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Abstract 11 

1. Mixed-species forests have often been shown to enhance above-ground ecosystem properties 12 

and processes. Despite the significance of fine roots for tree and ecosystem functioning, the 13 

role of tree species diversity for below-ground processes driven by fine roots remains largely 14 

unknown. Previously, an underyielding of fine-root biomass (FRB) in tree mixtures across 15 

four major European forest types has been reported. To explain this phenomenon, we tested 16 

here the effect of tree species mixing on fine-root traits related to soil exploitation efficiency, 17 

including biotic feedbacks from ectomycorrhizal fungi (EcM), and assessed the role of root 18 

trait dissimilarity.  19 

2. We analysed morphological and chemical traits as well as ectomycorrhizal colonisation 20 

intensity of absorptive fine roots (i.e. first three most distal orders) in soil samples from 315 21 

mixed and mono-specific tree neighbourhoods in mainly mature, semi-natural forest stands 22 

across Europe. Additionally, we quantified mycorrhizal abundance and diversity in soil 23 

samples from the same stands.  24 

3. At the community level, fine roots in tree mixtures were characterised by higher specific root 25 

lengths and root nitrogen concentrations, lower diameters, and root tissue densities indicating 26 

a faster resource acquisition strategy compared to mono-specific stands. The higher root EcM 27 

colonisation intensity and soil EcM diversity in mixtures compared to mono-specific stands 28 
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may further provide evidence for positive biotic feedbacks. Moreover, the diversity of fine-29 

root traits influenced FRB, as mixtures characterised by a higher trait dissimilarity were 30 

linked to a lower reduction in FRB. At the level of phylogenetic groups, thin-rooted 31 

angiosperm species showed stronger responses to mixing than thick-rooted gymnosperms, 32 

especially in terms of root morphology and EcM colonisation, indicating different strategies 33 

of response to tree mixing.  34 

4. Our results indicate that a lower FRB can reflect a shift in soil resource acquisition strategies, 35 

rather than a lower performance of trees in mixtures. They show that several non-exclusive 36 

mechanisms can simultaneously explain negative net effects of mixing on FRB. This study 37 

sheds new light on the importance of using integrative approaches including both above- and 38 

below-ground biomass and traits to study diversity effects on plant productivity.  39 

Key words: absorptive fine roots, biodiversity-ecosystem functioning, fungal diversity, 40 

functional dispersion, SoilForEUROPE, species identity effects, trait dissimilarity, tree species 41 

richness  42 

43 
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Introduction 44 

Mixed-species forests can positively affect above-ground ecosystem properties and processes 45 

(reviewed by Scherer-Lorenzen, 2014). For example, tree species mixtures can be more 46 

productive (Ammer, 2019) and more resistant and resilient towards environmental changes 47 

compared to their mono-specific counterparts (Jactel et al., 2017). Therefore, and especially in 48 

view of global change, many current forest management strategies focus on the promotion of 49 

mixed-species forests (Bauhus et al., 2017).  50 

While above-ground overyielding of biomass in mixtures has frequently been observed (e.g. 51 

Zhang et al., 2012), evidence for below-ground mixing effects on fine-root biomass (FRB) is 52 

inconclusive (Finér et al., 2017; Ma & Chen, 2016). Yet, the commonly observed above-ground 53 

overyielding suggests that below-ground resource capture is likely sustained or even enhanced in 54 

mixtures (e.g. Archambault et al., 2019). Forrester et al. (2006) observed that mixing Eucalyptus 55 

globulus with Acacia mearnsii did not change the total below-ground carbon (C) allocation 56 

compared to monocultures, but strongly increased above-ground productivity, suggesting that in 57 

mixtures plant C was invested more efficiently below-ground to provide trees with soil resources. 58 

Similarly,  in a young tree diversity experiment, simultaneous underyielding of FRB and above-59 

ground overyielding in mixtures suggested a more efficient below-ground resource acquisition 60 

(Archambault et al., 2019). While FRB may be indicative of the potential to capture soil 61 

resources, it cannot be used as indicator of below-ground productivity or the carbon allocation to 62 

below-ground organs and processes.  63 

Three types of mechanisms, i.e. resource partitioning, abiotic facilitation and positive biotic 64 

feedbacks may enhance soil resource uptake by fine roots in mixtures (Barry et al., 2019). A 65 

well-studied example of plant association that involves all three mechanisms relates to the 66 

symbiotic nitrogen (N) fixation in trees, which may result in a) resource partitioning by leaving 67 

more soil N available for non-fixing species (Forrester et al., 2006), b) abiotic facilitation of non-68 

N-fixing plants owing to increase of soil N availability through N-fixation, and c) biotic 69 

feedbacks through transfer via mycorrhizal networks (Munroe & Isaac, 2014). As this example 70 

shows, these underlying mechanisms often occur simultaneously, contribute to the same net-71 

effect, and are thereby difficult to separate from each other (Forrester & Bauhus, 2016).  72 A
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A greater overall resource capture in mixtures may be achieved by spatial, temporal and/or 73 

chemical resource partitioning or a combination thereof (Barry et al., 2019). A higher trait 74 

dissimilarity can conceptually be linked to a greater niche differentiation (De Bello et al., 2010). 75 

Hence the quantification of trait diversity using trait-based diversity indices (Laliberté & 76 

Legendre, 2010) may be useful for assessing underlying mechanisms of diversity effects. Positive 77 

relationships of such trait-based indices with standing biomass or productivity of fine roots were 78 

reported (Mahaut et al., 2020; Sun et al., 2017), while other studies did not observe such effects 79 

(Bakker et al., 2019; Zeng et al., 2020). 80 

Abiotic facilitation can increase soil resource availability when plant-plant interactions increase 81 

the plant-available resource pool (Barry et al., 2019). Examples include N-fixation, positive litter 82 

interaction effects accelerating nutrient cycling (Hättenschwiler, 2005), or hydraulic 83 

redistribution (Prieto, Armas, & Pugnaire, 2012). 84 

Positive biotic feedbacks can increase fine-root resource acquisition in mixtures (Barry et al., 85 

