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ABSTRACT
Description logics have been widely studied and used in several
knowledge-based systems. They allow to model knowledge and
more importantly to reason over it. Subsumption relationship, a hier-
archical relationship between concepts, is one of the most common
reasoning task. Matching and unification generalize subsumption to
description involving variables. In this paper, we study the problem
of reasoning in description logics with variables. More specifically,
we consider refreshing semantics for variables in the context of
the EL description logic. We investigate a particular reasoning
mechanism, namely weak subsumption, which can be viewed as a
generalization of matching and unification in presence of refreshing
variables. We show that weak-subsumption is EXPTIME-complete.
Our main technical results are derived by establishing a correspon-
dence between this logic and variable automata.
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1 INTRODUCTION
Description Logics (DLs) are a family of knowledge representation
and reasoning formalisms that have been proven useful in many
application domains[4]. They provide means for well-structured and
formal representation of the conceptual knowledge of an application
domain and various inference procedures to reason about the repre-
sented knowledge. Description logics enable to describe a universe
of discourse in terms of concept descriptions, i.e., expressions built
from atomic concepts (unary predicates) and atomic roles (binary
predicates) using the constructors of the considered description logic.
For example, using the atomic concept 𝑃𝑒𝑟𝑠𝑜𝑛 and the atomic role
ℎ𝑎𝑠𝑐ℎ𝑖𝑙𝑑, the concept of 𝑃𝑎𝑟𝑒𝑛𝑡 can be represented by the concept
description

𝑃𝑒𝑟𝑠𝑜𝑛 ⊓ ∃ℎ𝑎𝑠𝑐ℎ𝑖𝑙𝑑.𝑃𝑒𝑟𝑠𝑜𝑛
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While subsumption reasoning, i.e., the ability to determine sub-
concept–superconcept relationships, is a traditional reasoning in DL-
based system additional inference mechanisms, such as matching
[9] and unification [8], that go beyond subsumption, have been pro-
posed in the literature. In this latter non-standard forms of reasoning,
concept description with not completely specified form (incomplete
information) can be specificed using the so-called concept patterns,
i.e., concept descriptions containing variables. As an example, con-
sider the following pattern which defines an 𝐴𝑐𝑎𝑑𝑒𝑚𝑖𝑐 as a 𝑃𝑒𝑟𝑠𝑜𝑛
with a certain relationship with a 𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦.

𝐴𝑐𝑎𝑑𝑒𝑚𝑖𝑐 ≡ 𝑃𝑒𝑟𝑠𝑜𝑛 ⊓ ∃𝑥 .𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦

Here, the variable 𝑥 takes its values from a set of possible atomic
role names. The concept description

𝐴𝑐𝑎𝑑𝑒𝑚𝑖𝑐 ≡ 𝑃𝑒𝑟𝑠𝑜𝑛 ⊓ ∃𝑤𝑜𝑟𝑘𝑠𝐼𝑛.𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦

matches this pattern. Indeed, if we replace the variable 𝑥 by the
role 𝑤𝑜𝑟𝑘𝑠𝐼𝑛, the pattern becomes equivalent to the description.
Replacing a variable 𝑥 with a value is called variable substitution.
Given a description 𝐶 and a pattern 𝑃 , the matching problem asks
then whether there is a variable substitution such that 𝐶 matches 𝑃 .
The unification extends the matching to the case where 𝐶 is itself a
pattern. Consider now the case of a cyclic description:

𝐴𝑐𝑎𝑑𝑒𝑚𝑖𝑐 ≡ 𝑃𝑒𝑟𝑠𝑜𝑛 ⊓ ∃𝑥 .𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 ⊓ ∃𝑦.𝐴𝑐𝑎𝑑𝑒𝑚𝑖𝑐

and the following concept descriptions:

𝐴 ≡ 𝑃𝑒𝑟𝑠𝑜𝑛 ⊓ ∃𝑤𝑜𝑟𝑘𝑠𝐼𝑛.𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 ⊓ ∃ℎ𝑎𝑠𝐴𝑑𝑣𝑖𝑠𝑒𝑟 .𝐵

𝐵 ≡ 𝑃𝑒𝑟𝑠𝑜𝑛 ⊓ ∃𝑝𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑂 𝑓 .𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 ⊓ ∃ℎ𝑎𝑠𝐶ℎ𝑖𝑙𝑑.𝐵
Using standard semantics of variable substitution, 𝐴 do not match

the pattern academic. However, if we exploit a different semantics
that enables to refresh the values of the variable 𝑥 and 𝑦 in each
description of the pattern 𝐴𝑐𝑎𝑑𝑒𝑚𝑖𝑐, in this case it becomes possible
to compute a matcher that makes the concept 𝐴 matching the pattern
𝐴𝑐𝑎𝑑𝑒𝑚𝑖𝑐 (i.e., the first occurrences of 𝑥 and 𝑦 are respectively
mapped to 𝑤𝑜𝑟𝑘𝑠𝐼𝑛 and ℎ𝑎𝑠𝐴𝑑𝑣𝑖𝑠𝑒𝑟𝑠 while their second occurences
are respectively mapped to 𝑝𝑟𝑠𝑖𝑑𝑒𝑛𝑡𝑜 𝑓 and ℎ𝑎𝑠𝐶ℎ𝑖𝑙𝑑).

This paper studies the extension of description logics with vari-
ables equipped with refreshing semantics. More specifically, we
focus on a new description logic, called EL𝑉 , that extends the
description logic EL with refreshing variables. Our definition of
EL𝑉 -patterns deviates from the one used in the literature with re-
spect to the following features:
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(1) our definition of concept patterns use role variable while the
literature focuses on concept variables,

(2) we support cyclic pattern definition and allow two different
types of semantics for variables (i.e., refreshing and not re-
freshing semantics),

We consider in particular a new reasoning mechanism in this con-
text, called weak-subsumption, which extends matching and uni-
fication to logics with refreshing variables. We show that testing
weak-subsumption between EL𝑉 -patterns is EXPTIME-complete.
Our main technical results are derived by establishing a correspon-
dence between this logic and a specifc form of variable automata.

The paper is organized as follows. Section 2 presents the related
works. Section 3 introduces a motivating example while preliminar-
ies are given at Section 4. Section 5 is devoted to the presentation
of the description logic EL𝑉 . Section 6 introduces a modelling of
description under the shape of variable automata used in order to
solve weak-subsumption. We conclude and draw future research
direction at section 7.

2 RELATED WORKS
Description logics are used by knowledge representations systems
such as Classic [14] or Loom [17] in order to represent a domain
in a structured and formally well understood way. By using formal
links defined between descriptions, reasoning tasks of descriptions
logics can be used.

There are two levels of reasoning which can be defined: asser-
tional and terminological levels. While assertional level focuses
on instances of defined concepts by checking their consistency or
satisfiability [15], terminological level is directed toward concept
relationships themselves. Indeed, disjointedness, equivalence and
notably subsumption are defined. Subsumption is one of the most ba-
sic and yet important reasoning mechanism which allows to discover
information.

Subsumption focuses on determining whether a concept C sub-
sumes - i.e. C is more general than - a concept D (noted 𝐷 ⊑ 𝐶 ).
This mechanism presents obvious advantages to infer knowledge
that is not directly expressed by exploiting DL’s structural approach
of knowledge. Up to now many works have solved subsumption for
different logics in presence or not of terminological TBox.

In the case of family based on the description logic FL0 and EL,
we can distinguish two kinds of approaches to solve subsumption:
normalize-compare algorithm and a tableau-based algorithm [18].
The first approach led to interesting results on how close description
logics can be to automata [1]. Indeed, in FL0 subsumption can
be reduced in language inclusion of finite automata [7] while EL
subsumption will be equivalent to simulation [2].

Recently, description logics have been extending by introducing
variables. Variables in description logic introduce pattern in addition
to ground concept description. Subsumption between a pattern 𝑃

and a ground description 𝐶 (𝐶 ⊑? 𝑃 or 𝑃 ⊑? 𝐶) is called a match-
ing problem [6]. Matching is a new non-standard reasoning task
that aims to find a substitution of variables such that 𝐶 ⊑ 𝜎 (𝑃) or
𝜎 (𝑃) ⊑ 𝐶. It has been studied for concept-description variables since
considering role variable is trivial and can be done by enumerating
all the possibilities. Matching has been proven to be polynomial in
FL0 without TBox [6] while considering a general TBox blows up

the complexity to EXPTIME [5]. Interestingly enough, EL proposes
a more complex matching problem by achieving NP-Completeness
without TBox [9] but does not suffer any blow up of complexity
when considering a general TBox[10]. The different results were
achieved by reducing matching to automata theory after adopting
a well-adapted normal form. Only matching w.r.t to general Tbox
in EL differs by proposing a goal-oriented algorithm that uses a
non-deterministic rule to transform a given matching problem into a
solved form.

The generalisation of matching involving two patterns P,Q (𝑃 ⊑
𝑄) is named unification [11]. Unification has also been investigated
in EL and FL0. Recently, unification in EL has made a huge
step forward by achieving NP-Completeness w.r.t a general TBox
that fulfills a restriction on cycles [3]. Unfortunately, the general
case is still an open problem since the proposed algorithm is not
complete. As for matching in EL, a goal-oriented algorithm has
been employed by extending the one proposed in [10].

So far matching and unification have proven to be useful in or-
der to filter out important aspects of large concepts in classic [12].
Baader et al. [11] proposed to use those reasoning tasks as a tool to
find and thus prevent redundancies in knowledge base. These reason-
ing mechanisms can also be used to support integration of knowledge
bases by prompting interscheme assertions to the integrator [13].

Variables in description logics allowed to extend subsumption
to non-standard reasoning tasks namely matching and unification.
These tasks have been well-studied and proven to be useful.
However, boundaries of the variables can be pushed up even further
by introducing refreshing semantic. Combination of description
logics variables and refreshing semantic is an interesting new
possibility. By making the potential of variables even greater, new
possibilities are offered to reason in description logics.

Next section offers a close-up to advantages of introducing re-
freshing semantic.

3 MOTIVATING EXAMPLES
This section aims to illustrate the potential of introducing refreshing
semantic in description logic using EL as example. Consequently,
we will save technical aspects for later sections and emphasize here
on presenting how valuable it can be. Examples are based on the
following terminology.

EXAMPLE 1.
𝐷𝑜𝑐𝑡𝑜𝑟 = 𝑃𝑒𝑟𝑠𝑜𝑛 ⊓ ∃𝑔𝑒𝑡𝑃ℎ𝐷𝐼𝑛.𝑈𝑛𝑖𝑣 ⊓ ∃𝑓 𝑜𝑟𝑚𝑒𝑟𝑙𝑦.𝑃ℎ𝐷𝑆𝑡𝑢𝑑𝑒𝑛𝑡

𝑃ℎ𝐷𝑆𝑡𝑢𝑑𝑒𝑛𝑡 = 𝑃𝑒𝑟𝑠𝑜𝑛 ⊓ ∃𝑠𝑡𝑢𝑑𝑦𝐼𝑛.𝑈𝑛𝑖𝑣 ⊓ ∃𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑𝐵𝑦.𝐷𝑜𝑐𝑡𝑜𝑟
To this simple TBox, the pattern 𝐴𝑐𝑎𝑑𝑒𝑚𝑖𝑐 ≡ 𝑃𝑒𝑟𝑠𝑜𝑛 ⊓

∃𝑥 .𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 ⊓ ∃𝑦.𝐴𝑐𝑎𝑑𝑒𝑚𝑖𝑐 is added with 𝑥,𝑦 being role vari-
ables. From a state of the art point of view, there are a finite number
of substitutions that can be applied to 𝑥 and𝑦. Unfortunately, none of
these substitutions leads to a subsumption relationship with a defined
concept of the TBox. In other words, Academic is not subsumed nor
subsumes Doctor or PhDStudent. It means that matching problems
involving 𝐴𝑐𝑎𝑑𝑒𝑚𝑖𝑐 and defined concepts of this example are un-
solvable. We will now assume that 𝑥 and 𝑦 can take new value each
time we replace Academic by its own definition. As a consequence,it
is possible to alternate between {𝑥 ↦→ 𝑔𝑒𝑡𝑃ℎ𝐷𝐼𝑛,𝑦 ↦→ 𝑓 𝑜𝑟𝑚𝑒𝑟𝑙𝑦}
and {𝑥 ↦→ 𝑠𝑡𝑢𝑑𝑦𝐼𝑛,𝑦 ↦→ 𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑𝐵𝑦} which would conduct to an
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equivalent definition of 𝐷𝑜𝑐𝑡𝑜𝑟 under the greatest fix-point seman-
tic. Therefore there is now a substitution such that a subsumption
relationship exists between Doctor and an instance of Academic.

