
HAL Id: hal-03260432
https://hal.science/hal-03260432

Submitted on 15 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards High Performance Resilience using
Performance Portable Abstractions

Nicolas Morales, Keita Teranishi, Bogdan Nicolae, Christian Trott, Franck
Cappello

To cite this version:
Nicolas Morales, Keita Teranishi, Bogdan Nicolae, Christian Trott, Franck Cappello. Towards High
Performance Resilience using Performance Portable Abstractions. 27th International European Con-
ference on Parallel and Distributed Computing, Sep 2021, Lisbon (on line), Portugal. �hal-03260432�

https://hal.science/hal-03260432
https://hal.archives-ouvertes.fr

Towards High Performance Resilience using
Performance Portable Abstractions

Nicolas Morales1, Keita Teranishi1, Bogdan Nicolae2, Christian Trott1, and
Franck Cappello2

1 Sandia National Laboratories, USA
{nmmoral,knteran,crtrott}@sandia.gov
2 Argonne National Laboratory, IL, USA

{bnicolae,cappello}@anl.gov

Abstract. In the drive towards Exascale, the extreme heterogeneity of
supercomputers at all levels places a major development burden on HPC
applications. To this end, performance portable abstractions such as
those advocated by Kokkos, RAJA and HPX are becoming increasingly
popular. At the same time, the unprecedented scalability requirements
of such heterogeneous components means higher failure rates, motivat-
ing the need for resilience in systems and applications. Unfortunately,
state-of-art resilience techniques based on checkpoint/restart are lagging
behind performance portability efforts: users still need to capture con-
sistent states manually, which introduces the need for fine-tuning and
customization. In this paper we aim to close this gap by introducing a
set of abstractions that make it easier for the application developers to
reason about resilience. To this end, we extend the existing abstractions
proposed by performance portability efforts towards resilience. By mark-
ing critical data structures that need to be checkpointed, one can enable
an optimized runtime to automate checkpoint-restart using high perfor-
mance and scalable asynchronously techniques. We illustrate the feasibil-
ity of our proposal using a prototype that combines the Kokkos runtime
(HPC performance portability), with the VELOC runtime (large-scale
low overhead checkpoint-restart). Our experimental results show negli-
gible performance overhead compared compared with a manually tuned
implementation of checkpoint-restart while requiring minimal changes in
the application code.

Keywords: Performance Portability · Resilience · Fault Tolerance ·
Checkpointing · Programming Models

1 Introduction

Supercomputing facilities have seen a rapid evolution towards heterogeneous
architectures, both from a computational (many-core CPUs, GPUs, other ac-
celerators) and I/O perspective (deep memory hierarchies, node-local persistent
storage, external parallel file systems, key-value stores, etc.). This places a major

2 Latest Advances in Scalable Algorithms for Large-Scale Systems

burden on HPC applications, because they need to interface with a large variety
of vendor APIs and/or customize their codes accordingly.

In an effort to address this problem, performance portability [8] has been
proposed as a potential solution. The key idea of performance portability is the
abstraction of hardware heterogeneity behind a unified programming model that
eliminates the need for customization on the application side, while shifting the
awareness of the intrinsic aspects of different heterogeneous accelerators to the
runtimes, which can transparently provide optimized implementations of the
high-level abstractions for each type of accelerator. Efforts such as Kokkos [8],
RAJA [13], DPC++ [20] are just some examples that illustrate this concept.

Unfortunately, the increasing number of heterogeneous components driven by
the quest to achieve Exascale also leads to an increasing failure rate, which means
resilience is another important challenge that needs to be addressed by the ap-
plications. Since most of the applications running on HPC machines are tightly
coupled, failures are hard to isolate and quickly propagate from one process to
another. In many cases, error detection can be more limited on heterogeneous
nodes (such as on a GPU) [5]. Therefore, the main resilience strategy used by
these applications is global checkpoint/restart where all processes agree period-
ically on a globally consistent state that is persisted and used to restart from in
case of failures.

While there are many optimized checkpointing frameworks available that
combine a variety of techniques (e.g. asynchronous multi-level resilience strate-
gies as illustrated by VELOC [19]) to reduce the checkpointing overhead as much
as possible, such frameworks typically require the application developers to man-
ually assemble critical data structures and serialize them into node-local files,
which are then persisted to resilient storage. On heterogeneous nodes, this is a
non-trivial task. First, some data structures may live on GPUs or other acceler-
ators and are not accessible in the host space. Secondly, there may be multiple
references to the same data structure that only needs to be checkpointed once.
Finally, a data structure may need to be part of the critical state in one location
of the code but not in another (e.g., some data structures may be discarded at
the end of a main loop). Therefore, there is a need to simplify how application
developers reason about resilience in order to address the aforementioned issues
without sacrificing the ability to leverage optimized checkpointing frameworks.

