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In this paper, for each of six families of three-valued m-sequence correlation, we construct an infinite family of five-weight codes from trace codes over the ring R = F 2 + uF 2 , where u 2 = 0. The trace codes have the algebraic structure of abelian codes. Their Lee weight distribution is computed by using character sums. Their support structure is determined. An application to secret sharing schemes is given. The parameters of the binary image are [2 m+1 (2 m -1), 4m, 2 m (2 m -2 r )] for some explicit r.

Introduction

Few weight codes form an important topic in secret sharing schemes [START_REF] Carlet | Linear codes from perfect nonlinear mappings and their secret sharing schemes[END_REF][START_REF] Ding | Covering and secret sharing with linear codes[END_REF][START_REF] Shi | A class of optimal p-ary codes from one-weight codes over Fp[u]/(u m )[END_REF][START_REF] Yuan | Secret sharing schemes from three classes of linear codes[END_REF]. When using Massey's secret sharing scheme [START_REF] Ding | Covering and secret sharing with linear codes[END_REF], the minimality of codewords for support inclusion is a crucial question, which is easier to elucidate in codes with a small number of explicit weights, using the Ashikmin-Barg criterion [START_REF] Ashikmin | Minimal vectors in linear codes[END_REF].

A classical construction of codes over finite fields called trace codes is as follows

C := {(tr(d 1 x), . . . , tr(d n x)) | x ∈ F },
where F is some extension of the alphabet field, tr is the trace function from F down to the alphabet, and the set L = {d 1 , . . . , d n } ⊆ F is the defining set. Many few-weight codes can be produced by this method [START_REF] Yuan | Secret sharing schemes from three classes of linear codes[END_REF][START_REF] Ding | Covering and secret sharing with linear codes[END_REF].

In recent papers [START_REF] Shi | Optimal two weight codes over F 2 +uF 2[END_REF][START_REF] Shi | Optimal binary codes from trace codes over a non-chain ring[END_REF][START_REF] Shi | Two and three weight codes over F 2 + uF 2[END_REF][START_REF] Shi | Three-weight codes, triple sum sets, and strongly walk regular graphs[END_REF], the notion of trace codes has been extended from finite fields alphabets to a ring R. Then a linear Gray map constructs codes over a finite field from codes over R. The Lee weight over R is the Hamming weight of the Gray image. They are part of a general research program where a variety of few weight codes are obtained by varying the base ring and the defining set. Let F q denote a finite field with q elements. We can summarize the outcome of this research program as shown below: [START_REF] Shi | Optimal binary codes from trace codes over a non-chain ring[END_REF]:

L = R * m , R = F 2 + uF 2 + vF 2 + uvF 2 (u 2 = v 2 = 0, uv = vu); [21]: L = R * m , R = F 2 + uF 2 (u 2 = 0); [22]: L = uQ + (1 -u)F * p m (Q denotes the squares of F p m ), L = R * m , R = F p + uF p (u 2 = u); [23]: L = R * , L = D × F 2 m × F 2 m • • • × F 2 m (D = α N0 ⊆ F 2 m
, where α is a fixed primitive element of F 2 m and N 0 | (2 m -1)), R k = F 2 [u 1 , u 2 , u k ]/ u 2 i = 0 and u i u j = u j u i for i, j in [k] . Let R be the ring obtained by replacing F 2 by F 2 m in the definition of R k ; [START_REF] Shi | Optimal ternary cubic two-weight codes[END_REF]:

L = R * m , L = Q × F 3 m × F 3 m (Q denotes the squares of F 3 m
), R = F 3 + uF 3 + u 2 F 3 (u 3 = 1); [START_REF] Liu | Two-weight and three-weight codes from trace codes over Fp + uFp + vFp + uvFp[END_REF]: L = {a + bu + cv + duv : a ∈ Q, b, c, d ∈ Fpm } (Q denotes the squares of Fpm ), R = Fp + uFp + vFp + uvFp(u 2 = v 2 = 0, uv = vu); [START_REF] Shi | Few-weight codes from trace codes over a local ring[END_REF]: L = {a + bu + cv + duv : a ∈ D, b, c, d ∈ F p m } (D = {d j = α N (j-1) , j = 1, 2, • • • , n 1 } ⊆ C N 0 ⊆ F p m ), L = {a + bu + cv + duv : a ∈ F * p m , b, c, d ∈ F p m }, R = F p + uF p + vF p + uvF p (u 2 = v 2 = 0, uv = vu); [START_REF] Shi | Two and three weight codes over F 2 + uF 2[END_REF]: [R * m : L] = 2, R = F p + uF p ; [START_REF] Shi | New classes of p-ary few weight codes[END_REF]:

L = Q × F 2 m × F 2 m • • • × F 2 m (Q denotes the squares of F p m ), L = {a 0 + a 1 u + • • • + a k-1 u k-1 : a 0 ∈ F * p m , a i ∈ F p m , i = 1, 2, • • • , k -1}, L = D + uF p m + • • • u k-1 F p m (D = {d j = α N (j-1) , j = 1, 2, • • • , n 1 } ⊆ C N 0 ⊆ F p m ), R = F p + uF p + u 2 F p + • • • + u k-1 F p (u k = 0); [29]: L = R * m , R = F 2 + vF 2 + v 2 F 2 (v 3 = 1
). Here, L, L , L are called the defining sets of trace codes, R m denotes an m-extension of the ring R with m > 1 and R * m its set of units. The symbol [A : B] denotes the index of the subgroup A of B.