The same statements can be done regarding concept description
variables. The next example focuses on explaining how better
solution to solvable matching problem can be found in presence of
refreshing semantic. This time and to be more complete, we will use
concept variable to illustrate it. The following concept will be added
to the original TBox of Example 1:

𝐹𝑟𝑒𝑛𝑐ℎ𝐷𝑜𝑐𝑡𝑜𝑟 = 𝑃𝑒𝑟𝑠𝑜𝑛 ⊓ ∃𝑔𝑒𝑡𝑃ℎ𝐷𝐼𝑛.𝐹𝑟𝑒𝑛𝑐ℎ𝑈𝑛𝑖𝑣 ⊓
∃𝑓 𝑜𝑟𝑚𝑒𝑟𝑙𝑦.𝐹𝑟𝑒𝑛𝑐ℎ𝑃ℎ𝐷𝑆𝑡𝑢𝑑𝑒𝑛𝑡

𝐹𝑟𝑒𝑛𝑐ℎ𝑃ℎ𝐷𝑆𝑡𝑢𝑑𝑒𝑛𝑡 = 𝑃𝑒𝑟𝑠𝑜𝑛 ⊓ ∃𝑠𝑡𝑢𝑑𝑦𝐼𝑛.𝐹𝑟𝑒𝑛𝑐ℎ𝑈𝑛𝑖𝑣 ⊓
∃𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑𝐵𝑦.𝐷𝑜𝑐𝑡𝑜𝑟
𝐹𝑟𝑒𝑛𝑐ℎ𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 = 𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 ⊓ ∃𝑙𝑜𝑐𝑎𝑡𝑒𝑑.𝐹𝑟𝑎𝑛𝑐𝑒

We will then consider the pattern Academic2 defined as follows :
𝐴𝑐𝑎𝑑𝑒𝑚𝑖𝑐2 ≡ 𝑃𝑒𝑟𝑠𝑜𝑛 ⊓ ∃𝑔𝑒𝑡𝑃ℎ𝑑𝐼𝑛.𝑋 ⊓ ∃𝑓 𝑜𝑟𝑚𝑒𝑟𝑙𝑦.(𝑃𝑒𝑟𝑠𝑜𝑛 ⊓
∃𝑠𝑡𝑢𝑑𝑦𝐼𝑛.𝑋 ⊓ ∃𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑𝐵𝑦.𝐴𝑐𝑎𝑑𝑒𝑚𝑖𝑐2)

We will focus on comparing the pattern to the newly added con-
cept FrenchDoctor. Obviously, taking 𝑋 = ⊤ or 𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 implies
that FrenchDoctor is more specific than Academic2. On the other
hand, taking 𝑋 = 𝐹𝑟𝑒𝑛𝑐ℎ𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 would reverse the subsumption
relationship making Academic2 more specific. However, equivalence
can never be achieved. If we consider 𝑋 as a refreshing variable, we
can say that the first time 𝑋 maps to 𝐹𝑟𝑒𝑛𝑐ℎ𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 and then it
will continuously be mapped to 𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦. This solution allows to
achieve an equivalent concept to FrenchDoctor. Note that none of
the solutions, before changing X’s nature from non-refreshing to
refreshing variable, could achieve it. This solution is then a better
solution in the sense that it is closer to the targeted concept than any
other.

4 PRELIMINARIES
We use the following definition of a tree [16]: A tree is a set 𝜏 ⊆ N∗
such that if 𝑥𝑛 ∈ 𝜏 , for 𝑥 ∈ N∗ and 𝑛 ∈ N, then 𝑥 ∈ 𝜏 and 𝑥𝑚 ∈ 𝜏
for all 0 ≤ 𝑚 < 𝑛. The elements of 𝜏 represent nodes: the empty
word 𝜖 is the root of 𝜏 , and for each node 𝑥 , the nodes of the form
𝑥𝑛, for 𝑛 ∈ N, are children of 𝑥 . Given a pair of sets 𝑆 and 𝑀 , an
⟨𝑆,𝑀⟩-labeled tree is a triple (𝜏, 𝜆, 𝛿), where 𝜏 is a tree, 𝜆 : 𝜏 → 𝑆

is a node labeling function that maps each node of 𝜏 to an element
in 𝑆 , and 𝛿 : 𝜏 × 𝜏 → 𝑀 is an edge labeling function that maps each
edge (𝑥, 𝑥𝑛) of 𝜏 to an element in 𝑀 .

Let 𝑁𝐶 be a set of concept names and let 𝑁𝑅 be a set of role
names. We use the letters 𝐴, 𝐵 to range over 𝑁𝐶 ; 𝑅, 𝑆 to range over
𝑁𝑅 ; and 𝐶, 𝐷 to range over EL-concept descriptions (or simply,
EL-concepts), which are formulas inductively generated by the
following rule:

⊤ | 𝐴 | 𝐶 ⊓ 𝐷 | ∃𝑅.𝐷
The semantics of EL is formalized in terms of interpretation.

An interpretation I is a pair (ΔI , .I ) where ΔI is a non-empty set
called the domain and .I is an interpretation function that assigns
binary relations on ΔI to role names and subsets of ΔI to EL-
concepts as shown in the semantics column of Table 1.

A simple Tbox T is a set of concept definitions of the form 𝑃 ≡ 𝐶,
with 𝑃 ∈ 𝑁𝑑𝑒𝑓 and 𝐶 an EL-concept such that no 𝑃 appears more

Name Syntax Semantic
Top Concept ⊤ ΔI

Concept name A 𝐴I ⊆ ΔI

role name R 𝑅I ⊆ ΔI × ΔI
Conjunction 𝐷 ⊓ 𝐸 𝐷I ∩ 𝐸I
Existential restriction ∃𝑅.𝐶 { 𝑎 ∈ ΔI |∃𝑏 ∈

𝐶I .(𝑎, 𝑏) ∈ 𝑅I}
Table 1: Interpretation of EL’s constructors

than once on the left-hand side of a definition in T . Concept names
that occur on the left-hand side of a definition are called defined
concepts, and denoted by the set 𝑁𝑑𝑒𝑓 , while all the other concepts
occurring in T are called atomic concepts and are denoted by the set
𝑁𝐴. We allow for cyclic dependencies between the defined concepts,
i.e., a definition of an EL-concept 𝑃 may directly or indirectly refer
to 𝑃 itself. An interpretation I is a model of T if and only if for
all definitions 𝐴 ≡ 𝐶 ∈ T we have 𝑃I = 𝐶I . We say that 𝐶 is
subsumed by 𝐷 w.r.t. T , written 𝐶 ⊑T 𝐷, iff 𝐶I ⊆ 𝐷I holds for
every model I of T .

5 THE DESCRIPTION LOGIC EL𝑉

An EL𝑉 -signature is a pair Σ = (𝑁𝐶 , 𝑁𝑇 ), where 𝑁𝐶 is the set of
concept names and 𝑁𝑇 = 𝑁𝑅 ∪V the set of role terms. A role term
𝑡 ∈ 𝑁𝑇 is either a role name (when 𝑡 ∈ 𝑁𝑅) or a variable (when
𝑡 ∈ V). We consider the set of variablesV = 𝑁𝑉𝑅 ∪ 𝑁𝑉𝑁

as made
of two disjoint sets of variables: 𝑁𝑉𝑅 the set of refreshing variables
and 𝑁𝑉𝑁

the set of non refreshing variables. The sets 𝑁𝐶 , 𝑁𝑅 , 𝑁𝑉𝑅

and 𝑁𝑉𝑁
are pairwise disjoint.

The description logic EL𝑉 extends the logic EL with role vari-
ables. Given a signature Σ = (𝑁𝐶 , 𝑁𝑇 ), EL𝑉 -concept descriptions
are built similarly to EL concepts while using roles terms instead of
only role names.

EXAMPLE 2. Let 𝑥 ∈ 𝑁𝑉𝑅 and 𝑦, 𝑧 ∈ 𝑁𝑉𝑁
, then the following is

an EL𝑉 -concept definition:

𝐵1 ≡ 𝑃𝑒𝑟𝑠 ⊓ ∃𝑧.𝑈𝑛𝑖𝑣

𝐴𝑐𝑎𝑑 ≡ 𝑃𝑒𝑟𝑠 ⊓ ∃𝑥 .𝑈𝑛𝑖𝑣 ⊓ ∃𝑦.𝐴𝑐𝑎𝑑
The EL𝑉 -concept 𝐵1 is defined as 𝑃𝑒𝑟𝑠𝑜𝑛 which has a relation-
ship with a 𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 while the cyclic EL𝑉 -concept 𝐴𝑐𝑎𝑑𝑒𝑚𝑖𝑐 is
defined as 𝑃𝑒𝑟𝑠𝑜𝑛 which has a relationship with a 𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 and
another relationship with an 𝐴𝑐𝑎𝑑𝑒𝑚𝑖𝑐.

An EL𝑉 -TBox is a set of EL𝑉 -concept definitions. We present
now the notion of normalized EL𝑉 -TBoxes. Let Σ = (𝑁𝐶 , 𝑁𝑇 ),
with 𝑁𝑇 = 𝑁𝑅 ∪ V and V = 𝑁𝑉𝑅 ∪ 𝑁𝑉𝑁

, be an EL𝑉 -signature
and let T be an EL𝑉 -TBox over the signature Σ. We say that T is
normalized iff 𝐶 ≡ 𝐷 ∈ T implies that 𝐷 is of the form:

𝐴0 ⊓ ... ⊓𝐴𝑛 ⊓ ∃𝑟0 .𝐵0 ⊓ ... ⊓ ∃𝑟𝑚 .𝐵𝑚

for 𝑛,𝑚 ≥ 0 and 𝐴𝑖 ∈ 𝑁𝐴 and 𝑟𝑖 ∈ 𝑁𝑇 ,∀𝑖 ∈ [0, 𝑛] and
𝐵 𝑗 ∈ 𝑁𝑑𝑒𝑓 ,∀𝑗 ∈ [0,𝑚].

In the sequel, we assume that the EL𝑉 -TBoxes are normalized.

EXAMPLE 3. Back to Example 2,𝐶1 must be introduced in order
to normalize 𝐵1 and 𝐴𝑐𝑎𝑑𝑒𝑚𝑖𝑐 since University is not a defined
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concept but an atomic one.

