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RADAR - Regression based energy-Aware DAta
Reduction in WSN: Application to Smart Grids

Bashar Chreim, Jad Nassar and Carol Habib

Abstract The evolution towards Smart Grids (SGs) represents an important oppor-
tunity for the energy industry. It is characterized by the integration of renewable
and alternative energy resources into the existing power grids while ensuring a fine-
grained control for the different measuring points. Therefore, this evolution requires
the ability to send a maximum of data over the network in real time while con-
trolling the grid. A Wireless Sensor Network (WSN) deployed across the grid is
a potent solution to achieve this task. However, sensor nodes have limited energy
and computation resources especially the battery powered ones. For that, reducing
transmission is an essential priority in order to increase the lifetime of the network.
Data prediction is a widely used, yet effective, solution in literature to accomplish
this task. In this paper, we propose a Quality of Service (QoS) aware algorithm
based on time series prediction and linear regression for data prediction in WSN.
We test our approach in a SG context on real data traces of photo-voltaic cells. Our
algorithm takes into consideration the diversity of applications of SGs with different
requirements while being energy efficient. Our results show that our proposal pro-
vides satisfactory results compared to literature solutions in terms of data reduction
percentage, Root Mean Square Error (RMSE) and energy consumption.
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1 Introduction

The evolution towards Smart Grids (SGs) represents an important opportunity to
shift the energy industry into a new era of reliability, availability and efficiency [1].
This transformation will offer huge advantages for the stake holders by giving them
a broader vision, management and control of the grid while lowering the costs,
as well as to the customers, making their daily life more comfortable and conve-
nient [2]. This evolution is manifested by (1) the integration of renewable energy
resources all over the grid, (2) a two-way communication between the utility and the
customers and (3) automated decisions of the smart connected devices. Therefore,
these changes require the ability to transmit in real time a maximum of data over
the network, in order to monitor and control the different heterogeneous decentral-
ized energy resources. A WSN deployed all over the grid on the different measuring
and control points, is a potential and plausible solution to be used with SGs [1].
Moreover, in a SG, electricity and energy do exist, but connecting sensor nodes to
such high voltage with intermittent and ill-adapted energy levels is sometimes in-
appropriate or physically impossible. For that, battery-powered sensor nodes must
be deployed all over the grid, in order to ensure data transmission from source to
destination node.

In a WSN, monitoring, processing and transmitting are the main tasks accom-
plished by sensor nodes. These sensors have limited energy and computation re-
sources [3]. Each time interval, source nodes perform data sampling and transmis-
sion to the destination, via a set of sensor nodes distributed across the network.
However, most of the time, sensed values do not change significantly between con-
secutive readings. This is all true to some SG applications as well (i.e., photo-voltaic
cells monitoring). Sending these samples periodically will cause exhaustion of the
batteries of sensor nodes (knowing that wireless communication is considered the
major energy consumer [3]) and information redundancy at the destination. For that,
and in order to maximize sensor nodes lifetime, data reduction has proven to be a
potent solution. This is done by reducing the data transmission rate or aggregating
data packets within the network.

In literature, data reduction techniques have been widely used for WSN appli-
cations [4]. However these techniques are limited to specific applications. This is
mainly due to their parameters (e.g., filter length, step size) that need to be tuned
to adapt to a particular data type (e.g., temperature, humidity). Therefore, these
techniques need specific customization before being used in SG applications which
are characterized by their heterogeneity in terms of QoS requirements and data
types [5]. For the rest of the paper, we will refer to data type by variable.

In this paper, we propose RADAR, an energy efficient data reduction algorithm
based on data prediction. It uses time series prediction and linear regression models.
We note that in a previous work [6], we presented the concept of our algorithm.
More precisely, our algorithm exploits correlations among different variables col-
lected from photo-voltaic cells and creates automatically a prediction model for
each variable. A time series prediction model is used to predict one of these vari-
ables, and the rest of them are predicted using linear regression models. To the best
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of our knowledge, our work is the first effort to apply linear regression in data re-
duction for WSNs combined with a time series prediction model.

RADAR is tested on real data traces obtained from photo-voltaic cells. Simulation
results show that our approach provides satisfactory results compared to literature
solutions in terms of energy efficiency and RMSE, while reducing data transmission
in the wireless network.

