
HAL Id: hal-03260408
https://hal.science/hal-03260408v3

Preprint submitted on 13 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Weak subsumption in the EL-description logic with
refreshing variables

Théo Ducros, Marinette Bouet, Farouk Toumani

To cite this version:
Théo Ducros, Marinette Bouet, Farouk Toumani. Weak subsumption in the EL-description logic with
refreshing variables. 2021. �hal-03260408v3�

https://hal.science/hal-03260408v3
https://hal.archives-ouvertes.fr

Weak subsumption in the EL-description logic with
refreshing variables

Théo Ducros, Marinette Bouet, and Farouk Toumani

LIMOS, 1 rue de la Chébarde, Aubière 63178 France firstname.name@limos.fr

Abstract. In this paper, we study the problem of reasoning in description logics
with variables. More specifically, we consider refreshing semantics for variables
in the context of the EL description logic. We investigate a particular reason-
ing mechanism, namely weak subsumption, in presence of terminological cycles.
Weak subsumption can be viewed as a generalization of matching and unifica-
tion in presence of refreshing variables. We show that weak subsumption w.r.t.
greatest fix-point semantic is EXPTIME-complete. Our main technical results
are derived by establishing a correspondence between this logic and a specific
form of variable automata.

Keywords: Weak subsumption · cyclic TBox · refreshing variables · description
automaton · existential simulation.

1 Introduction

Concepts with variables (also called patterns) have been introduced in description log-
ics since the mid-nineties [19, 1] and led to a highly interesting research stream on the
so-called non-standard reasoning, specifically matching [8, 5] and unification [4]. As an
example, consider the following pattern P1 defined as a Person with a certain relation-
ship with a University.

P1 ≡ Person u ∃x.University

Here, the variable x takes its values from a set of possible atomic role names. Note
that, we restrict our attention on role variables while the techniques proposed in this
paper can be extended to handle concept variables. The concept description

Academic ≡ Person u ∃worksIn.University

matches the pattern P1. Indeed, if we replace the variable x by the role worksIn, the
pattern P1 becomes equivalent to the concept Academic. Replacing a variable x with a
value is called variable substitution. Given a descriptionC and a patternP , the matching
problem asks then whether there is a variable substitution such that C matches P . The
unification extends the matching to the case where C is itself a pattern. Matching in
FL0 has been shown polynomial [1] while considering general TBox induces a blow up
in complexity leading to EXPTIME [5]. On the other hand, matching in EL in presence
or not of TBoxes is NP-complete in both cases. Unification is NP-complete for EL in
presence of cycle restricted TBoxes while the general case remains open [4].

2 T. Ducros et al.

Consider now the case of a cyclic description of a pattern SAcademic:

SAcademic ≡ Person u ∃x.University u ∃y.SAcademic

Such a pattern describes SAcademic as persons that have (unknown) relationships with
universities and with SAcademics. Consider now the following concept descriptions:

Doctor = Person u ∃PhDfrom.University u ∃formerly.PhDStudent

PhDStudent = Person u ∃studyIn.University u ∃supervisedBy.Doctor

Using standard semantics of variable substitution, Doctor does not match the pat-
tern SAcademic (i.e., the corresponding matching problem is unsolvable). However,
the situation changes if variables x and y obtain the ability to have a local scope which
allows to bound them to potentially different values each time SAcademic is unfolded.
In other words, each unfolding would lead to specific independent instances of variables
x and y as illustrated below:

SAcademic ≡ Personu∃x1.Universityu∃y1.(Personu∃x2.Universityu∃y2.(. . .))

This feature leads to a new semantics of variable substitutions which enables to re-
fresh the values of the variables x and y in each description of the pattern SAcademic.
Hence, by alternating variable substitutions between {x 7→ PhDfrom, y 7→
formerly} and {x 7→ studyIn, y 7→ supervisedBy}, it is now possible to com-
pute a matcher that makes the pattern SAcademic equivalent to the concept Doctor.
Such variables, called refreshing variables, are inspired from the framework of variable
automata [11].

This paper studies the extension of description logics with variables equipped with
refreshing semantics. More specifically, we focus on a new description logic, called
ELV , that extends the description logic EL with refreshing variables. Our definition of
ELV -patterns deviates from the one used in the literature with respect to the following
features: (i) our definition of concept patterns uses role variables while the literature
focuses on concept variables, (ii) we support cyclic patterns definition and allow two
different types of semantics for variables (i.e., refreshing and not refreshing semantics).
We consider in particular a new reasoning mechanism in this context, called weak sub-
sumption, which extends matching and unification to logics with refreshing variables.
We show that testing weak subsumption between ELV -patterns is EXPTIME-complete.
Our main technical results are derived by establishing a correspondence between this
logic and a specific form of variable automata.

The paper is organized as follows. Section 2 deals with related works before pre-
senting technical notions and notations needed in this paper in Section 3. Section 4 is
devoted to the presentation of the description logic ELV , an extension of EL to handle
refreshing variables. Section 5 presents our main technical results regarding the prob-
lem of testing weak subsumption between ELV concepts. These results are obtained by
a reduction of the weak subsumption problem to a simulation problem between ELV -
description automata. We conclude and draw future research direction in section 6.

Weak subsumption in the EL-description logic with refreshing variables 3

2 Related Works

Description logics are used by knowledge representations systems such as Classic [14]
or Loom [18] in order to represent a domain in a structured and formally well un-
derstood way. By using formal links defined between descriptions, reasoning tasks of
descriptions logics can be used.

There are two levels of reasoning which can be defined: assertional and terminolog-
ical levels. While assertional level focuses on instances of defined concepts by checking
their consistency or satisfiability [16], terminological level is directed toward concept
relationships themselves. Indeed, disjointedness, equivalence and notably subsumption
are defined. Subsumption is one of the most basic and yet important reasoning mecha-
nism which allows to discover information.

Subsumption focuses on determining whether a concept C subsumes - i.e. C is more
general than - a concept D (noted D v C). This mechanism presents obvious advan-
tages to infer knowledge that is not directly expressed by exploiting DL’s structural
approach of knowledge. Up to now many works have solved subsumption for different
logics in presence or not of terminological TBox.

In the case of family based on the description logicFL0 and EL, we can distinguish
two kinds of approaches to solve subsumption: normalize-compare algorithm and a
tableau-based algorithm [20]. The first approach led to interesting results on how close
description logics can be to automata [2]. Indeed, in FL0 subsumption can be reduced
in language inclusion of finite automata [6] while EL subsumption will be equivalent
to simulation [3].

Recently, description logics have been extending by introducing variables. Variables
in description logic introduce pattern in addition to ground concept description. Sub-
sumption between a pattern P and a ground description C (C v? P or P v? C) is
called a matching problem [1]. Matching is a new non-standard reasoning task that aims
to find a substitution of variables such that C v σ(P) or σ(P) v C. It has been studied
for concept-description variables since considering role variable is trivial and can be
done by enumerating all the possibilities. Matching has been proven to be polynomial
in FL0 without TBox [1] while considering a general TBox blows up the complexity to
EXPTIME [5]. Interestingly enough, EL proposes a more complex matching problem
by achieving NP-Completeness without TBox [9] but does not suffer any blow up of
complexity when considering a general TBox[8]. The different results were achieved by
reducing matching to automata theory after adopting a well-adapted normal form. Only
matching w.r.t to general Tbox in EL differs by proposing a goal-oriented algorithm
that uses a non-deterministic rule to transform a given matching problem into a solved
form.

The generalisation of matching involving two patterns P,Q (P v Q) is named uni-
fication [10]. Unification has also been investigated in EL and FL0. Recently, unifica-
tion in EL has made a huge step forward by achieving NP-Completeness w.r.t a general
TBox that fulfills a restriction on cycles [4]. Unfortunately, the general case is still an
open problem since the proposed algorithm is not complete. As for matching in EL, a
goal-oriented algorithm has been employed by extending the one proposed in [8].

So far matching and unification have proven to be useful in order to filter out impor-
tant aspects of large concepts in classic [13]. Baader et al. [10] proposed to use those

4 T. Ducros et al.

reasoning tasks as a tool to find and thus prevent redundancies in knowledge base. These
reasoning mechanisms can also be used to support integration of knowledge bases by
prompting interscheme assertions to the integrator [12].

Variables in description logics allowed to extend subsumption to non-standard
reasoning tasks namely matching and unification. These tasks have been well-studied
and proven to be useful. However, boundaries of the variables can be pushed up even
further by introducing refreshing semantic. Combination of description logics variables
and refreshing semantic is an interesting new possibility. By making the potential of
variables even greater, new possibilities are offered to reason in description logics.