2019). This may be the case when interactions with symbiotic fungi in mixtures enhance soil 86 

nutrient exploitation of plants (Boddy, 1993; Read & Perez-Moreno, 2003). An example for such 87 

a biotic feedback is the nutrient and water transfer between tree species in mixtures through a 88 

common mycorrhizal network (Simard et al., 2015). Not only the abundance (e.g. fungal hyphae 89 

mass), but also the diversity of mycorrhizae may enhance nutrient uptake of plants through 90 

complementary fungal nutrient exploitation strategies (Agerer, 2001; Wagg et al., 2011). Yet, 91 

evidence on the response of root-EcM interactions to changing tree diversity levels is still scarce 92 

and inconsistent (Salahuddin et al., 2018; Weißbecker et al., 2018).  93 

Tree species interactions may also enhance below-ground resource-uptake efficiency, i.e. 94 

resource capture per C invested. In this case, species’ interactions above-ground may cause a 95 

greater below-ground resource-uptake efficiency as a result of shifts in C allocation pattern from 96 

below- to above-ground biomass (Poorter et al., 2012). A reduction in herbivory and pathogen 97 

pressure in mixtures could also result in less C requirement for defence structures such as tougher 98 

tissue (de Kroon et al., 2012; Jactel & Brockerhoff, 2007).  99 

These examples show that instead of only measuring FRB, the quantification of other fine-root 100 

traits related to soil resource exploitation efficiency (i.e. C invested in roots per unit of resource 101 

acquired) and capacity (i.e. potential resource uptake by roots, independent of C cost) could 102 
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improve our understanding of overall diversity-productivity relationships. In addition, 103 

mycorrhizal symbionts, which often crucially support fine roots in soil resource capture 104 

(Brundrett, 2009), are also rarely considered (Laliberté, 2017). 105 

Overall, there is growing evidence for a global trade-off in root strategies along a resource-106 

acquisition and resource-conservation gradient, hereafter referred to as acquisition-conservation 107 

gradient, ranging from roots with high root tissue density (RTD) that show a slow resource return 108 

on investment but are long-lived and well-protected, to fast roots with a high N content and high 109 

metabolic rate for fast resource return on investment but a short life span (Bergmann et al., 2020). 110 

A high root N concentration is generally indicative of high root metabolic activity (Reich et al., 111 

2008) and may positively relate to specific root uptake activities (e.g. Legay et al., 2020). Also, a 112 

low RTD, reflecting low construction cost (Chen et al., 2018), may indicate a higher efficiency in 113 

conditions where the risk of root loss from herbivory and/or pathogens is not high. The strategy 114 

of plants for efficient resource uptake and conservation is further defined by the fungal 115 

collaboration gradient – a trade-off between roots that efficiently acquire soil resources by 116 

themselves (high specific root length, SRL - do-it-yourself strategy), and those with typically 117 

higher fine-root diameter that rely on mycorrhizal colonisation (outsourcing strategy) (Bergmann 118 

et al., 2020). Indeed, a higher SRL of fine roots generally translates into a larger volume of soil 119 

under the influence of roots and therefore a higher soil resource uptake per biomass invested 120 

(Freschet et al., 2020). Nonetheless, mycorrhizal hyphae may be as efficient in resource 121 

acquisition than fine roots (Chen et al., 2018), or even more efficient under conditions of low 122 

resource availability (Lambers et al.,  2008). Therefore, both a higher mycorrhizal colonisation 123 

intensity and a high SRL may be linked to a high resource-acquisition efficiency. Overall, 124 

evidence for such changes in resource uptake strategies of fine-root systems in response to tree 125 

species mixing is strongly limited. To our knowledge, only morphological root trait adaptations 126 

including an increased SRL in mixtures have been observed (e.g. Bolte & Villanueva, 2006; Bu 127 

et al., 2017; Salahuddin et al., 2018). 128 

Phylogenetics may determine variations in fine-root traits and thereby resource acquisition 129 

strategies more than environmental conditions (Comas & Eissenstat, 2009; Valverde-Barrantes et 130 

al., 2017). Hence, it has been suggested to group species based on their root diameter and 131 

mycorrhizal type, because these two traits may strongly reflect the species’ resource acquisition 132 

strategies (Chen et al., 2018). For example, we know that gymnosperm and angiosperm species 133 
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differ considerably in their fine-root traits and represent contrasting soil exploitation strategies 134 

(Bauhus & Messier, 1999; Guo et al., 2008). Owing to their evolutionary background, thin-rooted 135 

angiosperms are thought to follow a more acquisitive strategy characterised by faster root 136 

proliferation in contrast to thick-rooted gymnosperms that generally harbour a more conservative 137 

acquisition strategy by forming roots that are longer-lived and rely more on mycorrhizal fungi for 138 

soil exploitation and nutrient acquisition (Liu et al., 2015; Ma et al., 2018). Evidence has also 139 

been gathered for contrasting fine-root trait plasticity of thick vs. thin-rooted species in response 140 

to changes in environmental conditions, with thin-, but not thick-rooted species enhancing root 141 

proliferation and thereby showing a higher plasticity (Bauhus & Messier, 1999; Chen et al., 2016, 142 

2018; Wang et al., 2019). This suggests that gymnosperm and angiosperm tree fine roots may 143 

also respond differently to tree species mixing. Only a few studies have dealt with this question, 144 

as species-specific fine-root data in mixtures are difficult to obtain (Bolte & Villanueva, 2006; 145 

Salahuddin et al., 2018). More generally, it has also been suggested that plastic responses in 146 

mixtures may be more pronounced for absorptive roots (the three most distal root orders) than for 147 

higher-order roots (Salahuddin et al., 2018) suggesting that separating fine roots by root orders or 148 

functions is an important approach to identify species interactions (McCormack et al., 2015).  149 