The rest of the paper is organized as follows: Section 2 presents a summary of
related work. Section 3 describes our proposed solution. Section 4 shows the simu-
lation setup and environment used to validate our proposition. Section 5 describes
the performance evaluation of our approach and remaining issues are discussed in
section 6. Finally, section 7 concludes the paper.

2 Related Work

Data reduction techniques can be divided into three main categories [4]: data com-
pression, In-network processing and data prediction (Figure 1). The main idea be-
hind data compression is that processing data consumes much less power than trans-
mitting it [7]. For that, data is compressed/aggregated before leaving the source node
using compression and aggregation techniques [7, 8]. Unlike data compression, the
process of aggregation in In-network processing is applied at intermediate nodes
between the source and the destination [9–11]. Therefore, the amount of data is re-
duced over the network while traversing towards the destination. In data prediction,
the amount of data transmitted by the sensor nodes is reduced by predicting the
sensed values using specific models. Usually, the network maintain two instances of
each prediction model, one residing at the source node and the other at the destina-
tion node, this is called Dual Prediction Scheme (DPS) [12]. It consists of running
an instance of the model on both the source and destination nodes. The destination
node will start answering queries using the values predicted by its model, without
any communication with the source node. However, if the difference between the
predicted and the sensed value is greater than a certain threshold, the source node
will send its sensed value to the destination. In the current work, data prediction is
the point of our interest.

Fig. 1: Classification of energy saving in sensor networks
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In literature, numerous studies focused on developing data prediction techniques
in WSNs. In [13], the authors used Auto Regressive Integrated Moving Average
(ARIMA) model for the information collection scheme. In their approach, the sink
node uses historical data to build up an appropriate time series prediction model for
each sensor node and send back its parameters to build the same model. In [14],
the authors proposed a prediction scheme using Seasonal ARIMA (SARIMA) model
for short term prediction that can predict using only limited input data. This model
is used to predict traffic flow. The main drawback with these methods is their re-
quirement of high memory and computational overhead to initially build the model
and to re-compute it when outdated. In [15], Least Mean Square (LMS) algorithm is
used for data prediction in WSN. It consists of running two instances of the model
at the sensor and the sink node, applying dual prediction scheme (DPS). The main
complexity when using LMS is the task of choosing the best parameters to fit to a
specific data type. In [16], the authors proposed a modification for the LMS algo-
rithm by adding a phase of initialization and parameters determination. They varied
the algorithm parameters within specific intervals, and selected those that minimize
the RMSE. All described techniques have been successfully used in WSN applica-
tions, but it is important to note that for each type of application, the parameters
must be computed. In addition, for the same variable, parameters may not fit for
all different QoS necessities. For example, for different temperature based appli-
cations (e.g., solar power forecasting, solar irradiance prediction), the determined
model parameters (e.g., filter length, step size) may not fit to all these applications.
In fact, this is mainly due to having several difference thresholds between sensed
and predicted values based on the application needs [16].

Moreover, other work focused on linear regression for data prediction [17–19].
In [18], the authors used multiple linear regression (MLR) to predict solar intensity
from a set of weather metrics. In [19], the authors determined the most influential
features for predicting photo-voltaic production, using linear regression. However,
in these work, all input variables need to be available all the time in order to predict
a single output. In other words, sensor nodes that are responsible of collecting the
value of these variables need to execute the transmission task all the time, which
may exhaust the batteries of the sensor nodes after a period of time.

3 Proposed Solution

The purpose of our contribution is to create an autonomous prediction algorithm
(RADAR) for heterogeneous applications (e.g., photo-voltaic cells monitoring, elec-
tric vehicles control) in WSN. It generates simultaneous prediction models for all
variables by exploiting linear correlation among them. This is done using two types
of models: time series prediction and linear regression. These models provide sat-
isfactory and accurate results while being simple and lightweight which is the most
beneficial in energy limited WSNs.
The idea is to predict the first selected variable (from a set of pre-identified vari-



RADAR in WSN: Applications to Smart Grids 5

ables) using a time series prediction model. Here, the prediction algorithm could
be any time series model from the state of the art. In our case we used SARIMA as
the benchmark model. After that, this variable will allow us to predict the remain-
ing ones using linear regression models (simple linear regression (SLR) for the first
iteration followed by MLR for the remainders). All of that is based on the linear
correlation between every couple of variables. As already mentioned, by variable
we mean the different data types (e.g., temperature, humidity) that we used in our
simulation. In the rest of this section, we will detail the steps of RADAR that is rep-
resented in algorithm 1. We will consider an example of variables from Table 1 to
support our explanation.