3 Preliminaries

3.1 Trees

We use the following definition of a tree [17]: A tree is a set τ ⊆ N∗ such that if in ∈ τ ,
for i ∈ N∗ and n ∈ N, then i ∈ τ and im ∈ τ for all 0 ≤ m < n. The elements of τ
represent nodes: the empty word ε is the root of τ , and for each node i, the nodes of the
form in, for n ∈ N, are children of i. Given a pair of sets S and M , an 〈S,M〉-labeled
tree is a triple (τ, λ, δ), where τ is a tree, λ : τ → S is a node labeling function that
maps each node of τ to an element in S, and δ : τ × τ → M is an edge labeling
function that maps each edge (i, in) of τ to an element in M . Note that, δ(i, in) = r
can be rewritten (i, r, in).

We define now simulation which is a binary relationship between two trees as fol-
lows.

Definition 1. (simulation between trees)
Let (τ1, λ1, δ1) and (τ2, λ2, δ2) be respectively two trees. A binary relation Z ⊆ τ1×τ2
is a simulation relation iff

1. (ε, ε) ∈ Z, and
2. if (c1, c2) ∈ Z then ∀(c1, r, c′1) ∈ δ1, ∃c′2 ∈ τ2 such that (c′1, c

′
2) ∈ Z and

(c2, r, c
′
2) ∈ δ2

If such a relation exists, it is noted (τ1, λ1, δ1)� (τ2, λ2, δ2). We extend simulation to
nodes and say that a node c1 is simulated by a node c2 when (c1, c2) ∈ Z.

3.2 Basics of the description logic EL

The description logic EL is based on three constructors : top concept (>), conjunction
(u) and existential restriction (∃R.C). Let NC be a set of concept names and let NR be
a set of role names. We use the letters A,B to range over NC ; R,S to range over NR;
and C,D to range over EL-concept descriptions (or simply, EL-concepts), which are
formulas inductively generated by the following rule:

> |A | C uD | ∃R.D

Weak subsumption in the EL-description logic with refreshing variables 5

.
The semantics of EL are formalized in terms of interpretation. An interpretation I

is a pair (∆I , .I) where ∆I is a non-empty set called the domain and .I is an interpre-
tation function that assigns binary relations on ∆I to role names and subsets of ∆I to
EL-concepts as shown in the semantics column of Table 1.

Name Syntax Semantic
Top Concept > ∆I

Concept name A AI ⊆ ∆I

Role name R RI ⊆ ∆I ×∆I

Conjunction D u E DI ∩ EI

Existential restriction ∃R.C { a ∈ ∆I |∃b ∈ CI .(a, b) ∈ RI}
Table 1: Interpretation of EL’s constructors

A simple Tbox T is a set of concept definitions of the form P ≡ C, with P ∈ Ndef
and C an EL-concept such that no P appears more than once on the left-hand side of a
definition in T . Concept names that occur on the left-hand side of a definition are called
defined concepts, and denoted by the set Ndef , while all the other concepts occurring
in T are called atomic concepts and are denoted by the set NA. We allow for cyclic
dependencies between the defined concepts, i.e., a definition of an EL-concept P may
directly or indirectly refer to P itself. An interpretation I is a model of T if and only
if for all definitions A ≡ C ∈ T we have P I = CI . We say that C is subsumed by D
w.r.t. T , written C vT D, iff CI ⊆ DI holds for every model I of T .

Normal forms play a key role in description logics since they facilitate reasoning.
Indeed, comparing two concepts is easier if they bear the same structure. For EL, an
EL-concept-description C is in normal form if C is of the form :

C = A0 u ... uAn u ∃r0.B0 u ... u ∃rm.Bm

where Ai ∈ NA, ri ∈ NR and Bi ∈ Ndef .

Note that an EL-TBox is said normalized if all its definitions are normalized. The
normalization process consists in simply creating concept-definitions and add them to
the TBox. By replacing definitions by their name in others definition, the TBox will
reach a normalized state.

An interpretation I is a model of T if and only if for all relationships of T of the
form A ≡ C, AI ≡ CI . Subsumption, the relationship that determines whether a
concept is more general than another one, is commonly proposed as an inference task at
a terminological level (i.e. w.r.t T). C is subsumed by D (C vT D) w.r.t T if and only
if CI ⊆ DI for all model I of T . Deciding subsumption relationship is proven to be
polynomial in EL. Equivalence is a stronger relationship based on subsumption where
a pair of concept subsumed each other noted {C ≡ D} ≡ {C v D;D v C}.

In the scope of terminologies cyclic concept can be defined. Intuitively, A cyclic
concept is a concept name A which refers to itself directly (i.e. within its own
description) or indirectly (i.e. in the definition of a concept name involved in A).
By opposition, an acyclic concept refers to a concept that is not cyclic. A cyclic
EL-terminology is an EL-terminology that contains at least a cycle while an acyclic

6 T. Ducros et al.

EL-terminology don’t contain any cycle. This notion is formally presented in [3] where
terminological cycles are defined as cycle within an EL-description graph representing
an EL-terminology.

4 The description logic ELV

An ELV -signature is a pair Σ = (NC , NT), where NC is the set of concept names and
NT = NR ∪ V the set of role terms. A role term t ∈ NT is either a role name (when
t ∈ NR) or a variable (when t ∈ V). We consider the set of variables V = NVR

∪NVN
as

made of two disjoint sets of variables: NVR
the set of refreshing variables and NVN

the
set of non refreshing variables. The sets NC , NR, NVR

and NVN
are pairwise disjoint.

The description logic ELV extends the logic EL with role variables. Given a sig-
nature Σ = (NC , NT), ELV -concept descriptions are built similarly to EL concepts
while using role terms instead of only role names.

An ELV -TBox is a set of ELV -concept definitions. We present now the notion
of normalized ELV -TBoxes. Let Σ = (NC , NT), with NT = NR ∪ V and V =
NVR

∪ NVN
, be an ELV -signature and let T be an ELV -TBox over the signature Σ.

We say that T is normalized iff C ≡ D ∈ T implies that D is of the form:

A0 u ... uAn u ∃r0.B0 u ... u ∃rm.Bm

for n,m ≥ 0 and Ai ∈ NA and ri ∈ NT ,∀i ∈ [0, n] and Bj ∈ Ndef ,∀j ∈ [0,m].

In the sequel, we assume that the ELV -TBoxes are normalized and variables in
different descriptions are different up to renaming.

Example 1. This example presents the normalized TBox that will be used as a reference
in this paper. Regarding the variables, z and y are refreshing while x belongs to the set
of non-refreshing variables.

A1 = A P = ∃z.C u ∃z.B1 u ∃S.A1 u ∃x.P
B1 = B Q = ∃R.Q2 u ∃R.C u ∃y.B1

C = ∃R.B1 Q2 = ∃R.Q u ∃S.B1 u ∃S.A1

We explain now the difference between the set NVR
of refreshing variables and the

set NVN
of non refreshing variables. Given an ELV -TBox T , a substitution σ maps

a variable in NVN
to a fixed value while the value assigned to a variable in NVR

can
be refreshed periodically. To illustrate our purpose, we use subscripts (i.e., σ0, σ1, . . .)
to denote the fact that a substitution σ maps a refreshing variable z to several values.
Assume a substitution σ that maps the non-refreshing variable x to a role name R (i.e.,
σi(x) = R,∀i ∈ N) and it maps the first occurrence of the refreshing variable z to R
(i.e., σ0(z) = R) while it maps the second occurrence of z to S (i.e., σ1(z) = S). This
leads to the following EL-description:

σ0(P) ≡ ∃R.C u ∃R.B1 u ∃S.A1 u ∃R. (∃S.C u ∃S.B1 u ∃S.A1 u ∃R.σ2(P)))︸ ︷︷ ︸
σ1(P)

Weak subsumption in the EL-description logic with refreshing variables 7

To define formally the notion of instance of an ELV -concept in presence of refresh-
ing variables, we first turn ELV -descriptions with refreshing variables to equivalent in-
finite ELV -descriptions with non refreshing variables. This is achieved by the following
unfolding process which replaces refreshing variables appearing in cyclic definitions of
a given terminology by an infinite set of non refreshing variables.

