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Abstract 

Toroidal massive ferromagnetic cores are used in a wide range of electromagnetic applications, such 

as current sensors, inductances, static converters and filters. Growing interest exists in the industrial 

field with regards simulation tools to reduce experimental campaigns and improve product knowledge 

and performance. Accurate simulation results require a consideration of precise electromagnetic laws, 

such as the exact non-linear magnetic behavior of toroidal magnetic cores. Under the influence of an 

external surface magnetic field that was created by a surrounding coil, the local magnetic state through 

a ferromagnetic core cross-section was ruled by a combination of magnetic domain kinetics and 

external magnetic field diffusion. Conventional methods to simulate magnetic behavior are based on 

a separation of magnetic contributions, where microscopic Eddy currents from domain wall motions 

and macroscopic currents from external magnetic field variations are considered separately. This 

separation is artificial, because both loss mechanisms occur simultaneously and interact. In this study, 

an alternative solution was proposed through the resolution of a two-dimensional anomalous 

fractional magnetic field diffusion. The fractional order constitutes an additional degree of freedom in 

the simulation scheme, which can be identified by comparison with the experimental results. By 

adjusting this order, accurate local and global simulation results can be obtained on a broad frequency 

bandwidth and allow for the precise prediction of the dynamic magnetic behavior of a toroidal massive 

magnetic core. 
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1 - Introduction 

The working principles of electromagnetic devices rely on magnetic/electric and electric/magnetic 

energy conversions [1]. A large amount of energy is converted in applications, including power 

transformers, quasi-static converters and electric motors. Small amounts are involved in applications, 

such as in communication support, i.e., sensor-type applications [2]. To improve the conversion 

efficiency and/or accuracy of the electromagnetic devices, the magnetic field needs a magnetic 

support to be guided in spatial areas where multiphysics conversions occur. This magnetic support is 

always made from a soft ferromagnetic circuit that is characterized by a high magnetic permeability, 

high saturation levels and weak coercive fields. Toroidal massive magnetic cores are popular in 

applications where the desirable features are a high specific power per mass and volume and minimal 

electromagnetic interferences [3]. The main drawback that limits their use for general purpose 

applications is the inherent difficulty of winding wire through the center of a torus. The high non-linear 

magnetic behavior of the ferromagnetic core is another issue that needs to be addressed. Under the 

influence of an external magnetic field, the magnetic state of a toroidal core exhibits hysteresis, 

saturation, frequency dependence and an inhomogeneous distribution. A precise knowledge of these 

magnetic properties and behaviors is the only way to reach electromagnetic devices of upgraded 

performances [4]. 

In typical toroidal core applications, the coil is wound through a hole in the torus and around its outside 

(Fig. 1). The ideal coil was distributed evenly around the circumference of the torus. The symmetry of 

the coil geometry and the electrical current that was passing through the coil produced a surface 

tangential magnetic field of a circular shape on the periphery of the magnetic core. The lack of sharp 

bends helps to lock the magnetic induction field inside the ring specimen. The toroidal geometry 

improves the conversion ratio and reduces the electromagnetic interference that is radiated by the 

coil [5]. 



 

Fig. 1 – Three-dimensional illustration of a toroidal magnetic circuit, including the winding and the magnetic core. 

For decades, industry and academic researchers have collaborated to propose simulation tools to 

reproduce the magnetic behavior of massive toroidal ferromagnetic cores precisely [6]. This problem 

is complex because magnetism originates at the atomic level and the macroscopic magnetic behaviors 

are influenced strongly by interactions inside the mater and at different space scales [7][8]. Standard 

approaches for magnetic behavior simulation are based on the so-called separation losses principle 

[9][10]. This principle consists of separating the magnetic state of a ferromagnetic component under 

the influence of a dynamic magnetic excitation into three loss terms: 

_ Hysteresis losses: 

This magnetic contribution results from the magnetic domain kinetics, expansions and contractions 

that occur during magnetization. These movements lead to losses as the domain walls get pinned on 

defects in the crystal structures and unpinned under the influence of stronger magnetic excitation 

levels, and dissipate energy as heat. Because the energy that is lost in each magnetization cycle is 

constant, the power of this contribution is proportional to the frequency. 

_ Eddy-current losses: 

If the toroidal ferromagnetic core is electrically conductive, the changing magnetic field induces 

circulating loops of current in the core, which is termed macroscopic Eddy currents (as opposed to the 

microscopic currents that are linked to the domain wall motions). These macroscopic Eddy currents 

result from electromagnetic induction. The loops are perpendicular to the magnetic field axis. The 



current energy is dissipated as heat in the resistance of the core material. The power loss is 

proportional to the area of the loops and inversely proportional to the resistivity of the core material. 