Table 1: Correlation matrix showing correlations between variables

Temperature Humidity Irradiance Current BP
Temperature 1 -0.8154 +0.7748 +0.6791

Humidity -0.8154 1 -0.7906 -0.6673
Irradiance +0.7748 -0.7906 1 +0.7464
Current BP +0.6791 +0.6673 +0.7464 1

• Our algorithm takes as input a dataset with a random number of variables (e.g.,
temperature, humidity).

• In the first step, the correlation matrix (CM) is built (line 2 in Algorithm 1). It
represents the correlation coefficient of each couple of variables (Table 1).

• After that, the negative values are replaced by their absolute ones in the CM
(since the positive and negative values have the same impact on the correlation
coefficients).

• In the next step, the maximum value (Max) in the matrix must be identified (line
8 in Algorithm 1). It represents the correlation coefficient of the most correlated
couple of variables (e.g., the temperature and the humidity in Table 1 with the
value -0.8154).

• A time series prediction model (Model 1 in Table 2) is created using SARIMA [14]
for one variable of the couple, randomly selected (the temperature per example in
this case). This variable will be predicted at the destination based on the SARIMA
model.

• The output of this time series model is used as input to create an SLR model
(line 11 in Algorithm 1), using the formula presented in [20]. It predicts the sec-
ond variable previously identified. Since we chose the temperature as a random
variable in the previous step, the humidity will then be the output of the current
model (Model 2 in Table 2).

• The next model (Model 3) should be created now by identifying the next maxi-
mum value in the matrix (in Table 1). It is an MLR model, and takes as input the
outputs of the previous created models (line 17 in Algorithm 1).
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• This final step is repeated until prediction models are created for all variables
(Model 4 in our example is the last model). Our algorithm returns a matrix that
represents the input/s and output variable/s of each created model.

• Once the execution of the algorithm finishes, all the prediction models are cre-
ated. The prediction process can now take place.

ALGORITHM 1 : Data prediction algorithm

Require: Dataset
Ensure: Prediction Models

1: Count← NbO fVariables(dataset) //Number of needed models
2: CM← BuildCorrelationMatrix()
3: for each value in CM do
4: if value < 0 then
5: value← |value|
6: end if
7: end for
8: Max←CM.MaximumValue()
9: X ,Y ←Max.IndexInCM()

10: SARIMA(X)
11: SLR(X , Y )
12: Count←Count−2
13: Max← 0 //Replace maximum by zero in the matrix
14: repeat
15: Max←CM.MaximumValue()
16: X ,Y ←Max.IndexInCM()
17: MLR(X and all previous out puts, Y )
18: Max← 0
19: Count←Count−1
20: until Count == 0 //Each variable has its prediction model

In a nutshell, RADAR works as follows: a time series prediction model will pre-
dict the upcoming value of one of the variables of the applications. Next, the pre-
dicted value is used as input by an SLR model to predict the value of the second
variable. Then, MLR models are executed simultaneously by taking the predicted
values to predict the value of the next corresponding variable, and so on. DPS is
applied by implementing the algorithm on both the source and the destination node
in a WSN. It uses the predicted values from the models to answer queries, with-
out any communication with the sensor node. The source node continue sensing the
data and predicting the values without sending them over the network. The sensed
value is sent to the destination only when there is a difference between this value
and the predicted value, that is greater than a certain threshold. Indeed, the stronger
the correlation among variables, the higher the accuracy of the predicted values.
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4 Simulation Setup

In order to evaluate our proposition and compare it to existing approaches, we use
real sensor values from NREL National Wind Technology Center [21]. We consider
the temperature, humidity, global horizontal irradiance1 and current black photon2

between 01/06/2019 and 31/07/2019 with a fixed sampling rate of one sample every
minute. For each variable, we consider five different thresholds. We note that these
thresholds were chosen randomly and can be adjusted for specific QoS needs.

Our approach is compared to LMS_MOD [16] and SARIMA [13]. These algo-
rithms have different parameters that must be computed. For that, we applied the
same methodologies used in the corresponding papers for the tuning process. We
would like to point out that the tuning process is repeated five times for each vari-
able based on the different thresholds.