Previously, underyielding of standing FRB was observed in four European forest types 150 

(Wambsganss, Beyer, Freschet, Scherer-Lorenzen, & Bauhus, 2021) despite evidence for 151 

predominantly positive above-ground diversity-productivity effects in these ecosystems (Jucker 152 

et al., 2016; Ratcliffe et al., 2017). An increased occupation of soil volume by fine roots in the 153 

most nutrient-rich soil depth in mixtures, as indicated by an increased root length density (RLD), 154 

suggested an enhanced below-ground resource-uptake efficiency and complementary use of 155 

space and resources in these mixed forest stands (Wambsganss et al., 2021). Here, our objective 156 

was to further investigate these below-ground adaptations in mixtures by analysing fine-root 157 

traits related to soil exploitation efficiency. We further aimed at assessing the effect of tree 158 

species mixing on the intensity of the relationship between trees and their mycorrhizal symbionts. 159 

We also intended to investigate the role of diversity of root trait values, as a proxy for resource 160 

partitioning mechanisms. Moreover, we wanted to shed light on differences in tree mixing effects 161 

driven by two phylogenetic groups with contrasting traits, namely thin-rooted angiosperm vs. 162 

thick-rooted gymnosperm species

Our hypotheses were: 164 
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1) In tree mixtures, reductions in standing FRB are generally associated with changes in root 165 

traits linked to: 166 

a) a higher fine-root resource acquisition efficiency (i.e. higher root N concentrations and 167 

lower RTD) and higher length of roots deployed in soil (i.e. higher RLD), resulting in a 168 

faster/greater soil volume exploitation per unit of C invested in roots, and/or 169 

b) facilitation in resource acquisition by mycorrhizal fungi (positive biotic feedbacks), 170 

particularly higher root mycorrhizal colonisation and changes in traits related to the 171 

hosting of mycorrhizae (i.e. lower SRL and higher root diameter) and/or 172 

c) a higher functional fine-root trait dissimilarity and hence complementary resource 173 

acquisition strategies among tree species.  174 

2) Fine-root morphology (SRL, RTD, diameter) and total fine-root length investment (RLD) 175 

respond more strongly to interspecific interactions in thin-rooted angiosperms than in thick-176 

rooted gymnosperms, which rely more on adaptations through mycorrhizal associations.  177 
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Material and Methods 178 

Study Design 179 

The study sites were selected from the pan-European FunDivEurope forest-plot network, 180 

representing a tree species richness gradient from mono-specific to high-diversity stands in each 181 

forest type (Baeten et al., 2013). The 30×30 m plots in mostly mature uneven-aged forests were 182 

chosen according to predefined criteria comprising evenness, tree age, density, species 183 

composition and environmental factors (e.g. soil type). The comparative study design aimed at 184 

keeping abiotic and biotic variables as constant as possible, while allowing for gradients in tree 185 

species diversity. Here, we used 63 plots (30 mono-specific, 33 mixtures) across four sites 186 

representing major European forest types including boreal (Finland), hemiboreal (Poland), 187 

mountainous beech (Romania) and thermophilous deciduous forest (Italy) (Table S1). The plots 188 

consisted of one or three tree species from a pool of three to five indigenous species that were 189 

representative of the local tree community. At each plot, we chose five subplots, i.e. tree 190 

neighbourhoods (triplets) for soil sampling following Vivanco & Austin (2008). These triplets 191 

consisted of three healthy, dominant or co-dominant tree individuals of a single species and three 192 

different species in the mono-specific stands and mixtures, respectively. Further criteria for the 193 

selection of the triplets were approximately equal diameters at breast height (DBH) and crown 194 

sizes of the three tree individuals and a homogeneous distribution of the triplets across the plot. 195 

We then selected soil sampling locations based on the visually estimated dimensions of triplet 196 

trees (DBH and crown dimensions) to capture a point of approximately equal influence of all 197 

three trees. Sampling points were hence moved closer towards trees of smaller dimensions and 198 

further away from trees with larger dimensions to ensure equal influences.  199 

Root sampling and processing 200 

In spring 2017, one soil core per subplot was extracted to a depth of 30 cm with a split-tube 201 

sampler (Eijkelkamp, inner diameter 5.3 cm). Soil cores were divided into three depth layers, i.e. 202 

0-10, 10-20 and 20-30 cm. Samples were frozen (-20°C) until processing. Soil samples were 203 

washed under tap water and live tree fine roots (≤2 mm in diameter) were separated from 204 

understory (herbaceous) and dead tree fine roots. Rocks and coarse roots (both >2 mm in 205 

diameter) were kept for fine-earth volume estimations. Live tree fine roots were further sorted by 206 

species using reference samples and divided into absorptive and transport fine roots (McCormack 207 
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et al., 2015). This was done based on root orders, i.e. absorptive roots consisting of the first three 208 

most distal root orders (beginning from tips) and transport roots consisting of higher root orders. 209 

The functional classification approach was preferred over the traditional approach, i.e. classifying 210 

fine roots as roots with a diameter ≤2 mm, because recent studies have shown that root functions 211 

and plasticity significantly differ with root orders (Freschet & Roumet, 2017; Laliberté, 2017; 212 

McCormack et al., 2015).  213 

Root traits  214 

For each subplot sample, root traits (Table S2) were measured on live absorptive fine roots for 215 

each species and soil depth separately (except for the three Quercus species in Italy, which could 216 

not be reliably distinguished and were therefore pooled, hereafter referred to as Quercus spec). 217 

Root tips colonized by EcM were visually identified and counted on representative subsamples 218 

based on the presence or absence of a fungal sheath for the 12 species known to be associated 219 

with EcM (Acer pseudoplatanus was associated with arbuscular mycorrhizae). Thereafter, roots 220 

were scanned in water with a flat-bed scanner (resolution 800 dpi) and scans analysed with the 221 

software WinRhizo (Regents Instruments, Québec, Canada, 2009) to obtain root length, area, 222 

volume and diameter. Root volume and (average) diameter values were corrected by 223 

recalculating them from the sum of all diameter classes’ averages (Freschet et al., 2020). 224 