To this end, we propose a set of resilience abstractions for heterogeneous
architectures that hide the complexity of interacting with checkpoint-restart
frameworks, similar to how performance portability approaches hide the com-
plexity of interacting with heterogeneous hardware. By synergizing with such
efforts, we leverage the fact that users already define their data structures using
constructs such as memory views. These can be extended and used together with
another construct, the scoped resilient execution contexts, allowing the runtime
to both capture the critical data structures and checkpoint them at the right mo-
ment automatically. This unique combination provides an intuitive and efficient
way for performance-portable applications to employ resilience, reducing devel-

Morales et al.: Towards High Performance Resilience using Performance Portable Abstractions 3

oper time and cost, while enabling a straightforward integration with optimized
checkpointing frameworks.

We summarize our contributions as follows: first, we introduce a novel re-
silience model specifically designed to take advantage of performance portability
to automate both how to capture and when to checkpoint critical data struc-
tures. Second, we show how to implement such a model in practice based on the
Kokkos [8] and VELOC projects [19]. Finally, we run extensive experiments to
demonstrate the benefits of our proposal, both using synthetic benchmarks and
real-life HPC applications.

2 Related Work

The move towards Exascale and heterogeneous computing platforms has in-
creased the complexity of HPC hardware and software systems. Various studies
have explored the effects of extreme-scale on application resilience. Di Martino
et al. [5,4] analyze the resiliency of 5 million HPC application runs on the Blue
Waters supercomputer, considering both CPU compute nodes and CPU nodes
with GPUs and recording the hardware and software failure rates over the better
part of a year. Hukerikar and Engelmann [14] lay out a set of resilience design
patterns for large scales and a literature survey of the field.

Multi-level checkpoint/restart is a popular approach to leverage multiple stor-
age levels in the context of HPC checkpointing. Works representative of this
approach include SCR [18] and FTI [2], which introduce support for local stor-
age, partner replication, erasure coding (XOR and Reed-Solomon) and finally
external storage (parallel file systems). Recent efforts such as VELOC can take
advantage of heterogeneous storage for each level and introduce advanced asyn-
chronous techniques that leverage synergies between the levels [19] and predic-
tions of application behavior to mitigate interference [23].

A growing field of user-level software resilience techniques has emerged around
the idea of enabling MPI processes to repair the communicators (instead of ter-
minating the whole MPI deployment), which can be leveraged to implement for-
ward recovery techniques. Examples in this direction are the ULFM extension
to MPI [15,22] and user-level programming models such as Fenix [24,12,9,10], as
well as the Relax transactional framework proposed by De Kruijf et al. [3].

Other areas of software fault tolerance focused on extreme scale and hetero-
geneous systems include resilience for task-parallel programming models [17,21],
GPU snapshotting approaches [1], and the DataSpaces staging service [6] along
with resilience strategies for multi-application staging [7]. Additionally, there has
been recent focus on local checkpointing and rollback functionality to prevent a
global rollback over the entire system [11,16,22].

All the approaches mentioned above require significant development effort
either to capture and serialize the global state as checkpoints (rollback recov-
ery) periodically, or to reconstruct consistent states after failures in other ways
(forward recovery). To the best of our knowledge, we are the first to explore
the idea of leveraging performance portability abstractions as building blocks

4 Latest Advances in Scalable Algorithms for Large-Scale Systems

for a resilience model that bridges the gap between application development
productivity and other resilience strategies.

3 Background

The goal of performance portability is to provide HPC applications with a uni-
fied programming model that allows code to be written once and reused for
a diverse array of architectures with similar performance. Several efforts have
been proposed in this space, including Kokkos [8], RAJA [13] and DPC++ [20].
These frameworks provide abstractions for parallel/concurrent computation and
memory/data representation for heterogeneous computing systems to hide plat-
form specific programming features and complex interactions between the host
CPUs and the accelerators. Under these frameworks, individual data objects
(e.g. arrays) encapsulate the metadata information such as device location and
memory layout. Adding a unique identification to the metadata enables to track
the state of individual data objects, facilitating an automation of application-
based checkpointing and recovery. For the purpose of this work, we focus on
Kokkos. However, it is important to remember that our approach does not de-
pend on any particular performance portability framework and can be adapted
accordingly.

