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Abstract. In this paper, for each of six families of three-valued m-sequence

correlation, we construct an infinite family of five-weight codes from trace codes

over the ring R = F2 + uF2, where u2 = 0. The trace codes have the algebraic

structure of abelian codes. Their Lee weight distribution is computed by us-

ing character sums. Their support structure is determined. An application

to secret sharing schemes is given. The parameters of the binary image are

[2m+1(2m − 1), 4m, 2m(2m − 2r)] for some explicit r.

1. Introduction

Few weight codes form an important topic in secret sharing schemes [4, 7, 28,

30]. When using Massey’s secret sharing scheme [7], the minimality of codewords

for support inclusion is a crucial question, which is easier to elucidate in codes with

a small number of explicit weights, using the Ashikmin-Barg criterion [1].

A classical construction of codes over finite fields called trace codes is as follows

C := {(tr(d1x), . . . , tr(dnx)) | x ∈ F},
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where F is some extension of the alphabet field, tr is the trace function from F

down to the alphabet, and the set L = {d1, . . . , dn} ⊆ F is the defining set. Many

few-weight codes can be produced by this method [30, 7].

In recent papers [21, 20, 26, 29], the notion of trace codes has been extended from

finite fields alphabets to a ring R. Then a linear Gray map constructs codes over

a finite field from codes over R. The Lee weight over R is the Hamming weight

of the Gray image. They are part of a general research program where a variety of

few weight codes are obtained by varying the base ring and the defining set. Let

Fq denote a finite field with q elements. We can summarize the outcome of this

research program as shown below:

[20]: L = R∗m, R = F2 + uF2 + vF2 + uvF2(u2 = v2 = 0, uv = vu);

[21]: L = R∗m, R = F2 + uF2(u2 = 0);

[22]: L = uQ + (1 − u)F∗pm (Q denotes the squares of Fpm), L′ = R∗m, R = Fp +

uFp(u2 = u);

[23]: L = R∗, L′ = D × F2m × F2m · · · × F2m (D = 〈αN0〉 ⊆ F2m , where α is

a fixed primitive element of F2m and N0 | (2m − 1)), Rk = F2[u1, u2, uk]/〈u2i =

0 and uiuj = ujui for i, j in [k]〉. Let R be the ring obtained by replacing F2 by

F2m in the definition of Rk;

[24]: L = R∗m, L′ = Q×F3m ×F3m (Q denotes the squares of F3m), R = F3 +uF3 +

u2F3(u3 = 1);

[14]: L = {a + bu + cv + duv : a ∈ Q, b, c, d ∈ Fpm} (Q denotes the squares of Fpm), R =

Fp + uFp + vFp + uvFp(u2 = v2 = 0, uv = vu);

[25]: L = {a + bu + cv + duv : a ∈ D, b, c, d ∈ Fpm} (D = {dj = αN
′(j−1), j =

1, 2, · · · , n1} ⊆ CN
′

0 ⊆ Fpm), L′ = {a+ bu+ cv + duv : a ∈ F∗pm , b, c, d ∈ Fpm}, R =

Fp + uFp + vFp + uvFp(u2 = v2 = 0, uv = vu);

[26]: [R∗m : L] = 2, R = Fp + uFp;
[27]: L = Q × F2m × F2m · · · × F2m (Q denotes the squares of Fpm), L′ = {a0 +

a1u + · · · + ak−1uk−1 : a0 ∈ F∗pm , ai ∈ Fpm , i = 1, 2, · · · , k − 1}, L′′ = D + uFpm +

· · ·uk−1Fpm (D = {dj = αN
′(j−1), j = 1, 2, · · · , n1} ⊆ CN

′

0 ⊆ Fpm), R = Fp + uFp +

u2Fp + · · ·+ uk−1Fp(uk = 0);

[29]: L = R∗m, R = F2 + vF2 + v2F2(v3 = 1).

Here, L,L′, L′′ are called the defining sets of trace codes,Rm denotes anm-extension

of the ring R with m > 1 and R∗m its set of units. The symbol [A : B] denotes the

index of the subgroup A of B.

In the present paper, we define a trace code by replacing the linear form dix in

the above definition by a binomial (a polynomial with exactly two monomials) in

x. In particular, we use the binomials of the form x + xd (the integer d is called

the decimation) that occur in the evaluation of pairs of m-sequences with a three-

valued correlation. Seven infinite families of such binomials are known [3, 5, 9, 12,

17, 19], and they are conjectured to be the only ones. See [10, 13] for a survey on

low correlation sequences. In this paper, we manage to give a unified proof that
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six of them yield five-weight binary codes when R = F2 + uF2, and L = R∗m. In

contrast with most constructions of few-weight codes our trace codes are not visibly

cyclic [2], but they are provably abelian.

The manuscript is organized as follows. Basic notations and definitions are

provided in Section 2. Section 3 shows that the codes and their binary images are

abelian. The main result, the Lee weight distribution of these codes, is presented

in Section 4. Some results on the dual distance and on the support structure of the

binary images and an application to secret sharing schemes are given in Section 5

and Section 6.