𝐶1 = 𝑈𝑛𝑖𝑣

𝐵1 ≡ 𝑃𝑒𝑟𝑠 ⊓ ∃𝑧.𝐶1

𝐴𝑐𝑎𝑑 ≡ 𝑃𝑒𝑟𝑠 ⊓ ∃𝑥 .𝐶1 ⊓ ∃𝑦.𝐴𝑐𝑎𝑑

We explain now the difference between the set 𝑁𝑉𝑅 of refreshing
variables and the set 𝑁𝑉𝑁

of non refreshing variables. Given an EL𝑉 -
TBox T , a substitution 𝜎 maps a variable in 𝑁𝑉𝑁

to a fixed value
while the value assigned to a variable in 𝑁𝑉𝑅 can be refreshed period-
ically. To illustrate our purpose, we use subscripts (i.e., 𝜎1, 𝜎2, . . .) to
denote the fact that a substitution 𝜎 maps a refreshing variable 𝑥 to
several values. Assume a substitution 𝜎 that maps the non refreshing
variable 𝑦 to a role name 𝑠𝑜𝑛𝑂𝑓 (i.e., 𝜎𝑖 (𝑦) = 𝑠𝑜𝑛𝑂𝑓 ,∀𝑖 ∈ N) and it
maps the first occurrence of the refreshing variable 𝑥 to 𝑝𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑂 𝑓

(i.e., 𝜎1 (𝑥) = 𝑝𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑂 𝑓 )) while it maps the second occurrence
of 𝑥 to 𝑤𝑜𝑟𝑘𝑠𝐼𝑛 (i.e., 𝜎2 (𝑥) = 𝑤𝑜𝑟𝑘𝑠𝐼𝑛). This leads to the following
EL-TBox:

𝜎1 (𝐴𝑐𝑎𝑑) ≡ 𝑃𝑒𝑟𝑠⊓∃ 𝑝𝑟𝑒𝑠𝑂 𝑓︸  ︷︷  ︸
𝜎1 (𝑥)

. 𝑈𝑛𝑖𝑣︸︷︷︸
𝜎 (𝐶1)

⊓∃ 𝑠𝑜𝑛𝑂𝑓︸ ︷︷ ︸
𝜎 (𝑦)

.(

𝑃𝑒𝑟𝑠 ⊓ ∃𝑤𝑜𝑟𝑘𝐼𝑛︸  ︷︷  ︸
𝜎2 (𝑥)

. 𝑈𝑛𝑖𝑣︸︷︷︸
𝜎 (𝐶1)

⊓∃ 𝑠𝑜𝑛𝑂𝑓︸ ︷︷ ︸
𝜎 (𝑦)

.𝜎3 (𝐴𝑐𝑎𝑑))

To define formally the notion of instance of an EL𝑉 -concept
in presence of refreshing variables, we first turn EL𝑉 -descriptions
with refreshing variables to equivalent infinite EL𝑉 -descriptions
with non refreshing variables. This is achieved by the following
unfolding process which replaces refreshing variables appearing in
cyclic definitions of a given terminology by an infinite set of non
refreshing variables.

DEFINITION 1. (Pattern unfolding)
Let T be an EL𝑉 -TBox over a EL𝑉 -signature Σ = (𝑁𝐶 , 𝑁𝑇 ), with
𝑁𝑇 = 𝑁𝑅 ∪V andV = 𝑁𝑉𝑅 ∪𝑁𝑉𝑁

. The unfolding of the Tbox T is
a new Tbox, noted 𝑢 (T ), over the EL𝑉 -signature (𝑁𝐶 , 𝑁𝑅 ∪ 𝑁𝑉𝑁

)
such that each EL𝑉 -pattern 𝑃 = 𝐴0⊓ ...⊓𝐴𝑛⊓∃𝑟0 .𝐵0⊓ ...⊓∃𝑟𝑚 .𝐵𝑚
of T is mapped into an EL𝑉 -pattern 𝑢 (𝑃) in 𝑢 (T ). The unfolding
𝑢 is defined as follows:
• 𝑢 (𝑃) = 𝑢 (𝐴0) ⊓ ... ⊓ 𝑢 (𝐴𝑛) ⊓ ∃𝑢 (𝑟0).𝑢 (𝐵0) ⊓ ... ⊓
∃𝑢 (𝑟𝑚).𝑢 (𝐵𝑚).
• 𝑢 (𝑡) = 𝑡,∀𝑡 ∈ 𝑁𝐴 ∪ 𝑁𝑅 ∪ 𝑁𝑉𝑁

, i.e., 𝑢 is the identity function
over primitive concept names, role names and non refreshing
variables.
• if 𝑟𝑖 ∈ 𝑁𝑉𝑅 then each new call to 𝑢 (𝑟𝑖 ) in the scope of 𝑢 (𝑃)

returns a new "fresh" variable from 𝑁𝑉𝑁
. Note that, for 𝑟𝑖 =

𝑟 𝑗 in the description 𝑃 , the calls to 𝑢 (𝑟𝑖 ) and to 𝑢 (𝑟 𝑗 ) return
the same fresh variable while recursive calls to 𝑢 (𝑟𝑖 ) return
different fresh variables.

Hence, an unfolding of an EL𝑉 -pattern 𝑃 enables to replace re-
cursively each refreshing variable 𝑥 by a new non-refreshing variable.
Note that, in the case of refreshing variables that appear inside of a
cyclic definition of an EL𝑉 -pattern 𝑃 , the unfolding of 𝑃 leads to
an infinite EL𝑉 -pattern 𝑢 (𝑃).

EXAMPLE 4. We show below partial unfolding of the EL𝑉 -
pattern 𝐴𝑐𝑎𝑑𝑒𝑚𝑖𝑐

𝑢 (𝐴𝑐𝑎𝑑) ≡ 𝑃𝑒𝑟𝑠︸︷︷︸
𝑢 (𝑃𝑒𝑟𝑠)

⊓∃ 𝑥1︸︷︷︸
𝑢 (𝑥)

. 𝑢 (𝑈𝑛𝑖𝑣)︸   ︷︷   ︸
𝑢 (𝐶1)

⊓∃ 𝑦︸︷︷︸
𝑢 (𝑦)

.(

𝑃𝑒𝑟𝑠 ⊓ ∃ 𝑥2︸︷︷︸
𝑢 (𝑥)

. 𝑢 (𝑈𝑛𝑖𝑣)︸   ︷︷   ︸
𝑢 (𝐶1)

⊓∃ 𝑦︸︷︷︸
𝑢 (𝑦)

.𝑢 (𝐴𝑐𝑎𝑑))

It is worth noting that an unfolding of a pattern 𝑃 =

𝐴0 ⊓ ... ⊓ 𝐴𝑛 ⊓ ∃𝑟0 .𝐵0 ⊓ ... ⊓ ∃𝑟𝑚 .𝐵𝑚 can be viewed as a〈
𝑁𝑑𝑒𝑓 ∪ {𝑎𝑡𝑜𝑚𝑖𝑐}, 𝑁𝑅 ∪ 𝑁𝑉𝑁

〉
-labeled tree (𝜏𝑃 , 𝜆, 𝛿) which is re-

cursively defined as follows:
• 𝜆(𝜖) = 𝑃

• ∀𝑖 ∈ [0, 𝑛], we have: 𝑖 ∈ 𝜏 , 𝛿 (𝜖, 𝑖) = 𝐴𝑖 and 𝜆(𝑖) = 𝑎𝑡𝑜𝑚𝑖𝑐.
The label "atomic" is a specific keyword used to label the
leafs of the tree.
• ∀𝑖 ∈ [𝑛 + 1, 𝑛 +𝑚 + 1], we have: 𝑖 ∈ 𝜏 , 𝛿 (𝜖, 𝑖) = 𝑢 (𝑟𝑖−𝑛−1)

and 𝑖 is the root of the tree 𝜏𝐵𝑖−𝑛−1

𝜖

0

00

University

𝑥1

1

Person

2

20

200

University

𝑥2

21

Person

.

.

.

𝑦

𝑦

𝐴𝑐𝑎𝑑𝑒𝑚𝑖𝑐

𝐶1

𝑎𝑡𝑜𝑚𝑖𝑐

𝑎𝑡𝑜𝑚𝑖𝑐 𝐴𝑐𝑎𝑑𝑒𝑚𝑖𝑐

𝑎𝑡𝑜𝑚𝑖𝑐𝐶1

𝑎𝑡𝑜𝑚𝑖𝑐

Figure 1: Tree of unfolded academic

EXAMPLE 5. Figure 1 represents the tree representation of Aca-
demic unfolded. Each node is labeled by the corresponding concept
in the TBox. If they participate in a cycle, they will appear an infinite
number of times. Leaves are only labeled by atomic since atomic
concept always leads to an end of unfolding.

Instanciations of EL𝑉 -concept definitions (respectively, EL𝑉 -
TBoxes) are given by variable substitutions. Given a TBox T with a
signature Σ = (𝑁𝐶 , 𝑁𝑇 ), where 𝑁𝑇 = 𝑁𝑅 ∪V, a substitution 𝜎 is a
mapping fromV into the set of role names 𝑁𝑅 . A substitution 𝜎 is
extended to EL𝑉 -concepts in the obvious way, i.e.:
• 𝜎 (𝑇 ) = 𝑇 if 𝑇 ∈ 𝑁𝐶 ∪ {⊤} ∪ 𝑁𝑅 ;
• 𝜎 (𝐶 ⊓ 𝐷) = 𝜎 (𝐶) ⊓ 𝜎 (𝐷) with C,D two EL𝑉 -concepts;
• 𝜎 (∃𝑇 .𝐶) = ∃𝜎 (𝑇 ) .𝜎 (𝐶).

In addition, a substitution 𝜎 maps each EL𝑉 -TBox T into an EL-
TBox 𝜎 (T ) which is obtained by converting each EL𝑉 -concept
definition 𝑃 ≡ 𝐶 in T into an EL-concept definition 𝜎 (𝑃) ≡ 𝜎 (𝐶).
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In this case, the EL-concept 𝜎 (𝑃) is called an instance of the EL𝑉 -
concept 𝐴.

DEFINITION 2. (Pattern Instances)
Let T be an EL𝑉 -TBox over a EL𝑉 -signature Σ = (𝑁𝐶 , 𝑁𝑇 ), with
𝑁𝑇 = 𝑁𝑅 ∪ V and V = 𝑁𝑉𝑅 ∪ 𝑁𝑉𝑁

and let 𝑃 = 𝐴0 ⊓ ... ⊓ 𝐴𝑛 ⊓
∃𝑟0 .𝐵0 ⊓ ...⊓∃𝑟𝑚 .𝐵𝑚 be an EL𝑉 -pattern in T . Let 𝜙 : 𝑁𝑉𝑁

→ 𝑁𝑅

be a variable substitution. Then 𝜙 (𝑢 (𝑃)) is an instance of 𝑃 w.r.t.
the variable substitution 𝜙 .

In the sequel, we abuse of notation and we write 𝜎 (𝑃) instead of
𝜎 (𝑢 (𝑃)) for a pattern instance of 𝑃 w.r.t. 𝜎 .

EXAMPLE 6. Consider two substitutions 𝜎 and 𝜃 that respec-
tively map the variable 𝑧 as follows: 𝜎 (𝑧) = 𝑤𝑜𝑟𝑘𝐼𝑛 and 𝜃 (𝑧) =
𝑔𝑟𝑎𝑑𝐹𝑟𝑜𝑚. Each of these substitutions leads to an instantiation of
the EL𝑉 -concept 𝐵1 of example 2 as follows: 𝜎 (𝐵1) ≡ 𝑃𝑒𝑟𝑠 ⊓
∃𝑤𝑜𝑟𝑘𝐼𝑛.𝑈𝑛𝑖𝑣 and 𝜃 (𝐵1) ≡ 𝑃𝑒𝑟𝑠 ⊓ ∃𝑔𝑟𝑎𝑑𝐹𝑟𝑜𝑚.𝑈𝑛𝑖𝑣 . On the other
hand, if we consider 𝜎 (𝑦) = 𝑠𝑜𝑛𝑂𝑓 and 𝜎 (𝑥) such that it alternates
between 𝑤𝑜𝑟𝑘𝐼𝑛 and 𝑝𝑟𝑒𝑠𝑂 𝑓 . It leads to the following instantiation
of Acad. Note that this instantiation is not achievable by using only
non-refreshing variables.

𝜎1 (𝐴𝑐𝑎𝑑) ≡ 𝑃𝑒𝑟𝑠⊓∃ 𝑝𝑟𝑒𝑠𝑂 𝑓︸  ︷︷  ︸
𝜎1 (𝑥)

. 𝑈𝑛𝑖𝑣︸︷︷︸
𝜎 (𝐶1)

⊓∃ 𝑠𝑜𝑛𝑂𝑓︸ ︷︷ ︸
𝜎 (𝑦)

.(

𝑃𝑒𝑟𝑠 ⊓ ∃𝑤𝑜𝑟𝑘𝐼𝑛︸  ︷︷  ︸
𝜎2 (𝑥)

. 𝑈𝑛𝑖𝑣︸︷︷︸
𝜎 (𝐶1)

⊓∃ 𝑠𝑜𝑛𝑂𝑓︸ ︷︷ ︸
𝜎 (𝑦)

.𝜎1 (𝐴𝑐𝑎𝑑))

Various kinds of reasoning could be defined over EL𝑉 -
terminologies. We focus on this paper on one specific reasoning
mechanism, called hereafter weak subsumption.

