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Abstract: 

This paper reviews the use of the fractional derivative operators for the dynamic 

magnetization of ferromagnetic specimens. Magnetic behaviors in ferromagnetic specimens 

are strongly nonlinear and frequency dependent. Magnetism has an atomic origin but the 

magnetic behavior as observed at the human scale is highly affected by phenomena occurring 

at larger scales. Under the influence of an external magnetic field, the homogeneity of a 

ferromagnetic sample magnetization is linked to the excitation dynamics. Models and 

simulations in this domain are strongly needed, they provide theoretical explanations and 

allow to anticipate complex phenomena, difficult to observe in a practical way. 

On the one hand, such multi-scale dynamical behaviors can hardly be taken into account with 

the usual mathematical operators, on the other hand, correct simulation results on large 

frequency bandwidths can be obtained using fractional derivative operators. The use of 

fractional derivatives can be envisaged through different approaches: Lump models based on 

time fractional differential equations is one option, fractional anomalous diffusion equations 

is another. In this manuscript, these two methods are detailed and compared. Theoretical 

results are compared to experimental ones, and conclusions and perspectives are drawn such 

as possible improvements. 

 

Keywords: Magnetic hysteresis, frequency dependence, fractional derivative, anomalous 
diffusion. 
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1 - Introduction: 

Ferromagnetic behaviors and properties have been studied since more than a century but 

ferromagnetism is extremely complex [1]-[5]. The majority of electromagnetic devices rely on 

magnetic conversions, in this domain progresses are continuous. Such understanding is 

facilitated by numerical simulations based on theoretical concepts [6][7].  

The influence of a magnetic excitation dynamics on the magnetization behaviors manifests 

itself though the frequency dependence of the hysteresis cycle [8]-[10]. 

The hysteresis cycle is the standard magnetic signature, it displays the evolution of the 

magnetic state M as a function of the magnetic excitation H, assuming both these vector 

quantities in a collinear situation [11].  

Below a given frequency known as the quasi-static threshold, the frequency dependence of 

the hysteresis cycle is insignificant and the hysteresis shape remains unchanged. Beyond the 

quasi-static threshold under maximal H imposed conditions, the hysteresis area (also known 

as the hysteresis losses) grows first up to a maximum value then decreases continuously until 

a full disappearance under extreme frequency levels when a shield of macroscopic eddy 

currents prevents magnetic penetration in the tested specimen. On the one hand, the 

sequence of this two phases is always true, on the other hand due to the complexity of 

hysteresis and ferromagnetism, this trajectory is always a little different from one sample to 

another [12].  

Under the quasi-static state, it is common to separate the magnetization into a reversible and 

an irreversible contribution. When the reversible contribution manifests itself through the 

anhysteretic curve, the irreversible one is linked to the hysteresis area, i.e. the irreversible 

domain wall motions and the irreversible magnetization rotation. In [13], author called these 

contributions reversible and irreversible work. 



4 
 

The frequency dependence of hysteresis finds its origin in two phenomena: 

_ the effect of a dynamic excitation on the domain wall motions. Beyond the quasi-static 

threshold, the varying magnetic excitation induces a ripple effect on the domain wall motions 

which become larger and faster, generating a surplus of microscopic eddy currents and their 

corresponding Joules losses. According to the Bertotti‘s separation losses theory, this surplus 

can be assimilated to the “Excess losses”. 

_ the macroscopic eddy currents due to the magnetic excitation variations through the tested 

specimen [14]. This contribution is theoretically expressed through the magnetic field 

diffusion derived from the Maxwell equations: 

   2 .
dB

H
dt

             (1) 

B is the magnetic induction field and σ the electrical conductivity. This frequency dependent 

contribution is not limited to ferromagnetic materials and can be generalized to all electrical 

conductive materials. 

The simultaneous simulation of these two contributions as observed experimentally for 

ferromagnetic materials is not straight forward. The kinetic of the magnetic domains 

interferes with the diffusion process forcing Eq. 1 resolution to divergent results, far from the 

experimental observations. 