Subsequently, all samples were dried (72 h, 40°C) and weighed. For C and N analysis, root 225 

samples of the first depth layer (0-10 cm) were pooled at the plot level. Different root species and 226 

functional root types (absorptive vs. transport roots) were kept separately. Then, samples were 227 

milled to determine total organic C and N concentrations by dry combustion (Elementar Vario El 228 

Cube, Langenselbold, Germany). Overall trait values of absorptive fine roots were calculated as 229 

cumulative values, i.e. pooled across the three depth layers (with the exception of chemical traits, 230 

which were only available for the first depth layer) and species, as we focussed on overall mixing 231 

effects rather than species-specific effects. 232 

Diversity and biomass of fungi 233 

Data on overall mycorrhizae and EcM subgroups are based on soil samples taken adjacent to the 234 

root sampling spots (0-10 cm soil depth). Molecular data of fungal diversity were obtained by 235 

standard total genomic DNA extraction. Sample processing, laboratory analysis and 236 

bioinformatics procedures were done according to Prada‐ Salcedo et al. (2021). We amplified 237 
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fungal ITS2, using the primers P5-5 N-ITS4 and P5-6 N-ITS4 together with P7-3 N-fITS7 and 238 

P7-4 N-fITS7 (Gardes & Bruns, 1993; Ihrmark et al., 2012; Leonhardt et al., 2019) and produced 239 

libraries using the Nextera XT Illumina index Kit (Illumina), based on the manufacturer’s 240 

instructions. Subsequently, samples were sequenced with the MiSeq Reagent kit v3 on Illumina 241 

MiSeq system (Illumina Inc., San Diego, CA, United States). After bioinformatic analysis, the 242 

FUNGuild V1.0 tool was used to analyse fungal taxonomy and ecological guilds (Nguyen et al., 243 

2016). Subsequently, we identified and classified fungal groups and determined fungal richness 244 

and diversity using the package phyloseq (McMurdie & Holmes, 2013) in R (R Core Team, 245 

2018). Soil total fungal biomass and specifically mycorrhizal biomass were determined by 246 

phospholipid fatty acid analysis method described by Prada-Salcedo, Wambsganss, Bauhus, 247 

Buscot, & Goldmann (2021) and Pei et al. (2017). After lipids extraction, GC–MS analysis and 248 

peak areas conversion to nmol g soil
‐ 1

, the biomass was calculated accordantly to fungal 249 

biomarkers 18:2ω6,9c, 18:1ω9 and 16:1ω5c. 250 

Plasticity index 251 

To assess the intraspecific trait plasticity of angiosperms and gymnosperms in mixed relative to 252 

mono-specific stands, a plasticity index (PI) (Freschet et al., 2018) was calculated as the 253 

percentage of mean deviation from the mean mono-specific trait value: 254 

 𝑃𝐼 (%) =  
𝑇𝑟𝑎𝑖𝑡𝑚𝑖𝑥 − 𝑇𝑟𝑎𝑖𝑡𝑚𝑜𝑛𝑜

𝑇𝑟𝑎𝑖𝑡𝑚𝑜𝑛𝑜
∗ 100 

(1) 

 255 

where Traitmono is the mean trait value of a species in its mono-specific stand; Traitmix is the mean 256 

trait value of a species in the mixture.  257 

Diversity effects 258 

Diversity effects were calculated for the cumulative biomass of absorptive roots following the 259 

additive partitioning method (Loreau & Hector, 2001).  260 

The complementarity effect (CE) was calculated as:  261 

 
𝐶𝐸 =  𝑁 ×  𝑚𝑒𝑎𝑛(∆𝑅𝑌𝑖)  × 𝑚𝑒𝑎𝑛(𝑀𝑖) 

 

(2) 

where N is the number of species (here N=3),  262 
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∆𝑅𝑌𝑖 is the difference between the observed and expected relative (R) yield, i.e. FRB, of species i 263 

in mixture,  264 

𝑀𝑖 is the FRB in the mono-specific stand of species i.  265 

The net diversity effect (NE) was calculated as: 266 

 
∆𝑌 =  𝑌𝑂 − 𝑌𝐸  

 
(3) 

where ΔY, i.e. the net effect, is the deviation from total expected FRB in the mixture.  267 

YO is the total observed FRB in mixture and YE is the expected FRB based on the observed 268 

average FRB values of the component species in mono-specific stands (i.e. the sum of all three 269 

species’ FRB in mono-specific stands divided by 3).  270 

If ΔY equals 0, effects of the component species are additive. If ΔY deviates from 0, effects are 271 

non-additive (i.e. negative if <0, positive if >0).  272 

Functional trait diversity  273 

We quantified functional trait diversity as functional dispersion (FDis), an index considering 274 

multidimensional trait space and independent of species richness (Laliberté & Legendre, 2010), 275 

using the function dbFD of the FD package in R (Laliberté et al., 2014) and considering the 276 

following five traits measured on absorptive roots: SRL, RTD, RLD, EcM colonisation intensity 277 

and root N concentration. Since we used only quantitative traits, the FDis calculations were based 278 

on the Euclidean distance (Laliberté & Legendre, 2010). We used plot-specific species trait 279 

values for these calculations to reflect intra-specific trait plasticity. We excluded samples from 280 

triplets composed of the three different Quercus species (Italy), owing to the lack of species-281 

specific data. The considered traits were selected due to their important role for the plant 282 

economics spectrum (Freschet et al., 2010; Reich, 2014) and to avoid redundancy. Species 283 

abundance data were derived from the biomass proportions of the individual species’ absorptive 284 

fine roots (Zeng et al., 2020).  285 

Statistical Analyses 286 

All statistical analyses were performed using R version 3.5.1. (R Core Team, 2018), with 287 

significance levels set at P=0.05.  288 
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To avoid model overfitting, a principal component analysis (PCA) was computed summarising 289 

absorptive root traits (SRL, RTD, root diameter, RLD and EcM colonisation intensity) that were 290 

available at the triplet level. As root chemical traits could only be measured at the plot level, we 291 

computed a second PCA for the plot-level data including chemical traits. 292 

The first two axes of the triplet-level PCA were considered most important as they retained 293 

eigenvalues of >1 and described 64 % of the total variation (Table S3). Hence, they were used as 294 

predictor variables in some of the models (see below). We also tested the third and fourth PC axis 295 

in some of the models, however, as these models did not yield significant results (not reported), 296 

we focus only on the first two axes. Moreover, bivariate correlations between absorptive root trait 297 

pairs that were expected to be significant based on the PCA biplots were checked using simple 298 

linear regression analyses to corroborate the interpretation of the PC axes.  299 