2. Preliminaries

We consider the local ring F2 + uF2 denoted by R, with u2 = 0. For any

positive integer m, we construct an extension of degree m of R as Rm = F2m +uF2m

with again u2 = 0. This is a local ring with maximal ideal (u), and a chain ring of

depth two. Furthermore, there is a conjugacy map F which maps z = α+ βu onto

F (z) = α2 + β2u for α, β ∈ F2m . The Trace of z, denoted by Tr(z) is then defined

as the sum of its conjugates.

Tr(z) =

m−1∑
j=0

F j(z).

The connection with the standard trace tr() of F2m down to F2 is as follows

Tr(α+ βu) = tr(α) + tr(β)u,

for all α, β ∈ F2m . The trace from F2m to a subfield F2s will be denoted by trms ()

and sometimes by trm() if s = 1.

For convenience, let M denote the maximal ideal of Rm, i.e.,

M = (u) = {βu | β ∈ F2m},

and let M∗ denote the nonzero elements of M . The group of units in Rm is

R∗m = {α+ βu | α ∈ F∗2m , β ∈ F2m},

where F∗2m is the the set of nonzero elements in F2m . It is easy to check R∗m ∼= F∗2m×
F2m and |R∗m| = (2m− 1)2m. Hence, R∗m is not a cyclic group and Rm = R∗m ∪M .

A linear code C over R of length n is an R-submodule of Rn. If x = (x1, x2, · · · , xn)

and y = (y1, y2, · · · , yn) are two elements of Rn, their standard inner product is

defined by 〈x, y〉 =
∑n
i=1 xiyi, where the operation is performed in R. The dual

code of C is denoted by C⊥ and defined as C⊥ = {y ∈ Rn | 〈x, y〉 = 0,∀x ∈ C}.
For x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ Fn2 , dH(x, y) = |{i | xi 6= yi}|

is called the Hamming distance between x and y and wH(x) = dH(x, 0), the

Hamming weight of x. The Hamming weight of c = (c1, c2, . . . , cn) of Fn2 can also

be equivalently defined as the number of nonzero components of c.
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For any x = α + βu ∈ R, we define the Gray map Φ : R → F2
2, Φ(α + βu) =

(β, α+β), where α, β ∈ F2. This map can be extended to Rn in the natural way [21].

From the definition of Gray map, we know that Φ is a bijection and linear. Then Φ

is a weight-preserving map from (Rn, Lee weight) to (F2n
2 , Hamming weight), that

is, wL(x) = wH(Φ(x)), x ∈ Rn.

Given a finite abelian group G, a code over R is said to be abelian if it is an

ideal of the group ring R[G]. In other words, the coordinates of C are indexed by

elements of G and G acts regularly on this set. In the special case when G is cyclic,

the code is a cyclic code in the usual sense [18].

3. Symmetry

For a, b ∈ Rm, we define the vector Ev(a, b) by the following evaluation map:

Ev(a, b) = (Tr(ax+ bxd))x∈R∗m .

Define the code Td(m) by the formula

Td(m) = {Ev(a, b) | a, b ∈ Rm}.

Thus Td(m) is a code of length |R∗m| over R.

Proposition 3.1 The group of unitsR∗m acts regularly on the coordinates of Td(m).

Proof. For any v′, u′ ∈ R∗m the change of variables x 7→ (u′/v′)x permutes the

coordinates of Td(m), and maps v′ to u′. Such a permutation is unique, given

v′, u′.

The code Td(m) is thus an abelian code with respect to the group R∗m. In other

words, it is an ideal of the group ring R[R∗m]. As observed in the previous section,

R∗m is not a cyclic group, and thus Td(m) may not be cyclic. The next result shows

that its binary image is also abelian.

Proposition 3.2 A degree two extension of R∗m of size 2|R∗m| acts regularly on the

coordinates of Φ(Td(m)).

Proof. It is similar to the proof in [21], and we omit it here.

4. The values of the Lee Weight

In this section we determine, for some specific values of d, the Lee weight distri-

bution of the code Td(m) of length |R∗m| over R defined by

Td(m) = {Ev(a, b) | a, b ∈ Rm},

where the evaluation map Ev(a, b) is given by

Ev(a, b) = (Tr(ax+ bxd))x∈R∗m .

The Lee weight distribution has so far not been determined for Td(m) for any d.

The determination of the Lee weight distribution of Td(m) over R also determines

the Hamming weight distribution of the binary code Φ(Td(m)) of length 2|R∗m|.
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We consider the following seven values of d (called decimations) given by di, i =

1, 2, · · · , 7,

1) d1 = 2k + 1, where m
gcd(k,m) is odd.

2) d2 = 22k − 2k + 1, where m
gcd(k,m) is odd.

3) d3 = 2
m−1

2 + 3, where m is odd.