In the present paper, we define a trace code by replacing the linear form d i x in the above definition by a binomial (a polynomial with exactly two monomials) in x. In particular, we use the binomials of the form x + x d (the integer d is called the decimation) that occur in the evaluation of pairs of m-sequences with a threevalued correlation. Seven infinite families of such binomials are known [START_REF] Canteaut | Binary m-sequences with three valued crosscorrelation: A proof of Welch's conjecture[END_REF][START_REF] Cusick | Some new three-valued crosscorrelation functions for binary m-sequences[END_REF][START_REF] Gold | Maximal recursive sequences with 3-valued cross-correlation functions[END_REF][START_REF] Helleseth | Some results about the cross-correlation between two maximal linear sequences[END_REF][START_REF] Kasami | The weight enumerators for several classes of subcodes of the second order binary Reed-Muller codes[END_REF][START_REF] Niho | Multivalued Cross-Correlation Functions between Two Maximal Linear Recursive Sequences[END_REF], and they are conjectured to be the only ones. See [START_REF] Golomb | Signal Design for Good Correlation for Wireless Communication[END_REF][START_REF] Helleseth | Sequences with low correlation[END_REF] for a survey on low correlation sequences. In this paper, we manage to give a unified proof that six of them yield five-weight binary codes when R = F 2 + uF 2 , and L = R * m . In contrast with most constructions of few-weight codes our trace codes are not visibly cyclic [START_REF] Brouwer | Spectra of Graphs[END_REF], but they are provably abelian.

The manuscript is organized as follows. Basic notations and definitions are provided in Section 2. Section 3 shows that the codes and their binary images are abelian. The main result, the Lee weight distribution of these codes, is presented in Section 4. Some results on the dual distance and on the support structure of the binary images and an application to secret sharing schemes are given in Section 5 and Section 6.

Preliminaries

We consider the local ring F 2 + uF 2 denoted by R, with u 2 = 0. For any positive integer m, we construct an extension of degree m of R as R m = F 2 m +uF 2 m with again u 2 = 0. This is a local ring with maximal ideal (u), and a chain ring of depth two. Furthermore, there is a conjugacy map F which maps z = α + βu onto

F (z) = α 2 + β 2 u for α, β ∈ F 2 m .
The Trace of z, denoted by T r(z) is then defined as the sum of its conjugates.

T r(z)

= m-1 j=0 F j (z).
The connection with the standard trace tr() of F 2 m down to F 2 is as follows T r(α + βu) = tr(α) + tr(β)u, for all α, β ∈ F 2 m . The trace from F 2 m to a subfield F 2 s will be denoted by tr m s () and sometimes by tr m () if s = 1.

For convenience, let M denote the maximal ideal of R m , i.e.,

M = (u) = {βu | β ∈ F 2 m },
and let M * denote the nonzero elements of M . The group of units in R m is

R * m = {α + βu | α ∈ F * 2 m , β ∈ F 2 m }, where F * 2 m is the the set of nonzero elements in F 2 m . It is easy to check R * m ∼ = F * 2 m × F 2 m and |R * m | = (2 m -1)2 m . Hence, R * m is not a cyclic group and R m = R * m ∪ M . A linear code C over R of length n is an R-submodule of R n . If x = (x1, x2, • • • , xn)
and y = (y 1 , y 2 , • • • , y n ) are two elements of R n , their standard inner product is defined by x, y = n i=1 x i y i , where the operation is performed in R. The dual code of C is denoted by C ⊥ and defined as C ⊥ = {y ∈ R n | x, y = 0, ∀x ∈ C}.

For x = (x 1 , x 2 , . . . , x n ), y = (y 1 , y 2 , . . . , y n ) ∈ F n 2 , d H (x, y) = |{i | x i = y i }| is called the Hamming distance between x and y and w H (x) = d H (x, 0), the Hamming weight of x. The Hamming weight of c = (c 1 , c 2 , . . . , c n ) of F n 2 can also be equivalently defined as the number of nonzero components of c.

For any x = α + βu ∈ R, we define the Gray map Φ : R → F 2 2 , Φ(α + βu) = (β, α+β), where α, β ∈ F 2 . This map can be extended to R n in the natural way [START_REF] Shi | Optimal two weight codes over F 2 +uF 2[END_REF]. From the definition of Gray map, we know that Φ is a bijection and linear. Then Φ is a weight-preserving map from (R n , Lee weight) to (F 2n 2 , Hamming weight), that is,

w L (x) = w H (Φ(x)), x ∈ R n .
Given a finite abelian group G, a code over R is said to be abelian if it is an ideal of the group ring R[G]. In other words, the coordinates of C are indexed by elements of G and G acts regularly on this set. In the special case when G is cyclic, the code is a cyclic code in the usual sense [START_REF] Macwilliams | The Theory of Error-Correcting Codes[END_REF].

Symmetry

For a, b ∈ R m , we define the vector Ev(a, b) by the following evaluation map: Proof. It is similar to the proof in [START_REF] Shi | Optimal two weight codes over F 2 +uF 2[END_REF], and we omit it here.

Ev(a, b) = (T r(ax + bx d )) x∈R * m . Define the code T d (m) by the formula T d (m) = {Ev(a, b) | a, b ∈ R m }. Thus T d (m) is a code of length |R * m | over R.

