
HAL Id: hal-03260443
https://hal.science/hal-03260443

Submitted on 15 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Tool to Define Step by Step the Compatibility of
Licenses as Partial Orders with CaLi

Benjamin Moreau, Bastien Confais, Damien Vintache, Patricia
Serrano-Alvarado

To cite this version:
Benjamin Moreau, Bastien Confais, Damien Vintache, Patricia Serrano-Alvarado. A Tool to Define
Step by Step the Compatibility of Licenses as Partial Orders with CaLi. [Research Report] Université
de Nantes - Faculté des Sciences et Techniques. 2021. �hal-03260443�

https://hal.science/hal-03260443
https://hal.archives-ouvertes.fr


A Tool to Define Step by Step the Compatibility
of Licenses as Partial Orders with CaLi

Benjamin Moreau1,2, Bastien Confais1, Patricia Serrano-Alvarado1, and
Damien Vintache1

1 Nantes University, LS2N, CNRS, UMR6004, 44000 Nantes, France
{Name.LastName@}univ-nantes.fr

2 OpenDataSoft {Name.Lastname}@opendatasoft.com

Abstract. Licenses specify precisely the conditions of reuse of resources,
i.e., what actions are permitted, obliged, and prohibited when using re-
sources. Knowing the compatibility of a license allows knowing to what
extent the protected resource is reusable. CaLi is a lattice-based model
that partially orders licenses in terms of compatibility and compliance.
It uses restrictiveness relations that are refined with constraints to take
into account the semantics of actions existing in licenses. In this demon-
stration, we propose an online Web tool that interactively shows how to
define the compatibility of licenses as partial orders with the CaLi model.

1 Introduction and motivation

Before sharing or publishing their resources, producers should systematically
associate them with licenses. Licenses specify precisely the conditions of reuse of
resources, i.e., what actions are permitted, obliged, and prohibited when using the
resource. Examples of well-known licenses are the family of Creative Commons
licenses3, which are widely used to protect creative works. There are licenses like
Open License, ODbL, etc., to protect open data. Licenses like GPL, Apache,
EPL, MIT, etc. are frequently used to protect source code. Not to mention the
hundreds of ad-hoc licenses defined by data producers.

Relations of compatibility, compliance, and restrictiveness on licenses could
be very beneficial in a wide range of applications. For instance, platforms of
data storage, repositories of source code, or any enterprise managing different
licenses for their resources, could beneficiate of a compatibility order of their
licenses. Knowing the compatibility of a license allows knowing to what extent
the protected resource is reusable.

We consider that a license lj is compliant with a license li if a resource
licensed under li can be licensed under lj without violating li. If a license lj is
compliant with li then we consider that li is compatible with lj and that resources
licensed under li are reusable with resources licensed under lj . Usually but not
always, when li is less restrictive than lj then li is compatible with lj .

3 https://creativecommons.org/licenses/

https://creativecommons.org/licenses/


2 Benjamin Moreau et al.

In [1], we propose a model to order licenses in terms of compatibility and
compliance automatically. In [3], we show the usability of CaLi with a prototype
of a search engine based on a CaLi ordering of licenses.4 Such a search engine can
find resources whose licenses are compatible or compliant with a specific license.
In this demonstration, we propose a Web tool that interactively shows how to
define a CaLi ordering of licenses which can be used by an application that needs
to verify the compatibility of licences. Such ordering can be downloaded in RDF.

The next section overviews the CaLi model, and Section 3 describes how to
define CaLi orderings with our Web tool.

2 Modelling the compatibility of licenses

CaLi passes through a restrictiveness relation to partially order licenses in terms
of compatibility and compliance. In a license, actions can be distributed in what
we call status, e.g., permissions, obligations, and prohibitions. To decide if a
license li is less restrictive than lj , it is necessary to know if an action in a status
is considered less restrictive than the same action in another status.

We remark that if two licenses have a restrictiveness relation, then they may
have a compatibility relation too. The restrictiveness relation between licenses
can be obtained automatically, according to the status of actions without taking
into account the semantics of the actions. Thus, based on lattice-ordered sets [2],
we define a restrictiveness relation among licenses.

To identify the compatibility among licenses, we refine the restrictiveness
relation with constraints. The goal is to take into account the semantics of ac-
tions. Constraints also distinguish valid licenses from non-valid ones. We consider
a license li as non-valid if a resource can not be licensed under li, e.g., an in-
consistent license that simultaneously permits the Derive5 action and prohibits
DerivativeWorks6.

A CaLi ordering is a tuple 〈A,LS, CL, C→〉, such that [1]:

1. A is a set of actions (e.g., read, modify, distribute, etc.);
2. LS is a restrictiveness lattice of status that defines (i) all possible status of an

action (i.e., permission, obligation, prohibition, recommendation, undefined,
etc.) and (ii) the restrictiveness relation among status, denoted by 6S ;

3. CL is a set of license constraints to identify non-valid licenses; and
4. C→ is a set of compatibility constraints to identify if a restrictiveness relation

between two licenses is also a compatibility relation.

In CaLi, LA,LS defines the set of all licenses that can be expressed with A
and LS. (LA,LS ,6R) is the restrictiveness lattice of licenses that defines the
restrictiveness relation 6R over the set of all licenses LA,LS . We say that li is
less restrictive than lj , denoted li 6R lj , if for all actions a ∈ A, the status of a in

4 http://cali.priloo.univ-nantes.fr
5 https://www.w3.org/TR/odrl-vocab/#term-derive
6 https://www.w3.org/TR/odrl-vocab/#term-DerivativeWorks

http://cali.priloo.univ-nantes.fr
https://www.w3.org/TR/odrl-vocab/#term-derive
https://www.w3.org/TR/odrl-vocab/#term-DerivativeWorks


Title Suppressed Due to Excessive Length 3

li is less restrictive than the status of a in lj . That is, li 6R lj if ∀a ∈ A, li(a) 6S

lj(a). If two valid licenses have a restrictiveness relation, then they may have a
a compatibility relation too. For two licenses li 6R lj ∈ LA,LS , we say that li
is compatible with lj , denoted by li → lj , if ∀ωL ∈ CL, ωL(li) = ωL(lj) = True
and ∀ω→ ∈ C→, ω→(li, lj) = True.