Definition 2. (Pattern unfolding)
Let T be an ELV -TBox over a ELV -signature Σ = (NC , NT), with NT = NR ∪ V

and V = NVR
∪NVN

.
The unfolding of the TBox T is a new TBox, noted u(T), over the ELV -signature

(NC , NR∪NVN
) such that each ELV -pattern P = A0u...uAnu∃r0.B0u...u∃rm.Bm

of T is mapped into an ELV -pattern u(P) in u(T). The unfolding u is defined as
follows:

– u(P) = u(A0) u ... u u(An) u ∃u(r0).u(B0) u ... u ∃u(rm).u(Bm).
– u(t) = t,∀t ∈ NA ∪ NR ∪ NVN

, i.e., u is the identity function over primitive
concept names, role names and non refreshing variables.

– if ri ∈ NVR
then each new call to u(ri) in the scope of u(P) returns a new ”fresh”

variable from NVN
. Note that variables have a local scope in the sense that for

ri = rj in the description P , the calls to u(ri) and to u(rj) return the same fresh
variable while recursive calls to u(ri) return different fresh variables.

Hence, an unfolding of an ELV -pattern P enables to replace recursively each refreshing
variable z by a new non-refreshing variable. Note that, in the case of an ELV -pattern
P with a cyclic definition that uses refreshing variables, the unfolding of P leads to an
ELV -pattern u(P) with an infinite size description.

It is worth noting that an unfolding of a pattern P = A0 u ...uAn u ∃r0.B0 u ...u
∃rm.Bm can be viewed as a 〈Ndef ∪ {atomic}, NR ∪NVN

〉-labeled tree (τP , λP , δP)
which is recursively defined as follows:

– λP (ε) = P
– ∀i ∈ [0, n], we have: i ∈ τ , δP (ε, i) = Ai and λP (i) = atomic. The label

”atomic” is a specific keyword used to label the leaves of the tree.
– ∀i ∈ [n+ 1, n+m+ 1], we have: i ∈ τ , δP (ε, i) = u(ri−n−1) and i is the root of

the tree τBi−n−1

Example 2. Figure 1 depicts the tree representation of u(P). Each node is labeled by
the corresponding concept in the TBox. Leaves are labeled by the keyword atomic. Note
that, since P is a cyclic pattern, the tree associated with u(P) is infinite since it includes
an infinite branch: P.x.P.x.P.x.P . . . where each occurrence of the nodes labeled by P
has outgoing edges labeled by the variables zi, with i ∈ [0,+∞[.

Instantiation of ELV -concepts is defined using the notion of variable substitution.
Given a TBox T with a signature Σ = (NC , NT), where NT = NR ∪V , a substitution
σ is a mapping from V into the set of role names NR. A substitution σ is extended to
ELV -concepts in the obvious way, i.e.:

– σ(T) = T if T ∈ NC ∪NR;

8 T. Ducros et al.

ε

0

00

000

B

R

z0

1

10

B

z0

2

20

A

S

3

30

300

3000

B

R

z1

31

310

B

z1

32

320

A

S

...

x

x

P

C

B1

atomic

B1

atomic

A1

atomic

P

B1C

B1

atomic

atomic

A

atomic

Fig. 1: Tree corresponding to u(P)

– σ(C uD) = σ(C) u σ(D) with C,D two ELV -concepts;
– σ(∃T.C) = ∃σ(T).σ(C).

In addition, a substitution σ maps each ELV -TBox T into an EL-TBox σ(T) which is
obtained by converting each ELV -concept definition P ≡ C in T into an EL-concept
definition σ(P) ≡ σ(C). In this case, the EL-concept σ(P) is called an instance of the
ELV -concept P .

Definition 3. (Pattern Instances)
Let T be an ELV -TBox over a ELV -signature Σ = (NC , NT), with NT = NR ∪ V

and V = NVR
∪ NVN

and let P = A0 u ... u An u ∃r0.B0 u ... u ∃rm.Bm be an
ELV -pattern in T . Let φ : NVN

→ NR be a variable substitution. Then φ(u(P)) is an
instance of P w.r.t. the variable substitution φ.

In the sequel, we abuse of notations and we write σ(P) instead of σ(u(P)) for a pattern
instance of P w.r.t. σ.

Example 3. Continuing with the previous example, by considering a substitution σ that
maps the non refreshing variable x to σ(x) = R and that maps the refreshing variable
z alternatively to R and S we obtain the following instance of the ELV -concept P :

σ(P) ≡ ∃ R︸︷︷︸
σ(z)

.Cu∃ R︸︷︷︸
σ(z)

.B1u∃S.A1u∃ R︸︷︷︸
σ(x)

.(∃ S︸︷︷︸
σ(z)

.Cu∃ S︸︷︷︸
σ(z)

.B1u∃S.A1u∃ R︸︷︷︸
σ(x)

.σ(P)))

Note that this instance is only achievable because z is a refreshing variable.

It is worth noting that an instance σ(P) can be viewed as a tree which is
obtained from the tree corresponding the unfolded ELV concept u(P) by replac-
ing the variables with their respective values. More precisely, let (τP , λP , δP) be
a 〈Ndef ∪ {atomic}, NR ∪NVN

〉-labeled tree corresponding to the unfolded ELV
concept u(P). Then an instance σ(P) is a 〈Ndef ∪ {atomic}, NR〉-labeled tree
(τσ(P), λσ(P), δσ(P)) defined as follows:

Weak subsumption in the EL-description logic with refreshing variables 9

– τσ(P) = τP ,
– λσ(P)(i) = λP (i), ∀i ∈ τσ(P), and
– δσ(P)(i, in) = σ(δP (i, j)),∀i, in ∈ τσ(P).

The next lemma proposes a characterization of subsumption w.r.t. greatest fix point
semantics between ELV concept instances using the simulation relation between their
corresponding trees.

Lemma 1. Let P,Q be two ELV -patterns in an ELV -TBox T and let σ, φ be two sub-
stitutions. Let (τσ(P), λσ(P), δσ(P)) and (τφ(Q), λφ(Q), δφ(Q)) be the trees correspond-
ing respectively to the instances σ(P) and φ(Q). Then, we have: σ(P) vT ,gfp φ(Q) if
and only if (τφ(Q), λφ(Q), δφ(Q))� (τσ(P), λσ(P), δσ(P))

The proof of this lemma is derived from the characterization of subsumption w.r.t.
greatest fix point semantics in EL cyclic TBoxes by means of simulation between the
so-called description graphs [3].

Indeed, the framework proposed in [3] extends naturally to infinite EL concepts.
Moreover, simple syntactic transformations enable to turn description graphs of [3] into
trees in the form used in this paper while preserving the simulation relationship.

Various kinds of reasoning could be defined over ELV -terminologies. We focus in
this paper on one specific reasoning mechanism, called hereafter weak subsumption.

Definition 4. (Weak subsumption)
Let T be an ELV -TBox and let P,Q two ELV -patterns. Then, P is weakly subsumed

by Q w.r.t. T , denoted P @∼T ,gfp Q, iff there exists two substitutions φ1 and φ2 s.t.
φ1(P) vT ,gfp φ2(Q)

Note that weak subsumption can be viewed as an extension of respectively matching
[8] when either P or Q is a ground EL-concept, and unification [7] when both P and
Q are ELV -patterns, to logic with refreshing variables.

5 ELV -Description automaton

Our reasoning procedures over ELV -terminologies are built on the notions of ELV -
description automata. Such automata recognize configuration trees which are nothing
other than a syntactic variant of pattern instances. As a main result of this section,
stated by lemma 2, we associate to each ELV -pattern P an ELV -description automata
AP such that there is a strong correspondence between the configuration trees recog-
nized by AP and the instances of P . Consequently, an ELV -description automaton AP
characterizes all the possible instances of its associated ELV -pattern P .

Definition 5. (ELV -description automata)

Let T be an ELV -TBox over the signatureΣ = (NC , NT), withNC = Ndef ∪NA,
NT = NR∪V and V = NVR

∪NVN
and let P ≡ A0u ...uAnu∃r0.B0u ...u∃rm.Bm

be a defined concept in T . The ELV -description automaton associated with P , denoted
AP , is a tuple AP = (L,Var,Q, q0, qf , δ, κ) recursively build as follows:

10 T. Ducros et al.

– L ⊆ NA ∪NR is a finite alphabet,
– Var ⊆ V is a finite set of variables,
– Q = Ndef ∪ {qf} is a finite set of states,
– q0 = P is the initial state and qf is the final state,
– δ ⊆ Q×(L∪Var)×Q is a transition relation defined as follows: δ = {(P,Ai, qf) :
for i ∈ [0, n]}∪{(P, rj , Bj) : for j ∈ [0,m]} (where Bj is the initial state of the
automaton ABj

)
– κ : Var → Q is the refreshing function defined as follows: ∀ri ∈ Var we have:
κ(ri) = {P} if ri ∈ NVR

, or κ(ri) = ∅ if ri ∈ NVN
.