The values of the Lee Weight

In this section we determine, for some specific values of d, the Lee weight distribution of the code We consider the following seven values of d (called decimations) given by d

T d (m) of length |R * m | over R defined by T d (m) = {Ev(a, b) | a, b ∈ R m },
i , i = 1, 2, • • • , 7, 1) d 1 = 2 k + 1, where m gcd(k,m) is odd. 2) d 2 = 2 2k -2 k + 1, where m gcd(k,m) is odd. 3) d 3 = 2 m-1 2 + 3, where m is odd. 4) d 4 = 2 m-1 2 + 2 m-1 4 
-1, where m ≡ 1 (mod 4). 5)

d 5 = 2 m-1 2 + 2 3m-1 4 -1, where m ≡ 3 (mod 4). 6) d 6 = 2 m 2 + 2 m+2 4 + 1, where m ≡ 2 (mod 4). 7) d 7 = 2 m 2 +1 + 3, where m ≡ 2 (mod 4). Note that it is well known that gcd(d i , 2 m -1) = 1 for i = 1, 2, • • • , 7.
The main result in this paper is to show that each of the codes T d (m) have five Lee weights and to determine their Lee weight distributions for any

d ∈ D * = {d 1 , d 2 , d 3 , d 4 , d 5 , d 6 }.
The last value of d = d 7 does not lead to a five weight code T d (m). Actually to find the Lee weight distribution of T d7 appears to be a very hard open problem and is left as a challenge to the reader.

In the following we define a family of binary codes B d (m) of length 2 m -1 that are related to the family of codes

T d (m) of length |R * m | over R. Let B d (m) be the binary code B d (m) = {v(a, b) | a, b ∈ F 2 m }, where v(a, b) = (tr(ax + bx d )) x∈F * 2 m . . Let C d (a, b) = x∈F * 2 m (-1) tr(ax+bx d ) .
The exponential sum C d (a, b) is fundamental for determination of the cross correlation between two binary m-sequences of period 2 m -1 that differ by a decimation d.

The weight distribution of the code B d (m) is completely determined by the values taken on by the exponential sum To find values of d leading to a three-valued C(a, b) has been a research problem for more than 50 years [START_REF] Gold | Maximal recursive sequences with 3-valued cross-correlation functions[END_REF][START_REF] Helleseth | Some results about the cross-correlation between two maximal linear sequences[END_REF][START_REF] Pursley | Crosscorrelation properties of pseudorandom and related sequences[END_REF]. These results have numerous applications in communication systems, sequence designs, coding theory and cryptology [START_REF] Golomb | Signal Design for Good Correlation for Wireless Communication[END_REF]. In particular, this has led to families of sequences applied in GPS, and in many other mobile communication standards [START_REF] Helleseth | Sequences with low correlation[END_REF].

C d (a, b), a, b ∈ F 2 m since w H (v(a, b)) = 2 m -1-C(a,b) 2 . Let D = {d 1 , d 2 , d 3 , d 4 ,
The important role of d ∈ D to construct binary codes with few weights of period 2 m -1 make these decimations good candidates for finding other codes with few weights among the codes 

T d (m) of length |R * m | = 2 m (2 m -1).
C d (a, 1) = x∈F * 2 m (-1) tr(ax+x d ) ,
when a runs through F * 2 m , is three-valued and has the following distribution:

-1 occurs M 0 times, -1 + 2 r occurs M + times, -1 -2 r occurs M -times, where r = m+e 2 , M 0 = 2 m -2 m-e -1, M + = 2 m-e-1 + 2 m-e-2 2 , M -= 2 m-e-1 - 2 m-e-2 2
. Furthermore, e = gcd(m, k) for the cases d Note that since gcd(d,

2 m -1) = 1 for d ∈ D, then C d (a, b) = C d (ab -1 d , 1).
In the analysis of the Lee weight distribution of T d (m) it is important to know gcd(d -1, 2 m -1) that is given in the following lemma.

Lemma 4.2

The following holds:

1) gcd(d i -1, 2 m -1) = 1 for i = 1, 3, 4, 5. 2) gcd(d 2 -1, 2 m -1) = 2 gcd(k,m) -1. 3) gcd(d 6 -1, 2 m -1) = 1 if m ≡ 2 (mod 8), 3 if m ≡ 6 (mod 8). 4) gcd(d 7 -1, 2 m -1) = 2 m 2 + 1.
Proof. We only provide a short proof for the cases involving d 4 and d 5 and omit the other and more trivial cases.

Consider the case -1, m ≡ 3 (mod 4). Let x = 2 (m+1)/4 and observe that in this case gcd(d 5 -1, 2 m -1) = gcd(

d 4 = 2 m-1 2 + 2 m-1 4 -1, m ≡ 1 (mod 4). Let x = 2 (m-1)/4 and observe that d 4 -1 = x 2 + x -2 and gcd(d 4 -1, 2 m -1) = gcd(x 2 + x -2, 2x
x 3 2 + x 2 2 -2, x 4 2 -1). We obtain 62 = (9x 2 + 20x + 21)(x 4 -2) -(9x 3 + 11x 2 + 10x + 26)(x 3 + x 2 -4)
and thus ∆ = gcd(d 5 -1, 2 m -1) divides 31.

If ∆ = 31 then x 4 ≡ 2 (mod 31) and x 3 + x 2 ≡ 4 (mod 31). The first equation has only the two solutions x = ±2 4 . Inserting the value x = 2 4 in the second equation gives

x 3 + x 2 ≡ (2 4 ) 3 + (2 4 ) 2 ≡ 4 + 8 = 12 ≡ 4 (mod 31).
Then we try x = -2 4 ≡ 15 (mod 31) which is impossible since x = 2 m+1 4

≡ 15 (mod 31). Hence, we conclude that gcd(d 5 -1, 2 m -1) = 1.