The power of this contribution is proportional to the square of the frequency. 

_ Anomalous losses: 

This contribution includes any losses that are not included in either the eddy-current or the hysteresis 

losses. Anomalous losses can also be observed through a broadening of the hysteresis loop with 

frequency. Physical mechanisms for anomalous loss include localized eddy-current effects near moving 

domain walls. 

The separation principle is well-known in the scientific community, because it is simple and accurate 

enough in a wide range of applications. The separation principle also exhibits strong limitations, 

including its restriction to harmonic excitation, which makes it particularly inappropriate for 

application to time-dependent simulations, because it only provides average information. The general 

idea of separating the hysteresis losses contradicts the physical nature of the magnetization processes 

where different phenomena interact simultaneously at different scales. 

Though rarely mentioned, models that combine all contributions exist in the literature. In [11], a 

simultaneous resolution scheme is proposed for ferromagnetic lamination, where a one-dimensional 

(1D) modified diffusion magnetic field equation is solved. The time derivative term was replaced by a 

dynamic material law that lead to a strong formulation that can be solved through finite differences. 

This simulation approach allows access to local information. A similar approach has been proposed in 

[12] for the two-dimensional (2D) simulation of the magnetic state through the cross-section of a 

toroidal massive magnetic core. In this article, the ring specimen was under the influence of the 

magnetic field that was created by a winding even distribution. The magnetic skin effect was 

highlighted. This combined resolution has multiple advantages:  

_ it can be solved in the time domain and the local information can be used to design the magnetic 

core with a reasonably good accuracy.  



_ It can also be used as a pedagogic tool to explain the dynamic magnetization processes in a 

ferromagnetic core.  

_ However, it also exhibits some significant drawbacks, including the limitation to given geometries 

where sparse finite-difference discretization is sufficient to obtain correct simulation behaviors. A 

combination of the implicit nature of the material law and the strong nonlinearity of hysteresis often 

leads to convergence issues, which forces a reduction in simulation step time and, in many cases, 

results in an abortion of the simulation.  

In [8], an alternative elegant solution has been proposed to retain the benefits and address the 

convergences issues. The dynamic effect during the magnetization cycles could be interpreted in term 

of an anomalous diffusion process. The Weiss domain distribution and movements distort the 

magnetic diffusion process, which becomes anomalous. Also in [8], the anomalous diffusion equation 

is described by replacing the first-order time derivation by a fractional-order derivative in the magnetic 

diffusion equation (Eq. 1): 
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Fractional calculus has been associated with electromagnetism [13]. In [14], the Maxwell laws were 

extended to non-integer-order differential calculus. When applied to transmission lines, electrical 

motors and transformers allow us to consider the skin effect precisely. In [15], fractional integral and 

differential operators are used to describe the frequency-dependent Havriliak–Negami dielectric 

relaxation models in the time-domain. In [16] and [17], an additional fractional contribution is used to 

consider the dynamic polarization effect in a piezo-ceramic. 

The simulation method described in [8] is promising. However, this study is restricted to magnetic 

laminations where correct simulation results were obtained by limiting the resolution to one 

dimension only. 

In this article, a similar method was proposed and extended to a 2D resolution to simulate the dynamic 

magnetic state through a toroidal magnetic core cross-section. 
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The simulation method is defined in Section 2 before the experimental setup and tested samples are 

described. Comparative simulations and measures are provided and used to validate our theory. 

Additional simulation results are provided in the conclusions, which provides information on the 

simulation parameters (σ is the electrical conductivity and α is the fractional derivative order), and 

their influences. 

 

2 - Simulation method 

a) Numerical resolution of 2D anomalous magnetic field diffusion equation 

Similar to [11][12][18], finite differences were chosen for the spatial resolution of an anomalous 

diffusion equation. 
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(3) 

For symmetry reasons, half of the magnetic core cross section was meshed (see Fig. 2). 



 

Fig. 2 – Finite-difference space discretization, boundary conditions. 

The surface-excitation field H was imposed on the blue nodes (Dirichlet boundary conditions, Fig. 2). 

Under electrical-current-imposed conditions, Hi, which is the excitation field for each blue node i was 

derived from the Ampere theorem: 

 .
( )

2 .i
i

N I t
H t

r
   (4) 

where N is the number of turns, I(t) is the time-dependent electrical current and ri is the radius distance 

between nodes i and the magnetic core rotation axis. Neumann boundary conditions were set on the 

red zone nodes (Fig. 2) to consider the symmetry property. 