To achieve this goal, Kokkos introduces three abstractions: (1) execution
spaces, which define how computational kernels can be executed at fine granular-
ity in a data-parallel fashion; (2) memory views, which define multi-dimensional
arrays that computational kernels operate on; (3) polymorphic data layout, which
enables memory views to be reinterpreted dynamically.

In terms of execution spaces, simple Kokkos patterns look similar to those
exposed by OpenMP, the main difference is the focus on a C++-oriented model.
Of interest to us is how these patterns interact with the data structures, which
are captured as memory views. Specifically, the memory views can be annotated
with properties and hints that refer to their layout, location (host or device),
and access pattern. This enables the application to fix accessibility and perfor-
mance relationships. For example, a memory view can be interpreted in different
ways when being processed on a CPU or GPU: extra copies can be avoided if
it is known to be read-only (const) or a computation in the GPU execution
space could access data directly from the host memory (e.g. using unified virtual
memory) with degraded performance.

4 Performance Portable Resilience Abstractions

Starting from the performance portable abstractions discussed above, this sec-
tion introduces the core design principles of our proposal.

Scoped resilient execution contexts: As mentioned above, the Kokkos execu-
tion spaces (e.g., parallel for) require the user to encapsulate the computational

Morales et al.: Towards High Performance Resilience using Performance Portable Abstractions 5

kernels into lambda functors. We extend this notion to provide a higher-level re-
silient execution context. These contexts are encapsulated into lambda functions
and can encompass one or more Kokkos operations that exist in any execution
space. Using this approach, any external memory views used in the body of the
lambda function are automatically captured when the context is closed, forming
a set of critical data structures that can be checkpointed and used to restart. In
turn, the resilient execution context will handle all other aspects automatically:
when to checkpoint, how to serialize the critical memory views, and so on. An
example of how this works is illustrated in Listing 1. It is important to note
that this approach grants high levels of flexibility: users can simply compose
multiple scoped resilient execution contexts, each with its own lambda captures
and therefore an implicit minimal set of critical memory views. Therefore, users
are freed from manually keeping track of what data structures are critical in
all alternative paths of their code. This would normally be a cumbersome pro-
cess that is both prone to errors (for example, if the user forget to checkpoint
a critical data structure) and sub-optimal performance (checkpointing a data
structure that is not critical).

Optimized tracking of critical memory views: Our goal is to avoid in-
troducing a new construct that forces the developers to differentiate between
“regular” and critical memory views, which is why users are allowed to capture
regular memory views in resilient execution contexts. When it is time to check-
point, a naive approach would be to serialize all captured memory views into a
checkpoint file and continue the execution. However, such an approach is inef-
ficient for several reasons. First, memory views may be reinterpreted or copied
in multiple execution contexts, but only one instance is enough to reconstruct
the state on restart. In this case, we allow memory views to be marked as tran-
sient (checkpoint not required) or aliased by a unique identifier. Aliasing views
allow the runtime to track two views with different names as the same. This is
primarily useful for adapting codes where a view is replaced by another that is
functionally the same but has a different allocation. An example of this would
be a double-buffering algorithm, where two views are named differently but are
swapped so only one is mutable at a time. While aliasing can be used to ensure
correctness of some code, it isn’t necessary in most cases. Marking a view as
transient does not affect correctness, but can provide some performance benefits
by reducing checkpointing size.

All views are reference counted intrinsically; a memory view is checkpointed
only once even if it is captured multiple times. The combination of aliasing and
reference counting create a de-duplication opportunity that can significantly re-
duce the checkpoint sizes independently of the checkpoint backend. Further-
more, another optimization opportunity lies in the fact that memory views may
be read-only, which means either a different execution context was responsible
for generating it or can simply be regenerated on restart. Our approach can
detect what views are read-only based on their “const-ness”. This can be lever-
aged to take advantage of checkpointing backends that implement incremental
checkpointing techniques.

6 Latest Advances in Scalable Algorithms for Large-Scale Systems

const int dim0 = 5, dim1 = 5;
auto view = Kokkos::View< double ** >("test_view", dim0, dim1);

for (int iter = 0; iter < max_iter; ++iter) {
KokkosResilience::checkpoint(plugin, "test_checkpoint", iter, [=]() {

Kokkos::parallel_for(dim0, KOKKOS_LAMBDA(int i) {
for (int j = 0; j < dim1; ++j)

view(i, j) = 3.0;
});

});
}

Listing 1: Example usage of scoped resilient execution context.