We first recall the following classic lemmas, which play an important role in determining the Lee weight distribution of T d (m). Lemma 4.3 [18, (6) 

p.412] If y = (y 1 , y 2 , • • • , y n ) ∈ F n 2 , then 2w H (y) = n - n i=1 (-1) yi .
(i) If a = 0, b = 0, then w L (Ev(a, b)) = 0 and A 0 (i) = 1. (ii) If b = 0, a = 0, 1) a ∈ M * , then w L (Ev(a, b)) = 2 2m and A 2 2m (ii, 1) = 2 m -1. 2) a ∈ R * m , then w L (Ev(a, b)) = (2 m -1)2 m and A 2 m (2 m -1) (ii, 2) = 2 m (2 m - 1). (iii) If a = 0, b = 0, 1) b ∈ M * , then w L (Ev(a, b)) = 2 2m and A 2 2m (iii, 1) = 2 m -1. 2) b ∈ R * m , then w L (Ev(a, b)) = (2 m -1)2 m and A 2 m (2 m -1) (iii, 2) = 2 m (2 m - 1). (iv) If a = 0, b = 0, 1) a ∈ M * , b ∈ M * , then w L (Ev(a, b)) = 2 2m , 2 2m -2 r+m or 2 2m + 2 r+m and A 2 2m (iv, 1) = (2 m -1)M0, A 2 2m +2 r+m (iv, 1) = (2 m -1)M-and A 2 2m -2 r+m (iv, 1) = (2 m -1)M + . 2) a ∈ M * , b ∈ R * m , then w L (Ev(a, b)) = (2 m -1)2 m and A 2 m (2 m -1) (iv, 2) = (2 m -1) 2 2 m . 3) a ∈ R * m , b ∈ M * , then w L (Ev(a, b)) = (2 m -1)2 m and A 2 m (2 m -1) (iv, 3) = (2 m -1) 2 2 m . 4) a ∈ R * m , b ∈ R * m , then w L (Ev(a, b)) = 2 m (2 m -1), 2 m (2 m -2 s ) or 2 2m and A 2 m (2 m -1) (iv, 4) = 2 2m (2 m -1) 2 m -1 2 s -1 (2 s -2), A 2 2m (iv, 4) = (2 m -1) 2 2 2m-s and A 2 m (2 m -2 s ) (iv, 4) = (2 m -1) 2 2 2m-s 2 s -1 . Proof. (i) If a = 0, b = 0 then Ev(a, b) = (0, 0, • • • , 0 |R * m | ). So w L (Ev(a, b)) = 0.
Hence, this case contributes with A 0 = -2 m+1 .

(i) = 1. (ii) Let b = 0, a = 0. 1) For a ∈ M * , let a = a u, a 1 ∈ F * 2 m , x = x 0 + x 1 u ∈ R * m , x 0 ∈ F * 2 m .
Then w L (Ev(a, b)) = |R * m | + 2 m = 2 2m . Therefore this case contributes with A 2 2m (ii, 1) = 2 m -1 = |M * |. 2) For a ∈ R * m , let a = a 0 + a 1 u ∈ R * m , x = x 0 + x 1 u ∈ R * m . So we have ax = (a 0 +a 1 u)(x 0 +x 1 u) = a 0 x 0 +(a 0 x 1 +a 1 x 0 )u, T r(ax) = tr(a 0 x 0 )+tr(a 0 x 1 +a 1 x 0 )u. Taking Gray map yields Φ(Ev(a, b)) = (tr(a 0 x 1 + a 1 x 0 ), tr(a 0 x 0 ) + tr(a 0 x 1 + a 1 x 0 )) x0,x1 .
From Lemma 4.3 and Lemma 4.4, and the fact that a 0 = 0, we have

2|R * m | -2w L (Ev(a, b)) = x0∈F * 2 m x1∈F 2 m (-1) tr(a0x1+a1x0) + x0∈F * 2 m x1∈F 2 m
(-1) tr(a0x0)+tr(a0x1+a1x0) = 0. 

Then w L (Ev(a, b)) = |R * m | = (2 m -1)2 m . The contribution from this case is therefore A 2 m (2 m -1) (ii, 2) = 2 m (2 m -1) = |R * m |. ( 
2|R * m | -2w L (Ev(a, b)) = 2 x0∈F * 2 m x1∈F 2 m (-1) tr(b1x d 0 ) = -2 m+1 . Then w L (Ev(a, b)) = |R * m | + 2 m = 2 2m . Therefore this case contributes with A 2 2m (iii, 1) = 2 m -1 = |M * |. 2) For b ∈ R * m , let b = b 0 + b 1 u ∈ R * m , b 0 = 0. Let x = x 0 + x 1 u ∈ R * m . So we have bx d = (b 0 + b 1 u)(x d 0 + dx d-1 0 x 1 u) = b 0 x d 0 + (b 1 x d 0 + b 0 dx d-1 0 x 1 )u. Hence, since d is odd then T r(bx d ) = tr(b 0 x d 0 ) + tr(b 1 x d 0 + b 0 x d-1 0 x 1 )u. Taking Gray map yields Φ(Ev(a, b)) = (tr(b 1 x d 0 + b 0 x d-1 0 x 1 ), tr(b 0 x d 0 + b 1 x d 0 + b 0 x d-1 0 x 1 )) x0,x1 .
From Lemma 4.3 and Lemma 4.4, we have since b 0 = 0, that