Definition 5 associates to each defined concept P ≡ A0 u ...uAn u ∃r0.B0 u ...u
∃rm.Bm in a TBox T an ELV -description automaton AP , whose states are made of
the set of defined concept names of T in addition to a special final state qf . Transitions
of AP are labelled either with letters, taken from an alphabet made of the primitive
concept names and role names, or variables taken from the set of role variables. More
precisely, each atomic concept name Ai that appears in the definition of P leads to a
transition from the node P to qf labeled with the letter Ai. Each description ∃ri.Bi
that appears in the definition of P leads to a transition from the node P to the node Bi
(the initial state of the automaton ABi

) labeled with the term ri. When the term ri is a
refreshing variable, in this case it is refreshed in the state P and its refreshing state is
given by the function κ (i.e., κ(ri) = {P}).

Example 4. Figure 2 depicts the description automata AP and AQ, respectively, of the
ELV concepts P and Q of our example. Variable x is non-refreshing while variables z
and y are refreshing. Their respecting refreshing states are given by: κ(z) = {P} (i.e.
P is the refreshing state of z in AP) and κ′(y) = {Q} (i.e., Q is the refreshing state of
y in AQ).

Pstart

A1

C

B1

qf

x

z

RzS

A B

(a) AP

Qstart Q2 A1

B1C qf

R

R
yR

R

S

A

B

S

(b) AQ

Fig. 2: Description automata for P and Q

An ELV -description automaton AP of a given ELV concept P is in fact a com-
pacted representation of all the possible instances of P . In other words, the automaton
AP recognizes exactly the trees, hereafter called configuration trees, that are instances
of P . We explain below informally the notion configuration trees (see formal definitions
in our extended version), then we show that they are equivalent to the instances of P .

An ELV -description automaton AP runs on extended variable substitutions which
are defined as follows. Let Var be the set of the variables used by an ELV -description

Weak subsumption in the EL-description logic with refreshing variables 11

automaton AP . An extended substitution σ̄ is a mapping σ̄ : Var×N 7→ NR that asso-
ciates to each pairs (x, i) ∈ Var×N a unique value from NR. A pair (x, i) denotes the
copy i of the variable x. Hence, an extended substitution assigns values to (potentially
infinite) copies of variables.

Given an extended substitution σ̄, a run of an ELV -description automaton AP over
σ̄ is a 〈S,L〉-labeled tree, noted T (AP , σ̄) and called a configuration tree of AP . S is
the set of configurations which is used to label the nodes of T (AP , σ̄). Informally, a
configuration in T (AP , σ̄) fixes the copies of the refreshed variables that are used at
a given step of the execution of the automaton AP . Since, on one side a given state
may be visited (infinitely) many times and on another side refreshing variables may
see their assigned value changed at their refreshing states, a configuration includes a
vector of integer used to distinguish between multiple value assignations to a given
refreshing variables (i.e., multiple copies of refreshed variables). More precisely, we
define a configuration as a pair (q, I) where q is a state of AP and I is a vector of
integers, where the ith component of I records the current index of the ith variable,
assuming that the variables are sorted according to their lexicographic order. By this
way, we are able to generate several copies of a refreshing variables by incrementing its
corresponding component in the vector I .

ε

0

00

000

B

R

σ̄(z, 0)

1

10

B

σ̄(z, 0)

2

20

A

S

3

30

300

3000

B

R

σ̄(z, 1)

31

310

B

σ̄(z, 1)

32

320

A

S

...

σ̄(x, 0)

σ̄(x, 0)

(P, (0, 0))

(C, (0, 0))

(B1, (0, 0))

(qf , (0, 0))

(B1, (0, 0))

(qf , (0, 0))

(A1, (0, 0))

(qf , (0, 0))

(P, (0, 1))

(C, (0, 1))

(B1, (0, 1))

(qf , (0, 1))

(B1, (0, 1))

(qf , (0, 1))

(A1, (0, 1))

(qf , (0, 1))

Fig. 3: The configuration tree T (AP , σ̄)

Definition 6. (Configuration and configuration tree)
Let AP = (Q,L,Var, q0, δ, qf , κ) be a description automaton and let σ: Var × N 7→
NR be a variable substitution.

12 T. Ducros et al.

– A configuration is a pair (q, I) where q ∈ Q is a state of AP and I ∈ N|Var| is a
vector of integers.

– Let S ⊆ Q × N|Var|. A run of AP using a substitution σ, denoted T (AP , σ) and
called a configuration tree, is a 〈S,L〉-labeled tree (τ, λ, δ) constructed using the
Algorithm 1.

Algorithm 1 GenConfTree

Input : AP = (Q,L,Var, q0, δ, qf , κ), σ
Output : τ . The configuration tree T (AP , σ)

1: G←
→
0 . A global counter initialized to a null vector

2: I0 ←
→
0 . A local counter of the initial configuration

3: n← ε
4: τ ← {n}
5: λ(ε)← (q0, I0)
6: q ← q0
7: create a queue Qstate
8: create a queue Qtrans
9: enqueue (q0, I0, n) onto Qstate

10: while Qstate is not empty do
11: (q, I, n)← Qstate.dequeeue()
12: for all (q, x, q′) ∈ δ do
13: enqueue (x, q′) onto Qtrans
14: sort Qtrans in lexicographical order
15: end for
16: for i← 0 to |Qtrans| do
17: τ ← τ ∪ {ni} . ni is obtained by concatenating n and i
18: (x, q′)← QTrans.dequeue()
19: if x ∈ Var then
20: δ(n, ni)← σ(x, Ix)
21: else
22: δ(n, ni)← x
23: end if
24: for all y ∈ Var do
25: if q′ ∈ κ(y) then
26: Gy ← Gy + 1 and Jy ← Gy

27: else
28: Jy ← Iy
29: end if
30: end for
31: λ(ni)← (q′, J)
32: enqueue (q′, J, ni) onto Qstate
33: end for
34: end while
35: return τ

Example 5. Figure 3 shows a configuration tree T (AP , σ̄) of the ELV -description au-
tomaton AP over an extended substitution σ̄. Nodes of the tree are labeled by configu-

Weak subsumption in the EL-description logic with refreshing variables 13

rations. Since the description of P uses two variables (i.e., x and z), configurations of
AP will be made of pairs (qc, Ic) where qc is a state of AP and Ic = (i1, i2) is a vec-
tor of integer made of two components i1 (respectively, i2) used to record which copy
of the variable x (respectively, z) is used at a given step of the execution of AP . The
root ε of the configuration tree is labeled with the configuration (P, (0, 0)) indicating
that initially the automaton is at its initial state P and uses the copy 0 of each of the
variables x and z. Four possibilities of moves are possible from this initial configura-
tion: a non deterministic move to the configurations (C, (0, 0)) or (B1, (0, 0)) on the
transition labelled σ̄(z, 0) (i.e., the value assigned by σ̄ to the copy 0 of z) or a move
to the configuration (A1, (0, 0)) on the transition labeled S or a move to the configu-
ration (P, (0, 1)) using the transition labeled σ̄(x, 0). Note that since P is a refreshing
state for the variable z, each time the state P is visited during the execution of AP ,
the counter associated to the variable z (i.e., the second component of the vector I) is
incremented. As explained in our extended version, in addition to local counters associ-
ated with configurations, a global counter is used to keep track of the last indices used
for each variable. The global counter enables to avoid conflicts when generating new
copies for refreshing variables.

Lemma 2 establishes a strong correspondence between instances of an ELV concept
P and the configuration trees of its corresponding ELV -description automaton AP .

Lemma 2. Let P be an ELV concept of a terminology T and letAP be its correspond-
ing description automaton. Then, we have:

– ∀φ such that φ(P) = (τφ(P), λφ(P), δφ(P)) is an instance of P ⇒ ∃σ̄ such that
T (AP , σ̄) = (τ ′, λ′, δ′) is a configuration tree of AP with τφ(P) = τ ′ and δφ(P) =
δ′

– ∀σ such that T (AP , σ) = (τ ′, λ′, δ′) is a configuration tree of AP ⇒ ∃φ such that
φ(P) = (τφ(P), λφ(P), δφ(P)) is an instance of P with τφ(P) = τ ′ and δφ(P) = δ′

Proof. The general idea is to demonstrate that since those two trees are constructed
with the same lexicographic order they have the same structure. Regarding δ and δ′, we
will explain how to construct σ by using a bijection f such that φ(x) = σ(f(x)). Let
consider φ(P) = (τ, λ, δ) and T (Aσ, P) = (τ ′, λ′, δ′) created using the same lexical
order.