Dynamic pluggable checkpointing backends: Once the minimal set of crit-
ical memory views was determined, our approach can transparently interface
with any checkpointing backend that was specifically optimized for a particular
scenario and/or machine. The translation from our unified model to the various
APIs of the checkpointing backends are implemented as independent plugins
that can be flexibly assigned by the users to each resilient execution context. In
fact, it is perfectly possible to mix different checkpointing backends in the same
application or even dynamically switch between them. Although outside of the
scope of this paper, it is important to note that this capability can be leveraged
as a building block for more advanced checkpointing approaches, such as dy-
namic decisions based on the size and/or content (such as applying compression
algorithms if the memory views are large and/or sparse).

5 Implementation

The resilience layer functions on two levels. The first level operates at compile
time and encompasses the definition of the resilient execution contexts and the
detection of views along with their type properties such as const-ness. The second
level is the runtime component that tracks view usage (as defined in the first
layer), aliases, and the interface with the checkpointing backend.

Defining the resilient execution context: In order to specify the actual
critical regions of code that must be made resilient through checkpoint/restart,
one must define the beginning and the end. In general, code in the resilient region
should have no side effects. If code inside the region were to modify global or
static variables, these would not be included in the checkpoint and could affect
correctness of the program during a restart. Under these assumptions, scoped
resilient execution contexts can be defined as lambda captures, as mentioned in
Section 4.

Listing 1 shows a simple usage scenario, where plugin is the resilience plugin,
test_checkpoint is the label and iter is the iteration number to be checkpointed. Fi-
nally, the scoped resilient context is specified as a lambda with input and output
views part of the lambda capture. Note that the user does not need to explicitly

Morales et al.: Towards High Performance Resilience using Performance Portable Abstractions 7

Kokkos::View< double * > ping(/*...*/), pong(/*...*/);
for (int i = 0; i < max_ts; ++i) {

Kokkos::View< const double * > read;
Kokkos::View< double * > write;
if (i % 2)

read = pong; write = ping;
else

read = ping; write = pong;
KokkosResilience::checkpoint(ctx, "iterate", i, [=]() {

Kokkos::parallel_for(/*...*/ , KOKKOS_LAMBDA(int j) {
write(j) = do_calculation(read);

});
});

}

Listing 2: Example of a ping-pong buffer for which a minimal set of critical
memory views is automatically detected by examining const-ness of all captured
views.

remember to capture a view; it is automatically captured by value. This incurs
a minimal overhead and does not create extra copies, because Kokkos views are
constructed as references. In the case that existing code makes extensive use of
global views, it is possible to explicitly capture the global variable (or make ref-
erence counted copies of the global that are implicitly used within the lambda)
to bring it under the scope of the resilience tracking algorithms.

Tracking of critical memory views: One of the primary features of our
approach, as outlined in the previous section, is the optimization of const Kokkos
memory views. Normally a view has a datatype associated with it (such as double).
If the datatype is instead const, such as const double, the view becomes immutable.
Kokkos already provides conversions from mutable to const views that work as
expected; similarly these views share the same reference count and control block.
We take advantage of this fact in our implementation; when a view is only used in
a checkpoint region for reading, marking it as const will prevent the runtime from
needing to checkpoint the view. This can be determined at compile time, when
the lambda capture list is built. This is straightforward with C++ function over-
loading. List-building is delegated to two functions, one taking a templated const
view type, and another taking a non-const view type. In this way, const views
can be filtered from the checkpoint list. Of course, this relies on some input by
the user in marking const views; however this is generally well-accepted practice
both in C++ programming in general and Kokkos code. We apply the same
principle for transient views, while aliased views are de-duplicated at runtime.

To illustrate this point, consider the following example in Listing 2: a buffer
that is written to changes every iteration. However, only one buffer should be
actually checkpointed, since the other one is redundant. Since the read buffer is
not written to and is const, it can be ignored. On a restart the write buffer would
be loaded and immediately swapped into the new read buffer. This automatic
optimization would, in this example, lead to a 50% reduction in checkpoint size
as opposed to checkpointing every view.

8 Latest Advances in Scalable Algorithms for Large-Scale Systems

Checkpointing backend integration: Our research prototype implements a
plugin for VELOC [19], a low overhead checkpointing runtime specifically de-
signed to deliver high performance and scalability for HPC machines thanks to a
combination of multi-level resilience strategies that are applied asynchronously.
VELOC is a particularly well suited candidate for illustrating our proposal be-
cause it implements a memory-oriented API that separates the registration of
critical memory regions from the actual checkpointing operations, thereby sim-
plifying the integration.