4) d4 = 2
m−1

2 + 2
m−1

4 − 1, where m ≡ 1 (mod 4).

5) d5 = 2
m−1

2 + 2
3m−1

4 − 1, where m ≡ 3 (mod 4).

6) d6 = 2
m
2 + 2

m+2
4 + 1, where m ≡ 2 (mod 4).

7) d7 = 2
m
2 +1 + 3, where m ≡ 2 (mod 4).

Note that it is well known that gcd(di, 2
m − 1) = 1 for i = 1, 2, · · · , 7.

The main result in this paper is to show that each of the codes Td(m) have

five Lee weights and to determine their Lee weight distributions for any d ∈ D∗ =

{d1, d2, d3, d4, d5, d6}. The last value of d = d7 does not lead to a five weight code

Td(m). Actually to find the Lee weight distribution of Td7 appears to be a very

hard open problem and is left as a challenge to the reader.

In the following we define a family of binary codes Bd(m) of length 2m − 1 that

are related to the family of codes Td(m) of length |R∗m| over R. Let Bd(m) be the

binary code

Bd(m) = {v(a, b) | a, b ∈ F2m},

where

v(a, b) = (tr(ax+ bxd))x∈F∗
2m
.

.

Let

Cd(a, b) =
∑
x∈F∗

2m

(−1)tr(ax+bx
d).

The exponential sum Cd(a, b) is fundamental for determination of the cross correla-

tion between two binary m-sequences of period 2m − 1 that differ by a decimation

d.

The weight distribution of the code Bd(m) is completely determined by the

values taken on by the exponential sum Cd(a, b), a, b ∈ F2m since wH(v(a, b)) =
2m−1−C(a,b)

2 . Let D = {d1, d2, d3, d4, d5, d6, d7} and note that the following lemma

shows that d ∈ D are all the known values for Cd(a, b) to take on three different

values when a, b ∈ F2m . In particular, it follows that the corresponding binary

codes Bd(m) have only three nonzero Hamming weights for d ∈ D. It has been

conjectured by Dobbertin [8] that the set D of seven families of decimations gives

all three-valued Cd(a, b).

To find values of d leading to a three-valued C(a, b) has been a research problem

for more than 50 years [9, 12, 15]. These results have numerous applications in

communication systems, sequence designs, coding theory and cryptology [10]. In

particular, this has led to families of sequences applied in GPS, and in many other

mobile communication standards [13].
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The important role of d ∈ D to construct binary codes with few weights of period

2m − 1 make these decimations good candidates for finding other codes with few

weights among the codes Td(m) of length |R∗m| = 2m(2m − 1).

Lemma 4.1 [1, 3, 8, 5, 9, 12, 13, 17, 19] Let D = {d1, d2, d3, d4, d5, d6, d7}, then

the seven values d ∈ D have the property that gcd(d, 2m− 1) = 1. The distribution

of

Cd(a, 1) =
∑
x∈F∗

2m

(−1)tr(ax+x
d),

when a runs through F∗2m , is three-valued and has the following distribution:

−1 occurs M0 times,

−1 + 2r occurs M+ times,

−1− 2r occurs M− times,

where r = m+e
2 , M0 = 2m − 2m−e − 1, M+ = 2m−e−1 + 2

m−e−2
2 , M− = 2m−e−1 −

2
m−e−2

2 .

Furthermore, e = gcd(m, k) for the cases d1 and d2, e = 1 for the cases d3, d4

and d5, and finally e = 2 for the cases d6 and d7.

Note that since gcd(d, 2m − 1) = 1 for d ∈ D, then Cd(a, b) = Cd(ab
− 1

d , 1).

In the analysis of the Lee weight distribution of Td(m) it is important to know

gcd(d− 1, 2m − 1) that is given in the following lemma.

Lemma 4.2 The following holds:

1) gcd(di − 1, 2m − 1) = 1 for i = 1, 3, 4, 5.

2) gcd(d2 − 1, 2m − 1) = 2gcd(k,m) − 1.

3)

gcd(d6 − 1, 2m − 1) =

{
1 if m ≡ 2 (mod 8),

3 if m ≡ 6 (mod 8).

4) gcd(d7 − 1, 2m − 1) = 2
m
2 + 1.

Proof. We only provide a short proof for the cases involving d4 and d5 and omit

the other and more trivial cases.

Consider the case d4 = 2
m−1

2 + 2
m−1

4 − 1, m ≡ 1 (mod 4). Let x = 2(m−1)/4 and

observe that d4− 1 = x2 +x− 2 and gcd(d4− 1, 2m− 1) = gcd(x2 +x− 2, 2x4− 1).

The extended Euclidean algorithm leads to

31 = (10x+ 21)(2x4 − 1)− (20x3 + 22x2 + 18x+ 26)(x2 + x− 2),

and therefore gcd(d4 − 1, 2m − 1) divides 31 .