Linear mixed-effects models (LMMs) were used for testing the hypotheses and accounting for the 300 

nested study design (package lme4, Bates et al., 2015). Random slopes and intercepts and plot 301 

nested within site were used as random effect structure for all models, except for site-level 302 

models and models based on plot-level data, where only site was used as random effect. Model 303 

assumptions were checked using the package DHARMa (Hartig, 2019). In case of violations of 304 

model assumptions, response variables were transformed (package bestNormalize, Peterson, 305 

2017).  306 

To assess the effect of tree mixing on the individual root traits (hypothesis 1), we tested each trait 307 

(SRL, RTD, RLD, diameter, mycorrhizal colonisation, root N) separately in response to tree 308 

species richness across sites. We further modelled each of the first two triplet root PCs separately 309 

in response to tree species richness. In addition, a redundancy analysis (RDA) including site as 310 

conditional factor (package vegan, Oksanen et al., 2013) was performed to affirm our focus on 311 

the first two PC axes (Fig. S1). To check whether the traits were related to standing FRB and 312 

diversity effects on FRB models testing FRB as well as each diversity effect (NE, CE) separately 313 

were computed in response to the triplet root PCs. To specifically test hypothesis 1b (biotic 314 

feedbacks), we checked whether diversity effects and overall FRB were related to mycorrhizal 315 

biomass and diversity. To test hypothesis 1c (trait dissimilarity), NE and CE were modelled in 316 

response to functional dispersion of absorptive fine-root traits (representing functional trait 317 

diversity), respectively. To test how trait values differed between mixtures and mono-specific 318 

stands for angiosperms and gymnosperms, respectively, (hypothesis 2), we separated the data for 319 
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the two phylogenetic groups and then modelled each trait for each group separately across sites 320 

and for individual sites. We further modelled FRB of both gymnosperms and angiosperms 321 

separately in response to total mycorrhizal biomass and diversity as well as the diversity of EcM. 322 

In addition, to specifically test for differences in responses of gymnosperms and angiosperms to 323 

tree species mixing, we computed models testing each trait in response to the interaction between 324 

phylogenetic type and tree species richness using the whole dataset.  325 

Results 326 

Fine-root trait coordination 327 

The triplet-level PCA on absorptive root traits showed that variation of the fine-root trait data 328 

was coordinated along two main axes (Fig. 1): PC1 described 42.2% of variation in root traits and 329 

indicated a gradient from high-SRL, low tissue density, and low-diameter roots (negative values) 330 

to low-SRL and high-diameter roots (positive values). PC2 explained 21.4% of the variation and 331 

described a separate dimension indicating the reliance of trees on EcM colonisation intensity, 332 

which appeared to some extent be opposed to developing high RLD.  333 

 334 

 335 
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Figure 1. Biplot of the principal component analysis (PCA) using traits of absorptive roots at the 345 

triplet level (for the plot-level PCA including root N, see Fig. S2). PC1 represents a resource 346 

foraging strategy gradient independent of mycorrhizal colonisation intensity (thus clearly distinct 347 

from a collaboration gradient), from high-SRL, low tissue density, low-diameter roots, that are 348 

characterised by fast foraging to low-SRL, high-diameter roots, which can be related to slow 349 

foraging. PC2 represents the reliance of trees on EcM colonisation intensity, which was 350 

negatively related with RLD (Fig. S3), i.e. negative values indicating a high RLD and low EcM 351 

colonisation intensity, and positive values representing a high EcM colonisation intensity and low 352 

RLD. 353 

The plot-level PCA on absorptive root traits, which additionally included chemical root traits 354 

only available at the plot level, further showed two axes along which the fine-root trait data were 355 

coordinated (Fig. S2): PC1, which described 48.3% of the variation, represented a trade-off 356 

between RTD and N concentrations, from high-RTD roots low in N concentrations (positive 357 

values) to low-RTD roots that are high in N concentrations (negative values). PC2 described 358 

19.7% of the variation and indicated a trade-off between SRL and root diameter, similar to triplet 359 

PC1. 360 

Bivariate trait pair analyses showed negative relationships between SRL and root diameter, SRL 361 

and RTD, EcM colonisation intensity and RLD as well as root N concentrations and RTD (Fig. 362 

S3).  363 

Tree mixing effects on fine-root traits 364 

Across all four forest types, tree mixing had a negative effect on triplet PC1 (Fig. 1 & Table 1). 365 

Moreover, tree mixing was positively related to triplet PC2, indicating a higher EcM colonisation 366 

and lower RLD in mixtures compared to mono-specific stands (Fig. 1 & Table 1). Root PC1 was 367 

further positively related to gymnosperm proportion in the tree triplet, whereas root PC2 was not, 368 

suggesting that the higher the gymnosperm proportion in triplets, the greater the community root 369 

diameter and RTD.  370 

Table 1. Relationships between tree species richness, triplet gymnosperm proportion (% basal 371 

area) with triplet-level root principal component (PC) 1 and 2, respectively tested using linear 372 

mixed-effect models (from which marginal and conditional R
2
 values were derived). Red and 373 

green shade indicate positive and negative slopes, respectively. 374 
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 Absorptive root PC1 Absorptive root PC2 