Specifically, we automatically register and unregister the Kokkos memory
views with VELOC as contiguous memory regions defined by pointer and size
whenever this is possible, which gives VELOC direct memory access and there-
fore reduces the checkpointing overhead. However, in the case of views with
non-contiguous layout or views in inaccessible memory (e.g., GPU memory) that
cannot be directly registered/unregistered with VELOC, we have implemented a
proxy layer that collects all non-contiguous and/or inaccessible memory regions
into a host buffer, which in turn is then registered with VELOC. At the start
of any subsequent checkpoint, the runtime synchronizes with the backend and
completes any pending asynchronous operations.

In addition to VELOC, we have implemented a simple synchronous approach
that writes the checkpoints directly to a parallel file system. Based on this initial
set of plugins, we plan to interface with several other backends.

6 Results

6.1 Experimental setup

2 8 32 128

Number of Views

0.00

0.01

0.02

0.03

0.06

T
im

e
(s
)

RKokkos + VeloC

VeloC Only

Fig. 1. Stress-test results for a weak scalability experiment that involves an increas-
ing number of checkpointed memory views. The comparison refers to the bookkeeping
overhead related to tracking the memory views using our approach vs. manual regis-
tration using VELOC. Checkpointing is deactivated, but tracking is still active. This
timing data includes compute time.

Morales et al.: Towards High Performance Resilience using Performance Portable Abstractions 9

Our experiments were carried out on an experimental testbed at Sandia Na-
tional Laboratories featuring 1488 compute nodes, each equipped with 2.1 GHz
Intel Broadwell CPUs (36 cores, 72 hardware threads). The memory of each node
is 128 GB of RAM. Omni-Path interconnect is used between the nodes, which
is exposed through OpenMPI v.4.0. All compute nodes have access to a Lustre
parallel file system to persist their data.

In terms of software ecosystem, we forked Kokkos v.3.0 and added our scoped
resilient execution abstraction on top of it. The VELOC checkpoint plugin was
written for VELOC v.1.4, which features a client library and an encapsulated
resilience engine that can be either linked with the application as a synchronous
checkpointing library, or as a separate service in an active backend that enables
asynchronous support. Our experimental setup leverages the latter to improve
the checkpointing efficiency. Furthermore, VELOC was configured to use a tmpfs

in-memory filesystem based on shared memory (/dev/shm) in order to minimize the
overhead of capturing local checkpoints, which are then flushed asynchronously
to Lustre.

2 4 6 8 10 12 14 16

Number of Ranks

0.8

0.9

1.0

1.1

1.2

T
o
ta
l
T
im

e
(s
)

Without Optimization

With Const Optimization

Fig. 2. Weak scaling of the ping-pong microbenchmark (Section 5) with and without
the const memory view tracking optimization. The checkpoint size is 50% smaller
when the const-tracking is activated, which significantly improves the checkpointing
performance.

6.2 Methodology

To evaluate our proposal, we devise a series of experiments that mix both syn-
thetic benchmarks and real-life HPC applications.

Specifically, we designed two micro-benchmarks to evaluate particular as-
pects of our implementation in order to understand potential limitations and
bottlenecks in extreme cases. These will be discussed in the rest of this section
along with the results. In addition, we use two scientific mini-apps:

10 Latest Advances in Scalable Algorithms for Large-Scale Systems

MiniMD: is a parallel molecular dynamics application written using Kokkos
abstractions for the Mantevo 3 project. We forked the code and implemented
resilience using the abstractions of our proposal, as discussed in Section 5.

HeatDis: is a heat distribution solver (HeatDis) that is used as an example
by VELOC 4. First, we parallelized HeatDis with Kokkos, but kept the original
resilience implementation that calls VELOC directly. Next, we re-implemented
the resilience in the Kokkos-enabled HeatDis using our own abstractions.

We conducted experiments at scale using multiple nodes, each of which lever-
ages the available cores using OpenMP-based Kokkos, which was configured to
use 70 threads. Although VELOC is designed to prevent interference with the ap-
plications during asynchronous checkpointing, we decided to eliminate this noise
from our experiments by allocating the remaining core (2 hardware threads) on
each compute node exclusively to the VELOC active backend.