DEFINITION 3. (Weak subsumption)
Let T be an EL𝑉 -TBox and let 𝑃,𝑄 two EL𝑉 -patterns. Then, 𝑃

is weakly subsumed by 𝑄 w.r.t. T , denoted 𝑃 ⊏∼T 𝑄 , iff exists two
substitutions 𝜙1 and 𝜙2 s.t 𝜙1 (𝑃) ⊑T 𝜙2 (𝑄)

Note that weak subsumption can be viewed as an extension of
respectively matching [9, 10] when either 𝑃 or 𝑄 is a ground EL-
concept and unification [8] when both 𝑃 and 𝑄 are EL𝑉 -patterns to
logic with refreshing variables.

6 EL𝑉 -DESCRIPTION AUTOMATON
Our reasoning procedures over EL𝑉 -terminologies are built on the
notions of EL𝑉 -description automata. Such automata recognize
configuration trees which are nothing other than a syntactic variant
of pattern instances. As a main result of this section, stated by lemma
1, we associate with each EL𝑉 -pattern 𝑃 an EL𝑉 -description au-
tomata 𝐴𝑃 such that there is a bijection between the configuration
trees recognized by 𝐴𝑃 and the instances of 𝑃 . Consequently, an
EL𝑉 -description automaton 𝐴𝑃 characterizes all the possible in-
stances of its associated EL𝑉 -pattern 𝑃 .

DEFINITION 4. (EL𝑉 -description automata)
Let T be an EL𝑉 -TBox over the signature Σ = (𝑁𝐶 , 𝑁𝑇 ), with
𝑁𝐶 = 𝑁𝑑𝑒𝑓 ∪ 𝑁𝐴, 𝑁𝑇 = 𝑁𝑅 ∪ V and V = 𝑁𝑉𝑅 ∪ 𝑁𝑉𝑁

and let
𝑃 ≡ 𝐴0 ⊓ ... ⊓ 𝐴𝑛 ⊓ ∃𝑟0 .𝐵0 ⊓ ... ⊓ ∃𝑟𝑚 .𝐵𝑚 be a defined concept in
T . The EL𝑉 -description automaton associated with 𝑃 , denoted 𝐴𝑃 ,
is a tuple 𝐴𝑃 = (L,V𝑎𝑟,Q, 𝑞0, 𝑞𝑓 , 𝛿, 𝜅) recursively build as:

• L ⊆ 𝑁𝐴 ∪ 𝑁𝑅 is a finite alphabet,
• V𝑎𝑟 ⊆ V is a finite set of variables,
• Q = 𝑁𝑑𝑒𝑓 ∪ {𝑞𝑓 } is a finite set of states,
• 𝑞0 = 𝑃 is the initial state and 𝑞𝑓 is the final state,
• 𝛿 ⊆ Q × (L ∪ V𝑎𝑟 ) × 𝑄 is a transition relation defined as

follows: 𝛿 = {(𝑃,𝐴𝑖 , 𝑞𝑓 ) : 𝑓 𝑜𝑟 𝑖 ∈ [0, 𝑛]} ∪ {(𝑃, 𝑟 𝑗 , 𝐵 𝑗 ) :
𝑓 𝑜𝑟 𝑗 ∈ [0,𝑚]} (where 𝐵 𝑗 is the initial state of the automaton
𝐴𝐵 𝑗

)
• 𝜅 : V𝑎𝑟 → ∈𝑄 is the refreshing function defined as follows:
∀𝑟𝑖 ∈ V𝑎𝑟 we have: 𝜅 (𝑟𝑖 ) = {𝑃} if 𝑟𝑖 ∈ 𝑁𝑉𝑅 , or 𝜅 (𝑟𝑖 ) = ∅ if
𝑟𝑖 ∈ 𝑁𝑉𝑁

.

Definition 4 associates to each defined concept 𝑃 ≡ 𝐴0⊓ ...⊓𝐴𝑛⊓
∃𝑟0 .𝐵0 ⊓ ...⊓∃𝑟𝑚 .𝐵𝑚 in a Tbox T and EL𝑉 -description automaton
𝐴𝑃 whose states are made of the set of defined concept names of T
in addition to a special final state 𝑞𝑓 . Transitions of 𝐴𝑃 are labelled
either with letters, taken from an alphabet made of the primitive
concept names and role names, or variables taken from the set of
role variables. More precisely, each atomic concept name 𝐴𝑖 that
appears in the definition of 𝑃 leads to a transition from the node 𝑃 to
𝑞𝑓 labeled with the letter 𝐴𝑖 . Each description ∃𝑟𝑖 .𝐵𝑖 that appears in
the definition of 𝑃 leads to a transition from the node 𝑃 to the node
𝐵𝑖 (the initial state of the automaton 𝐴𝐵𝑖

) labeled with the term 𝑟𝑖 .
When the term 𝑟𝑖 is a refreshing variable, in this case it is refreshed
in the state 𝑃 and its refreshing state is given by the function 𝜅 (i.e.,
𝜅 (𝑟𝑖 ) = {𝑃}).

Figure 2 depicts the description automaton of the pattern Aca-
demic introduced previously. The variable 𝑥 is non-refreshing while
the variable 𝑦 is refreshing with 𝜅 (𝑦) = {𝐴𝑐𝑎𝑑𝑒𝑚𝑖𝑐} its refreshing
state.

𝐴𝑐𝑎𝑑start 𝐶1

𝑞𝑓

𝑦

𝑥

𝑈𝑛𝑖𝑣𝑃𝑒𝑟𝑠

Figure 2: The description automaton 𝐴𝐴𝑐𝑎𝑑𝑒𝑚𝑖𝑐 .

A description automaton of a given pattern 𝑃 is in fact a com-
pacted representation of all the possible instantiation of 𝑃 . To make
this statement more precise, we introduce the notions of configu-
rations and configuration trees and we show that these latter ones
are equivalent to the instances of 𝑃 . Informally, a configuration of
𝐴𝑃 gives the values assigned to variables at a given state of the
execution of the automaton 𝐴𝑃 . Since, on one side a given state may
be visited (infinitely) many times and on another side refreshing
variables may see their assigned value changed at their refreshing
states, a configuration includes a vector of integer used to distinguish
between multiple value assignations to a given refreshing variables.
More precisely, we define a configuration as a pair (𝑞, 𝐼 ) where 𝑞 is
a state of 𝐴𝑃 and 𝐼 is a vector of integers, where the 𝑖𝑡ℎ component
of 𝐼 records the current index of the 𝑖𝑡ℎ variable, assuming that the
variables are sorted according to their lexicographic order. By this
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way, we are able to generate several copies of a refreshing variables
by incrementing its corresponding component in the vector 𝐼 .

Figure 4 represents a configuration tree based on the description
automaton of Academic. A configuration 𝑐 is a pair (𝑞𝑐 , 𝐼𝑐 ) made of
a state 𝑞𝑐 and a counter 𝐼𝑐 . Using such a pair enables to exploit the
potential of variable transitions. Indeed, variables will be replaced
during a transition by elements of L. In the tree, the configuration is
used as a label.

Each configuration automaton of𝐴𝑃 regarding 𝜎 : V𝑎𝑟×N ↦→ 𝑁𝑅

corresponds to the description tree of 𝜙 (𝑃). For example, the con-
figuration tree of Figure 4 depicted the beginning of 𝜎 (𝐴𝑐𝑎𝑑𝑒𝑚𝑖𝑐)
presented above.

We will use the following notation. Let 𝐺 ∈ N |V𝑎𝑟 | a tuple of
integer.𝐺 is called a counter and is used to associate an integer value
with each variable in V𝑎𝑟 . More precisely, we assume that each
variable 𝑥 ∈ V𝑎𝑟 is associated with a fixed position in 𝐺 , noted 𝐺𝑥 ,
which gives the value of the counter of 𝑥 in 𝐺 .

DEFINITION 5. (Configuration and configuration tree)
Let 𝐴𝑃 = (Q,L,V𝑎𝑟, 𝑞0, 𝛿, 𝑞𝑓 , 𝜅) be a description automaton and
let 𝜎:V𝑎𝑟 × N ↦→ 𝑁𝑅 be a variable substitution.
• A configuration is a pair (𝑞, 𝐼 ) where 𝑞 ∈ Q is a state of 𝐴𝑃

and 𝐼 ∈ N |V𝑎𝑟 | is a vector of integers.
• Let 𝑆 ⊆ Q × N |V𝑎𝑟 | . A run of 𝐴𝑃 using a substitution 𝜎 ,

denoted 𝑇 (𝐴𝑃 , 𝜎) and called a configuration tree, is a ⟨𝑆,L⟩-
labeled tree (𝜏, 𝜆, 𝛿) constructed using the Algorithm 1.

Definition 5 formally defines a configuration tree. As stated above,
configurations are of the form (𝑞𝑐 , 𝐼𝑐 ). The state 𝑞𝑐 refers to states
of 𝐴𝑃 , it allows to know in what states we are and what states are
reachable.

On the other hand, 𝐼𝑐 is a counter acting as a stamp which keeps
track of time and order. Thanks to it, we know what instance of a
variable has to be considered. It allows to identify variables and on
the top of that, to synchronize the same instances of variables.

The counter is directly impacted by refreshment since refreshing
means new instances. Since its role is to keep track of the current
instance, it then updates values if a refreshing state is encountered.
This update takes the shape of an increasing of the variables’ as-
sociated counters. However, this increasing is not done randomly,
since any path leading to a refreshing states must lead to a brand new
instance, a global counter is used to ensure it. Not doing so could
imply that different instances of a variable would be synchronized
for no reason. To sum up a configuration c is a pair (𝑞𝑐 , 𝐼𝑐 ) where
𝑞𝑐 ∈ 𝑄𝑃 and 𝐼𝑐 ∈ N |V𝑎𝑟 | which acts as a local stamp.

By defining relation over configuration with regards to a function
V𝑎𝑟 × N ↦→ 𝑁𝑅 , it makes possible to give a specific value to a
specific instance of a variable.

Lemma 1 enlightens the link between valuation in description
logic and configuration automaton in automata theory. It says that
for each substitution of a pattern P in description logic there exists an
isomorphic automaton among configuration trees recognized by 𝐴𝑃 .
Figure 3 proposes a graphical and easier to understand representation
of those relationships.

DEFINITION 6. (Equivalence between variable’s substitution)
Let T be a Tbox with the pattern P and 𝐴𝑃 =

(Q,L,V𝑎𝑟, 𝑞0, 𝛿, 𝑞𝑓 , 𝜅) its automaton.