We consider a one hop communication environment with no loss in order to prove
the efficiency of our proposal in an optimal case scenario. Simulations were con-
ducted using Python language, and executed in a Raspbian environment, installed
on a Raspberry Pi 3. It has a 1.4GHz Arm Cortex-A53 quad-core CPU and 1GB of
RAM. The main idea of using Raspberry Pi for simulation is to be able to measure
the power consumed by the algorithm (the process of measurement will be detailed
in section 5.3).

4.1 Data Preparation

Our proposed solution is based on linear regression. This method uses least squares
method in order to calculate its best parameters. However, this method is very sen-
sitive to outliers [22]. For that, before running our algorithm, we cleaned up our
dataset by eliminating abnormal observations (i.e., negative values, erroneous val-
ues). We note that the dataset is then splitted between training and testing (75% and
25% respectively).

4.2 Building Models

Our algorithm presented in Section 3 is executed taking as input the pre-processed
dataset. Table 1 shows the correlation coefficients for the existing variables in the
dataset using Pearson correlation coefficient. Based on the values of this matrix, the
algorithm creates a prediction model for each variable. Table 2 shows the output of
the algorithm. Each row of this table represents a prediction model for a specific
variable. The first model is a time series prediction model for temperature. The

1 Global horizontal irradiance represents the total solar radiation incident on a horizontal surface
2 Current black photon represents the current generated by photo-voltaic cells
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second one uses an SLR model, and takes as input the temperature and predicts the
humidity. the third and fourth models use the MLR, and take as inputs and output
the variables denoted by "Input" and "Output" simultaneously in the table.

Table 2: Models structure table showing input/s and output for each model created

Temperature Humidity Irradiance Current BP
Prediction Model 1 Output - - -
Prediction Model 2 Input Output - -
Prediction Model 3 Input Input Output -
Prediction Model 4 Input Input Input Output

5 Performance Evaluation

The performance of our algorithm is evaluated using different metrics: Data reduc-
tion percentage, RMSE and energy consumption. Each of these will be discussed in
the following subsections. We note that the temperature variable is not mentioned
below in the metrics, since it is predicted in RADAR using SARIMA model as already
detailed in Section 3 (It is the first variable selected in RADAR steps).

5.1 Data Reduction Percentage

Data reduction percentage corresponds to the number of packets whose predicted
values fall within the range of the chosen threshold, and therefore not transmitted to
the destination node. Figures 2→ 4 show the data reduction percentage achieved for
our approach (RADAR), LMS_MOD and SARIMA. We can see that RADAR presents
higher reduction percentage than LMS_MOD for the humidity and current black
photon. Between 5 and 14% for humidity and between 23 and 34% for current black
photon. Concerning the global horizontal irradiance, the data reduction percentage is
close between RADAR and LMS_MOD with a slight improvement for our proposal.
This is mainly due to the parameters chosen for each variable in LMS_MOD, and
more precisely the size of the filter3 that may impact the data reduction percentage
when the filter size is bigger. However, the percentage of data reduction obtained
with SARIMA is higher than our proposition, and that because its forecasts are based
on previous values, that make the predicted values close to the real ones. While in
RADAR, the prediction is based on regression models which may affect the data

3 It indicates the number of packets to be transmitted to the destination node, when the model is in
the training phase or outdated
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reduction percentage in some cases. However, the gain achieved in SARIMA in terms
of data reduction percentage comes at the cost of a higher error rate and a more
consequent energy consumption percentage, which we will detail in the following
subsections.
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Fig. 2: Data reduction for Humidity
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Fig. 3: Data reduction for Current Black Photon

5.2 Root Mean Square Error

In order to identify how close the predicted results are from the real ones, we com-
pute the RMSE. It is calculated using the following formula:
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Fig. 4: Data reduction for Global Horizontal Irradiance

RMSE =

√
1
n

n

∑
i=1

(y[n]−u[n])2 (1)

Where n is the number of samples, u and y are two vectors representing the set of
real and predicted values respectively.
Figures 5 → 7 show the RMSE for the three methods, and for the different vari-
ables (temperature, irradiance and current black photon). We observe that for the
humidity, global horizontal irradiance and current black photon, our proposition has
a lower RMSE than LMS_MOD and SARIMA. This is mainly due to the cumulative
error that appear in time series models, because of the dependency of a predicted
value from the past ones. However, in our model, each value is independent from
others, and a prediction error does not affect the upcoming predictions.
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5.3 Energy Consumption

In order to estimate the energy consumed by the Raspberry Pi to execute each al-
gorithm, we used a USB power and energy meter module. It measures the energy
consumption during a specific period of time. It is connected to the Raspberry Pi via
the USB port.