Let’s consider a pair (ε, ε′) where ε is the root in τ and ε′ in τ ′. By definition of
the root, we have ε = ε′. Regarding their label we have that λ(ε) = {P} and λ′(ε′) =

{P,
→
0}. λ(ε) refers to the concept P represented by the state P of AP involved in

λ′(ε′) = {P,
→
0}. By construction, they share the same structure. It remains to show

that their edges are identically labeled. Consequently, we will consider the pairs (i, i′)
with such that i = i′ and i ∈ τ, i′ ∈ τ ′. We will now explain how to construct σ such
that their edge labels are identical.

Constant edges will find automatically a counterpart since the same order has been
applied δ(ε, i) = δ′(ε′, i′) = r .

Regarding variable edges, we have δ(ε, i) = φ(x) and δ′(ε′, i′) = σ(x′, 0). The
lexicographic order combined to P assure σ(x′, 0) is necessarily associated to φ(x)

14 T. Ducros et al.

that We can construct f such that f(x) = (x′, Ix′P = 0). Note that if x = x′, it is a non-
refreshing variable which will conserve the same value as it should since its counter
will not increase.

Therefore, we have can construct σ(x′, 0) = σ(f(x) = φ(x) for each variable
transition.

The last step consists in showing that f can then be recursively defined even if vari-
ables are refreshed. In description logic a variable is refreshed if its associated pattern
Q is unfolded. In the tree shape, it is traduced by λ(i) = Q. For description automaton,
variables are refreshed if they belong to κ−1(Q) in other words if, Q appears in λ(i′)
which is verified here. Consequently each pair (i, i′), will refresh the same variable.
Consequently the same procedure can be used to complete f and thus σ. The same rea-
soning can be recursively applied on each pair for edge which will conduct to τ = τ ′

and δ = δ′ and conclude the proof.
The same proof can be used by taking f−1 instead of f which is possible since f is

bijective.

As explained in the next section, based on this lemma, we are now able to reduce
the problem of testing weak subsumption between ELV concepts into a simulation test
over their corresponding ELV -description automata. Complexity is achieved by solving
the simulation test thanks to a constructure algorithm.

5.1 Characterizing weak subsumption using description automaton

We first introduce the notion of existential simulation between ELV -description au-
tomata. This definition of simulation expresses on whether there exist substitutions such
that resulting trees comply a successful simulation relationship.

Definition 7. (Existential simulation)
Let AP and AQ be two description automata. There is an existential simulation from
AP to AQ, denoted AQ �∃ AP , iff ∃σ, φ such that T (AQ, σ)� T (AP , φ).

We give now our first main technical result consisting in the characterization of
weak simulation between ELV -patterns in terms of existential simulation between
ELV -description automata.

Theorem 1. Let P and Q be two ELV concepts of a terminology T . Then, we have:
P @∼T ,gfp Q iff AQ �∃ AP

Proof. By definition of simulation, if AQ �∃ AP , it means that ∃φ, σ such that
T (AQ, φ) � T (AP , σ). Lemma 2 states that for any T (AP , σ) there exists an equiv-
alent concept description σ′(P). Naturally, the same goes for T (AQ, φ) and thus
there exists φ′(Q) Consequently we have, T (AQ, φ) � T (AP , σ) which implies
σ′(P) v φ′(Q) which is the definition of P @∼ Q.

This theorem reduces weak subsumption test between two ELV concepts P and Q
to an existential simulation test between the corresponding ELV -description automata
AP and AQ.

Weak subsumption in the EL-description logic with refreshing variables 15

5.2 Solving existential simulation between description automata

We propose an algorithm, called Check Simu, to test existential simulation between
ELV -description automata, we prove its correctness and show that it is EXPTIME-
complete. The Check Simu algorithm is based on a synchronized product of automata.
Given two ELV -description automata AQ and AP , the main idea of Check Simu is
to run synchronously AQ and AP , trying at each step to guess appropriate values as-
signments to variables in order to construct two variable substitutions φ and σ such
that T (AQ, σ) � T (AP , φ). A given state in such a synchronized product is called
a pconf (for product configuration). A pconf includes a set of constraints used to
keep track of the value assignments made by the synchronized product. By exploring
the possible synchronized executions of AQ and AP , the algorithm Check Simu tries
to construct two variable substitutions φ and σ that satisfy the constraints of each ex-
plored pconf . When the algorithm succeed in constructing φ and σ, this ensures that
T (AQ, σ) � T (AP , φ) (soundness of the algorithm Check Simu). In case, the algo-
rithm Check Simu fails to exhibit such substitutions it ensures that no such substitu-
tions exists (completeness of the algorithm Check Simu). The completeness is due to
an exhaustive exploration of the possibilities of synchronization between AQ and AP .
Moreover, since a synchronized execution ofAQ andAP leads to an infinite space (i.e.,
the set of pconf to explore is infinite), we rest on a specific property, hereafter called
pcover (for cover between pconf) , in order to ensure that the algorithm Check Simu
terminates. In the rest of this section, we define formally the notions of constraints,
pconf and pcover before presenting the algorithm Check Simu.

Definition 8. (Constraint)
A constraint is a statement of one of the following forms:

– (x, i) = (y, j),
– (x, i) = a, or
– a = b

where x, y ∈ V , i, j ∈ N and a,b are constants. A constraint of the form a = b where
the constant a syntactically differs from b is said inconsistent.

We extend the notion of inconsistency to sets of constraints as follows. Let C be a set
of constraints. We denote by CT the transitive closure of C w.r.t. to equality relationship.
We say that a set of constraints C is inconsistent iff its transitive closure CT contains at
least one inconsistent constraint.

We now formally define the notion of pconf which are used in the solving process
by the algorithm.

Definition 9. (pconf)
Let AQ, AP two description automata. A pconf is a triple (SQ, p,C) where SQ is a set
of configurations of AQ, p is a configuration of AP and C a set of constraints.

Let pc = (SQ, p,C) be a pconf . Since several configurations appear in an pc, all the
constraints of C are not necessarily relevant for each configuration in pc. For example,
let consider a pconf pc = ({(qc, (3))}, (P, (1, 1)), {(x, 2) = 1, (x, 3) = 5, (y, 0) =

16 T. Ducros et al.

(x, 2)}). The configuration (qc, (3)) has only one counter, whose current value is 3 and
we assume that this counter is associated with the variable x. Therefore, we know that
for the configuration (qc, (3)) the only instance of x to consider is (x, 3). Hence, if a
constraint does not deal with (x, 3), it doesn’t carry any information for configuration
(qc, (3)). In our example, the constraints (x, 2) = 1 and (y, 0) = (x, 2) are then not
relevant for the configuration (qc, (3)). Next definition formalizes this notion.

Definition 10. (Relevant constraints w.r.t. a configuration)
Let C be a set of constraint and let c = (qc, Ic) be a configuration.

– We define the set of relevant variables of c as RV(qc) = {x, (Icx)}.
– The relevant constraints of C w.r.t. a configuration c is defined as: C|c = {(x =
y) ∈ CT |(x ∈ RV(qc) ∨ y ∈ RV(qc)}.

We define now a notion of inclusion between sets of constraints.

Definition 11. (Constraint set inclusion)
Let C1 and C2 be two sets of constraints. The set C1 is included in C2, noted C1 ⊆ C2

if and only if

1. ∀(x, i) = (y, j)) ∈ C1, ∃(x, k) = (y, l) ∈ C2 and
2. ∀((x, i) = a) ∈ C1, ∃((x, k) = a) ∈ C1

Example 6. Let considerAP andAQ defined above. Let pc = ({(Q2, (0))} , (P, (1, 1))
, y0 = R) be one of their pconf . For each of configuration of pc, their associated set
of relevant variables are : RV((Q2, 0)) = {y0} , RV((P, (1, 1)) = {x1, z1}. Conse-
quently, the different sets of constraints associated are : C|(Q2,0) = {y0 = R} and
C|(P,(1,1)) = ∅

Since pconfs inherit constraints of their predecessors, clean up procedure is re-
quired to remove useless constraints. A useless constraint contains at least a variable
that is no longer relevant for any of its configurations. Erasing them directly could cre-
ate a loss of information therefore, we compute the transitivity closure and suppress any
unnecessary constraint afterward.