This distorted magnetic diffusion exhibits unusual answer and can be classify as anomalous. 

In [15][16], authors proposed to use alternative mathematical operators found in the 

framework of the fractional derivatives and adapt Eq. 1 to the simulation of such unfamiliar 

diffusion processes. By adjusting the fractional order, this alternative simulation method 

allows to match precisely the experimental observations.  



5 
 

But this is not the only way to simulate hysteresis precisely on a large frequency bandwidth, 

another solution consists on a phenomenological approach, based a lump model: a quasi-

static hysteresis model extended to the frequency dependence through the adjunction of a 

fractional viscous-type dynamic effect. In [17][18], this method have been tested with success 

for the well-known Preisach and Jiles-Atherton (J-A) quasi-static hysteresis models.  

In both methods fractional derivative operators bring flexibility in the simulation process. The 

fractional orders act as additional degrees of freedom which once adjusted provide simulation 

results of improved accuracy.   

In this manuscript, we will review sequentially both methods, providing physical insights and 

additional perspectives. Descriptions and details of both the simulation methods will be 

described successively in the second section, with comparisons to experimental 

measurements in the third one, followed by conclusions and perspectives.  

 

2 – Simulation methods 

The magnetic core loss prediction is of large importance, exhaustive solutions are still absent 

but results obtained using time fractional derivative operators look promising [15]-[18]. 

 2-1) Fractional anomalous diffusion equation 

The concept of anomalous diffusion focuses on specific random processes, which have non-

local properties of the corresponding dynamics or have a memory wait-time [19]. For the 

magnetic field diffusion in ferromagnetic specimens, we are facing the second case: the 

physical properties behind the magnetic dynamic are spatially homogeneous but the 

interactions between the microscopic flux variations due to the domain wall kinetic and the 

macroscopic one due to the magnetic stimulation generate additional lag which can be 
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interpreted as a long-time heavy tail decay. Therefore the adapted diffusion equation is 

obtained by replacing in Eq. 1 the first order time derivative with a fractional one: 

   2 .
d B

H
dt



            (2) 

The additional lag limits the diffusion process which becomes sub-diffusive, α is limited to the 

0 < α < 1 interval. Illustration of the resolution of Eq. 2 for different experimental situations: 

Cross-section of a ferromagnetic toroidal core (left), lamination (center), can be found in 

[15][16]. For all these situations, a space discretization of Eq. 2 left term is done and a time 

fractional differential equation is solved for each node of the mesh.  

Fractional calculus is defined as the branch of mathematical analysis dedicated to study the 

possibilities to extend derivatives or integrals to noninteger (real or complex) orders. 

Fractional derivatives and fractional integrals are hardly distinguishable since unlike classical 

Newtonian derivatives, a fractional derivative is defined via a fractional integral. Several 

definitions can be found in the litterature to describe fractional derivatives. Liouville [19]-[21] 

(Eq. 5), Grünwald-Letnikov [22][23], Caputo [24], are some of them, but the Riemann-Liouville 

[25] is the classical one:  

         ( ) 1
( ) ( ) ( ) ,

(1 )

td f t d
D f t t f d t

dt dt


 

   






      
          (3) 

Eq. 3 can be understood in terms of convolution between f(t) and tα/Γ(1-α), where Γ(α) is the 

gamma function. In the Fourier domain, where every signal is harmonic and where a first order 

derivative is a jω multiplication, fractional derivatives become (jω)α multiplications [26]-[28]. 