Algorithm 1 GenConfTree

Input : 𝐴𝑃 = (Q,L,V𝑎𝑟, 𝑞0, 𝛿, 𝑞𝑓 , 𝜅), 𝜎
Output : 𝜏 ⊲ The configuration tree 𝑇 (𝐴𝑃 , 𝜎)

1: 𝐺 ←
→
0 ⊲ A global counter initialized to a null vector

2: 𝐼0 ←
→
0 ⊲ A local counter of the initial configuration

3: 𝑛 ← 𝜖

4: 𝜏 ← {𝑛}
5: 𝜆(𝜖) ← (𝑞0, 𝐼0)
6: 𝑞 ← 𝑞0
7: create a queue Qstate
8: create a queue Qtrans
9: enqueue (𝑞0, 𝐼0, 𝑛) onto Qstate

10: while Qstate is not empty do
11: (𝑞, 𝐼, 𝑛) ← 𝑄𝑠𝑡𝑎𝑡𝑒.𝑑𝑒𝑞𝑢𝑒𝑒𝑢𝑒 ()
12: for all (𝑞, 𝑥, 𝑞′) ∈ 𝛿 do
13: enqueue (𝑥, 𝑞′) onto Qtrans
14: sort Qtrans in lexicographical order
15: end for
16: for i← 0 to |𝑄𝑡𝑟𝑎𝑛𝑠 | do
17: 𝜏 ← 𝜏 ∪ {𝑛𝑖} ⊲ 𝑛𝑖 is obtained by concatenating 𝑛 and 𝑖

18: (𝑥, 𝑞′) ← 𝑄𝑇𝑟𝑎𝑛𝑠.𝑑𝑒𝑞𝑢𝑒𝑢𝑒 ()
19: if 𝑥 ∈ V𝑎𝑟 then
20: 𝛿 (𝑛, 𝑛𝑖) ← 𝜎 (𝑥, 𝐼𝑥 )
21: else
22: 𝛿 (𝑛, 𝑛𝑖) ← 𝑥

23: end if
24: for all 𝑦 ∈ V𝑎𝑟 do
25: if 𝑞′ ∈ 𝜅 (𝑦) then
26: 𝐺𝑦 ← 𝐺𝑦 + 1 and 𝐽𝑦 ← 𝐺𝑦

27: else
28: 𝐽𝑦 ← 𝐼𝑦
29: end if
30: end for
31: 𝜆(𝑛𝑖) ← (𝑞′, 𝐽 )
32: enqueue (𝑞′, 𝐽 , 𝑛𝑖) onto Qstate
33: end for
34: end while
35: return 𝜏

𝑃

𝑢 (𝑃) 𝐴𝑃

𝜎 (𝑃)𝜎 (𝑃)𝜎 (𝑃) 𝑇 (𝐴𝑃 , 𝜙)𝑇 (𝐴𝑃 , 𝜙)𝑇 (𝐴𝑃 , 𝜙)

𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑎𝐷𝐿

𝑖𝑠𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚

Figure 3: Schematical relationships between representations

Let 𝜙 : 𝑁𝑉𝑁
→ 𝑁𝑅 and 𝜎 : V𝑎𝑟 × N→ 𝑁𝑅

We say that 𝜙 is equivalent to 𝜎 , denoted 𝜙 ≡ 𝜎 , if and only if
there exists a bijective function 𝑓 : 𝑁𝑉𝑁

→ V𝑎𝑟 × N such that
𝜙 (𝑥) = 𝜎 (𝑓 (𝑥))

LEMMA 1. Let 𝑃 be an EL𝑉 -pattern of a terminology T and let
𝐴𝑃 be its corresponding description automaton. Then, we have:



Reasoning in EL-description logic with refreshing variables Conference’17, July 2017, Washington, DC, USA

𝜖

0 00

1

2

20 200

21

. . .

𝜎 (𝑥, 0) = 𝑝𝑟𝑒𝑠𝑂 𝑓

𝑈𝑛𝑖𝑣

𝜎 (𝑦, 0) = 𝑠𝑜𝑛𝑂𝑓

𝑃𝑒𝑟𝑠

𝜎 (𝑥, 1) = 𝑤𝑜𝑟𝑘𝐼𝑛

𝑈𝑛𝑖𝑣

𝜎 (𝑦, 0) = 𝑠𝑜𝑛𝑂𝑓

𝑃𝑒𝑟𝑠

{𝐴𝑐𝑎𝑑, (0, 0)}

{𝐶1, (0, 0)} {𝑞𝑓 , (0, 0)}

{𝑞𝑓 , (0, 0)}

{𝐴𝑐𝑎𝑑, (1, 0)}

{𝐶1, (1, 0)} {𝑞𝑓 , (1, 0)}

{𝑞𝑓 , (1, 0)}

𝜖 𝐺 = (0, 0)

1 𝐺 = (1, 0)

(𝑦, 0) = 𝑠𝑜𝑛𝑂𝑓

{𝐴𝑐𝑎𝑑, (0, 0)}

{𝐴𝑐𝑎𝑑, (1, 0)}

Figure 4: Example of configuration tree for "Academic"

• ∀𝜙: 𝜙 (𝑃) is an instance of 𝑃 ⇒ ∃𝜎 such that 𝜎 ≡ 𝜙 and
𝑇 (𝐴𝑃 , 𝜎) is a configuration tree of 𝐴𝑃

• ∀𝜎: 𝑇 (𝐴𝑃 , 𝜎) is a configuration tree of 𝐴𝑃 ⇒ ∃𝜙 such that
𝜙 ≡ 𝜎 and 𝜙 (𝑃) is instance of 𝑃

PROOF. The general idea is to demonstrate that using equiva-
lence between 𝜙 and 𝜎 , it is possible to have a 𝑇 (𝐴𝜎 , 𝑃) such that
it is structurally isomorphic to the tree representation of 𝜙 (𝑃) Let
consider 𝜙 (𝑃) = (𝜏𝑃 , 𝜆𝑃 , 𝛿𝑃 ) and 𝑇 (𝐴𝜎 , 𝑃) = (𝜏, 𝜆, 𝛿) created using
the same lexical order. By definition, we immediately have 𝜏𝑃 = 𝜏 .
Therefore, we will focus on their label and the edges.

If we look at the root 𝜖 of each tree, we have that 𝜆𝑃 (𝜖) = {𝑃}
and 𝜆(𝜖) = {𝑃,

→
0 }. Since, they refers to the same concepts, it re-

mains to show that their edges are identical. Constant edges will
be automatically present and since the same order has been applied
𝛿𝑃 (𝜖, 𝑖) = 𝛿 (𝜖, 𝑖) = 𝑟 .

For variable edges, we have 𝛿 (𝜖, 𝑖) = 𝜙 (𝑥) and 𝛿 (𝜖, 𝑖) = 𝜎 (𝑥 ′, 0).
If 𝑥 = 𝑥 ′, it is a non refreshing variable and we can construct 𝑓
such that 𝑓 (𝑥) = (𝑥, 0). Otherwise, we are dealing with a refreshing
variable. Thanks to the order, we can complete f with f(x’)=(x,0).
Therefore, we have can construct 𝜎 (𝑥, 0) = 𝜎 (𝑓 (𝑥 ′) = 𝜙 (𝑥 ′) for
each variable transition. f can then be recursively defined since the
label of the reach node have the same property as the first one. If a
variable is refreshed, the counter will changed accordingly in 𝜏 and
a new variable will be used in 𝜏𝑃 bounding these two refreshments
thanks to f. Consequently, we can say that 𝜙 and 𝜎 are equivalent
which complete the proof. The same proof can be used by taking
𝑓 −1 instead of f which is possible since f is bijective. □

Using 𝐴𝑃 is valuable because it allows to represent in a finite way,
infinite number of possibilities. Thus making possible to reason and
solve problems such as simulation while a naive approach would not
terminate. The next section presents simulation in the scope of those
automaton.

6.1 Characterizing weak subsumption using
description automaton

We extend the notion of simulation relation, used in [2] to char-
acterize subsumption between EL-descriptions, to configuration
trees.

DEFINITION 7. (simulation between configuration trees)
Let 𝑇 (𝐴𝑄 , 𝜙) = (𝜏1, 𝜆1, 𝛿1) and 𝑇 (𝐴𝑃 , 𝜎) = (𝜏2, 𝜆2, 𝛿2) be respec-

tively two configuration trees of two description automata 𝐴𝑄 and
𝐴𝑃 A binary relation 𝑍 ⊆ 𝜏1 × 𝜏2 is a simulation relation iff

(1) (𝜖, 𝜖) ∈ 𝑍 , and

(2) if (𝑐1, 𝑐2) ∈ 𝑍 then ∀(𝑐1, 𝑟 , 𝑐 ′1) ∈ 𝛿1, ∃𝑐 ′2 ∈ 𝜏2 such that
(𝑐 ′1, 𝑐

′
2) ∈ 𝑍 and (𝑐2, 𝑟 , 𝑐 ′2) ∈ 𝛿2

In this case we say that 𝑇 (𝐴𝑄 , 𝜙) is simulated by 𝑇 (𝐴𝑃 , 𝜎). If
(𝑐1, 𝑐2) ∈ 𝑍 , we say that 𝑐1 is simulated by 𝑐2. We extend simu-
lation to configurations and we say 𝜆(𝑐1) is simulated by 𝜆(𝑐2) if
(𝑐1, 𝑐2) ∈ 𝑍 .

We use definition 7 to introduce a notion of existential simulation
between EL𝑉 -description automata.

DEFINITION 8. (Existential simulation)
Let 𝐴𝑃 and 𝐴𝑄 be two description automata. There is an existential
simulation from 𝐴𝑃 to 𝐴𝑄 , denoted 𝐴𝑄 ≪∃ 𝐴𝑃 , iff ∃𝜎, 𝜙 such that
𝑇 (𝐴𝑄 , 𝜎) ≪ 𝑇 (𝐴𝑃 , 𝜙).

We give now our main technical result consisting in the charac-
terization of weak simulation between EL𝑉 -patterns in terms of
existential simulation between EL𝑉 -description graphs.

THEOREM 1. Let P and Q two patterns of EL𝑅𝑉 under normal
form. Let 𝐴𝑄 be the automata for Q while 𝐴𝑃 represents P. A weak-
subsumption problem 𝑃 ⊏∼ 𝑄 has a solution if and only if 𝐴𝐶 ≪∃ 𝐴𝑃 .

By definition of simulation, if 𝐴𝑄 ≪∃ 𝐴𝑃 , it means that ∃𝜙, 𝜎
such that 𝑇 (𝐴𝑄 , 𝜙) ≪ 𝑇 (𝐴𝑃 , 𝜎). Lemma 1 states that for any
𝑇 (𝐴𝑃 , 𝜎) there exists an equivalent concept description 𝜎 ′(𝑃). Natu-
rally, the same goes for 𝑇 (𝐴𝑄 , 𝜙) and thus there exists 𝜙 ′(𝑄) Con-
sequently we have, 𝑇 (𝐴𝑄 , 𝜙) ≪ 𝑇 (𝐴𝑃 , 𝜎) which implies 𝜎 ′(𝑃) ⊑
𝜙 ′(𝑄) which is the definition of 𝑃 ⊏∼ 𝑄 .

The next section investigates the problem of testing existential
simulation between EL𝑉 -description automota.

6.2 Existential simulation between
EL𝑉 -description automata

We shall use the following example through this section.

EXAMPLE 7. Consider the following EL𝑉 -terminology where
all the variables that occur in EL𝑉 -descriptions are refreshing
variables.

𝐴1 = 𝐴

𝐵1 = 𝐵

𝐶 = ∃𝑅.𝐵1
𝑃 = ∃𝑥 .𝑃 ⊓ ∃𝑧.𝐶 ⊓ ∃𝑧.𝐵1 ⊓ ∃𝑆.𝐴1

𝑄 = ∃𝑅.𝑄2 ⊓ ∃𝑅.𝐶 ⊓ ∃𝑦.𝐵1
𝑄2 = ∃𝑅.𝑄 ⊓ ∃𝑆.𝐵1 ⊓ ∃𝑆.𝐴1

Figures 5 and 6 depict respectively the EL𝑉 -description automata
of the EL𝑉 -patterns 𝑃 and 𝑄 . The refreshing state of both 𝑥 and 𝑧
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is the state 𝑃 (i.e., 𝜅 (𝑥) = 𝜅 (𝑧) = {𝑃}) while the refreshing state of
𝑦 is the state 𝑄 (i.e., 𝜅 (𝑦) = {𝑄}).