We introduce below the notion of pcover used to prune the search space, thereby
ensuring termination of the algorithm Check Simu. Informally speaking, if a pconf
pc′ is covered by a pconf pc it means that when computing the synchronized product,
the space explored starting from pc′ is a subset of the space explored starting from pc.
Hence, we can prune the pconf pc if pc′ has already been explored.

Definition 12. (pcover)
Let AQ, AP two ELV -description automata and let pc = (SQ, p,C) and pc′ =

(S′Q, p
′,C′) be two pconfs. We say that pc′ is covered by pc, and we note pc′ C pc, if

and only if the following conditions hold:

1. qp = qp′ and C|p ⊆ C′|p′
2. there exists Z ⊆ S′Q × SQ s.t

(a) ∀q ∈ SQ,∃(q′, q) ∈ Z

Weak subsumption in the EL-description logic with refreshing variables 17

(b) ∀(q′, q) ∈ Z, qq′ = qq and C|q ⊆ C′|q′
3. Cvar ∪ Cfree ∪ Ccte ∪ C is consistent where

Cvar =
⋃

(q′,q)∈Z
{((x, Iqx) = (y, Ipy)|((x, Iq′x) = (y, Ip′y)) ∈ C′|q′ \ C|q},

Cfree =
⋃

(q′,q)∈Z
{((x, Iqx) = free)|∀(x, Iq′x) unconstrained} and

Ccte =
⋃

(q′,q)∈(Z∪{(p′,p)})
{((x, Iqx) = a)|((x, Iq′x) = a) ∈ C′|q′ \ C|q}

Let pconf pc = (SQ, p,C) and pc′ = (S′Q, p
′,C′) be two pconf . According to

definition 12, pc′ is covered by pc (pc′ C pc) if :

1. States qp and qp′ of respectively p and p′ represent the same states from AP . By
adopting such a criteria, a direct consequence is that any outgoing edge of p′ has an
equivalent one in p up to variables bounds.
It remains to check information about bounds stored in constraint sets. It is required
that C′ must be more restrictive than C. Indeed, if x = a in pc’ and x is free in pc
then it is possible to create such a bound in pc. However, if x if free in pc’ and
x = a in pc then pc may not mimic the path where x = b in pc’.

2. SQ and S′Q are sets of configuration and therefore they involve sets of states from
AQ.
(a) An important condition is that any the set of states involved in SQ must be

involved in S′Q.
(b) Each couple sharing the same state must then check the same condition as p

and p’.
3. Previous points focus on finding an equivalent configuration. It remains to check

consistency of the pairings. Indeed, two distinct instances of a variables can be
mapped into the same instance. It is then necessary that such constraints are con-
sistent.

We are now ready to present our algorithm Check Simu (c.f. algorithm 2). The
Algorithm takes as input two ELV -description automata AQ and AP and returns
true if AQ �∃ AP or false otherwise. The algorithm starts with the initial pconf

pc0 = ({(q0,
→
0)}, (p0,

→
0), ∅) made of the initial configuration (q0,

→
0) of AQ and the

initial configuration (p0,
→
0) of AP and an empty set of constraints. Then it recursively

explores a tree of generated pconf . For each pc = (SQ, p,C), the algorithm tries to
check whether SQ �∃ p -i.e. checking if a same substitution verifies the simulation
relationship between each element of SQ and p- under the constraints C. To achieve
this task, the algorithm will generate and explore the new pconf that are the children
of the pconf pc. We first consider each mapping from the outgoing transitions of the
configurations in SQ into the outgoing transitions of p. LetMSQ 7→p be the set of such
mappings.

Each mapping m ∈ MSQ 7→p is made of a set of pairs ((c, x, c′), (p, y, s′)) where
(c, x, c′) is an outgoing transition of c ∈ SQ mapped to (p, y, s′) an outgoing transi-
tion of p. In this case, the transition (c, x, c′) is called the source while the transition
(p, y, s′) is called the target. Let x be either a variable or a constant. We use the follow-
ing notation: tx = x if x is a constant and tx = (x, Icx) if x is a variable. Then, each

18 T. Ducros et al.

Algorithm 2 Check Simu

Input : AQ, AP ; Pconf : pc ; Pconf’s historic : hist
Output : Result

1: Create a queue pGen
2: Result← true
3: if Check Cover(pc, hist) == false then
4: Result← false
5: hist← hist ∪ {pc}
6: Compute the mappingsMSQ 7→p

7: for each mapping m ∈MSQ 7→p do
8: for each assignment CAssign w.r.t. m do
9: if C ∪ Cm ∪ CAssign is consistent then

10: enqueue(m,CAssign) onto pGen
11: end if
12: end for
13: end for
14: while ¬ Result and pGen is not empty do
15: Result← true
16: Create a queue children
17: g ← dequeue(pGen)
18: for each target (p, y, s′) of g do
19: Create a pconf pc’=(S′

Q, p
′,C′)

20: S′
Q ← {c′|((c, x, c′), (p, y, s′)) ∈ g}

21: p′ ← s′

22: C′ ← C ∪ Cm ∪ Cassign.
23: children.enqueue(pc’)
24: end for
25: while Result and children is not empty do
26: Result← Check Simu(AQ, AP , children.dequeue(), hist)
27: end while
28: end while
29: end if
30: return Result

Algorithm 3 Check Cover

Input : Pconf : pc ; Pconf’s historic : hist
Output : Boolean

if ∃ pc’ ∈ hist such that pc’ C pc then
return true

else
return false

end if

Weak subsumption in the EL-description logic with refreshing variables 19

element ((c, x, c′), (p, y, s′)) in a mapping m is associated with a constraint tx = ty .
We note by Cm the set of constraints associated with the elements of m.

A mappingm ∈MSQ 7→p, augmented with an assignment of values to free variables
w.r.t. m and pc (i.e., variables that do not appear in C∪Cm) leads to a candidate, called
pgenerator. A pgenerator is used to generate new pconf . An assignment CAssign is
a set of constraints of the form x = a, where x is a free variable w.r.t. m and pc. A
pgenerator g is a pair g = (m,CAssign) where m is a mapping and CAssign is an
assignment of free variables.

Given a pgenerator g = (m,CAssign), we group together elements of m having
the same target (p, y, s′) (Algorithm 2, Lign 10). Each of such groups, leads to a set of
new pconfs of the form: pc′ = (S′Q, p

′,C′) with:

– S′Q = {c′|((c, x, c′), (p, y, s′))}
– p′ = s′

– C′ = C ∪ Cm ∪ Cassign.

The algorithm makes an exhaustive exploration of possible pgenerators. It returns
true if at least one pgenerator is evaluated successfully.

Checking whether a simulation exists takes the shape of an or/and tree as shown in
Figure 4.”Or” steps (∨) focus on finding if one pgenerator is successful (Algorithm 2
Lign 14). In order to be successful, all the children (∧) obtained by the mapping must
be valid (Algorithm 2 Lign 25). This is where the recursive call will occur conducting
to a new level for the tree and so on.

In order to not have an infinite run, we make full use of the pcover as a stop criteria.
That is why, each pconf will transfer to its children the list of all previous pconf in the
branch. We will then stop once, we find a couple such that the cover criteria is checked
(Algorithm 3). Figure 4 dashed pconf and the initial one verifies such a condition.

Figure 4 presents the global shape of a partial execution of the algorithm. In order to
do not overload the figure, only two possibilities are represented. Moreover, simulation
problem concerning the same state in the two automata are not detailed since they are
obviously successful.

Each white box represents a pgenerator with its elements identified thanks to the
labels of the trees instead of elements of τ and τ ′. Labels have been used in order to
make it easier to understand since the link between with automata are clearer this way.
The partial tree obtained can easily be completed and transformed into a configuration
tree as defined above.

(∨) nodes represents the choice among pgenerators. In fact, all pgenerator ac-
cessible from the current one, are computed and linked to this node. They will then be
sequentially analyzed until one is successful or all failed. The corresponding choices
regarding variable assignments are stored into a shaded box. Note that, if a simulation
path is not valid - i.e. an edge S simulated by an edge R - it is immediately denoted
as failed. Reached children inherit of the different assignments unless a variable is not
useful for any remaining configuration. All of the children must be valid which is sym-
bolized by the (∧) nodes.

