity of the entropy creation property (50). In summary, we have

Sn,k+1 − Sn,k
δt

≥ 1

T

Qn,k+1 −Qn,k
δt

, for an,k ∈]0, 1[ and bn,k ∈]0, 1[, n ∈ N, k ∈ [[0, N ]]. (51)

Noting that the heat transfer rate term and the entropy rate term are properly defined for an,k ∈ [0, 1]
and bn,k ∈ [0, 1], we pass to the limit in the inequality (51) and we obtain

Sn,k+1 − Sn,k
δt

≥ 1

T

Qn,k+1 −Qn,k
δt

, for an,k ∈ [0, 1] and bn,k ∈ [0, 1], n ∈ N, k ∈ [[0, N ]].

A.6.3 Numerical validation

We present in this section the numerical computation of the residuals (48) and (49) corresponding to the
discrete thermodynamics balances (34) and (37) defined as∣∣∣∣∣∣∣∣∣

e
n+ 1

2 ]

U =
Un+1 − Un

δt
− W

n+1 −Wn

δt
− Q

n+1 −Qn
δt

− E
n+1 − En
δt

,

e
n+ 1

2 ]

F =
Fn+1 −Fn

δt
− W

n+1 −Wn

δt
− E

n+1 − En
δt

− T
Sn+1
prod − Snprod

δt
.

(52)

It may serve as a validation of the algebraic derivation of the first and second thermodynamic balances,
as well as a validation of the correct implementation of the proposed numerical scheme. The results are
presented in Figure 13.

We can notice that the value of the residuals are eight orders of magnitude lower that the various
terms that compose them (see Figure 6). We conclude that the observed oscillations solely reflect the
numerical noise. It therefore substantiates our derivation of the discrete thermodynamics principles.
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Figure 13: Numerical evaluation of the discrete thermodynamic residuals (52) during the simulation
presented in Figure 6. For this simulation, we used ∆t = 0.001 s and δt = ∆t.
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