For a numerical resolution, Eq. 3 is expressed in its discrete form which lead to the direct 

Grünwald-Letnikov derivative definition: 
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( ) lim ( 1) ( )

( 1)

( 1) ( 1 )
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d f t
D f t f t kh

kdt h

k k k




 



 







 
    

 
   

       


       (4) 

The α derivative of a function f(t) at a given time t is a local time property only when α is an 

integer; this is not the case for non-integer power derivatives. In other words, it is not correct 

to say that the fractional derivative at t of a function f(t) depends only on values of f very near 

t, in the way that integer-power derivatives certainly do. Eq. 4 denotes weight coefficients 

which are expressed by: 

, ( 1)kk k




 
   

 
          (5) 

As illustrated in Fig.1a-e below, these weight coefficients depend strongly on the fractional 

order. For sub-diffusive time fractional derivative equation (0 < α < 1), the difference between 

the weight of the first coefficients with the remaining ones increased as α is getting closer to 

0 meaning a larger influence of the past in the calculus of a given t time derivative. 

Fig. 1 a-e, Weight coefficients. Fig. 1 f, Hysteresis area vs frequency for different fractional orders. 
 

Eq. 6 below gives the expression of the fractional derivative diffusion equation in its Grünwald-

Letnikov expression: 

  
2

0
0

1
.lim ( 1) ( )

( 1)

( 1) ( 1 )

k

h
k

H B t kh
kh

k k k






 







 
    

 
   

       


          (6) 

The magnetic state of a ferromagnetic specimen and its variations are strongly dependent on 

its history. Using fractional derivative operators in the numerical method is coherent as it 

increases the influence of the past in the simulation of the magnetic behavior at a given time 

t. 
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In Fig. 1f is depicted an illustration of the fractional order influence on the balance of the 

frequency effect. The evolution of the hysteresis area is plotted as a function of the frequency 

for different values of fractional derivative order. 

A decrease of α can be interpreted as a stretch of the hysteresis area <A> vs frequency f curve 

in the x direction but not only, it also affects the average permeability which becomes lower 

and reduces the losses maximum values. 

 

 2-2) Lump model combined to a fractional viscous-type dynamic effect 

A lump-element model simplifies the description of a spatially distributed physical systems 

into a topology consisting of discrete entities. In our case, the whole ferromagnetic specimen 

is considered as a magnetic single lump-element, its inputs are external stimuli which can be 

of magnetic, mechanic or thermal nature and its output is the element magnetic state. 

Although the hysteresis cycle is a local information depending of space because of the eddy 

currents, a lump model (from spatial distribution to discrete entities) is still able to simulate 

the hysteresis cycle as measured experimentally (i.e. spatially averaged of B as a function of 

the surface tangent H). In a one hand, the advantages of using a lump model are clear: it limits 

the simulation approach to the replica of the measured quantities and it excludes any 

inconvenient due to the conformity of the magnetic state distribution. On the other hand, the 

physical interpretation is limited since the simulation results are limited to macroscopic 

average quantities and prohibit access to local information.  

A lump approach is proposed by Zirka and al. in [29], to consider hysteresis in a ferromagnetic 

specimen: 
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0

2

2

( )( )

( ) 1m
s

dB
r B H H

dt

B
r B R

B

  
       

                 (7) 

r(B) is introduced as a dynamic magnetic resistivity which can supposed to be constant or B 

dependent, H0 is a threshold field. But this approach gives limited accuracy in a restrained 

frequency bandwidth, then to improve it, authors proposed the following extension: 

 ( )
( ) ( ) ( )

v

st

dB t
r B H t H B

dt
                 (8) 

Where Hst(B) is a quasi-static contribution calculated from a quasi-static hysteresis model 

(Preisach, Jiles-Atherton …) and v a real number which is supposed to be controlling the model 

dynamics (i.e. its temporal and frequency properties). In [16][17], authors use similar equation 

but the balance of the model dynamic is maintained through the use of a fractional derivative 

operator: 

1( )
. ( ) ( ( ))dyn static

d B t
H t f B t

dt



               (9) 

Just like the anomalous diffusion equation described in the previous section, adjusting the 

fractional order gives latitude in the simulation method and allows to match precisely with 

the experimental results on large frequency bandwidths. 