 

b) Fractional derivative of Induction field B 



Anomalous diffusion processes in complex media can be considered by using fractional-order diffusion 

equation models. A fractional derivative operator as the time-dependent term (as is the case in Eq. 1) 

corresponds to a long heavy tail decay. Fractional calculus is a branch of mathematical analysis that is 

dedicated to the study of non-integer-order derivatives. The order of the derivative can be a real or a 

complex number. The α derivative of a function f(t) at a given time t is a local property only when α is 

an integer; which is not the case for non-integer power derivatives. It is incorrect to say that the 

fractional derivative at t of a function f(t) depends only on the values of f near t, in the way that integer-

power derivatives do. A clear parallel can be established between the influence of the time history in 

the resolution of a time-fractional derivative and the influence of the time history in the hysteretic 

property of a ferromagnetic material. This observation can be used for the physical interpretation of 

fractional derivatives. 

Many definitions have been proposed to describe fractional derivatives, such as those by Liouville [19]-

[21] (Eq. 5), Riemann–Liouville [22], Grünwald–Letnikov [23][24] and Caputo [25]. 
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Equation 5 can be interpreted as the convolution between f (t) and tαH(t)/Γ(1−α) where Γ(α) is the 

gamma function. In the Fourier domain, where every signal is harmonic and where a first-order 

derivative is a jω multiplication, fractional derivatives become a (jω)α multiplication [26]-[28]. For the 

numerical resolution of our anomalous diffusion equation, two options have been tested: 

_ The direct Grünwald–Letnikov derivative definition: 
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_ A convolution approach: 
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(Convolution of derivative of order, first integer m larger than α and a memory function).  



The Matlab® convolution function has been used for this resolution, but better results were obtained 

with the Grünwald–Letnikov definition. 

 

c) Combined resolution 
 

A combination of Eqs. 3 and 6 allows the equation to be solved for each node of the space discretization 

window: 
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A matrix system can be established by using every equation (Eq. 9). 

     .M X S   (9) 

M is the stiffness matrix, X is unknown vector Hi and S is a vector that is filled with the remaining terms. 

The matrix system construction is like the 1D system in [8]. Boundary nodes where Dirichlet or 

Neumann-type conditions are imposed according to their geometrical position must be considered 

(see Fig. 2). Bi and Hi are connected locally through an anhysteretic relationship that is described by a 

hyperbolic sigmoid function: 
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Bi is the local induction, Bs the saturation induction and a is an anhysteretic induction trajectory 

parameter. Equation 3 is not used “as if” in the simulation but is used through the related permeability, 

which is expressed as a function of Bi: 
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The implicit nature of Eq. 8 is an issue. When combined with the non-linear behavior of Eq. 3, Eq. 8 

sometimes leads to divergences under a high magnetic excitation field, whereas the magnetic core is 

saturated. In the final version of the code, the issue is solved through two methods: 



 In the first term of the Bi series in Eq. 8, the permeability μi is evaluated based on the previously 

calculated Bi(t-dt). 

 We force the local anhysteretic permeability to vary monotonically with the magnetic 

excitation. For every simulation step, a test is executed if the monotonic property is not 

respected, and we impose Bi
anh(t)=Bi

anh(t-dt). 

Figure 3 depicts the evolution of average dynamic hysteresis losses through the cross section of a 

toroidal magnetic core as a function of f, α, and for different values of electrical conductivity. Matrix 

system (9) is solved and harmonic-type current excitation is imposed. The average induction is 

calculated from Eq. 12: 
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where n is the number of nodes. The dynamic hysteresis losses <A> are calculated through an 

integration of the resulting hysteresis loop (Eq. 13): 
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As observed in Fig. 3, the dynamic losses that were simulated with the anomalous fractional diffusion 

equation were negligible in the frequency range f and the fractional order α tested. If the electrical 

conductivity σ was weak, the emergence of Eddy currents were weak too. For higher levels of σ and 

under an increasing sweep of frequency f, the dynamic losses show a Gaussian-like shape, which shows 

that an average value and standard deviation increase as α decreases. Similar results have already 

been observed and plotted in Fig. 4 in [8] for magnetic laminations where a 1D equation was solved. 



 

Fig. 3 – Hysteresis area as a function of α and f for an electrical conductivity from 1 102 to 1 107 S.m-1. 