Notice that contrary to the restrictiveness relation, the compatibility relation
is a partial order but not necessarily a lattice-based partial order.

With CaLi it is possible to answer the question, given a license li, how to
automatically position li over a set of licenses in terms of compatibility and com-
pliance? Knowing the compatibility of a license allows knowing to what extent
the protected resource is reusable. On the other hand, knowing the compliance
of a license allows knowing to what extent other licensed resources can be reused.

3 Demonstration

Our Web tool to interactively define the compatibility of licenses with the CaLi
model is available at https://saas.ls2n.fr/cali/. In the next, we show how
to construct a CaLi ordering step by step.

Set of actions A. Our tool uses the set of actions considered by ODRL7. ODRL
proposes 72 actions, including actions used in Creative Commons licenses. When
defining a license, users can distribute all these actions among defined status.
By default, actions not distributed in a status, are assigned to the Undefined
status.

Restrictiveness lattice of status LS. A CaLi ordering is based on a restric-
tiveness lattice of status. That is, every pair of licenses has a least and a most
restrictive license. The most restrictive license is the supremum and the least re-
strictive one is the infimum. Users define a restrictiveness lattice of status in two
steps. First, the set of possible status for actions in a license should be chosen.

Fig. 1: Choosing the possible status for actions in a license.

Our tool proposes three status, Permission, Prohibition, and Duty, but Recom-
mendation or Dispensation can be included, see Figure 1. The Undefined status
is always present; it will contain all actions not distributed in another status.
Second, once the set of status is saved, users should define the restrictiveness
7 https://www.w3.org/TR/odrl-vocab/#actionConcepts

https://saas.ls2n.fr/cali/


4 Benjamin Moreau et al.

lattice of status. The Undefined status should be the least restrictive status, i.e.,
the infimum of any restrictiveness lattice of status. Figure 2 shows an example
of restrictiveness lattice of status.

Fig. 2: Defining the restrictiveness lattice of status.

License constraints CL. A user can define several license constraints (ωL). A
license is valid if all license constraints are verified. A constraint can be defined
as a set of conditions. Inside a constraint, if one condition is true, then the
constraint is true. A condition of a license constraint defines if an action should
exist or not in a status. For instance the condition (cc:CommercialUse /∈ Duty)
means that a valid license should not have the action cc:CommercialUse as a
Duty. The condition (cc:ShareAlike /∈ Prohibition) means that a valid license
should not prohibit the cc:ShareAlike action. Both constraints are proposed by
our tool. Conjunctive constraints should be defined in several constrains. For
instance, the license constraint (read ∈ Prohibition AND modify ∈ Permission)
has two conditions. To verify both conditions they should be defined in two
constraints, one condition per constraint.

Compatibility constraints C→. To verify if a restrictiveness relation be-
tween two licenses is also a compatibility relation, users can define compatibility
constraints (ω→). A compatibility constraint concerns two licenses where one is
more restrictive than another (li 6R lj).
For instance, consider the action cc:ShareAlike which requires that the distri-
bution of derivative works be under the same license only. The compatibility
constraint (cc:ShareAlike /∈ Duty) /∈ li means that li is compatible with lj if the
action cc:ShareAlike is not a Duty in li. In another example, the compatibility
constraint (cc:DerivativeWorks /∈ Prohibition) /∈ li means that li is compatible
with lj if li does not prohibit the distribution of a derivative resource, regardless
of the license. These two constraints are proposed by our tool.

Creation of licenses. The Web tool gives users the possibility of distributing
actions into status. The same action can not be attributed to more than one
status. Our tool proposes several licenses like these of Creative Commons8 if
the restrictiveness lattice of status is (Undefined 6S Permission 6S Duty 6S

Prohibition), cf. Figure 2.
8 CC Zero, CC BY, CC BY-NC, CC BY-ND, CC BY-SA, CC BY-NC-ND and CC
BY-NC-SA.



Title Suppressed Due to Excessive Length 5

Compatibility partial order of licenses. Finally, the user can define the
compatibility order of licenses. The Web tool generates an acyclic graph that
represents the compatibility order of licenses.
Figure 3(a) shows an example of partial order as returned by our tool. Users
can manipulate this graph to facilitate their reading, as shown in Figure 3(b).
Users can download the generated partial order and concerned licenses in the
RDF format.

(a) (b)

Fig. 3: Example of the graphical representation of the generated compatibility
order of licenses.

An improvement for this prototype is to allow users to introduce a CaLi or-
dering in RDF so that they can add other licenses.

This demonstrator is based on the python package pycali9 that implements
several CaLi functions.

References

1. Benjamin, M., Serrano-Alvarado, P., Perrin, M., Desmontils, E.: Modelling the Com-
patibility of Licenses. In: Extended Semantic Web Conference (ESWC) (2019)

2. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge uni-
versity press (2002)

3. Moreau, B., Serrano-Alvarado, P., Perrin, M., Desmontils, E.: A License-Based
Search Engine. In: Extended Semantic Web Conference (ESWC), Poster&Demo
(2019)

9 https://pypi.org/project/pycali/

https://pypi.org/project/pycali/

	A Tool to Define Step by Step the Compatibility of Licenses as Partial Orders with CaLi