Let t = (m− 1)/4. If 31 divides 2m − 1 = 24t+1 − 1, we have t ≡ 1 (mod 5). In

this case, d4− 1 = 22t + 2t− 2 ≡ 4 6≡ 0 (mod 31), and thus gcd(d4− 1, 2m− 1) = 1.



Five-weight codes from three-valued correlation 7

Consider the case d5 = 2
m−1

2 +2
3m−1

4 −1, m ≡ 3 (mod 4). Let x = 2(m+1)/4 and

observe that in this case gcd(d5 − 1, 2m − 1) = gcd(x
3

2 + x2

2 − 2, x
4

2 − 1). We obtain

62 = (9x2 + 20x+ 21)(x4 − 2)− (9x3 + 11x2 + 10x+ 26)(x3 + x2 − 4)

and thus ∆ = gcd(d5 − 1, 2m − 1) divides 31.

If ∆ = 31 then x4 ≡ 2 (mod 31) and x3 + x2 ≡ 4 (mod 31). The first equation

has only the two solutions x = ±24. Inserting the value x = 24 in the second

equation gives

x3 + x2 ≡ (24)3 + (24)2 ≡ 4 + 8 = 12 6≡ 4 (mod 31).

Then we try x = −24 ≡ 15 (mod 31) which is impossible since x = 2
m+1

4 6≡ 15

(mod 31). Hence, we conclude that gcd(d5 − 1, 2m − 1) = 1.

We first recall the following classic lemmas, which play an important role in

determining the Lee weight distribution of Td(m).

Lemma 4.3 [18, (6) p.412] If y = (y1, y2, · · · , yn) ∈ Fn2 , then 2wH(y) = n −
n∑
i=1

(−1)yi .

Lemma 4.4 [18, Lemma 9 p.143] If z ∈ F∗2m , then
∑

x∈F2m

(−1)tr(zx) = 0.

We next will discuss the Lee weight distribution of Td(m) for d ∈ D∗. Note that

the Lee weight distribution of two codes Td(m) can be different even though the

corresponding two codes Bd(m) have the same Hamming weight distribution. This

implies that the determination of the Lee weight distribution of Td(m) is not solely

a direct function of the Hamming weight distribution of Bd(m).

Theorem 4.5 Let a, b ∈ Rm, and let d ∈ D∗ = {d1, d2, d3, d4, d5, d6}. Let

(e, r,M+,M0,M−) be as given in Lemma 4.1. Furthermore, let s be defined by

gcd(d − 1, 2m − 1) = 2s − 1 which by Lemma 4.2 holds for all d in D∗ for some

s depending on d. Let Ai(x) denote the number of codewords of Lee weight i in

Td(m) coming from case x.

(i) If a = 0, b = 0, then wL(Ev(a, b)) = 0 and A0(i) = 1.

(ii) If b = 0, a 6= 0,

1) a ∈M∗, then wL(Ev(a, b)) = 22m and A22m(ii, 1) = 2m − 1.

2) a ∈ R∗m, then wL(Ev(a, b)) = (2m− 1)2m and A2m(2m−1)(ii, 2) = 2m(2m−
1).

(iii) If a = 0, b 6= 0,

1) b ∈M∗, then wL(Ev(a, b)) = 22m and A22m(iii, 1) = 2m − 1.

2) b ∈ R∗m, then wL(Ev(a, b)) = (2m−1)2m and A2m(2m−1)(iii, 2) = 2m(2m−
1).

(iv) If a 6= 0, b 6= 0,

1) a ∈M∗, b ∈M∗, then wL(Ev(a, b)) = 22m, 22m − 2r+m or 22m + 2r+m and
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A22m(iv, 1) = (2m−1)M0, A22m+2r+m(iv, 1) = (2m−1)M− andA22m−2r+m(iv, 1) =

(2m − 1)M+.

2) a ∈M∗, b ∈ R∗m, then wL(Ev(a, b)) = (2m − 1)2m and A2m(2m−1)(iv, 2) =

(2m − 1)22m.

3) a ∈ R∗m, b ∈M∗, then wL(Ev(a, b)) = (2m − 1)2m and A2m(2m−1)(iv, 3) =

(2m − 1)22m.

4) a ∈ R∗m, b ∈ R∗m, then wL(Ev(a, b)) = 2m(2m−1), 2m(2m−2s) or 22m and

A2m(2m−1)(iv, 4) = 22m(2m − 1) 2m−1
2s−1 (2s − 2), A22m(iv, 4) = (2m − 1)222m−s

and A2m(2m−2s)(iv, 4) = (2m−1)222m−s

2s−1 .

Proof. (i) If a = 0, b = 0 then Ev(a, b) = (0, 0, · · · , 0︸ ︷︷ ︸
|R∗m|

). So wL(Ev(a, b)) = 0.

Hence, this case contributes with A0(i) = 1.

(ii) Let b = 0, a 6= 0.