Figure 4 depicts the magnetic field distribution through the cross-section of the toroidal massive 

ferromagnetic core for different values of f, α and σ. A full magnetization cycle was simulated and the 

color scale was set to a maximum of the resulting local induction fields Bi. As expected, for a weak σ, 

the magnetic field distribution was homogeneous. At a higher conductivity level, α was close to one 

with large frequency values, and the skin effect (rejection of Eddy currents over the cross-sectional 

peripheral areas) was obvious. The Eddy currents acted as a shield and restricted the magnetic field in 

a peripheral belt of magnetic material with a width that decreased as the frequency increased. The 

corresponding average hysteresis cycles B(Hsurf) are plotted as well, where Hsurf is the tangent magnetic 

excitation field that is imposed on the superior surface of the magnetic core. If σ and α are weak, the 

hysteresis area is limited. The hysteresis area is limited too for high values of σ and f where the 

limitation of the magnetic field penetration prevents magnetization, and the resulting hysteresis loop 

shows reduced B values. 



   

 

   

Fig. 4 – Magnetic state distribution and hysteresis cycles for different values of α, σ and f. 

B (T) 



Figures 5 and 6 illustrate the effect of α, which is the fractional calculus order. The frequency f and the 

electrical conductivity σ were set to 64 Hz and 1 105 S.m-1, respectively. α increases by 0.2. The first α 

that was tested was 0.2 and the last simulation corresponded to the integer-order modelling. 

 
Fig. 5 – Magnetic state distribution and hysteresis cycles for different values of α (σ = 1 105 and f = 64 Hz). 

 
Fig. 6 – Hysteresis area as a function of f for different values of α (σ = 1 105 and f = 64 Hz). 



For a given frequency and conductivity, a small α reduces the diffusion process, which limits the 

development of macroscopic Eddy currents and the hysteresis loop shape remains close to the 

anhysteretic behavior. By increasing α, we activate the diffusion process and its consequences (i.e., 

the spread of the macroscopic Eddy currents and large variations of the hysteresis area). The electrical 

conductivity cannot be considered as a simulation degree of freedom because it is a physical property 

that is intrinsic to the tested specimen. The frequency f is imposed by the magnetic field excitation. An 

integer order leads to incorrect simulation results because it does not consider the influence of the 

magnetic domain wall motions and their related microscopic Eddy currents. It appears impossible to 

quantify this influence precisely, however, we know that they modify the diffusion process and results 

in anomalous behaviors. An integer-order diffusion process gives correct simulation results when the 

media is homogeneous. Because of the presence and organization of the magnetic domains, a 

ferromagnetic massive toroidal specimen is magnetically strongly inhomogeneous. The only way to 

simulate the magnetization process correctly is to balance the diffusion process differently compared 

with the integer-order classic process. By replacing the first-order derivative with a fractional order 

provides flexibility in the simulation of the diffusion process. By adjusting α, excellent matches could 

be obtained with the experimental results. 

 

4 - Experimental validation 

a) Description of experimental setup 

A dedicated experimental setup was used to validate the simulation results. A three-dimensional (3D) 

overview of the setup is shown in Fig. 7: 



 

Fig. 7 – 3D overview of experimental setup. 

Measurements were performed according to standard IEC 60604-6 [29]. A 200-turns-surrounding coil 

constituted the primary excitation. A local 10-turns-surrounding sensor coil was used to measure the 

magnetic flux locally through the cross section of the magnetic core. Harmonic-type-B imposed 

characterization was achieved as recommended in [29]. Real-time feedback control was ensured from 

DEWESoftX2 data acquisition software that was combined with a SIRIUSif 8×CAN data-acquisition/-

generation card. These devices ensured that feedback control of the magnetizing current was provided 

simultaneously to acquire measured signals. The surface tangent excitation field H was calculated from 

Eq. 4 and from the primary coil current measurement. A numerical integration of the surrounding coil 

sensor signal was used to plot the induction field variations. A numerical correction was performed to 

remove the undesired drift because of the integration step. Before each experimental test, the 

reproducibility of the results was ensured by a demagnetization of the tested specimens. The 

excitation coil was subjected to a slowly decreasing amplitude and a 50-Hz sinusoidal electrical current. 

This process ensured a full demagnetization under a controlled magnetic excitation rate. A full 

demagnetization procedure lasted slightly less than 1 min. 

b) Description of tested samples 



The tested samples were a 40NCD7 ferromagnetic structural steel that is used extensively in shipping, 

vehicle, airplane, railway, bridge, pressure vessel, machine tool and mechanical component fields with 

a large cross-sectional size. The chemical composition of the 40NCD7 is provided in Table 1. 

Table 1 – Chemical composition, mass fraction in % of 40NCD7. 

 

The electrical conductivity is relatively high, 4 106 S.m-1 < σ < 5 106 S.m-1. Combined with the massive 

section of the toroidal core, dynamic effects can be observed even at low frequency levels. The test 

specimen dimensions are shown in Fig. 8. The specimen thickness was 10 mm. 