Predictors (fixed effects) Estimate t-value P Estimate t-value P 

Tree species richness -1.04 -4.76 <0.001 0.45 2.88 <0.01 

Triplet gymnosperm % 0.62 5.30 <0.001 -0.04 -0.42 0.68 

mR
2
 0.31 0.05 

cR
2
 0.68 0.39 

When analysing the traits individually, across all sites, community SRL, EcM colonisation 375 

intensity as well as root N concentrations were significantly higher, while root diameter and RTD 376 

were significantly lower in mixtures compared to mono-specific stands (LMM, Fig. 2). RLD did 377 

not significantly differ between mixtures and mono-specific stands.  378 

Across sites, biomass of absorptive fine roots pooled across soil depths was positively related to 379 

triplet root PC1 and negatively related to triplet root PC2 (Fig. 3). 380 
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 381 

  382 

 383 

 384 

 385 

 386 

 387 

 388 

 389 

Figu390 

re 2. Mean cumulative traits of absorptive fine roots (±SE) by tree species richness across sites. 391 

Asterisks indicate significant differences between mixtures and pure stands tested with linear 392 

mixed-effect models (from which marginal and conditional R
2
 values were derived). 393 
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 394 

 395 

 396 

 397 

 398 

Figure 3. Relationship of biomass of absorptive fine roots with triplet-level root principal 399 

components (PC) 1 and 2. Significance was tested using linear mixed-effect models including 400 

both PCs as fixed effects in one model (from which marginal and conditional R
2
 values were 401 

derived). The solid lines represent linear regressions for the two variables of interest, including a 402 

95 % confidence interval (shaded grey area). 403 

Role of mycorrhizae  404 

Across sites, total mycorrhizal as well as EcM Shannon diversity were significantly higher in 405 

mixtures than in mono-specific stands, whereas total mycorrhizal biomass did not significantly 406 

differ between the two stand types (Fig. 4 & Table S4).  407 

 408 

Figure 4. Mean ectomycorrhizal Shannon diversity (±SE) in soil samples (0-10 cm soil depth) in 409 

mixtures and pure stands across all four sites. Asterisks indicate significant differences between 410 

the two stand types tested with linear mixed-effect models (from which marginal and conditional 411 

R
2
 values were derived). 412 

Role of root trait dissimilarity  413 
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Across all four sites, functional trait diversity of absorptive roots in mixtures, reflected by the 414 

functional dispersion index, FDis, was positively related to both NE and CE in terms of biomass 415 

of absorptive fine roots (Fig. 5). Furthermore, FDis was positively related to gymnosperm tree 416 

proportion in mixtures (Fig. 6) and also to total mycorrhizal as well as EcM diversity (LMM, 417 

P<0.01, Table S5).  418 

 419 

Figure 5. Relationship between functional dispersion of traits of absorptive roots (FDis) with 420 

mean net diversity and complementarity effects in terms of absorptive standing fine-root biomass 421 

(g m
-2

). R
2
 (marginal and conditional) values were derived from linear mixed-effect models. The 422 

solid lines represent linear regressions for the two variables of interest, including a 95 % 423 

confidence interval (shaded grey area).  424 

A
cc

ep
te

d 
A

rt
ic

le



 

This article is protected by copyright. All rights reserved 

 425 

Figure 6. Relationship of triplet gymnosperm proportion with functional dispersion (FDis) of 426 

traits of absorptive roots in mixtures. R
2
 (marginal and conditional) values were derived from 427 

linear mixed-effect models. The solid line represents a simple linear regression including a 95 % 428 

confidence interval (shaded grey area).  429 

The influence of phylogeny on fine-root traits  430 

Mean trait values of absorptive roots varied considerably among species (Table S6) and clear 431 

differences between gymnosperms and angiosperms became apparent (Table 2). At all sites 432 

where both gymnosperms and angiosperms were sampled, absorptive roots in gymnosperms were 433 

characterised by larger average diameters, lower SRL and SRA compared to angiosperm roots. In 434 

hemiboreal (Poland) and mountainous beech forests (Romania), angiosperms had significantly 435 

higher RLDs compared to gymnosperms. In boreal forests (Finland), EcM colonisation intensity 436 

was significantly higher in angiosperm (i.e. Betula pendula) than gymnosperm species, whereas 437 

gymnosperms had a higher infection rate than angiosperms in hemiboreal forests. Angiosperm 438 

roots in hemiboreal forests also had significantly higher N concentrations (and lower root C/N 439 

ratio) than gymnosperms roots. 440 
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  SRL  SRA  RTD  RLD Dia Myc C/N N 

Specific 

root length 

Specific 

root area 

Root 

tissue 

density 

Root 

length 

density 

Root 

diameter 

EcM 

colonisation 

intensity 

Root C/N 

conc. 

Root N 

conc. 

Site 
Phylogenetic 

group 

Tree 

species 

richness 

N m g
-1

 cm
2
 g

-1
 g cm

-3
 cm cm

-3
 mm n cm

-1
  % 

Boreal forest 

(Finland) 

 

Angiosperm 
1 2 38.9±1.2 371±7 0.36±0 0.31±0.04 0.31±0.01 3.03±0.23 43.5±1.92 1.1±0.02 

3 3 48.3±3 440±13 0.32±0.02 0.44±0.07 0.32±0.03 2.63±0.28 38.6±2.78 1.28±0.09 

Gymnosperm 
1 4 16.9±1.4 230±15 0.46±0.08 0.28±0.07 0.44±0.01 2.16±0.14 51.4±3.63 0.94±0.07 

3 3 20.5±0.6 271±6 0.36±0.02 0.46±0.16 0.43±0.01 2.24±0.27 40.5±1 1.16±0.02 

Hemiboreal 

mixed forest 

(Poland) 