Pstart

𝐴1

𝐶

𝐵1

𝑞𝑓

𝑥

𝑧

𝑅𝑧𝑆

𝐴 𝐵

Figure 5: Description automata of P

𝑄start 𝑄2 𝐴1

𝐵1𝐶 𝑞𝑓

𝑅

𝑅
𝑦𝑅

𝑅

𝑆

𝐴

𝐵

𝑆

Figure 6: Description automata of Q

In this section, we propose an algorithm, called Check_Simu,
to test existential simulation between EL𝑉 -description graphs, we
prove its correctness and show that it is EXPTIME-complete. The
Check_Simu algorithm is based on a synchronized product of au-
tomata. Given two EL𝑉 -description automata 𝐴𝑄 and 𝐴𝑃 , the main
idea of Check_Simu is to run synchronously 𝐴𝑄 and 𝐴𝑃 , trying
at each step to guess appropriate values assignments to variables
in order to construct two variable substitutions 𝜙 and 𝜎 such that
𝑇 (𝐴𝑄 , 𝜎) ≪ 𝑇 (𝐴𝑃 , 𝜙). A given state in such a synchronized product
is called a 𝑝𝑐𝑜𝑛𝑓 (for product configuration). A 𝑝𝑐𝑜𝑛𝑓 includes a set
of constraints used to keep track of the value assignments made by
the synchronized product. By exploring the possible synchronized
executions of 𝐴𝑄 and 𝐴𝑃 , the algorithm Check_Simu tries to con-
struct two variable substitutions 𝜙 and 𝜎 that satisfy the constraints
of each explored 𝑝𝑐𝑜𝑛𝑓 . When the algorithm succeed in constructing
𝜙 and 𝜎 , this ensures that𝑇 (𝐴𝑄 , 𝜎) ≪ 𝑇 (𝐴𝑃 , 𝜙) (soundness of the al-
gorithm Check_Simu). In case, the algorithm Check_Simu fails to
exhibit such substitutions it ensures that no such substitutions exists
(completeness of the algorithm Check_Simu). The completeness is
due to an exhaustive exploration of the possibilities of synchroniza-
tion between 𝐴𝑄 and 𝐴𝑃 . Moreover, since a synchronized execution
of 𝐴𝑄 and 𝐴𝑃 leads to an infinite space (i.e., the set of 𝑝𝑐𝑜𝑛𝑓 to
explore is infinite), we rest on a specific property, hereafter called
𝑝𝑐𝑜𝑣𝑒𝑟 (for cover between 𝑝𝑐𝑜𝑛𝑓 ) , in order to ensure that the al-
gorithm Check_Simu terminates. In the rest of this section, we
define formally the notions of constraints, pconf and pcover before
presenting the algorithm Check_Simu.

DEFINITION 9. (Constraint)
A constraint is a statement of one of the following forms:
• (𝑥, 𝑖) = (𝑦, 𝑗),
• (𝑥, 𝑖) = 𝑎, or
• 𝑎 = 𝑏

where 𝑥,𝑦 ∈ V, 𝑖, 𝑗 ∈ N and a,b are constants. A constraint of the
form 𝑎 = 𝑏 where the constant 𝑎 syntactically differs from 𝑏 is said
inconsistent.

We extend the notion of inconsistency to sets of constraints as
follows. Let C be a set of constraints. We denote by C𝑇 the transitive
closure of C w.r.t. to the equality relationship. We say that a set of
constraints C is inconsistent iff its transitive closure C𝑇 contains at
least one inconsistent constraint.

We formally define now the notion of 𝑝𝑐𝑜𝑛𝑓 .

DEFINITION 10. (𝑝𝑐𝑜𝑛𝑓 )
Let 𝐴𝑄 , 𝐴𝑃 two description automata. A 𝑝𝑐𝑜𝑛𝑓 is a triple (𝑆𝑄 , 𝑝,C)
where 𝑆𝑄 is a set of configurations of 𝐴𝑄 , 𝑝 is a configuration of 𝐴𝑃

and C a set of constraints.

Let 𝑝𝑐 = (𝑆𝑄 , 𝑝,C) be a 𝑝𝑐𝑜𝑛𝑓 . Since several configurations ap-
pear in an 𝑝𝑐, all the constraints of C are not necessarily relevant
for each configuration in 𝑝𝑐. For example, let consider a 𝑝𝑐𝑜𝑛𝑓

𝑝𝑐 = ({(𝑞𝑐 , (3))}, (𝑃, (1, 1)), {(𝑥, 2) = 1, (𝑥, 3) = 5, (𝑦, 0) = (𝑥, 2)}).
The configuration (𝑞𝑐 , (3)) has only one counter, whose current
value is 3 and we assume that this counter is associated with the
variable 𝑥 . Therefore, we know that for the configuration (𝑞𝑐 , (3))
the only instance of 𝑥 to consider is (𝑥, 3). Hence, if a constraint
does not deal with (𝑥, 3), it doesn’t carry any information for con-
figuration (𝑞𝑐 , (3)). In our example, the constraints (𝑥, 2) = 1 and
(𝑦, 0) = (𝑥, 2) are then not relevant for the configuration (𝑞𝑐 , (3)).
Next definition formalizes this notion.

DEFINITION 11. (Relevant constraints w.r.t. a configuration)
Let C be a set of constraint and let 𝑐 = (𝑞𝑐 , 𝐼𝑐 ) be a configuration.
• We define the set of relevant variables of 𝑐 as 𝑅V (𝑞𝑐 ) =

{𝑥, (𝐼𝑐𝑥 )}.
• The relevant constraints of C w.r.t. a configuration 𝑐 is defined

as: C |𝑐 = {(𝑥 = 𝑦) ∈ C𝑇 | (𝑥 ∈ 𝑅V (𝑞𝑐 ) ∨ 𝑦 ∈ 𝑅V (𝑞𝑐 )}.

We define now a notion of inclusion between sets of constraints.

DEFINITION 12. (Constraint set inclusion)
Let C1 and C2 be two sets of constraint. The set C1 is included in
C2, noted C1 ⊆ C2

(1) ∀(𝑥, 𝑖) = (𝑦, 𝑗)) ∈ C1, ∃(𝑥, 𝑘) = (𝑦, 𝑙) ∈ C2 and
(2) ∀(𝑥, 𝑖) = 𝑎) ∈ C1, ∃(𝑥, 𝑘) = 𝑎) ∈ C1
EXAMPLE 8. Let consider 𝐴𝑃 and 𝐴𝑄 defined above. Let 𝑝𝑐 =

({(𝑄2, (0))},(𝑃, (1, 1)),𝑦0 = 𝑅) be one of their 𝑝𝑐𝑜𝑛𝑓 . For each of
configuration of pc, their associated set of relevant variables are :
𝑅V ((𝑄2, 0)) = {𝑦0} , 𝑅V ((𝑃, (1, 1)) = {𝑥1, 𝑧1}. Consequently, the
different sets of constraints associated are : C | (𝑄2,0) = {𝑦0 = 𝑅} and
C | (𝑃,(1,1) = ∅

Since 𝑝𝑐𝑜𝑛𝑓 𝑠 inherit constraints of their predecessors, clean up
procedure is required to remove useless constraints. An useless
constraint contains at least a variable that is no longer relevant for
any of its configurations. Erasing them directly could create a loss
of information therefore, we compute the transitivity closure and
suppress any unnecessary constraint afterward.

We introduce below the notion of 𝑝𝑐𝑜𝑣𝑒𝑟 used to prune the search
space, thereby ensuring termination of the algorithm Check_Simu.
Informally speaking, if a 𝑝𝑐𝑜𝑛𝑓 𝑝𝑐 ′ is covered by a 𝑝𝑐𝑜𝑛𝑓 𝑝𝑐 it
means that when computing the synchronized product, the space
explored starting from 𝑝𝑐 ′ is a subset of the space explored starting
from 𝑝𝑐. Hence, we can prune the 𝑝𝑐𝑜𝑛𝑓 𝑝𝑐 ′ if 𝑝𝑐 has already been
explored.
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DEFINITION 13. (pcover)
Let 𝐴𝑄 , 𝐴𝑃 two EL𝑉 -description automata and let 𝑝𝑐 = (𝑆𝑄 , 𝑝,C)
and 𝑝𝑐 ′ = (𝑆 ′

𝑄
, 𝑝 ′,C′) be two 𝑝𝑐𝑜𝑛𝑓 . We say that 𝑝𝑐 ′ is covered by

𝑝𝑐, and we note 𝑝𝑐 ′ ◁ 𝑝𝑐, if and only if the followinf conditions
hold:

(1) 𝑞𝑝 = 𝑞𝑝′ and C |𝑝 ⊆ C′|𝑝′
(2) there exists 𝑍 ⊆ 𝑆 ′

𝑄
× 𝑆𝑄 s.t

(a) ∀𝑞 ∈ 𝑆𝑄 , ∃(𝑞′, 𝑞) ∈ 𝑍
(b) ∀(𝑞′, 𝑞) ∈ 𝑍,𝑞𝑞′ = 𝑞𝑞 and C |𝑞 ⊆ C′|𝑞′

(3) C𝑣𝑎𝑟 ∪ C𝑓 𝑟𝑒𝑒 ∪ C𝑐𝑡𝑒 ∪ C is consistent where
C𝑣𝑎𝑟 =

⋃
(𝑞′,𝑞) ∈𝑍

{((𝑥, 𝐼𝑞𝑥 ) = (𝑦, 𝐼𝑝𝑦 ) | ((𝑥, 𝐼𝑞′𝑥 ) = (𝑦, 𝐼𝑝′𝑦 )) ∈

C′|𝑞′ \ C |𝑞},
C𝑓 𝑟𝑒𝑒 =

⋃
(𝑞′,𝑞) ∈𝑍

{((𝑥, 𝐼𝑞𝑥 ) = 𝑓 𝑟𝑒𝑒) |∀(𝑥, 𝐼𝑞′𝑥 ) unconstrained}

and
C𝑐𝑡𝑒 =

⋃
(𝑞′,𝑞) ∈(𝑍∪{(𝑝′,𝑝) })

{((𝑥, 𝐼𝑞𝑥 ) = 𝑎) | ((𝑥, 𝐼𝑞′𝑥 ) = 𝑎) ∈

C′|𝑞′ \ C |𝑞}

Let 𝑝𝑐𝑜𝑛𝑓 𝑝𝑐 = (𝑆𝑄 , 𝑝,C) and 𝑝𝑐 ′ = (𝑆 ′
𝑄
, 𝑝 ′,C′) be two 𝑝𝑐𝑜𝑛𝑓 .

According to definition 13, 𝑝𝑐 ′ is covered by 𝑝𝑐 ( 𝑝𝑐 ′ ◁ 𝑝𝑐 ) if :

(1) States 𝑞𝑝 and 𝑞𝑝′ of respectively 𝑝 and 𝑝 ′ represent the same
states from 𝐴𝑃 . By adopting such a criteria, a direct conse-
quence is that any outgoing edge of 𝑝 ′ has an equivalent one
in 𝑝 up to variables bounds.
It remains to check information about bounds stored in con-
straint sets. It is required that C′ must be more restrictive than
C. Indeed, if 𝑥 = 𝑎 in pc’ and 𝑥 is free in pc then it is possible
to create such a bound in pc. However, if 𝑥 if free in pc’ and
𝑥 = 𝑎 in pc then pc may not mimic the path where 𝑥 = 𝑏 in
pc’.

(2) 𝑆𝑄 and 𝑆 ′
𝑄

are sets of configuration and therefore they involve
sets of states from 𝐴𝑄 .

(a) An important condition is any the set of states involved in
𝑆𝑄 must be involved in 𝑆 ′

𝑄
.

(b) Each couple sharing the same state must then check the
same condition as p and p’.

(3) Previous points focus on finding an equivalent configuration.
It remains to check consistency of the pairings. Indeed, two
distinct instances of a variables can be mapped into the same
instance. It is then necessary that such constraints are consis-
tent.