2|R * m | -2w L (Ev(a, b)) = x0∈F * 2 m x1∈F 2 m (-1) tr(b1x d 0 +b0x d-1 0 x1 ) + x0∈F * 2 m x1∈F 2 m (-1) tr(b0x d 0 )+tr(b1x d 0 +b0x d-1 0 x1) = 0. Then w L (Ev(a, b)) = |R * m | = (2 m -1)2 m . The contribution from this case is therefore A 2 m (2 m -1) (iii, 2) = 2 m (2 m -1) = |R * m |. (iv) In this case a = 0, b = 0. 1) For a ∈ M * , b ∈ M * , let a = a 1 u, b = b 1 u, a 1 , b 1 ∈ F * 2 m , x = x 0 + x 1 u ∈ R * m , x 0 = 0. Therefore we have ax + bx d = a 1 u(x 0 + x 1 u) + b 1 u(x 0 + x 1 u) d = (a 1 x 0 + b 1 x d 0 )u.
Hence,

T r(ax

+ bx d ) = tr(a 1 x 0 + b 1 x d 0 )u.
Taking Gray map yields

Φ(Ev(a, b)) = (tr(a 1 x 0 + b 1 x d 0 ), tr(a 1 x 0 + b 1 x d 0 )) x0,x1 .
Combined with Lemma 4.3 and Lemma 4.4, we have

2|R * m | -2w L (Ev(a, b)) = 2 x0∈F * 2 m x1∈F 2 m (-1) tr(a1x0+b1x d 0 ) = 2 m+1 x0∈F * 2 m (-1) tr(a1x0+b1x d 0 ) . This means that w L (Ev(a, b)) = |R * m | -2 m C d (a 1 , b 1 ) = 2 m (2 m -1 -C d (a 1 , b 1 )). Therefore Lemma 4.1 implies that w L (Ev(a, b)) = 2 2m , 2 2m ± 2 r+m . Since C d (a 1 , b 1 ) = C d (c, 1) where c d = a d 1 /b 1 it follows that c runs through all elements in F * 2 m exactly 2 m -1 times when a 1 , b 1 run through F * 2 m .
Hence, it follows from the cross correlation distribution in Lemma 4.1 that the contribution to the weight distribution in this case is:

A 2 2m (iv, 1) = (2 m -1)M 0 , A 2 2m +2 r+m (iv, 1) = (2 m -1)M -and A 2 2m -2 r+m (iv, 1) = (2 m -1)M + . 2) For a ∈ M * , b ∈ R * m , let a = a 1 u, a 1 ∈ F * 2 m , b = b 0 +b 1 u ∈ R * m , x = x 0 +x 1 u ∈ R *
m . Thus we have b 0 , x 0 ∈ F * 2 m and since d is odd we obtain

ax + bx d = a 1 u(x 0 + x 1 u) + (b 0 + b 1 u)(x 0 + x 1 u) d = b 0 x d 0 + (a 1 x 0 + b 1 x d 0 + b 0 x d-1 0 x 1 )u, T r(ax + bx d ) = tr(b 0 x d 0 ) + tr(a 1 x 0 + b 1 x d 0 + b 0 x d-1 0 x 1 )u.
Taking Gray map yields

Φ(Ev(a, b)) = (tr(a 1 x 0 +b 1 x d 0 +b 0 x d-1 0 x 1 ), tr(b 0 x d 0 )+tr(a 1 x 0 +b 1 x d 0 +b 0 x d-1 0 x 1 )) x0,x1 .
In the light of Lemma 4.3 and Lemma 4.4, it follows from b 0 = 0 and x 0 = 0, that

2|R * m | -2w L (Ev(a, b)) = x0∈F * 2 m x1∈F 2 m (-1) tr(a1x0+b1x d 0 +b0x d-1 0 x1) + x0∈F * 2 m x1∈F 2 m (-1) tr(b0x d 0 )+tr(a1x0+b1x d 0 +b0x d-1 0 x1) = 0. Thus, w L (Ev(a, b)) = |R * m | = 2 m (2 m -1). Hence, this case contributes with A 2 m (2 m -1) (iv, 2) = (2 m -1) 2 2 m = |M * ||R * m |. 3) Now we deal with the case a ∈ R * m and b ∈ M * with a = a 0 + a 1 u ∈ R * m , b = b 1 u, a 0 , b 1 ∈ F * 2 m , x = x 0 + x 1 u ∈ R * m , x 0 ∈ F * 2 m . Deduce from computing ax + bx d = (a 0 + a 1 u)(x 0 + x 1 u) + b 1 u(x 0 + x 1 u) d = a 0 x 0 + (a 1 x 0 + a 0 x 1 + b 1 x d 0 )u that T r(ax + bx d ) = tr(a 0 x 0 ) + tr(a 1 x 0 + a 0 x 1 + b 1 x d 0 )u. Taking Gray map yields Φ(Ev(a, b)) = (tr(a 1 x 0 + a 0 x 1 + b 1 x d 0 ), tr(a 0 x 0 ) + tr(a 1 x 0 + a 0 x 1 + b 1 x d 0 )) x0,x1 .
According to Lemma 4.3 and Lemma 4.4, we have since a 0 = 0,

2|R * m | -2w L (Ev(a, b)) = x0∈F * 2 m x1∈F 2 m (-1) tr(a1x0+a0x1+b1x d 0 )) + x0∈F * 2 m x1∈F 2 m (-1) tr(a0x0)+tr(a1x0+a0x1+b1x d 0 )) = 0. Then w L (Ev(a, b)) = |R * m | = 2 m (2 m -1). Hence, this case contributes with A 2 m (2 m -1) (iv, 3) = (2 m -1) 2 2 m = |M * ||R * m |. 4) For a ∈ R * m , b ∈ R * m , let a = a 0 +a 1 u ∈ R * m , b = b 0 +b 1 u ∈ R * m , x = x 0 +x 1 u ∈ R * m , a 0 , b 0 , x 0 ∈ F * 2 m . So we have since d is odd that ax + bx d = (a 0 + a 1 u)(x 0 + x 1 u) + (b 0 + b 1 u)(x 0 + x 1 u) d = (a 0 x 0 + b 0 x d 0 ) + (a 0 x 1 + a 1 x 0 + b 1 x d 0 + b 0 dx d-1 0 x 1 )u, T r(ax + bx d ) = tr(a 0 x 0 + b 0 x d 0 ) + tr(a 0 x 1 + a 1 x 0 + b 1 x d 0 + b 0 x d-1 0 x 1 )u.
Taking Gray map yields Φ(Ev(a, b)) = (tr(a 0 x 1 +a