 

Fig. 8 – Tested specimen dimensions. 

A tempering stage was used to reduce the residual stresses because of the machining operations. For 

this study, we selected 40NCD7 over 100Cr6 and M500NIL. The 40 NCD7 exhibited the most 

homogeneous mechanical, electrical and magnetic properties. 

 

c) Comparative simulations/measures 

According to the IEC 60604-6 standard on ring specimens, a correct characterization of the magnetic 

signature needs to be performed under a “B-imposed” sinus-type waveform [24]. The fractional 

diffusion equation resolution as described in this study implies knowledge of the surface magnetic 

excitation field H that surrounds the magnetic ring. To address this issue and to converge to the correct 



simulation results even under B imposed conditions, a feedback simulation tool that includes a 

proportional/integral corrector was used. This solution has already been used for magnetic lamination 

in [8]. The corresponding bloc scheme is depicted in Fig. 9. 

 

Fig. 9 – Simulation bloc scheme that includes the quasi-static and dynamic contribution. 

The corrector parameters were set from the numerical optimization. To compare the simulation and 

experimental results, a static contribution was added to the fractional diffusion equation. This 

contribution corresponds to the hysteretic behavior that can be observed in a quasi-static state, i.e., 

below the quasi-static frequency threshold.  Working under “B-imposed” conditions simplifies the 

quasi-static contribution in our simulation. As in [27][28] or [30], the classic Preisach and Jiles–Atherton 

(J–A) models in their inverse versions [31]-[33] can be used. Figure 10 compares the 

simulations/measurements for the 40NCD7. The simulation results were obtained by using the 

simulation scheme in Fig. 9 and a 1.6 T average imposed sinus induction state was imposed. 



 

Fig. 10 – Comparative simulation/measurement for B(H) hysteresis loops (f ε [0.05,50] Hz). 

As in [8], we opted for the J–A model because of its simplicity and its limited number of parameters. 

The J–A model is described in detail in [34]-[36]. The J–A model parameter optimization process that 

we used is described in [37]. The static and dynamic simulation parameters are provided in Table 2. 

Table 2 – Simulation parameters 

 

Correct simulations results were observed over the entire tested frequency bandwidth. These 

comparisons provided a significant contribution to validate our theory. As predicted, the dynamic 

effects were massive. Unfortunately, experimental limitations appear early on the frequency scale and 

the highest experimental frequency that was reached was 50 Hz. 

Figure 11 shows the simulated current waveforms for all frequencies tested. We checked the 

unpredictable and distorted waveforms of the electrical currents as B was imposed in the tested 

magnetic ring. The experimental signals are not shown in Fig. 11; the current was forced and no 

difference could be observed. 
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Fig. 11 – Current waveforms for different frequencies tested. 

 

5 - Conclusions 

Anomalous diffusion behaviors have been described in every branch of physics. The dynamic magnetic 

process of a toroidal massive magnetic core is one such diffusion behavior. The magnetic domain 

kinetics distort the magnetic diffusion field process, which becomes anomalous. This unfamiliar 

behavior requires the simulation of special mathematical operators. Such operators exist in the 

framework of fractional calculus. In this work, a 2D anomalous diffusion process through the cross 

section of a massive magnetic core was simulated with a modified magnetic field diffusion equation. 

The first-order time derivative term was replaced by a fractional term. Unlike the classic losses 

separation principle, the fractional diffusion equation lead to a simulation process that considered all 

dynamic contributions simultaneously and depended on a limited number of parameters: 

_ σ is the electrical conductivity that is imposed by the material nature that was obtained easily 

experimentally. 

_ α is the fractional order that constitutes an additional degree of freedom of the simulation and that 

must be adjusted by comparative simulations/measurements. 
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The modified fractional diffusion equation was solved through finite-difference space discretization 

combined with the Grünwald–Letnikov solution for the fractional derivative terms. For each simulation 

mesh node, a fractional equation must be solved. The numerical issues because of the implicit nature 

of the modified diffusion equation were limited because the Grünwald–Letnikov solution needs all 

simulated time steps of the function to be derived. 

This simulation approach was particularly effective, and it provided local information as shown in Fig. 

4. The simultaneous resolution agreed well and was coherent with the physical reality where the 

macroscopic and microscopic Eddy currents interacted continuously and could hardly be separated. In 

a previous article, this simulation approach was tested on a magnetic lamination. Here, we limited the 

simulation to a 2D geometrical situation. Future work should extend these geometry results where 3D 

simulations are mandatory. Electromagnetic non-destructive testing (NDT) that considers local defects 

(inclusions, cracks) in the simulation discretization could be an application for further exploration. 
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