Benjamin Moreau

Bastien Confais

Patricia Serrano-Alvarado

Damien Vintache

A Tool to Define Step by Step the Compatibility of Licenses as Partial Orders with CaLi

Licenses specify precisely the conditions of reuse of resources, i.e., what actions are permitted, obliged, and prohibited when using resources. Knowing the compatibility of a license allows knowing to what extent the protected resource is reusable. CaLi is a lattice-based model that partially orders licenses in terms of compatibility and compliance. It uses restrictiveness relations that are refined with constraints to take into account the semantics of actions existing in licenses. In this demonstration, we propose an online Web tool that interactively shows how to define the compatibility of licenses as partial orders with the CaLi model.

Introduction and motivation

Before sharing or publishing their resources, producers should systematically associate them with licenses. Licenses specify precisely the conditions of reuse of resources, i.e., what actions are permitted, obliged, and prohibited when using the resource. Examples of well-known licenses are the family of Creative Commons licenses 3 , which are widely used to protect creative works. There are licenses like Open License, ODbL, etc., to protect open data. Licenses like GPL, Apache, EPL, MIT, etc. are frequently used to protect source code. Not to mention the hundreds of ad-hoc licenses defined by data producers.

Relations of compatibility, compliance, and restrictiveness on licenses could be very beneficial in a wide range of applications. For instance, platforms of data storage, repositories of source code, or any enterprise managing different licenses for their resources, could beneficiate of a compatibility order of their licenses. Knowing the compatibility of a license allows knowing to what extent the protected resource is reusable.

We consider that a license l j is compliant with a license l i if a resource licensed under l i can be licensed under l j without violating l i . If a license l j is compliant with l i then we consider that l i is compatible with l j and that resources licensed under l i are reusable with resources licensed under l j . Usually but not always, when l i is less restrictive than l j then l i is compatible with l j .

In [START_REF] Benjamin | Modelling the Compatibility of Licenses[END_REF], we propose a model to order licenses in terms of compatibility and compliance automatically. In [START_REF] Moreau | A License-Based Search Engine[END_REF], we show the usability of CaLi with a prototype of a search engine based on a CaLi ordering of licenses.4 Such a search engine can find resources whose licenses are compatible or compliant with a specific license. In this demonstration, we propose a Web tool that interactively shows how to define a CaLi ordering of licenses which can be used by an application that needs to verify the compatibility of licences. Such ordering can be downloaded in RDF.

The next section overviews the CaLi model, and Section 3 describes how to define CaLi orderings with our Web tool.

Modelling the compatibility of licenses

CaLi passes through a restrictiveness relation to partially order licenses in terms of compatibility and compliance. In a license, actions can be distributed in what we call status, e.g., permissions, obligations, and prohibitions. To decide if a license l i is less restrictive than l j , it is necessary to know if an action in a status is considered less restrictive than the same action in another status.

We remark that if two licenses have a restrictiveness relation, then they may have a compatibility relation too. The restrictiveness relation between licenses can be obtained automatically, according to the status of actions without taking into account the semantics of the actions. Thus, based on lattice-ordered sets [START_REF] Davey | Introduction to Lattices and Order[END_REF], we define a restrictiveness relation among licenses.

To identify the compatibility among licenses, we refine the restrictiveness relation with constraints. The goal is to take into account the semantics of actions. Constraints also distinguish valid licenses from non-valid ones. We consider a license l i as non-valid if a resource can not be licensed under l i , e.g., an inconsistent license that simultaneously permits the Derive5 action and prohibits DerivativeWorks6 .

A CaLi ordering is a tuple A, LS, C L , C → , such that [START_REF] Benjamin | Modelling the Compatibility of Licenses[END_REF]:

1.
A is a set of actions (e.g., read, modify, distribute, etc.); 2. LS is a restrictiveness lattice of status that defines (i) all possible status of an action (i.e., permission, obligation, prohibition, recommendation, undefined, etc.) and (ii) the restrictiveness relation among status, denoted by S ; 3. C L is a set of license constraints to identify non-valid licenses; and 4. C → is a set of compatibility constraints to identify if a restrictiveness relation between two licenses is also a compatibility relation.

In CaLi, L A,LS defines the set of all licenses that can be expressed with A and LS. (L A,LS , R) is the restrictiveness lattice of licenses that defines the restrictiveness relation R over the set of all licenses L A,LS . We say that l i is less restrictive than l j , denoted l i R l j , if for all actions a ∈ A, the status of a in l i is less restrictive than the status of a in l j . That is, l i R l j if ∀a ∈ A, l i (a) S l j (a). If two valid licenses have a restrictiveness relation, then they may have a a compatibility relation too. For two licenses l i R l j ∈ L A,LS , we say that l i is compatible with l j , denoted by

l i → l j , if ∀ω L ∈ C L , ω L (l i) = ω L (l j) = T rue and ∀ω → ∈ C → , ω → (l i , l j) = T rue.
Notice that contrary to the restrictiveness relation, the compatibility relation is a partial order but not necessarily a lattice-based partial order.