1) For a ∈ M∗, let a = a1u, a1 ∈ F∗2m , x = x0 + x1u ∈ R∗m, x0 ∈ F∗2m . So we

have ax = a1x0u, Tr(ax) = tr(a1x0)u. Taking Gray map yields

Φ(Ev(a, b)) = (tr(a1x0), tr(a1x0))x0,x1
.

Using Lemma 4.3 and Lemma 4.4 we have

2|R∗m| − 2wL(Ev(a, b)) = 2
∑

x0∈F∗2m

∑
x1∈F2m

(−1)tr(a1x0)

= −2m+1.

Then wL(Ev(a, b)) = |R∗m|+ 2m = 22m.

Therefore this case contributes with A22m(ii, 1) = 2m − 1 = |M∗|.
2) For a ∈ R∗m, let a = a0 + a1u ∈ R∗m, x = x0 + x1u ∈ R∗m. So we have ax =

(a0+a1u)(x0+x1u) = a0x0+(a0x1+a1x0)u, Tr(ax) = tr(a0x0)+tr(a0x1+a1x0)u.

Taking Gray map yields

Φ(Ev(a, b)) = (tr(a0x1 + a1x0), tr(a0x0) + tr(a0x1 + a1x0))x0,x1
.

From Lemma 4.3 and Lemma 4.4, and the fact that a0 6= 0, we have

2|R∗m| − 2wL(Ev(a, b)) =
∑

x0∈F∗2m

∑
x1∈F2m

(−1)tr(a0x1+a1x0) +

∑
x0∈F∗2m

∑
x1∈F2m

(−1)tr(a0x0)+tr(a0x1+a1x0)

= 0.

Then wL(Ev(a, b)) = |R∗m| = (2m − 1)2m.

The contribution from this case is therefore A2m(2m−1)(ii, 2) = 2m(2m − 1) =

|R∗m|.
(iii) In the case a = 0 and b 6= 0.
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1) For b ∈ M∗, let b = b1u, b1 ∈ F∗2m , x = x0 + x1u ∈ R∗m, x0 6= 0 . So we have

T (bxd) = tr(b1x
d
0)u. Taking Gray map yields

Φ(Ev(a, b)) = (tr(b1x
d
0), tr(b1x

d
0))x0,x1

.

From Lemma 4.3 and Lemma 4.4, we have since b1 6= 0, and gcd(d, 2m − 1) = 1

that

2|R∗m| − 2wL(Ev(a, b)) = 2
∑

x0∈F∗2m

∑
x1∈F2m

(−1)tr(b1x
d
0)

= − 2m+1.

Then wL(Ev(a, b)) = |R∗m|+ 2m = 22m.

Therefore this case contributes with A22m(iii, 1) = 2m − 1 = |M∗|.
2) For b ∈ R∗m, let b = b0 + b1u ∈ R∗m, b0 6= 0. Let x = x0 + x1u ∈ R∗m. So we

have bxd = (b0 + b1u)(xd0 + dxd−10 x1u) = b0x
d
0 + (b1x

d
0 + b0dx

d−1
0 x1)u. Hence, since

d is odd then Tr(bxd) = tr(b0x
d
0) + tr(b1x

d
0 + b0x

d−1
0 x1)u. Taking Gray map yields

Φ(Ev(a, b)) = (tr(b1x
d
0 + b0x

d−1
0 x1), tr(b0x

d
0 + b1x

d
0 + b0x

d−1
0 x1))x0,x1

.

From Lemma 4.3 and Lemma 4.4, we have since b0 6= 0, that

2|R∗m| − 2wL(Ev(a, b)) =
∑

x0∈F∗2m

∑
x1∈F2m

(−1)tr(b1x
d
0+b0x

d−1
0 x1) +

∑
x0∈F∗2m

∑
x1∈F2m

(−1)tr(b0x
d
0)+tr(b1x

d
0+b0x

d−1
0 x1)

= 0.

Then wL(Ev(a, b)) = |R∗m| = (2m − 1)2m .

The contribution from this case is therefore A2m(2m−1)(iii, 2) = 2m(2m − 1) =

|R∗m|.
(iv) In this case a 6= 0, b 6= 0.

1) For a ∈ M∗, b ∈ M∗, let a = a1u, b = b1u, a1, b1 ∈ F∗2m , x = x0 + x1u ∈ R∗m,

x0 6= 0. Therefore we have

ax+ bxd = a1u(x0 + x1u) + b1u(x0 + x1u)d

= (a1x0 + b1x
d
0)u.

Hence,

Tr(ax+ bxd) = tr(a1x0 + b1x
d
0)u.

Taking Gray map yields

Φ(Ev(a, b)) = (tr(a1x0 + b1x
d
0), tr(a1x0 + b1x

d
0))x0,x1 .
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Combined with Lemma 4.3 and Lemma 4.4, we have

2|R∗m| − 2wL(Ev(a, b)) = 2
∑

x0∈F∗2m

∑
x1∈F2m

(−1)tr(a1x0+b1x
d
0)

= 2m+1
∑

x0∈F∗2m

(−1)tr(a1x0+b1x
d
0).