Angiosperm 
1 3 38.2±6.4 378 ±46 0.34±0.03 0.34±0.05 0.33±0.02 2.32±0.37 29.3±3.68 1.63±0.15 

3 13 60.1±2.9 507±17 0.32±0.01 0.47±0.06 0.28±0.01 2.86±0.15 22.8±0.45 1.99±0.04 

Gymnosperm 
1 3 20.4±3.7 277±27 0.32±0.01 0.16±0.02 0.46±0.05 2.53±0.23 27.4±2.51 1.69±0.14 

3 11 26.8±1.7 341±13 0.34±0.04 0.13±0.02 0.42±0.01 3.99±0.65 26.0±0.75 1.73±0.04 

Mountainous 

beech forest 

(Romania) 

Angiosperm 
1 4 33.4±2 341±11 0.37±0.02 0.49±0.12 0.34±0.02 1.39±0.24 30.8±1.84 1.51±0.11 

3 8 38.4±1.5 376±13 0.4±0.04 0.61±0.14 0.32±0.01 3.52±0.34 29.5±1.21 1.49±0.05 

Gymnosperm 
1 4 11±1.1 188±11 0.37±0.02 0.18±0.03 0.56±0.02 2.51±0.35 32.4±2.62 1.35±0.1 

3 8 13.2±0.8 214±9 0.39±0.04 0.16±0.04 0.54±0.01 2.46±0.21 31.9±1.09 1.33±0.05 

Mediterranean 

thermophilous 
Angiosperm 

1 10 23.2±2.5 240±18 0.54±0.04 0.23±0.05 0.35±0.01 1.79±0.16 47.7±3.42 1.03±0.06 

3 18 34.8±1.9 330±13 0.43±0.02 0.19±0.03 0.31±0.01 2.6±0.21 42.8±1.61 1.11±0.03 
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Table 2. Mean trait values (±SE) of absorptive fine roots (pooled across the entire soil profile, except for chemical traits) by phylogenetic group, 

richness and site. Bold letters indicate significant differences between angiosperm and gymnosperm trait values across both richness levels.  

forest (Italy) 
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Angiosperms and gymnosperms showed differences in intraspecific trait plasticity (Fig. 7 & 441 

Table S7). Across sites, angiosperms had a significantly higher SRL, EcM colonisation intensity, 442 

root N and lower average root diameters and RTD in mixtures compared to mono-specific stands. 443 

For gymnosperms, trait values did not differ between the two stand types except for a higher SRL 444 

in mixtures than in mono-specific stands. Both total RLD of gymnosperms and angiosperms did 445 

also not significantly differ between mixed and mono-specific stands. Moreover, gymnosperm 446 

FRB was negatively related to total mycorrhizal biomass (LMM, P=0.04) and tended to be 447 

negatively related to total mycorrhizal diversity (P=0.09), whereas angiosperm FRB was neither 448 

significantly related to mycorrhizal diversity nor biomass (both P>0.05, Table S4). 449 
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 450 

Figure 7. Plasticity index (±SE) for traits of absorptive fine roots of angiosperms and 451 

gymnosperms across sites. Asterisks indicate significant intraspecific trait deviation between 452 

mono-specific and mixed stands tested with linear mixed-effect models (**P<0.01; *P<0.05; ns 453 

P>0.1). Abbreviations of the fine-root traits are shown in Table 2. 454 
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Discussion 455 

Here, we demonstrated that the overall reduction in biomass of absorptive fine roots in mixtures 456 

across four major European forest types reported in a previous study (Wambsganss et al., 2021) is 457 

associated with morphological and chemical adaptations of fine-root traits. These changes in root 458 

trait values suggest a shift towards a faster foraging strategy of fine roots in mixtures. The higher 459 

root EcM colonisation intensity and the higher diversity of EcM in soils in mixtures further 460 

indicate positive biotic feedbacks. Our analyses also showed that these mixing effects depended 461 

on interspecific functional root trait dissimilarity as well as the diversity of EcM pointing to 462 

complementary soil resource acquisition strategies. We observed the strongest fine-root biomass 463 

reduction in mixtures with the lowest root trait dissimilarity, while such effects were nearly non-464 

existent in stands with higher root trait dissimilarity. Since root trait dissimilarity was strongly 465 

positively related to gymnosperm proportion in the mixture, this result can be explained by the 466 

generally stronger response of angiosperm than gymnosperm species to tree mixing observed 467 

here. 468 

Soil exploitation strategy 469 

Supporting hypothesis 1a, tree mixing significantly affected fine-root traits, including higher root 470 

N concentrations and lower RTD (Fig. 2). Mixtures were also characterised by higher SRL and 471 

lower root diameter compared to mono-specific stands. Contrasting our hypothesis, the length of 472 

roots deployed across the three soil layers (RLD) was not significantly higher in mixtures, despite 473 

an increased RLD observed in the topsoil only (Wambsganss et al., 2021). Our results strengthen 474 

previous findings of increasing SRL owing to interspecific interactions in forests (Bolte & 475 

Villanueva, 2006; Bu et al., 2017; Germon et al., 2018; Salahuddin et al., 2018) and suggests that 476 

other morphological root changes also occur simultaneously.  477 

In accordance with recent studies (Bergmann et al., 2020; Ding et al., 2020; Erktan et al., 2018; 478 

Wang et al., 2018), a large share of the variation in our data was arranged along two axes  (Figs 1 479 

& S1), suggesting a trade-off between SRL and diameter – the fungal collaboration gradient - as 480 

well as a trade-off between RTD and root N – the resource acquisition-conservation gradient. 481 

The differences between morphological and chemical traits in mixtures compared to mono-482 

specific stands could also be interpreted as a shift towards a more do-it-yourself strategy and 483 

concurrently a fast/acquisitive rather than a slow/conservative resource uptake (Bergmann et al., 484 
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2020). The positive relationship between total standing FRB and a root foraging strategy 485 

favouring thicker and shorter roots suggests that these trait adaptations may be linked to the 486 

negative net diversity effects on FRB reported for these mixtures (Wambsganss et al., 2021). Yet, 487 

the EcM colonisation intensity appeared to be independent of the SRL-diameter trade-off 488 

represented by our PCAs. Instead, it was coordinated along an independent, second dimension 489 