1 x 0 +b 1 x d 0 +b 0 x d-1 0 x 1 ), tr(a 0 x 0 + b 0 x d 0 ) + tr(a 0 x 1 + a 1 x 0 + b 1 x d 0 + b 0 x d-1 0 x 1 )) x0,x1
. Using Lemma 4.3 and Lemma 4.4, we obtain

2|R * m | -2w L (Ev(a, b)) = x 0 ∈F * 2 m x 1 ∈F 2 m (-1) tr(a 0 x 1 +a 1 x 0 +b 1 x d 0 +b 0 x d-1 0 x 1 ) + x 0 ∈F * 2 m x 1 ∈F 2 m ( -1) 
tr(a 0 x 0 +b 0 x d 0 )+tr(a 0 x 1 +a 1 x 0 +b 1 x d 0 +b 0 x d-1 0

x 1 ) .

Observe that

2|R * m | -2w L (Ev(a, b)) = x 0 ∈F * 2 m (-1) tr(a 1 x 0 +b 1 x d 0 ) x 1 ∈F 2 m ( -1) 
tr((a 0 +b 0 x d-1 0

)x 1 ) + x 0 ∈F * 2 m ( -1) 
tr((a 1 +a 0 )x 0 +(b 1 +b 0 )x d 0 )

x 1 ∈F 2 m (-1) tr((a 0 +b 0 x d-1 0 )x 1 ) = 2 m x 0 ∈U (-1) tr(a 1 x 0 +b 1 x d 0 ) (1 + (-1) tr(a 0 x 0 +b 0 x d 0 ) ) = 2 m+1 x 0 ∈U (-1) tr(a 1 x 0 +b 1 x d 0 )
where

U = {x ∈ F * 2 m | a 0 + b 0 x d-1 = 0}. Since gcd(d -1, 2 m -1) = 2 s -1 for any d ∈ D * ,
it follows that x d-1 and x 2 s -1 run through the same nonzero elements in F * 2 m when x runs through F * 2 m and therefore

U = {x ∈ F * 2 m | x 2 s -1 = a 0 b 0 }.
Note that U depends on a 0 and b 0 . First, consider the case U = ∅ that occurs if and only if a0 b0 = γ 2 s -1 for any γ ∈ F * 2 m . In this case

w L (Ev(a, b)) = |R * m | = 2 m (2 m -1).
The number of choices of a 1 , b 1 ∈ F 2 m and a 0 , b 0 ∈ F * 2 m with the condition a0 b0 = γ 2 s -1 for any γ ∈ F * 2 m is 2 2m (2 m -1) 2 m -1 2 s -1 (2 s -2). Hence, this contributes

A 2 m (2 m -1) (iv, 4) = 2 2m (2 m -1) 2 m -1 2 s -1 (2 s -2).
Note that this case never occurs for s = 1.

Next consider the case U = ∅, then a0 b0 = γ 2 s -1 for some γ ∈ F * 2 m , and we have

U = {x ∈ F * 2 m | x = γδ, where δ ∈ F * 2 s }, since x 2 s -1 = γ 2 s -1 δ 2 s -1 = γ 2 s -1 = a0 b0 for any δ ∈ F * 2 m . Then, let c = (a 1 + b 1 a0 b0
)γ, we observe that when a 1 , b 1 run through F 2 m and a 0 , b 0 run through F * 2 m with the condition a0 b0 = γ 2 s -1 for some γ ∈ F * 2 m , then each value of c ∈ F 2 m occurs equally often with multiplicity

2 m (2 m -1) 2 m -1 2 s -1 .
The continuation of the calculations above gives,

w L (Ev(a, b)) = |R * m | -2 m x0∈U (-1) tr(a1x0+b1x d 0 ) = |R * m | -2 m x0∈U (-1) tr((a1+b1x d-1 0 )x0) = |R * m | -2 m x0∈U (-1) tr((a1+b1 a 0 b 0 )γδ) = |R * m | -2 m δ∈F * 2 s (-1) trm(cδ) = 2 m (2 m -1 - δ∈F * 2 s
(-1) trs(δtr m s (c)) ).

Note that, well-known properties of the trace function give

δ∈F * 2 s (-1) trs(δtr m s (c) = -1 if T r m s (c) = 0 that occurs 2 m -2 m-s times, 2 s -1 if T r m s (c) = 0 that occurs 2 m-s times.
These two values of the trace function lead to Lee weights 2 2m and 2 m (2 m -2 s ) and the final contributions to the weight distribution in this case becomes:

A 2 2m (iv, 4) = (2 m -1) 2 2 2m-s , A 2 m (2 m -2 s ) (iv, 4) = (2 m -1) 2 2 2m-s 2 s -1 .
The discussion above shows that the code has the following five nonzero weights:

{2 2m -2 m+r , 2 m (2 m -2 s ), 2 m (2 m -1), 2 2m , 2 2m + 2 m+r }.
Furthermore, the number of codewords of each Lee weight from each case above has been determined.