We are now ready to present our algorithm Check_Simu (c.f. al-
gorithm 2). The Algorithm takes as input two EL𝑉 -description
automata 𝐴𝑄 and 𝐴𝑃 and returns true if 𝐴𝑄 ≪∃ 𝐴𝑃 or false
otherwise. The algorithm starts with the initial 𝑝𝑐𝑜𝑛𝑓 𝑝𝑐0 =

({(𝑞0,
→
0 )}, (𝑝0,

→
0 ), ∅) made of the initial configuration (𝑞0,

→
0 ) of

𝐴𝑄 and the initial configuration (𝑝0,
→
0 ) of 𝐴𝑃 and an empty set of

constraints. Then it recursively explores a tree of generated 𝑝𝑐𝑜𝑛𝑓 .
For each 𝑝𝑐 = (𝑆𝑄 , 𝑝,C), the algorithm tries to check whether
𝑆𝑄 ≪∃ 𝑝 under the constraints C. To achieve this task, the algorithm
will generate and explore the new 𝑝𝑐𝑜𝑛𝑓 that are the children of
the 𝑝𝑐𝑜𝑛𝑓 𝑝𝑐. We first consider each mapping from the outgoing

Algorithm 2 𝐶ℎ𝑒𝑐𝑘_𝑆𝑖𝑚𝑢

Input : 𝐴𝑄 , 𝐴𝑃 ; Pconf : pc ; Pconf’s historic : hist
Output : Result

1: Create a queue pGen
2: 𝑅𝑒𝑠𝑢𝑙𝑡 ← 𝑡𝑟𝑢𝑒

3: if 𝐶ℎ𝑒𝑐𝑘_𝐶𝑜𝑣𝑒𝑟 (𝑝𝑐, ℎ𝑖𝑠𝑡) == 𝑓 𝑎𝑙𝑠𝑒 then
4: 𝑅𝑒𝑠𝑢𝑙𝑡 ← 𝑓 𝑎𝑙𝑠𝑒

5: hist← hist ∪ {pc}
6: Compute the mappingsM𝑆𝑄 ↦→𝑝

7: for each mapping𝑚 ∈ M𝑆𝑄 ↦→𝑝 do
8: for each assignment C𝐴𝑠𝑠𝑖𝑔𝑛 w.r.t.𝑚 do
9: if C ∪ C𝑚 ∪ C𝐴𝑠𝑠𝑖𝑔𝑛 is consistent then

10: enqueue(m,C𝐴𝑠𝑠𝑖𝑔𝑛) onto pGen
11: end if
12: end for
13: end for
14: while ¬ Result and 𝑝𝐺𝑒𝑛 is not empty do
15: 𝑅𝑒𝑠𝑢𝑙𝑡 ← 𝑡𝑟𝑢𝑒

16: Create a queue children
17: 𝑔← 𝑑𝑒𝑞𝑢𝑒𝑢𝑒 (𝑝𝐺𝑒𝑛)
18: for each target (𝑝,𝑦, 𝑠 ′) of 𝑔 do
19: Create a 𝑝𝑐𝑜𝑛𝑓 pc’=(𝑆 ′

𝑄
, 𝑝 ′,C′)

20: 𝑆 ′
𝑄
← {𝑐 ′ | ( (𝑐, 𝑥, 𝑐 ′), (𝑝,𝑦, 𝑠 ′)) ∈ 𝑔}

21: 𝑝 ′ ← 𝑠 ′

22: C′ ← C ∪ C𝑚 ∪ C𝑎𝑠𝑠𝑖𝑔𝑛 .
23: children.enqueue(pc’)
24: end for
25: while 𝑅𝑒𝑠𝑢𝑙𝑡 and children is not empty do
26: 𝑅𝑒𝑠𝑢𝑙𝑡 ← 𝐶ℎ𝑒𝑐𝑘_𝑆𝑖𝑚𝑢 (𝐴𝑄 , 𝐴𝑃 , 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛.𝑑𝑒𝑞𝑢𝑒𝑢𝑒 (), ℎ𝑖𝑠𝑡)
27: end while
28: end while
29: end if
30: return 𝑅𝑒𝑠𝑢𝑙𝑡

Algorithm 3 Check_Cover

Input : Pconf : pc ; Pconf’s historic : hist
Output : Boolean
if ∃ pc’ ∈ hist such that pc’ ◁ pc then

return true
else

return false
end if

transitions of the configurations in 𝑆𝑄 into the outgoing transitions
of 𝑝. LetM𝑆𝑄 ↦→𝑝 be the set of such mappings.

Each mapping 𝑚 ∈ M𝑆𝑄 ↦→𝑝 is made of a set of pairs
((𝑐, 𝑥, 𝑐 ′), (𝑝,𝑦, 𝑠 ′)) where (𝑐, 𝑥, 𝑐 ′) is an outgoing transition of
𝑐 ∈ 𝑆𝑄 mapped to (𝑝,𝑦, 𝑠 ′) an outgoing transition of 𝑝. In this
case, the transition (𝑐, 𝑥, 𝑐 ′) is called the source while the transi-
tion (𝑝,𝑦, 𝑠 ′) is called the target. Let 𝑥 be either a variable or a
constant. We use the following notation: 𝑡𝑥 = 𝑥 if 𝑥 is a con-
stant and 𝑡𝑥 = (𝑥, 𝐼𝑐𝑥 ) if 𝑥 is a variable. Then, each element
((𝑐, 𝑥, 𝑐 ′), (𝑝,𝑦, 𝑠 ′)) in a mapping 𝑚 is associated with a constraint
𝑡𝑥 = 𝑡𝑦 . We note by C𝑚 the set of constraints associated with the
elements of𝑚.
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A mapping𝑚 ∈ M𝑆𝑄 ↦→𝑝 , augmented with an assignment of val-
ues to free variables w.r.t.𝑚 and 𝑝𝑐 (i.e., variables that do not appear
in C ∪ C𝑚) leads to a candidate, called 𝑝𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 . A 𝑝𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟

is used to generate new 𝑝𝑐𝑜𝑛𝑓 . An assignment C𝐴𝑠𝑠𝑖𝑔𝑛 is a set of
constraints of the form 𝑥 = 𝑎, where 𝑥 is a free variable w.r.t. 𝑚 and
𝑝𝑐. A 𝑝𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 𝑔 is a pair 𝑔 = (𝑚,C𝐴𝑠𝑠𝑖𝑔𝑛) where𝑚 is a mapping
and C𝐴𝑠𝑠𝑖𝑔𝑛 is an assignment of free variables.

Given a 𝑝𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 𝑔 = (𝑚,C𝐴𝑠𝑠𝑖𝑔𝑛), we group together ele-
ments of𝑚 having the same target (𝑝,𝑦, 𝑠 ′) (Algorithm 2, Lign 10).
Each of such groups, leads to a set of new 𝑝𝑐𝑜𝑛𝑓 s of the form:
𝑝𝑐 ′ = (𝑆 ′

𝑄
, 𝑝 ′,C′) with:

• 𝑆 ′
𝑄
= {𝑐 ′ | ( (𝑐, 𝑥, 𝑐 ′), (𝑝,𝑦, 𝑠 ′))}

• 𝑝 ′ = 𝑠 ′

• C′ = C ∪ C𝑚 ∪ C𝑎𝑠𝑠𝑖𝑔𝑛 .

The algorithm makes an exhaustive exploration of possible
𝑝𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟𝑠. It returns true if at least one 𝑝𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 is evaluated
successfully.

Checking whether a simulation exists takes the shape of an or/and
tree as shown in Figure 7."Or" steps (∨) focus on finding if one
𝑝𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 is successful (Algorithm 2 Lign 14). In order to be
successful, all the children (∧) obtained by the mapping must be
valid (Algorithm 2 Lign 25). This is where the recursive call will
occur conducting to a new level for the tree and so on.

In order to not have an infinite run, we make full use of the pcover
as a stop criteria. That is why, each 𝑝𝑐𝑜𝑛𝑓 will transfer to its children
the list of all previous 𝑝𝑐𝑜𝑛𝑓 in the branch. We will then stop once,
we find a couple such that the cover criteria is checked (Algorithm 3).
Figure 7 dashed pconf and the initial one verifies such a condition.

Figure 7 illustrates the shape a run of the algorithm can takes
over the running example. We presents it here under the shape of
an or/and tree. It starts from the initial configuration to produces
𝑝𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟𝑠 linked by a ∨ nodes. A 𝑝𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 can be validated if
all its children are valid symbolized by the ∧ nodes. It then stops
when it either meets a leaf or when coverage is found.

Now the global idea has been exposed, we will explain why we
consider sets of configuration of 𝐴𝑄 over a single configuration as
we do for 𝐴𝑃 . The reason is simple and illustrated in the second
branch of Figure 7. Not doing so might duplicate choice possibil-
ities ending in a false successful run. Indeed, if we focus on the
second alternative of Figure 7, the transition mapping is such that
𝑥0 simulates the two transitions labeled by 𝑅. 𝑃 , the state reached
by 𝑥0 is refreshing for 𝑥0 therefore 𝑥0 is no more constrained. Then,
if we don’t fuse, we have two independent unconstrained couples
𝑐𝑝1 = ((𝑄2, (0)), (𝑃, , (1, 1))) and 𝑐𝑝2 = ((𝐶, (0)), (𝑃, (1, 1))). The
problem lies in the fact that there exist a simulation for the two
of them separately by taking 𝑆 = 𝑧1 for 𝑐𝑝1 and 𝑅 = 𝑧1 for 𝑐𝑝2.
However, those two simulations are not consistent since for a same
instance of a variable, we associate different values. Fusing them
will only lead to check out if (𝑃, (1, 1)) can simulate the two states
by considering a unique choice for a variable instance.

6.2.1 Terminating. A run of the algorithm with the initial pconf
leads to an exploration of its associated execution tree. An execution
tree may be infinite, however we aim here to prove that only a finite

{(𝑄, (0)},
(𝑃 (0, 0))

∨

{(𝑄 (0))},
(𝑃, (0, 0))
𝑅 = 𝑥0
𝑅 = 𝑧0
𝑦0 = 𝑧0
𝑦0 = 𝑅

∧

{(𝐶, (0))},
(𝐶, (0, 0))
𝑅 = 𝑥0
𝑅 = 𝑧0
𝑦0 = 𝑧0
𝑦0 = 𝑅

{(𝐵1, (0))},
(𝐵1, (0, 0))
𝑅 = 𝑥0
𝑅 = 𝑧0
𝑦0 = 𝑧0
𝑦0 = 𝑅

{(𝑄2, (0))},
(𝑃, (1, 1))
𝑦0 = 𝑅

{(𝑄, (0)},
(𝑃, (0, 0))
𝑅 = 𝑥0
𝑦0 = 𝑧0

∧

{(𝑄2, (0)), (𝐶, (0))},
(𝑃, (1, 1))

{(𝐵1, (0)},
(𝐵1, (0, 0))
𝑅 = 𝑥0
𝑦0 = 𝑧0

∨

{(𝑄2, (0))},
(𝑃, (1, 1))
𝑆 = 𝑆

𝑅 = 𝑥1
𝑆 = 𝑧1
𝑦0 = 𝑅

∧

{(𝐵1, (0))},
(𝐵1, (1, 1))
𝑆 = 𝑆

𝑅 = 𝑥1
𝑆 = 𝑧1
𝑦0 = 𝑅

{(𝐴, (0)},
(𝐴, (1, 1))
𝑆 = 𝑆

𝑅 = 𝑥1
𝑆 = 𝑧1
𝑦0 = 𝑅

{(𝑄, (1)},
(𝑃, (2, 2))

Figure 7: Or/And Tree

part is explored leading to the algorithm’s halt. It stops exploring a
branch if one of the following occurs:

(1) A leaf has been reached.
(2) All 𝑝𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟𝑠 failed to produces a valid simulation.
(3) A pconf is covered by a previous one.

The first case will not be discussed since by definition it will not
produce infinite possibilities. Regarding the second case, it produces
an infinite branch only if there are infinite possibilities. However,
the number of 𝑝𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑝𝑟𝑠 is limited since we deal with a finite
number of transitions for each automata. Regarding the part induces
by assignments, it focuses on giving a value to unconstrained vari-
ables. Without loss of generality, we will restrict choices to labels of
constant transition of 𝐴𝑄 and 𝐴𝑃 . This set regroups relevant choices
for variables since only a variable can mimic a choice out of this
scope then it can be reduced to those constants. Consequently, only
a finite number of 𝑝𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟𝑠 will be produced thus validating that
it will not produce an infinite branch.