3 – Experimental validation 

Different experimental measuring set-up have been developed to confront the simulation 

results to experimental ones. Whatever the shape of the specimen tested, the basic 

experimental principles remain always the same:  

_ a large turns number coil supplied with a current controlled power amplifier ensures the 

magnetic excitation (a magnetic yoke can also be associated to drive the magnetic excitation 

up to the tested area if necessary). 
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_ a noise shielded radiometric linear Hall probe positioned ideally as close as possible to the 

magnetic sample measured the surface excitation magnetic field Hsurf.   

_ a wounded search coil ensures the magnetic flux variations monitoring and the specimen 

local magnetic state evaluation. 

On the left hand side of Fig. 2 below is depicted the single sheet tester experimental device 

we have been using to characterized ferromagnetic laminations. On the right hand side is 

displayed a micro Helmholtz coil system designed specifically to characterize cylindrical, low 

diameter specimens. 

Fig. 2 – Experimental setup for the magnetic characterization of ferromagnetic lamination (left) and cylindrical 
specimens (right). 

 
In [17][18] experimental Hysteresis cycles measured on ferromagnetic laminations are 

compared with success to simulation results obtained with the fractional lump model. Similar 

comparisons also successful with results coming from the resolution of the fractional 

anomalous diffusion equation can be found in [16].  

Fig. 3 below shows the comparison of the experimental hysteresis cycles obtained using the 

micro Helmholtz coil characterization device and numerical results coming from both the 

fractional lump model and the anomalous fractional diffusion equation. Low carbon steel 

samples are tested, their chemical composition is given in Tab. 1 below: 

Tab. 1 – Chemical composition of the low carbon steel specimens tested. 
 

Element Fe Mn Cu C Cr Ni Al Si P S Ti 
Composition 

(Wt%) 
99.539 0.181 0.082 0.075 0.036 0.032 0.023 0.014 0.009 0.007 0.002 

 
The fractional diffusion equation is solved using polar coordinates. The details of the 

numerical resolution will be the object of a future communication. 

 
 

Fig. 3 – Comparison simulation/measurement, for both the fractional diffusion equation and the fractional 
lump model. 
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For both simulation method, the J-A model has been used as quasi-static contribution. The 

anhysteretic curve is simulated using Eq. 10: 

 1tan e
anh s e

H
M M bH

a
    
 

       (10) 

The simulation parameters (Fig. 3) have been set using the optimization methods described in 

details in [15][29]. A complete hysteresis cycle is obtained in less than 4 seconds for the 

fractional lump model (1 106 samples.period-1), 14 seconds are necessary for the fractional 

diffusion equation, with a mesh consisting of 80 nodes. The accuracy of the fractional diffusion 

equation is higher, in particularly for the magnetic behavior close to the inflection point, just 

before saturation. It is worth mentioning here that in a recent article [30], Liu & al. obtained 

improved results with the lump method by adding a second term, the fractional contribution 

is restricted to the classic losses (first term) and the excess losses are taken into account 

according to the Bertotti separation losses theory (second term). 

 

4 – Conclusions 

In this manuscript is reviewed the use of fractional derivative operators for taking into account 

the frequency dependent magnetization in ferromagnetic specimens. In the first method 

called fractional magnetic field diffusion equation, the time derivative term of the classic 

diffusion equation is replaced by a fractional one. The sub-diffusive resulting equation exhibits 

an additional lag in the diffusion process which can be adjusted by fixing the fractional order. 

A space discretized method is used for the resolution of this equation which gives access to 

local information. In the second method, a lump approach is proposed and the dynamic 

contribution is considered through the product of a constant ρ to the time fractional derivative 

of the induction field B. This method is faster in terms of simulation time, but for the cylindrical 
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shape low carbon steel specimens tested in this study the accuracy is lower. Future works and 

perspectives in this domain include to test the methods on other experimental situations (like 

a flat surface excited by a pancake coil) to extend the dynamic consideration to alternative 

excitation sources (mechanical, thermal …) and to progress again with the physical 

interpretation and meaning of the fractional derivative operators.  
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