The complete Lee weight distribution for T d (m) follows easily in the following corollary by adding up the information in the previous theorem . 

A 0 = 1, A 2 2m -2 m+r = (2 m -1)M + , A 2 m (2 m -2 s ) = (2 m -1) 2 2 2m-s 2 s -1 , A 2 m (2 m -1) = 2 2m (2 m -1)(2 + (2 m -1) 2 s -2 2 s -1 ), A 2 2m = (2 m -1)(M 0 + 2 + (2 m -1)2 2m-s ), A 2 2m +2 m+r = (2 m -1)M -. In particular the code Φ(T d (m)) has parameters [2 m+1 (2 m -1), 4m, 2 m (2 m -2 r )].
Proof. This result is a simple consequence of the previous theorem that study several cases and determine, in each case, the number of codewords in T d (m) of Lee weight i in case x, denoted by A i (x). Adding the number of codewords of weight i in each case completes the proof.

A concrete example is as follows. Proof. By construction the codewords of weight 2 in HT d (m) ⊥ , similar to those described in Proposition 5.2 cannot occur. It is easy to exclude the shapes (u, 0 n-1 ) or (1, 1, 0 n-2 ). Hence the dual distance of HT d (m) is ≥ 3. The relation between the weights of HT d (m) and those of T d (m) is immediate.

Application to secret sharing schemes

In this section, we first introduce the support structure. Let q be a prime power, and n an integer. Let F q denote the finite field of order q. The support s(x) of a vector x in F n q is defined as the set of indices where it is nonzero. We say that a vector x covers a vector y if s(x) contains s(y). A minimal codeword of a linear code C is a nonzero codeword that does not cover any other nonzero codeword. In general determining the minimal codewords of a given linear code is a difficult task. However, there is a numerical condition, derived in [START_REF] Ashikmin | Minimal vectors in linear codes[END_REF], bearing on the weights of the code, that is easy to check. Lemma 6.1 (Ashikmin-Barg) Denote by w 0 and w ∞ the minimum and maximum nonzero weights, respectively. If

w 0 w ∞ > q -1 q ,
then every nonzero codeword of C is minimal. We can infer from this the support structure for the codes of this paper. Proposition 6.2 All the nonzero codewords of Φ(T d (m)), and of Φ(HT d (m)), for m > 2 and m is odd, are minimal.

Proof. Based on the introduction of Lemma 6.1, then w 0 = ω 1 , w ∞ = ω 5 and q = 2. Next we need to prove the inequality w1 w5 > 1 2 is true for m > 2. Thus, we obtain

2ω 1 -ω 5 = 2(2 2m -2 3m+1 2 
) -(2 2m + 2

3m+1 2 ) = 2 2m (1 -3 • 2 1-m ) > 0.
Hence the statement on Φ(T d (m)), is proved. The analogous statement on Φ(HT d (m)), follows similarly by Proposition 5.3.

A secret sharing scheme (SSS) is a protocol involving a dealer and S users. Massey's scheme is a construction of such a scheme where a code C of length n over F p gives rise to a SSS with S = n -1. See [START_REF] Yuan | Secret sharing schemes from three classes of linear codes[END_REF] for a detailed explanation of the mechanism of that scheme. Now, the coalition structure is related to the support structure of C. In the special case when all nonzero codewords are minimal, it was shown in [START_REF] Ding | Covering and secret sharing with linear codes[END_REF] that there is the following alternative, depending on the dual distance d :

• If d ≥ 3, then the SSS is "democratic": every user belongs to the same number of coalitions. • If d = 2, then there are users who belong to every coalition: the "dictators".

Depending on the application, one or the other situation might be more suitable. By the results of the preceding section we see that Φ(T d (m)) leads to a dictatorial scheme, and Φ(HT d (m)) to a democratic one.

Conclusion and open problems

In this paper, we have studied a family of trace codes over F 2 + uF 2 , based on six of the seven known families of decimations leading to three-valued cross correlation of m-sequences. These codes are provably abelian, but not visibly cyclic. Using a character sum approach, we have been able to determine their Lee weight distribution of T d (m), and we have obtained a family of abelian binary five-weight codes by the Gray map. The same study for the seventh decimation is challenging, and is likely to lead to binary codes with many more than five weights.

Proposition 3 . 1

 31 The group of units R * m acts regularly on the coordinates of T d (m). Proof. For any v , u ∈ R * m the change of variables x → (u /v )x permutes the coordinates of T d (m), and maps v to u . Such a permutation is unique, given v , u . The code T d (m) is thus an abelian code with respect to the group R * m . In other words, it is an ideal of the group ring R[R * m ]. As observed in the previous section, R * m is not a cyclic group, and thus T d (m) may not be cyclic. The next result shows that its binary image is also abelian. Proposition 3.2 A degree two extension of R * m of size 2|R * m | acts regularly on the coordinates of Φ(T d (m)).

  where the evaluation map Ev(a, b) is given by Ev(a, b) = (T r(ax + bx d )) x∈R * m . The Lee weight distribution has so far not been determined for T d (m) for any d. The determination of the Lee weight distribution of T d (m) over R also determines the Hamming weight distribution of the binary code Φ(T d (m)) of length 2|R * m |.

d 5 , d 6 , d 7 }

 67 and note that the following lemma shows that d ∈ D are all the known values for C d (a, b) to take on three different values when a, b ∈ F 2 m . In particular, it follows that the corresponding binary codes B d (m) have only three nonzero Hamming weights for d ∈ D. It has been conjectured by Dobbertin [8] that the set D of seven families of decimations gives all three-valued C d (a, b).