This means that wL(Ev(a, b)) = |R∗m| − 2mCd(a1, b1) = 2m(2m − 1 − Cd(a1, b1)).

Therefore Lemma 4.1 implies that wL(Ev(a, b)) = 22m, 22m ± 2r+m.

Since Cd(a1, b1) = Cd(c, 1) where cd = ad1/b1 it follows that c runs through all

elements in F∗2m exactly 2m − 1 times when a1, b1 run through F∗2m .

Hence, it follows from the cross correlation distribution in Lemma 4.1 that the

contribution to the weight distribution in this case is: A22m(iv, 1) = (2m − 1)M0,

A22m+2r+m(iv, 1) = (2m − 1)M− and A22m−2r+m(iv, 1) = (2m − 1)M+.

2) For a ∈M∗, b ∈ R∗m, let a = a1u, a1 ∈ F∗2m , b = b0+b1u ∈ R∗m, x = x0+x1u ∈
R∗m. Thus we have b0, x0 ∈ F∗2m and since d is odd we obtain

ax+ bxd = a1u(x0 + x1u) + (b0 + b1u)(x0 + x1u)d

= b0x
d
0 + (a1x0 + b1x

d
0 + b0x

d−1
0 x1)u,

Tr(ax+ bxd) = tr(b0x
d
0) + tr(a1x0 + b1x

d
0 + b0x

d−1
0 x1)u.

Taking Gray map yields

Φ(Ev(a, b)) = (tr(a1x0+b1x
d
0+b0x

d−1
0 x1), tr(b0x

d
0)+tr(a1x0+b1x

d
0+b0x

d−1
0 x1))x0,x1

.

In the light of Lemma 4.3 and Lemma 4.4, it follows from b0 6= 0 and x0 6= 0, that

2|R∗m| − 2wL(Ev(a, b)) =
∑

x0∈F∗2m

∑
x1∈F2m

(−1)tr(a1x0+b1x
d
0+b0x

d−1
0 x1) +

∑
x0∈F∗2m

∑
x1∈F2m

(−1)tr(b0x
d
0)+tr(a1x0+b1x

d
0+b0x

d−1
0 x1)

= 0.

Thus, wL(Ev(a, b)) = |R∗m| = 2m(2m − 1).

Hence, this case contributes with A2m(2m−1)(iv, 2) = (2m − 1)22m = |M∗||R∗m|.
3) Now we deal with the case a ∈ R∗m and b ∈M∗ with a = a0 + a1u ∈ R∗m, b =

b1u, a0, b1 ∈ F∗2m , x = x0 + x1u ∈ R∗m, x0 ∈ F∗2m . Deduce from computing

ax+ bxd = (a0 + a1u)(x0 + x1u) + b1u(x0 + x1u)d

= a0x0 + (a1x0 + a0x1 + b1x
d
0)u

that Tr(ax+ bxd) = tr(a0x0) + tr(a1x0 + a0x1 + b1x
d
0)u. Taking Gray map yields

Φ(Ev(a, b)) = (tr(a1x0 + a0x1 + b1x
d
0), tr(a0x0) + tr(a1x0 + a0x1 + b1x

d
0))x0,x1

.

According to Lemma 4.3 and Lemma 4.4, we have since a0 6= 0,
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2|R∗m| − 2wL(Ev(a, b)) =
∑

x0∈F∗2m

∑
x1∈F2m

(−1)tr(a1x0+a0x1+b1x
d
0)) +

∑
x0∈F∗2m

∑
x1∈F2m

(−1)tr(a0x0)+tr(a1x0+a0x1+b1x
d
0))

= 0.

Then wL(Ev(a, b)) = |R∗m| = 2m(2m − 1).

Hence, this case contributes with A2m(2m−1)(iv, 3) = (2m − 1)22m = |M∗||R∗m|.
4) For a ∈ R∗m, b ∈ R∗m, let a = a0+a1u ∈ R∗m, b = b0+b1u ∈ R∗m, x = x0+x1u ∈

R∗m, a0, b0, x0 ∈ F∗2m . So we have since d is odd that

ax+ bxd = (a0 + a1u)(x0 + x1u) + (b0 + b1u)(x0 + x1u)d

= (a0x0 + b0x
d
0) + (a0x1 + a1x0 + b1x

d
0 + b0dx

d−1
0 x1)u,

Tr(ax+ bxd) = tr(a0x0 + b0x
d
0) + tr(a0x1 + a1x0 + b1x

d
0 + b0x

d−1
0 x1)u.

Taking Gray map yields Φ(Ev(a, b)) = (tr(a0x1+a1x0+b1x
d
0+b0x

d−1
0 x1), tr(a0x0+

b0x
d
0) + tr(a0x1 + a1x0 + b1x

d
0 + b0x

d−1
0 x1))x0,x1

. Using Lemma 4.3 and Lemma 4.4,
we obtain

2|R∗m| − 2wL(Ev(a, b)) =
∑

x0∈F∗2m

∑
x1∈F2m

(−1)tr(a0x1+a1x0+b1xd
0+b0x

d−1
0 x1)

+

∑
x0∈F∗2m

∑
x1∈F2m

(−1)tr(a0x0+b0xd
0)+tr(a0x1+a1x0+b1xd

0+b0x
d−1
0 x1)

.