First, we measure the energy consumption for a period of five minutes, where no
tasks are carried out by the Raspberry Pi. Afterwards, the same test for five min-
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utes is repeated on the Raspberry for the different algorithms respectively (RADAR,
SARIMA and LMS_MOD). The energy consumed by the algorithm is computed us-
ing the formula below:

E_Consumed = E_Algorithm−E_Idle (2)

Where E_Consumed is the net energy while executing the algorithm, E_Algorithm
and E_Idle represent the energy consumed by the Raspberry Pi when it’s executing
an algorithm and when it’s not, respectively.

Table 3 shows the energy consumption and the processing time needed by our al-
gorithm (RADAR), LMS_MOD, and SARIMA, to predict the set of variables. We no-
tice that RADAR consumes less energy than LMS_MOD (10.8 Joules for RADAR vs
43.2 Joules for LMS_MOD), this is because LMS_MOD includes the previous values
in the prediction phase, and thereby increases the time required for the prediction
task which will consume more energy. Moreover, RADAR presents a huge improve-
ment in terms of energy reduction compared to SARIMA (10.8 Joules for RADAR
vs 579.6 Joules for SARIMA). This is mainly due to SARIMA training and testing
phase that require recreating instances of the model so often which will result in a
high energy consumption [13]. We would like to point out that in order to predict a
set of variables, each one of these requires an instance of a prediction model. There-
fore, to predict X variables based on SARIMA [14] or LMS_MOD [16] approaches,
X time series instances of these models must be created. In RADAR, the prediction
of X variables requires the use of only one instance of the time series model. In
other words, in this example, SARIMA and LMS_MOD use 4 instances each, while
RADAR uses only one instance of SARIMA, thus reducing the energy consumption
significantly. The processing time is also more advantageous for RADAR compared
to SARIMA and LMS_MOD for the same reasons stated above.

Table 3: Energy consumption and processing time

RADAR LMS_MOD SARIMA
Energy Consumption (Joules) 10.8 43.2 579.6

Processing Time (Milliseconds) 27.1 29.8 153790

6 Discussion

Before coming to our conclusions, we discuss some relevant issues in our approach.
Despite having shown efficiency for different variables, by reducing RMSE, energy
consumption and ensuring a high reduction percentage, some minor potential is-
sues should be highlighted. Knowing that our approach is based on linear regression
models, strong relationships/correlations between variables are required to obtain
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accurate predictions. For that, low relationships can affect negatively the perfor-
mance of our algorithm. In this case, a correlation threshold should then be fixed
in order to apply our algorithm. Furthermore, our simulations were conducted on
Python considering a no loss scenario of packets over the network. In a real sensor
network our model could rise a reliability issue; in a real WSN with interference
and losses, if the message containing the reading message transmitted by the sensor
is lost, the model at the destination will go apart and the algorithm will predict erro-
neous values. This should be carefully handled by sending regular control messages
per example in order to maintain the synchronization between the sink and the sen-
sor nodes. This issue was not addressed in this work since its main focus was to test
the performance of the algorithm in the best cast scenario.

7 Conclusion and future work

In this paper, we presented a data prediction correlation based approach, that au-
tomatically generates prediction models for different heterogeneous variables. The
main advantage of our approach is the ability to adapt to different applications with
different requirements as per a SG environment while being energy efficient (if the
correlation requirements are satisfied). We tested our approach with real data traces
for photo-voltaic cells and performed simulations considering one hop communica-
tion networks. RADAR provides satisfactory results compared to primary literature
solutions. It shows a better performance compared to LMS_MOD in terms of RMSE,
data reduction percentage and energy consumption. Compared to SARIMA, it offers
a lower error percentage, while consuming much less energy. As future work, we
will continue testing our approach on different applications. Later on, we will im-
plement our algorithm in a real WSN scenario to evaluate its performance.
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