With CaLi it is possible to answer the question, given a license l i , how to automatically position l i over a set of licenses in terms of compatibility and compliance? Knowing the compatibility of a license allows knowing to what extent the protected resource is reusable. On the other hand, knowing the compliance of a license allows knowing to what extent other licensed resources can be reused.

Demonstration

Our Web tool to interactively define the compatibility of licenses with the CaLi model is available at https://saas.ls2n.fr/cali/. In the next, we show how to construct a CaLi ordering step by step.

Set of actions A. Our tool uses the set of actions considered by ODRL7 . ODRL proposes 72 actions, including actions used in Creative Commons licenses. When defining a license, users can distribute all these actions among defined status. By default, actions not distributed in a status, are assigned to the Undefined status.

Restrictiveness lattice of status LS. A CaLi ordering is based on a restrictiveness lattice of status. That is, every pair of licenses has a least and a most restrictive license. The most restrictive license is the supremum and the least restrictive one is the infimum. Users define a restrictiveness lattice of status in two steps. First, the set of possible status for actions in a license should be chosen.

Fig. 1: Choosing the possible status for actions in a license.

Our tool proposes three status, Permission, Prohibition, and Duty, but Recommendation or Dispensation can be included, see Figure 1. The Undefined status is always present; it will contain all actions not distributed in another status. Second, once the set of status is saved, users should define the restrictiveness lattice of status. The Undefined status should be the least restrictive status, i.e., the infimum of any restrictiveness lattice of status. Figure 2 shows an example of restrictiveness lattice of status. License constraints C L . A user can define several license constraints (ω L). A license is valid if all license constraints are verified. A constraint can be defined as a set of conditions. Inside a constraint, if one condition is true, then the constraint is true. A condition of a license constraint defines if an action should exist or not in a status. For instance the condition (cc:CommercialUse / ∈ Duty) means that a valid license should not have the action cc:CommercialUse as a Duty. The condition (cc:ShareAlike / ∈ Prohibition) means that a valid license should not prohibit the cc:ShareAlike action. Both constraints are proposed by our tool. Conjunctive constraints should be defined in several constrains. For instance, the license constraint (read ∈ Prohibition AND modify ∈ Permission) has two conditions. To verify both conditions they should be defined in two constraints, one condition per constraint.

Compatibility constraints C → . To verify if a restrictiveness relation between two licenses is also a compatibility relation, users can define compatibility constraints (ω →). A compatibility constraint concerns two licenses where one is more restrictive than another (l i R l j). For instance, consider the action cc:ShareAlike which requires that the distribution of derivative works be under the same license only. The compatibility constraint (cc:ShareAlike / ∈ Duty) / ∈ l i means that l i is compatible with l j if the action cc:ShareAlike is not a Duty in l i . In another example, the compatibility constraint (cc:DerivativeWorks / ∈ Prohibition) / ∈ l i means that l i is compatible with l j if l i does not prohibit the distribution of a derivative resource, regardless of the license. These two constraints are proposed by our tool.

Creation of licenses. The Web tool gives users the possibility of distributing actions into status. The same action can not be attributed to more than one status. Our tool proposes several licenses like these of Creative Commons8 if the restrictiveness lattice of status is (Undefined S Permission S Duty S Prohibition), cf. Figure 2.

Compatibility partial order of licenses. Finally, the user can define the compatibility order of licenses. The Web tool generates an acyclic graph that represents the compatibility order of licenses. Figure 3(a) shows an example of partial order as returned by our tool. Users can manipulate this graph to facilitate their reading, as shown in Figure 3(b). Users can download the generated partial order and concerned licenses in the RDF format. An improvement for this prototype is to allow users to introduce a CaLi ordering in RDF so that they can add other licenses.

This demonstrator is based on the python package pycali9 that implements several CaLi functions.

Fig. 2 :

 2 Fig. 2: Defining the restrictiveness lattice of status.

Fig. 3 :

 3 Fig. 3: Example of the graphical representation of the generated compatibility order of licenses.

https://creativecommons.org/licenses/

http://cali.priloo.univ-nantes.fr

https://www.w3.org/TR/odrl-vocab/#term-derive

https://www.w3.org/TR/odrl-vocab/#term-DerivativeWorks

https://www.w3.org/TR/odrl-vocab/#actionConcepts

CC Zero, CC BY, CC BY-NC, CC BY-ND, CC BY-SA, CC BY-NC-ND and CC BY-NC-SA.

https://pypi.org/project/pycali/