Observe that

2|R∗m| − 2wL(Ev(a, b)) =
∑

x0∈F∗2m

(−1)tr(a1x0+b1xd
0)

∑
x1∈F2m

(−1)tr((a0+b0x
d−1
0 )x1)

+

∑
x0∈F∗2m

(−1)tr((a1+a0)x0+(b1+b0)xd
0)

∑
x1∈F2m

(−1)tr((a0+b0x
d−1
0 )x1)

= 2
m

∑
x0∈U

(−1)tr(a1x0+b1xd
0)

(1 + (−1)tr(a0x0+b0xd
0)

)

= 2
m+1

∑
x0∈U

(−1)tr(a1x0+b1xd
0)

where U = {x ∈ F∗2m | a0 + b0x
d−1 = 0}. Since gcd(d− 1, 2m − 1) = 2s − 1 for any

d ∈ D∗, it follows that xd−1 and x2
s−1 run through the same nonzero elements in

F∗2m when x runs through F∗2m and therefore

U = {x ∈ F∗2m | x2
s−1 =

a0
b0
}.

Note that U depends on a0 and b0.

First, consider the case U = ∅ that occurs if and only if a0
b0
6= γ2

s−1 for any

γ ∈ F∗2m . In this case

wL(Ev(a, b)) = |R∗m| = 2m(2m − 1).
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The number of choices of a1, b1 ∈ F2m and a0, b0 ∈ F∗2m with the condition a0
b0
6=

γ2
s−1 for any γ ∈ F∗2m is 22m(2m − 1) 2m−1

2s−1 (2s − 2). Hence, this contributes

A2m(2m−1)(iv, 4) = 22m(2m − 1)
2m − 1

2s − 1
(2s − 2).

Note that this case never occurs for s = 1.

Next consider the case U 6= ∅, then a0
b0

= γ2
s−1 for some γ ∈ F∗2m , and we have

U = {x ∈ F∗2m | x = γδ, where δ ∈ F∗2s},

since x2
s−1 = γ2

s−1δ2
s−1 = γ2

s−1 = a0
b0

for any δ ∈ F∗2m .

Then, let c = (a1 + b1
a0
b0

)γ, we observe that when a1, b1 run through F2m and

a0, b0 run through F∗2m with the condition a0
b0

= γ2
s−1 for some γ ∈ F∗2m , then each

value of c ∈ F2m occurs equally often with multiplicity

2m(2m − 1)
2m − 1

2s − 1
.

The continuation of the calculations above gives,

wL(Ev(a, b)) = |R∗m| − 2m
∑
x0∈U

(−1)tr(a1x0+b1x
d
0)

= |R∗m| − 2m
∑
x0∈U

(−1)tr((a1+b1x
d−1
0 )x0)

= |R∗m| − 2m
∑
x0∈U

(−1)tr((a1+b1
a0
b0

)γδ)

= |R∗m| − 2m
∑
δ∈F∗

2s

(−1)trm(cδ)

= 2m(2m − 1−
∑
δ∈F∗

2s

(−1)trs(δtr
m
s (c))).

Note that, well-known properties of the trace function give∑
δ∈F∗

2s

(−1)trs(δtr
m
s (c) =

{
−1 if Trms (c) 6= 0 that occurs 2m − 2m−s times,

2s − 1 if Trms (c) = 0 that occurs 2m−s times.

These two values of the trace function lead to Lee weights 22m and 2m(2m − 2s)

and the final contributions to the weight distribution in this case becomes:

A22m(iv, 4) = (2m − 1)222m−s,

A2m(2m−2s)(iv, 4) =
(2m − 1)222m−s

2s − 1
.

The discussion above shows that the code has the following five nonzero weights:

{22m − 2m+r, 2m(2m − 2s), 2m(2m − 1), 22m, 22m + 2m+r}.

Furthermore, the number of codewords of each Lee weight from each case above has

been determined.
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The complete Lee weight distribution for Td(m) follows easily in the following

corollary by adding up the information in the previous theorem .

Corollary 4.6 Let (e, r,M+,M0,M−) be as given in Lemma 4.1 and furthermore

let s be defined by gcd(d − 1, 2m − 1) = 2s − 1 which by Lemma 4.2 holds for all

d in D∗ for some s depending on d. Let Ai denote the number of codewords of

Lee weight i in Td(m). The Lee weight distribution of the code Td(m) over R for

d ∈ D∗ = {d1, d2, d3, d4, d5, d6} is given by:

A0 = 1,

A22m−2m+r = (2m − 1)M+,

A2m(2m−2s) = (2m − 1)2 22m−s

2s−1 ,

A2m(2m−1) = 22m(2m − 1)(2 + (2m − 1) 2s−2
2s−1 ),

A22m = (2m − 1)(M0 + 2 + (2m − 1)22m−s),

A22m+2m+r = (2m − 1)M−.