The last point to check deals with a potential infinite depth. In our
context, it means that there exists an infinite sequence of pconfigura-
tion without pcover.

PROPERTY 1. Let 𝐴𝑄 and 𝐴𝑃 be two description automaton. For
any infinite sequence of 𝑝𝑐𝑜𝑛𝑓 𝑝𝑐1 .𝑝𝑐2 .𝑝𝑐3 ...𝑝𝑐𝑛 , there exists 𝑖 < 𝑗

such that 𝑝𝑐𝑖 ◁ 𝑝𝑐 𝑗 .

PROOF. The idea of the proof is to show that there exists a 𝑝𝑐𝑜𝑛𝑓
that appears multiple times up to counters values. In an infinite
sequence of 𝑝𝑐𝑜𝑛𝑓 there necessarily exists a configuration 𝑝 of 𝐴𝑃

associated to a state that appears an infinite number of times. Since,
C𝑝 possibilities can be enumerated. There are an infinite number
of 𝑝𝑐𝑜𝑛𝑓 s such that point 1 of the definition is verified. The same
reasoning can be conducted over configurations of 𝑆𝑄 . Since 𝑝𝑐𝑜𝑛𝑓
are produced by the product of those two parts, we will have at least
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a 𝑝𝑐𝑜𝑛𝑓 that appears an infinite number of times differential thanks
to counters in the configuration. Point 3 is immediately checked
because the proof based on equality over 𝑝, 𝑆𝑄 and C up to counter
values. Therefore, the proof is complete since we showed that within
any infinite sequence there are at least a configuration that covers
another one. □

Therefore, thanks to Property 1 we can conclude that if the algo-
rithm does not fail, it will necessarily halts.

It remains to show that the algorithm is correct, i.e. sound and
complete.

6.2.2 Soundness. To show soundness, let consider the simula-
tion tree 𝐸𝑥𝑒𝑐𝐴𝑄 ,𝐴𝑃

obtained after termination of a non-failing run.
This tree is composed of 𝑝𝑐𝑜𝑛𝑓 s. Note that thanks to the cover crite-
ria we consider here a finite tree. The idea of the proof is to show
that pcover induces simulation. As a consequence, 𝐸𝑥𝑒𝑐𝐴𝑄 ,𝐴𝑃

can
be used to create 𝜎, 𝜙 such that 𝑇 (𝐴𝑄 , 𝜎) ≪ 𝑇 (𝐴𝑃 , 𝜙).

In fact, when a 𝑝𝑐𝑜𝑛𝑓 𝑝𝑐 ′ is covered by 𝑝𝑐, any possibility of
𝑝𝑐 ′ has a counterpart in 𝑝𝑐 because 𝑝𝑐 contains a subsets of states
compared to 𝑝𝑐 ′ and constraints inclusion allows to have a less
constrained 𝑝𝑐𝑜𝑛𝑓 . Constraints can then be easily transformed into
substitution by considering constraints of the form 𝑥 = 𝑎. In order
to formally define this notion we introduces universal simulation.
Unlike, existential simulation which looks for simulation w.r.t one
substitution, this simulation aims to find such a relationship for any
substitution.

DEFINITION 14. (Universal simulation)
Let 𝐴𝑃 and 𝐴𝑄 two description automata.

Left universal simulation is such that :
𝐴𝑄 ≪∀ 𝐴𝑃 , if ∀𝜙, ∃𝜎 such that 𝑇 (𝐴𝑄 , 𝜎) ≪ 𝑇 (𝐴𝑃 , 𝜙)

Right universal simulation is such that :
𝐴𝑄 ≪∀ 𝐴𝑃 , if ∀𝜎, ∃𝜙 such that 𝑇 (𝐴𝑄 , 𝜎) ≪ 𝑇 (𝐴𝑃 , 𝜙)

LEMMA 2. Let 𝐴𝑄 , 𝐴𝑃 two description automata. Let 𝑝𝑐 =

(𝑆𝑄 , 𝑝,C) and 𝑝𝑐 ′ = (𝑆 ′
𝑄
, 𝑝 ′,C) be two 𝑝𝑐𝑜𝑛𝑓 . If 𝑝𝑐 ′ ◁ 𝑝𝑐 then

𝑝 ′ ≪∀ 𝑝 and 𝑆𝑄 ≪∀ 𝑆
′
𝑄

PROOF. The proof will be separated in two steps. First, we will
consider to show that states involved in 𝑝𝑐 are also involved in 𝑝𝑐 ′.
Then, we will show how to complete C in order to reach a state
similar to C′.

The first part is immediately verified due to the definition of
coverage. By definition of 𝑍 , states involved in 𝑆𝑄 are included in
𝑆 ′
𝑄

.On the other hand, 𝑝 and 𝑝 ′ shares the same states. Consequently,
if C can be completed in order to be similar to C. We can conclude
that they share the same possibilities.

Constraint sets inclusion means that they at least share the same
base and that, we only need to add constraints to check compatibility
of choices. The last point of pcover aims to check if this extension
is possible. Indeed, for each couple, we will construct equivalent
constraints for each missing constraints. Since a same configuration
of 𝑆𝑄 can be bound to more than one configuration of 𝑆 ′

𝑄
. It remains

to check that this extension is valid. Three kinds of constraints are
added to complete C. Constraints involving two variables (C𝑣𝑎𝑟 ),
constraints involving a constant and a variable (C𝑐𝑡𝑒 ) and finally
special constraints for free variables (C𝑓 𝑟𝑒𝑒 ). The last one avoids

case where a free instance and a bound instance are related to the
same variable. This case is not valid since we do not know what
value the free variable may need to take.

We then have augmented the C to mimic C′. By definition of
pcover, this set if consistent, we can then transform it into 𝜎 and C′

into 𝜎 ′ by considering only constraints of the form : 𝑥 = 𝑎. As a
consequence, for any choice of 𝜎 ′ there exists a similar choice in 𝜎 .

Since 𝑝 and 𝑝 ′ shares the same state under the same constraints,
we can deduce that 𝑝 ′ ≪∀ 𝑝 (and 𝑝 ≪∀ 𝑝 ′). On the other hand,
since 𝑆 ′

𝑄
may contain more states than 𝑆 ′

𝑄
, we have 𝑆𝑄 ≪∀ 𝑆 ′

𝑄

which concludes this proof.
□

Lemma 2 allows to certify soundness. Indeed, based on
𝐸𝑥𝑒𝑐𝐴𝑄 ,𝐴𝑃

we can create 𝑇 (𝐴𝑄 , 𝜙) and 𝑇 (𝐴𝑃 , 𝜎). By transform-
ing constraints into functions, considering only configurations 𝑆𝑄
for 𝑇 (𝐴𝑄 , 𝜙) and 𝑝 for 𝑇 (𝐴𝑃 , 𝜎), one can create valid trees. Note
that 𝑆𝑄 being a set, in order to have a valid tree it must be split into
different nodes.

By construction, we know that the partial tree of 𝐴𝑄 made of
𝐸𝑥𝑒𝑐𝐴𝑄 ,𝐴𝑃

is simulated by the partial tree of 𝐴𝑃 made of 𝐸𝑥𝑒𝑐𝐴𝑄 ,𝐴𝑃

By Lemma 2, we know that any choices made before can be repro-
duced. Moreover, the algorithm fails if all the possibilities of pc’
conducts to a fail the algorithm will find it and return false anyway.
Since we are considering a non-failing run, it means that a run suc-
ceed up to cover. The valid possibility can be mimicked in order to
complete 𝜎 and 𝜙 . Consequently, we can complete 𝜎 and 𝜙 such that
𝑇 (𝐴𝑄 , 𝜎) ≪ 𝑇 (𝐴𝑄 , 𝜙). Therefore, we have 𝐴𝑄 ≪∃ 𝐴𝑃 .

We conclude that the algorithm is sound. We are now left with
completeness in order to prove this algorithm’s correctness.

6.2.3 Completeness. Regarding completeness, we can use a
given solution (𝜎0, 𝜙0) to guide the non-deterministic rules in or-
der to generate a non-failing run. Indeed, each time a choice has
to be made, we can compare it to the corresponding one made in
𝑇 (𝐴𝑃 , 𝜎0) for P and 𝑇 (𝐴𝑄 , 𝜙0) for Q. Since by definition, the sim-
ulation exists the algorithm will keep going until the exact same
solution is encountered or if a shorter solution starting similarly is
found. Failing would mean that there are no valid possibility which
contradicts the assumption of (𝜎0, 𝜙0) solution.

It is worth to enlighten that the proposed algorithm is constructive
in the sense that if the answer is true, the algorithm can be easily
modified to exhibit a simulation relationship between its inputs.

THEOREM 2. Let 𝐴𝑄 and 𝐴𝑃 two description automaton, it is
decidable whether 𝐴𝑄 ≪∃ 𝐴𝑃

By the use of theorem 1, the immediate result about weak-
subsumption is the following.

COROLLARY 1. Let P be a pattern and C a ground description.
𝑃 ⊏∼T,𝑔𝑓 𝑝 𝑄 is decidable.

6.3 Complexity Analysis
This part will discuss the complexity of weak-subsumption. The
upper bound will be achieved by calculating the space explored by
the algorithm. Then the equivalence between existential simulation
and weak-subsumption will allow to finalize the analysis.
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PROPERTY 2. Let P,Q be two patterns and let 𝐴𝑃 , 𝐴𝑄 be their
respective EL𝑉 -description automata. Deciding whether 𝐴𝑃 ≪∃
𝐴𝑄 is EXPTIME-complete.

The proof of the upper bound consists in showing that only an
exponential number of pconfigurations are required to decide weak
subsumption. We define :

• n: the number of nodes,
• v: the number of variables and
• D: the number of values a variable can take.

In order to estimate the number of pconfigurations, we need to
estimate how many different configurations can be visited up to
cover. Let’s consider one by one each element of the pconfiguration.
In any pconfiguration we have configuration which are related to a
subset of states of 𝐴𝑄 , a configuration related to one state of 𝐴𝑃 and
constraints C on these configurations.

Constraints and configuration issued from p give 𝑛 ∗ (𝐷 + 𝑣)𝑣
different possibilities. Indeed, the 𝑛 states of p are different up to
constraints. Constraints where 𝑥 is bound to one element which is
easier a constant (𝐷) or a variable (𝑣).

Regarding, 𝑆𝑄 it is slightly different. In fact, we will always deal
with a subset of states of 𝐴𝑄 which induces 2𝑛 . A state and a map-
ping produces different possibilities. Variables may have multiple
instances at the same time during a run. Therefore, a states. can
appear with different mapping but at most (𝐷 + 𝑣)𝑣 different ones.
Then we have at most n*(𝐷 + 𝑣)𝑣 different possibilities since we
must consider this for each state. Finally, combining all of this gives
the following complexity 2𝑛 ∗ 𝑛2 ∗ (𝐷 + 𝑣)2∗𝑣 . Once simplified we
have exp𝑛∗log(2)+2(log𝑛)+𝑣 log(𝐷+𝑣))

The EXPTIME-hardness of checking existential simulation be-
tween EL𝑉 -description automata is obtained by a reduction from
the existence of infinite execution of an alternating Turing machine
working on a space polynomially bounded by the size of the input.

7 CONCLUSION
This paper investigates the problem of reasoning with description log-
ics augmented with variables. It considers a framework that caters for
cyclic terminologies and defines two semantics of variables which
differ w.r.t. to the possibility or not to refresh the variables. As pre-
liminary results, the paper investigates a new reasoning mechanism,
called weak-subsmption, in the context of the description logic EL𝑉 ,
obtained from an extension of the logic EL with refreshing vari-
ables. Future research work will be devoted to the extension of the
approach in three research directions: (i) considering additionnal rea-
soning mechanism in this context that go beyond weak-subsumption,
(ii) dealing with concept-description variables, and (iii) considering
other description logics such as the logic FL0 and ALN .
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