6.3 Results: Microbenchmarks

First, we ran a series of experiments to understand the overheads that are in-
troduced by our approach due to tracking of the memory views. To this end, we
compare our approach with a baseline that relies on manual registration of the
critical data structures using VELOC. To emphasize this overhead as much as
possible, we do not perform an actual checkpoint (they are converted to no-ops),
which means the runtime directly measures the bookkeeping overhead of track-
ing overhead vs. manual registration. Since most of our implementation relies
on compile-time constructs with some runtime tracking, we expect this over-
head to be negligible. This expectation is confirmed by the results in Figure 1,
which show a stable trend for an increasing number of checkpointed views: at
the extreme of 128 views, the overhead is less than 0.06 seconds, compared with
the bookkeeping overhead of VELOC which is 0.01. seconds. Given that most
applications need to checkpoint few but large data structures, we conclude that
our bookkeeping overhead is negligible.

Next, we evaluate the ping-pong microbenchmark that was discussed in Sec-
tion 5. This benchmark measures the reduction in checkpointing overhead of
using the const tracking optimizations versus a baseline case that is not using
them. The benchmark exhibits a 50% reduction in checkpointing size due to
const tracking (i.e., only one out of two equally sized memory views is check-
pointed). As observed in Figure 2, this translates in practice to an almost 30%
speedup over the non-optimized version.

6.4 Results: HPC Mini-apps

In order to analyze the performance of our approach in a holistic manner, we per-
formed several scaling experiments with the two scientific mini-apps mentioned
in Section 6.2.
3 Original implementation at https://github.com/Mantevo/miniMD
4 https://github.com/ECP-VeloC/VELOC

https://github.com/Mantevo/miniMD
https://github.com/ECP-VeloC/VELOC

Morales et al.: Towards High Performance Resilience using Performance Portable Abstractions 11

1 2 4 8 16

Number of Ranks

1 2 5
1
0 1 2 5

1
0 1 2 5

1
0 1 2 5

1
0 1 2 5

1
0

Number of Checkpoints

0

100

200

300

400

T
o
ta
l
T
im

e
(s
)

checkpoint time

compute time

Fig. 3. MiniMD : Breakdown of checkpointing time vs. compute time for a increasing
number of nodes and checkpoints in a weak scalability scenario over 1000 time steps.

Figure 3 shows a broad overview of the performance of our checkpointing
scheme on the MiniMD molecular dynamics app with 13 million atoms and 1000
timesteps. We vary both the number of checkpoints executed during the entire
simulation run and the number of ranks. MiniMD scales weakly, as we can see by
the red bars in the figure. Even at a high number of ranks, the checkpoints do not
become more expensive. Furthermore, a large number of checkpoints (one every
40 seconds) has very little impact on the total execution size for this problem.

2 4 6 8 10 12 14 16

Number of Ranks

400

410

420

430

440

450

T
o
ta
l
T
im

e
(s
)

Baseline

Single Failure

Fig. 4. MiniMD : Comparison of a baseline checkpoint every 200 iterations and a check-
point/restart with a failure at iteration 401 in a weak scalability scenario.

Figure 4 gives an overview of performance with a checkpoint every 200 iter-
ations with and without a failure.

In the MiniMD we also performed a brief evaluation of the reduction of code
complexity for the user. The three main data structures used in the application
contained a total of 65 views. Modifying the code for resilience required manual

12 Latest Advances in Scalable Algorithms for Large-Scale Systems

tracking of only the three objects; this represents a significant decrease in code
complexity compared to manually tracking all 65 views.

We performed another weak scaling study with the HeatDis heat solver mini-
app. In this case, we varied the problem size (which directly corresponds to the
size of the checkpoints). We compare a run that takes ten checkpoints (one every
100 iterations) without restart (Figure 5) and a run that does the same but also
restarts from the third checkpoint (by simulating a failure at iteration 301). The
results are depicted in Figure 6).

2 4 8 16

Number of Ranks

64.00

128.00

256.00

512.00

T
im

e
(s
)

1GB

2GB

4GB

8GB

16GB

Fig. 5. HeatDis: Total runtime for an increasing number of ranks and checkpoint size
per rank in a weak scalability scenario without restart (1000 iterations, checkpoint
every 100 iterations).

As can be observed for both MiniMD and HeatDis, the evaluated scenarios
exhibit minimal overhead due to checkpoint-restart, which is the result of com-
bining optimized memory tracking with the asynchronous techniques introduced
by VELOC. Based on the bookkeeping experiments discussed in Section 6.3,
memory tracking has negligible overhead, while enabling automated checkpoint-
ing with minimal coding effort. Indeed, for our benchmarks and applications, a
single lambda declaration (i.e., a single line of code) to wrap the code into a
resilient execution context was enough to take advantage of the advanced check-
pointing techniques exposed by VELOC.