Since, we look for existential simulation, less constraints means more pconfs and
at least the ones of the covering one. In Figure 4, the dashed pconf problem is covered
by the initial one. Indeed, we face equivalent configurations under the same constraints.

20 T. Ducros et al.

Dealing with different instances of a same variable while aiming for local choices
can be dangerous. In order to have a sound algorithm, the simulation tested out by the
algorithm is such that a single configuration of AP must simulate one or more configu-
rations of AQ. Which means that some transition must be fused in order to synchronize
local choices. Indeed, if we look at the right branch of Figure 4. Not doing so might
duplicate choice possibilities for a variable ending in a false successful run. If we focus
on the second pgenerator of Figure 4, the transition mapping is such that x0 simulates
the two transitions labeled by R. P , the state reached by x0 is refreshing for z there-
fore constraints of z0 can be removed. Then, if we don’t fuse, we have two independent
unconstrained pconf pc1 = ((Q2, (0)), (P, (0, 1))) and pc2 = ((C, (0)), (P, (0, 1))).
The problem lies in the fact that there exists a simulation for the two of them separately
by taking S = z1 for pc1 and R = z1 for pc2. However, those two simulations are not
consistent since for a same instance of a variable, we associate different values. Fusing
them will only lead to check out if (P, (0, 1)) can simulate the two states by considering
a unique choice for a same variable instance which is not possible here.

{(Q, (0)},
(P (0, 0))

∨

{(Q(0))},
(P, (0, 0))
R = x0
R = z0
y0 = z0
y0 = R

∧

{(C, (0))},
(C, (0, 0))
R = x0
R = z0
y0 = z0
y0 = R

{(B1, (0))},
(B1, (0, 0))
R = x0
R = z0
y0 = z0
y0 = R

{(Q2, (0))},
(P, (0, 1))
y0 = R

{(Q, (0)},
(P, (0, 0))
R = x0
y0 = z0

∧

{(Q2, (0)), (C, (0))},
(P, (0, 1))
R = x0

{(B1, (0)},
(B1, (0, 0))
R = x0
y0 = z0

∨

{(Q2, (0))},
(P, (0, 1))
S = S
R = x0
S = z1
y0 = R

∧

{(B1, (0))},
(B1, (0, 1))
S = S
R = x0
S = z1
y0 = R

{(A, (0)},
(A, (0, 1))
S = S
R = x0
S = z1
y0 = R

{(Q, (1)},
(P, (0, 2))
R = x0

Fig. 4: Testing existential simulation.

Terminating A run of the algorithm with the initial pconf leads to an exploration of its
associated execution tree. An execution tree may be infinite, however we aim here to
prove that only a finite part is explored leading to the algorithm’s halt. It stops exploring
a branch if one of the following occurs:

1. A leaf has been reached.

Weak subsumption in the EL-description logic with refreshing variables 21

2. All pgenerators failed to produces a valid simulation.
3. A pconf is covered by a previous one.

The first case will not be discussed since by definition it will not produce infinite pos-
sibilities. Regarding the second case, it produces an infinite branch only if there are
infinite possibilities. However, the number of pgenerators is limited since we deal
with a finite number of transitions for each automata. Regarding the part induces by
assignments, it focuses on giving a value to unconstrained variables. Without loss of
generality, we will restrict choices to labels of constant transition of AQ and AP . This
set regroups relevant choices for variables since only a variable can mimic a choice out
of this scope then it can be reduced to those constants. Consequently, only a finite num-
ber of pgenerators will be produced thus validating that it will not produce an infinite
branch.

The last point to check deals with a potential infinite depth. In our context, it means
that there exists an infinite sequence of pconfiguration without pcover.

Property 1. Let AQ and AP be two description automaton. For any infinite sequence
of pconf pc1.pc2.pc3...pcn, there exists i < j such that pci C pcj .

Proof. The idea of the proof is to show that there exists a pconf that appears multiple
times up to counters values. In an infinite sequence of pconf there necessarily exists
a configuration p of AP associated to a state that appears an infinite number of times.
Since, Cp possibilities can be enumerated. There are an infinite number of pconfs such
that point 1 of the definition is verified. The same reasoning can be conducted over
configurations of SQ. Since pconf are produced by the product of those two parts,
we will have at least a pconf that appears an infinite number of times different up to
counters in the configuration. Point 3 is immediately checked because the proof based
on equality over p, SQ and C up to counter values. Therefore, the proof is complete
since we showed that within any infinite sequence there are at least a configuration that
covers another one.

Therefore, thanks to Property 1, we can conclude that if the algorithm does not fail,
it will necessarily halts.

It remains to show that the algorithm is correct, i.e. sound and complete.

Soundness To show soundness, let consider the simulation tree ExecAQ,AP
obtained

after termination of a non-failing run. This tree is composed of pconfs. Note that thanks
to the cover criteria we consider here a finite tree. The idea of the proof is to show that
pcover induces simulation. As a consequence, ExecAQ,AP

can be used to create σ, φ
such that T (AQ, σ)� T (AP , φ).

In fact, when a pconf pc′ is covered by pc, any possibility of pc′ has a counterpart
in pc because pc contains a subsets of states compared to pc′ and constraints inclusion
allows to have a less constrained pconf . Constraints can then be easily transformed
into substitution by considering constraints of the form x = a. In order to formally
define this notion we introduces universal simulation. Unlike, existential simulation
which looks for simulation w.r.t one substitution, this simulation aims to find such a
relationship for any substitution.

22 T. Ducros et al.

Definition 13. (Universal simulation)
Let AP and AQ two description automata.
Left universal simulation is such that :

AQ �∀ AP , if ∀φ, ∃σ such that T (AQ, σ)� T (AP , φ)

Right universal simulation is such that :

AQ �∀ AP , if ∀σ, ∃φ such that T (AQ, σ)� T (AP , φ)

Lemma 3. Let AQ, AP two description automata. Let pc = (SQ, p,C) and pc′ =
(S′Q, p

′,C) be two pconf . If pc′ C pc then p′ �∀ p and SQ �∀ S′Q

Proof. The proof will be separated in two steps. First, we will consider to show that
states involved in pc are also involved in pc′. Then, we will show how to complete C in
order to reach a state similar to C′.

The first part is immediately verified due to the definition of coverage. By definition
of Z, states involved in SQ are included in S′Q.On the other hand, p and p′ shares the
same states. Consequently, if C can be completed in order to be similar to C. We can
conclude that they share the same possibilities.

Constraint sets inclusion means that they at least share the same base and that, we
only need to add constraints to check compatibility of choices. The last point of pcover
aims to check if this extension is possible. Indeed, for each couple, we will construct
equivalent constraints for each missing constraints. Since a same configuration of SQ
can be bound to more than one configuration of S′Q. It remains to check that this exten-
sion is valid. Three kinds of constraints are added to complete C. Constraints involving
two variables (Cvar), constraints involving a constant and a variable (Ccte) and finally
special constraints for free variables (Cfree). The last one avoids case where a free in-
stance and a bound instance are related to the same variable. This case is not valid since
we do not know what value the free variable may need to take.

We then have augmented the C to mimic C′. By definition of pcover, this set is
consistent, we can then transform it into σ and C′ into σ′ by considering only constraints
of the form : x = a. As a consequence, for any choice of σ′ there exists a similar choice
in σ.

Since p and p′ shares the same state under the same constraints, we can deduce that
p′ �∀ p (and p �∀ p′). On the other hand, since S′Q may contain more states than S′Q,
we have SQ �∀ S′Q which concludes this proof.

Lemma 3 allows to certify soundness. Indeed, based on ExecAQ,AP
we can create

T (AQ, φ) and T (AP , σ). By transforming constraints into functions, considering only
configurations SQ for T (AQ, φ) and p for T (AP , σ), one can create valid trees. Note
that SQ being a set, in order to have a valid tree it must be split into different nodes.

By construction, we know that the partial tree of AQ made of ExecAQ,AP
is sim-

ulated by the partial tree of AP made of ExecAQ,AP
By Lemma 3, we know that any

choices made before can be reproduced. Moreover, the algorithm fails if all the pos-
sibilities of pc’ conducts to a fail the algorithm will find it and return false anyway.
Since we are considering a non-failing run, it means that a run succeed up to cover. The

Weak subsumption in the EL-description logic with refreshing variables 23

valid possibility can be mimicked in order to complete σ and φ. Consequently, we can
complete σ and φ such that T (AQ, σ)� T (AQ, φ). Therefore, we have AQ �∃ AP .