Lemma 4 . 1

 41 [START_REF] Ashikmin | Minimal vectors in linear codes[END_REF][START_REF] Canteaut | Binary m-sequences with three valued crosscorrelation: A proof of Welch's conjecture[END_REF][START_REF] Dobbertin | Almost perfect nonlinear power functions on GF (2 n ): The welch case[END_REF][START_REF] Cusick | Some new three-valued crosscorrelation functions for binary m-sequences[END_REF][START_REF] Gold | Maximal recursive sequences with 3-valued cross-correlation functions[END_REF][START_REF] Helleseth | Some results about the cross-correlation between two maximal linear sequences[END_REF][START_REF] Helleseth | Sequences with low correlation[END_REF][START_REF] Kasami | The weight enumerators for several classes of subcodes of the second order binary Reed-Muller codes[END_REF][START_REF] Niho | Multivalued Cross-Correlation Functions between Two Maximal Linear Recursive Sequences[END_REF] Let D = {d 1 , d 2 , d 3 , d 4 , d 5 , d 6 , d 7 }, then the seven values d ∈ D have the property that gcd(d, 2 m -1) = 1. The distribution of

  1 and d 2 , e = 1 for the cases d 3 , d 4 and d 5 , and finally e = 2 for the cases d 6 and d 7 .

  4 -1). The extended Euclidean algorithm leads to 31 = (10x + 21)(2x 4 -1) -(20x 3 + 22x 2 + 18x + 26)(x 2 + x -2), and therefore gcd(d 4 -1, 2 m -1) divides 31 . Let t = (m -1)/4. If 31 divides 2 m -1 = 2 4t+1 -1, we have t ≡ 1 (mod 5). In this case, d 4 -1 = 2 2t + 2 t -2 ≡ 4 ≡ 0 (mod 31), and thus gcd(d 4 -1, 2 m -1) = 1. Consider the case d 5 = 2

Lemma 4 . 4 [ 18 ,

 4418 Lemma 9 p.143] If z ∈ F * 2 m , then x∈F 2 m (-1) tr(zx) = 0. We next will discuss the Lee weight distribution of T d (m) for d ∈ D * . Note that the Lee weight distribution of two codes T d (m) can be different even though the corresponding two codes B d (m) have the same Hamming weight distribution. This implies that the determination of the Lee weight distribution of T d (m) is not solely a direct function of the Hamming weight distribution of B d (m).

Theorem 4 . 5

 45 Let a, b ∈ R m , and let d ∈ D * = {d 1 , d 2 , d 3 , d 4 , d 5 , d 6 }. Let (e, r, M + , M 0 , M -) be as given in Lemma 4.1. Furthermore, let s be defined by gcd(d -1, 2 m -1) = 2 s -1 which by Lemma 4.2 holds for all d in D * for some s depending on d. Let A i (x) denote the number of codewords of Lee weight i in T d (m) coming from case x.

2 x0∈F * 2 m x1∈F 2 m(- 1 )

 221 So we have ax = a 1 x 0 u, T r(ax) = tr(a 1 x 0 )u. Taking Gray map yields Φ(Ev(a, b)) = (tr(a 1 x 0 ), tr(a 1 x 0 )) x0,x1 . Using Lemma 4.3 and Lemma 4.4 we have 2|R * m | -2w L (Ev(a, b)) = tr(a1x0)

1 )

 1 iii) In the case a = 0 and b = 0. For b ∈ M * , let b = b 1 u, b 1 ∈ F * 2 m , x = x 0 + x 1 u ∈ R * m , x 0 = 0 . So we have T (bx d ) = tr(b 1 x d 0 )u. Taking Gray map yields Φ(Ev(a, b)) = (tr(b 1 x d 0 ), tr(b 1 x d 0 )) x0,x1 . From Lemma 4.3 and Lemma 4.4, we have since b 1 = 0, and gcd(d, 2 m -1) = 1 that

Corollary 4 . 6

 46 Let (e, r, M + , M 0 , M -) be as given in Lemma 4.1 and furthermore let s be defined by gcd(d -1, 2 m -1) = 2 s -1 which by Lemma 4.2 holds for all d in D * for some s depending on d. Let A i denote the number of codewords of Lee weight i in T d (m). The Lee weight distribution of the code T d (m) over R for d ∈ D * = {d 1 , d 2 , d 3 , d 4 , d 5 , d 6 } is given by:

Example 4 . 7

 47 Let m = 5, e = 1, r = 3, s = 1. Then we obtain a binary code of parameters[1984,[START_REF] Shi | Optimal binary codes from trace codes over a non-chain ring[END_REF] 768]. The weights are {768, 960, 992, 1024, 1280}.5. Dual distanceProposition 5.2 The dual distance of T d (m) is 2. Proof. We exhibit a codeword of weight 2 in T d (m) ⊥ supported by x, y ∈ L. Assume y = (1 + u)x. Because d is odd, we have y d = (1 + u)x d . Hence the relation (x, x d ) t + (1 + u)(y, y d ) t = 0.Thus there is a codeword of shape (1, 1+u, 0 n-2 ) in T d (m) ⊥ . Since w L ((1, 1+u)) = 2, the result follows.We construct a projective code related to T d (m), by removing half the columns of its generator matrix. Write L = L ∪(1+u)L (this writing is non unique). Define a trace code HT d (m), of defining set L by the relationHT d (m) = {(T r(ax + bx d ) x∈L | a, b ∈ R m }.Proposition 5.3 The dual distance of HT d (m) is ≥ 3. Each weight in HT d (m) is half the weight of some weight in T d (m) with the same frequency.
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