From a qualitative perspective our approach solves three important chal-
lenges that manual checkpointing faces: (1) difficulty in identifying the critical
data structures in complex codes that combine multiple execution contexts; (2)
inefficient checkpoints that duplicate critical data structures or include data
structures that are not critical; (3) deciding best moment to checkpoint the
critical data structures.

Morales et al.: Towards High Performance Resilience using Performance Portable Abstractions 13

2 4 8 16

Number of Ranks

64.00

128.00

256.00

512.00

T
im

e
(s
)

1GB

2GB

4GB

8GB

16GB

Fig. 6. HeatDis: Total runtime for an increasing number of ranks and checkpoint size
per rank in a weak scalability scenario with restart (1000 iterations, checkpoint every
100 iterations, restart at iteration 301).

7 Conclusion and Future Work

Our contribution is designed to provide convenient and efficient checkpointing
for performance portable HPC applications. Our work extends the performance
portable abstraction to that of resilience portability, allowing existing code to
be made resilient with minimal changes. Moreover, we use type information
determined at compile time to analyze the usage of resilient data, permitting the
use of optimization based on usage patterns. We demonstrate the performance
results of our work on various mini-apps and microbenchmarks. We show that
compared to manually invoking state-of-the art resilience backends, we introduce
negligible overhead.

In the future we would like to extend the idea of compiler analysis. Although
compile-time data-flow analysis using C++ lambda introspection provides a use-
ful way to determine inputs and outputs of checkpoint regions, a compiler pass
could enable more robust detection, including analyzing any side-effects from
references to global variables or static objects. Furthermore, we would like to
extend our approach to a greater variety of backends and applications in order
to understand better any performance implications and usability issues.

Acknowledgments

This material is based upon work supported by the U.S. Department of Energy (DOE),
Office of Science, Office of Advanced Scientific Computing Research, under Contract
DE-AC02-06CH11357. Sandia National Laboratories is a multimission laboratory man-
aged and operated by National Technology & Engineering Solutions of Sandia, LLC,
a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department
of Energy’s National Nuclear Security Administration (NNSA) under contract DE-
NA0003525. This work was funded by NNSA’s Advanced Simulation and Computing
(ASC) Program. This paper describes objective technical results and analysis. Any

14 Latest Advances in Scalable Algorithms for Large-Scale Systems

subjective views or opinions that might be expressed in the paper do not necessarily
represent the views of the U.S. Department of Energy or the United States Government.

References

1. Baird, M., Fensch, C., Scholz, S.B., Šinkarovs, A.: A lightweight approach to GPU
resilience. In: European Conference on Parallel Processing. pp. 826–838. Springer
(2018)

2. Bautista-Gomez, L., Tsuboi, S., Komatitsch, D., Cappello, F., Maruyama, N., Mat-
suoka, S.: FTI: High performance fault tolerance interface for hybrid systems. In:
SC ’11: The 2011 ACM/IEEE International Conference for High Performance Com-
puting, Networking, Storage and Analysis. pp. 32:1–32:32. Seattle, USA (2011)

3. De Kruijf, M., Nomura, S., Sankaralingam, K.: Relax: An architectural framework
for software recovery of hardware faults. In: ACM SIGARCH Computer Architec-
ture News. vol. 38, pp. 497–508. ACM (2010)

4. Di Martino, C., Kalbarczyk, Z., Iyer, R.K., Baccanico, F., Fullop, J., Kramer, W.:
Lessons learned from the analysis of system failures at petascale: The case of blue
waters. In: 2014 44th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks. pp. 610–621. IEEE (2014)

5. Di Martino, C., Kramer, W., Kalbarczyk, Z., Iyer, R.: Measuring and understand-
ing extreme-scale application resilience: A field study of 5,000,000 HPC application
runs. In: 2015 45th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks. pp. 25–36. IEEE (2015)

6. Docan, C., Parashar, M., Klasky, S.: Dataspaces: An interaction and coordination
framework for coupled simulation workflows. Cluster Computing 15(2), 163–181
(2012)

7. Duan, S., Subedi, P., Teranishi, K., Davis, P., Kolla, H., Gamell, M., Parashar,
M.: Scalable data resilience for in-memory data staging. In: 2018 IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS). pp. 105–115.
IEEE (2018)

8. Edwards, H.C., Trott, C.R., Sunderland, D.: Kokkos: Enabling manycore perfor-
mance portability through polymorphic memory access patterns. Journal of Par-
allel and Distributed Computing 74(12), 3202–3216 (2014)

9. Gamell, M., Katz, D.S., Kolla, H., Chen, J., Klasky, S., Parashar, M.: Exploring
automatic, online failure recovery for scientific applications at extreme scales. In:
SC’14: Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis. pp. 895–906. IEEE (2014)