In particular the code Φ(Td(m)) has parameters [2m+1(2m−1), 4m, 2m(2m−2r)].

Proof. This result is a simple consequence of the previous theorem that study several

cases and determine, in each case, the number of codewords in Td(m) of Lee weight

i in case x, denoted by Ai(x). Adding the number of codewords of weight i in each

case completes the proof.

A concrete example is as follows.

Example 4.7 Let m = 5, e = 1, r = 3, s = 1. Then we obtain a binary code of

parameters [1984, 20, 768]. The weights are {768, 960, 992, 1024, 1280}.

5. Dual distance

Proposition 5.2 The dual distance of Td(m) is 2.

Proof. We exhibit a codeword of weight 2 in Td(m)⊥ supported by x, y ∈ L. Assume

y = (1 + u)x. Because d is odd, we have yd = (1 + u)xd. Hence the relation

(x, xd)t + (1 + u)(y, yd)t = 0.

Thus there is a codeword of shape (1, 1+u, 0n−2) in Td(m)⊥. Since wL((1, 1+u)) = 2,

the result follows.

We construct a projective code related to Td(m), by removing half the columns

of its generator matrix. Write L = L′∪(1+u)L′ (this writing is non unique). Define

a trace code HTd(m), of defining set L′ by the relation

HTd(m) = {(Tr(ax+ bxd)x∈L′ | a, b ∈ Rm}.

Proposition 5.3 The dual distance of HTd(m) is ≥ 3. Each weight in HTd(m) is

half the weight of some weight in Td(m) with the same frequency.
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Proof. By construction the codewords of weight 2 in HTd(m)⊥, similar to those

described in Proposition 5.2 cannot occur. It is easy to exclude the shapes (u, 0n−1)

or (1, 1, 0n−2). Hence the dual distance of HTd(m) is ≥ 3. The relation between the

weights of HTd(m) and those of Td(m) is immediate.

6. Application to secret sharing schemes

In this section, we first introduce the support structure. Let q be a prime power,

and n an integer. Let Fq denote the finite field of order q. The support s(x) of a

vector x in Fnq is defined as the set of indices where it is nonzero. We say that a

vector x covers a vector y if s(x) contains s(y). A minimal codeword of a linear

code C is a nonzero codeword that does not cover any other nonzero codeword. In

general determining the minimal codewords of a given linear code is a difficult task.

However, there is a numerical condition, derived in [1], bearing on the weights of

the code, that is easy to check.

Lemma 6.1 (Ashikmin-Barg) Denote by w0 and w∞ the minimum and maximum

nonzero weights, respectively. If

w0

w∞
>
q − 1

q
,

then every nonzero codeword of C is minimal.

We can infer from this the support structure for the codes of this paper.

Proposition 6.2 All the nonzero codewords of Φ(Td(m)), and of Φ(HTd(m)), for

m > 2 and m is odd, are minimal.

Proof. Based on the introduction of Lemma 6.1, then w0 = ω1, w∞ = ω5 and q = 2.

Next we need to prove the inequality w1

w5
> 1

2 is true for m > 2. Thus, we obtain

2ω1 − ω5 = 2(22m − 2
3m+1

2 )− (22m + 2
3m+1

2 )

= 22m(1− 3 · 21−m) > 0.

Hence the statement on Φ(Td(m)), is proved. The analogous statement on Φ(HTd(m)),

follows similarly by Proposition 5.3.

A secret sharing scheme (SSS) is a protocol involving a dealer and S users.

Massey’s scheme is a construction of such a scheme where a code C of length n

over Fp gives rise to a SSS with S = n−1. See [30] for a detailed explanation of the

mechanism of that scheme.

Now, the coalition structure is related to the support structure of C. In the

special case when all nonzero codewords are minimal, it was shown in [7] that there

is the following alternative, depending on the dual distance d′:

• If d′ ≥ 3, then the SSS is “democratic”: every user belongs to the same number

of coalitions.

• If d′ = 2, then there are users who belong to every coalition: the “dictators”.
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Depending on the application, one or the other situation might be more suitable.

By the results of the preceding section we see that Φ(Td(m)) leads to a dictatorial

scheme, and Φ(HTd(m)) to a democratic one.

7. Conclusion and open problems

In this paper, we have studied a family of trace codes over F2 + uF2, based

on six of the seven known families of decimations leading to three-valued cross

correlation of m-sequences. These codes are provably abelian, but not visibly cyclic.

Using a character sum approach, we have been able to determine their Lee weight

distribution of Td(m), and we have obtained a family of abelian binary five-weight

codes by the Gray map. The same study for the seventh decimation is challenging,

and is likely to lead to binary codes with many more than five weights.
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