We conclude that the algorithm is sound. We are now left with completeness in
order to prove this algorithm’s correctness.

Completeness Regarding completeness, we can use a given solution (σ0, φ0) to guide
the non-deterministic rules in order to generate a non-failing run. Indeed, each time a
choice has to be made, we can compare it to the corresponding one made in T (AP , σ0)
for P and T (AQ, φ0) for Q. Since by definition, the simulation exists the algorithm
will keep going until the exact same solution is encountered or if a shorter solution
starting similarly is found. Failing would mean that there are no valid possibility which
contradicts the assumption of (σ0, φ0) being a solution.

It is worth to enlighten that the proposed algorithm is constructive in the sense
that if the answer is true, the algorithm can be easily modified to exhibit a substitution
fulfilling the simulation relationship.

Theorem 2. LetAQ andAP two description automata, it is decidable whetherAQ �∃
AP .

5.3 Complexity Analysis

This part will discuss the complexity of weak-subsumption. The upper bound will be
achieved by calculating the space explored by the algorithm. Then the equivalence be-
tween existential simulation and weak-subsumption will allow to finalize the analysis.

Property 2. Let P,Q be two patterns and let AP , AQ be their respective ELV -
description automata. Deciding whether AP �∃ AQ is EXPTIME-complete.

Proof. The proof of the upper bound consists in showing that only an exponential num-
ber of pconfigurations are required to decide weak subsumption. We define :

– n: the number of nodes,
– v: the number of variables and
– D: the number of values a variable can take.

In order to estimate the number of pconfigurations, we need to estimate how many
different configurations can be visited up to cover. Let’s consider one by one each el-
ement of the pconfiguration. In any pconfiguration we have configuration which are
related to a subset of states of AQ, a configuration related to one state of AP and con-
straints C on these configurations.

Constraints and configuration issued from p give n∗(D+v)v different possibilities.
Indeed, the n states of p are different up to constraints. Constraints where x is bound to
one element which is either a constant (D) or a variable (v).

Regarding, SQ it is slightly different. In fact, we will always deal with a subset of
states of AQ which induces 2n. A state and a mapping produce different possibilities.
Variables may have multiple instances at the same time during a run. Therefore, a states
can appear with different mapping but at most (D + v)v different ones. Then we have

24 T. Ducros et al.

at most n*(D + v)v different possibilities since we must consider this for each state.
Finally, combining all of this gives the following complexity 2n ∗ n2 ∗ (D + v)2∗v .
Once simplified we have expn∗log(2)+2(logn)+v log(D+v))

The EXPTIME-hardnessof checking existential simulation between ELV -description
automata is obtained by a reduction from the existence of infinite execution of an
Alternating Turing Machine M working on a space polynomially bounded by the size
of the input. This later problem is known to be EXPTIME-complete [15].

Given an alternating turing machine M working on a space polynomially bounded
by the size of the input word w. We construct two description automata denoted as
AControl and ATest such that M has an infinite execution on the input w if and only if
ATest �∃ AControl.

The idea is simple, AControl encodes allowed moves in M while ATest stores the
cells corresponding to letters ofw into variables. Note that the number of head positions
is bounded by the size of the input, therefore we can duplicate states in order to simulate
the head position.

Both automata bear the same structure since they are both based on M . Simulation
checks out if the current variable transition in ATest, corresponding to the cell pointed
by the head, can be simulated by the equivalent constant transition inAControl. Refresh-
ing and bounding another time this variable mimic value replacement occurring in M .
Universal and existential states are then captured by introducing specific construction
transforming their semantics into an or/and test while computing simulation.

Corollary 1. Let P,Q be two patterns. Weak subsumption relationship P @∼T ,gfp Q is
EXPTIME-complete.

Proof. By theorem 1, since simulation is EXPTIME it proves that deciding weak sub-
sumption is also EXPTIME.

6 Conclusion

This paper investigates the problem of reasoning with description logics augmented
with variables. It considers a framework that caters for cyclic terminologies and defines
two semantics of variables which differ w.r.t. to the possibility or not to refresh the
variables. As preliminary results, the paper investigates a new reasoning mechanism,
called weak-subsumption, in the context of the description logic ELV , obtained from
an extension of the logic EL with refreshing variables. Future research works will be
devoted to the extension of the approach in three research directions: (i) extending our
framework to handle concept variables, (ii) considering additional reasoning mecha-
nisms in this context that go beyond weak-subsumption (e.g., a form of universal or
strong subsumption), and (iii) considering other description logics such as the logic
FL0 and ALN .

Weak subsumption in the EL-description logic with refreshing variables 25

References

1. Baader, F., Küsters, R., Borgida, A., McGuinness, D.: Matching in description logics. Journal
of Logic and Computation 9(3), 411–447 (1999)

2. Baader, F.: Using automata theory for characterizing the semantics of terminological cycles.
Annals of Mathematics and Artificial Intelligence 18(2), 175–219 (1996)

3. Baader, F.: Terminological cycles in a description logic with existential restrictions. In: IJ-
CAI. vol. 3, pp. 325–330 (2003)

4. Baader, F., Borgwardt, S., Morawska, B.: Extending unification in el towards general tboxes.
In: Thirteenth International Conference on the Principles of Knowledge Representation and
Reasoning (2012)

5. Baader, F., Gil, O.F., Marantidis, P.: Matching in the description logic FL0 with respect to
general tboxes. In: LPAR. pp. 76–94 (2018)

6. Baader, F., Küsters, R., Molitor, R.: Structural subsumption considered from an automata-
theoretic point of view. In: Proceedings of the 1998 International Workshop on Description
Logics (DL’98. Citeseer (1998)

7. Baader, F., Morawska, B.: Unification in the description logic EL. In: International Confer-
ence on Rewriting Techniques and Applications. pp. 350–364. Springer (2009)

8. Baader, F., Morawska, B.: Matching with respect to general concept inclusions in the descrip-
tion logic EL. In: Joint German/Austrian Conference on Artificial Intelligence (Künstliche
Intelligenz). pp. 135–146. Springer (2014)

9. Baader, F., Morawska, B.: Matching with respect to general concept inclusions in the descrip-
tion logic EL. In: Joint German/Austrian Conference on Artificial Intelligence (Künstliche
Intelligenz). pp. 135–146. Springer (2014)

10. Baader, F., Narendran, P.: Unification of concept terms in description logics. Journal of Sym-
bolic Computation 31(3), 277–305 (2001)

11. Belkhir, W., Chevalier, Y., Rusinowitch, M.: Fresh-Variable Automata for Service Compo-
sition. In: SYNASC 2013 -15th International Symposium on Symbolic and Numeric Al-
gorithms for Scientific Computing. West University of Timisoara Department of Computer
Science, IEEE, Timisoara, Romania (Sep 2013), https://hal.inria.fr/hal-00914778, 28 pages.
4 Figures

12. Borgida, A., Küsters, R.: ”what’s not in a name?” - initial explorations of a structural ap-
proach to integrating large concept knowledge-bases (1999)

13. Borgida, A., Brachman, R., Mcguinness, D., Resnick, L.: Classic: a structural data model for
objects. ACM SIGMOD Record 18 (02 1996). https://doi.org/10.1145/67544.66932

14. Brachman, R.J., McGuinness, D.L., Patel-Schneider, P.F., Resnick, L.A., Borgida, A.: Liv-
ing with classic: When and how to use a kl-one-like language. In: Principles of semantic
networks, pp. 401–456. Elsevier (1991)

15. Chandra, A.K., Stockmeyer, L.J.: Alternation. In: 17th Annual Symposium on Foundations
of Computer Science (sfcs 1976). pp. 98–108 (1976). https://doi.org/10.1109/SFCS.1976.4

16. Donini, F., Lenzerini, M., Nardi, D., Schaerf, A.: Reasoning in description logics. Center for
the Study of Language and Information (06 1999)

17. Henzinger, T., Qadeer, S., Rajamani, S., Tasiran, S.: An assume-guarantee rule for checking
simulation. ACM Trans. Program. Lang. Syst. 24, 51–64 (2002)

18. MacGregor, R.M.: Inside the loom description classifier. ACM Sigart Bulletin 2(3), 88–92
(1991)

19. Mcguinness, D.L., Borgida, A.: Explaining Reasoning in Description Logics. Ph.D. thesis,
USA (1996)

20. Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with complements. Arti-
ficial intelligence 48(1), 1–26 (1991)