10. Gamell, M., Katz, D.S., Teranishi, K., Heroux, M.A., Van der Wijngaart, R.F.,
Mattson, T.G., Parashar, M.: Evaluating online global recovery with fenix using
application-aware in-memory checkpointing techniques. In: 2016 45th International
Conference on Parallel Processing Workshops (ICPPW). pp. 346–355. IEEE (2016)

11. Gamell, M., Teranishi, K., Heroux, M.A., Mayo, J., Kolla, H., Chen, J., Parashar,
M.: Local recovery and failure masking for stencil-based applications at extreme
scales. In: SC’15: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. pp. 1–12. IEEE (2015)

12. Gamell, M., Van der Wijngaart, R.F., Teranishi, K., Parashar, M.: Specification
of Fenix MPI Fault Tolerance library version 1.0. Tech. rep., Technical Report
SAND2016-9171, Sandia National Laboratories, Livermore, CA (2016)

Morales et al.: Towards High Performance Resilience using Performance Portable Abstractions 15

13. Hornung, R.D., Keasler, J.A.: The RAJA portability layer: overview and status.
Tech. rep., Lawrence Livermore National Lab.(LLNL), Livermore, CA (United
States) (2014)

14. Hukerikar, S., Engelmann, C.: Resilience design patterns: A structured approach to
resilience at extreme scale. Tech. Rep. ORNL/TM-2016/767, Oak Ridge National
Laboratory, Oak Ridge, TN, USA (Dec 2016)

15. Laguna, I., Richards, D.F., Gamblin, T., Schulz, M., de Supinski, B.R., Mohror,
K., Pritchard, H.: Evaluating and extending user-level fault tolerance in MPI appli-
cations. The International Journal of High Performance Computing Applications
30(3), 305–319 (2016)

16. Losada, N., Bosilca, G., Bouteiller, A., González, P., Mart́ın, M.J.: Local rollback
for resilient MPI applications with application-level checkpointing and message
logging. Future Generation Computer Systems 91, 450–464 (2019)

17. Martsinkevich, T., Subasi, O., Unsal, O., Cappello, F., Labarta, J.: Fault-tolerant
protocol for hybrid task-parallel message-passing applications. In: 2015 IEEE In-
ternational Conference on Cluster Computing. pp. 563–570. IEEE (2015)

18. Moody, A., Bronevetsky, G., Mohror, K., De Supinski, B.R.: Design, modeling, and
evaluation of a scalable multi-level checkpointing system. In: SC’10: Proceedings of
the 2010 ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis. pp. 1–11. IEEE (2010)

19. Nicolae, B., Moody, A., Gonsiorowski, E., Mohror, K., Cappello, F.: VeloC: To-
wards high performance adaptive asynchronous checkpointing at large scale (2019)

20. Silveira, A., Ávila, R.B., Barreto, M.E., Navaux, P.O.A.: DPC++: object-oriented
programming applied to cluster computing. In: Arabnia, H.R. (ed.) Proceedings of
the International Conference on Parallel and Distributed Processing Techniques
and Applications, PDPTA 2000, June 24-29, 2000, Las Vegas, Nevada, USA.
CSREA Press (2000)

21. Subasi, O., Arias, J., Unsal, O., Labarta, J., Cristal, A.: Nanocheckpoints: A
task-based asynchronous dataflow framework for efficient and scalable check-
point/restart. In: 2015 23rd Euromicro International Conference on Parallel, Dis-
tributed, and Network-Based Processing. pp. 99–102. IEEE (2015)

22. Teranishi, K., Heroux, M.A.: Toward local failure local recovery resilience model
using MPI-ULFM. In: Proceedings of the 21st European Mpi Users’ Group Meet-
ing. p. 51. ACM (2014)

23. Tseng, S.M., Nicolae, B., Bosilca, G., Jeannot, E., Cappello, F.: Towards portable
online prediction of network utilization using MPI-level monitoring. In: EuroPar’19
: 25th International European Conference on Parallel and Distributed Systems. pp.
1–14. Goettingen, Germany (2019)

24. Van Der Wijngaart, R.I., Gamell, M.R.U., Teranishi, K., Valenzuela, E., Heroux,
M.A., Parashaar, M.R.U.: Fenix; a portable flexible fault tolerance programming
framework for MPI applications. Tech. rep., Sandia National Lab.(SNL-NM), Al-
buquerque, NM (United States) (2016)

	Towards High Performance Resilience using Performance Portable Abstractions