(Fig. 1) indicating a potential trade-off with RLD (discussed in the next section). This suggests 490 

that in contrast to the fungal collaboration gradient (Bergmann et al., 2020), the trade-off 491 

between SRL and diameter shown by both of our PCAs should rather be interpreted as a gradient 492 

in root foraging strategies independent of EcM associations, as proposed by Ding et al. (2020). It 493 

is noteworthy that this trend may result from our focus on EcM species. Whereas positive 494 

relationships between fine-root diameter and mycorrhizal colonization have been found relatively 495 

consistently for AM species (e.g., Kong et al., 2014; Ma et al., 2018; McCormack & Iversen, 496 

2019), there is no such clear picture for EcM species (e.g., Ding et al., 2020; Kong et al., 2014; 497 

McCormack & Iversen, 2019). One possible explanation lies in the increased potential for EcM 498 

colonisation of thinner roots with many root tips (i.e., increased root branching intensity; Ding et 499 

al. 2020). Therefore, it cannot be excluded that the framework proposed by Bergmann et al. 500 

(2020), where mycorrhizal colonisation intensity aligns with fine-root diameter, may not 501 

adequately account for the trade-off in root morphology observed among EcM species.   502 

A high SRL is often used as an indicator for a higher soil exploitation efficiency, i.e. less C 503 

required per root length deployed and thus soil volume explored (Eissenstat, 1991). Yet, a higher 504 

foraging efficiency and fast strategy, do not necessarily relate to a reduction in below-ground C 505 

investments, as high-SRL roots are often characterised by a shorter lifespan (McCormack et al., 506 

2012; Weemstra et al., 2020). Similarly, a lower overall RTD implies a reduction in root 507 

construction costs, but also reduces root structural defence capacity possibly resulting in a shorter 508 

lifespan (Eissenstat et al., 2015; Eissenstat et al., 2000). The increased root N concentrations are 509 

also associated with increased root respiration rates (Reich et al., 2008) and a lower root lifespan 510 

(Bergmann et al., 2020; McCormack et al., 2012). Therefore, the shift in fine-root trait values 511 

from a less efficient resource foraging and slow strategy in mono-specific stands to more efficient 512 

foraging and faster strategy in mixtures may have maintained (or even increased) the capacity of 513 

trees to acquire nutrients. Yet, the decrease in FRB cannot be directly translated into lower C 514 

investments into nutrient acquisition without additional information on respiration and turnover 515 

rates of fine roots (Weemstra et al., 2020).  516 
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The shift in fine-root traits with species mixing may be explained in several ways. First, the 517 

generally thinner and longer roots in mixtures may be explained by shifts in C allocation patterns  518 

from below- to above-ground biomass (Poorter et al., 2012), which is then counterbalanced by 519 

shifts in root morphology (Freschet et al., 2015; Weemstra et al., 2020) and root traits related to 520 

soil resource uptake (Freschet et al., 2018). The observed above-ground overyielding of wood 521 

production across the pan-European plot network this study is part of (Jucker et al., 2014) 522 

suggests that this mechanism might have occurred here. Concurrently, the potentially higher soil 523 

nutrient availability in mixtures at these plots (Gillespie, L. et al., unpublished data) also indicates 524 

a higher community-level resource-use efficiency, e.g. faster cycling and lower losses of nutrients 525 

(Richards et al., 2010), reducing below-ground C investment.  526 

Second, since plastic reactions of fine roots in response to changes in water and nutrient 527 

availability are well documented (Hodge, 2004), the morphological and chemical adaptations in 528 

mixtures could also be linked to alterations of soil resource availability and distribution. Higher P 529 

contents and smaller C/N ratios of the forest floor in mixtures at our sites (Gillespie, L. et al., 530 

unpublished data) suggest enhanced nutrient availability. Indeed, increasing root N 531 

concentrations and decreasing RTD with increasing soil nutrient availability have been observed 532 

for tree roots along broad environmental gradients (Ding et al., 2020; Ostonen et al., 2017) and 533 

increased P availability was shown to increase SRL and decrease RTD (Li et al., 2019). However, 534 

contrasting observations were also made (e.g. Freschet et al., 2018).  535 

Third, the spatial distribution of soil resources may also partly explain our observations. A weak 536 

but positive tree diversity effect on abundance and diversity of earthworms was observed across 537 

the FunDivEUROPE plots (De Wandeler et al., 2018), indicating an increased bioturbation and 538 

redistribution of soil nutrients in mixtures (Meysman et al., 2006; Patoine et al., 2020). As a 539 

response, trees could have formed higher-SRL roots to enhance their chance of encountering 540 

nutrient-rich spots (Chen et al., 2016). A higher concentration of nutrients in earthworm burrows 541 

(Cameron, Cahill, & Bayne, 2014) could have generally led to the development of fewer roots in 542 

search for nutrients. Alternatively, fine-root turnover could have increased and standing FRB 543 

decreased, as earthworms may also consume living fine roots (Cortez & Bouche, 1992).  544 

Positive biotic feedbacks 545 A
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The overall higher root EcM colonisation intensity and diversity in soil samples in mixtures 546 

compared to pure stands (Figs 2 & 4) corroborate our hypothesis 1b regarding positive biotic 547 

feedbacks. However, as traits related to the hosting of mycorrhizae (i.e. higher SRL and lower 548 

root diameter) did not change as expected with an increased EcM colonisation, our hypothesis is 549 

only partially supported.  550 

Tree diversity can increase mycorrhizal diversity (Hanif et al., 2019; Kernaghan et al., 2003; 551 

Tedersoo et al., 2016), possibly owing to a greater host-diversity, a greater diversity of organic 552 

inputs (Hättenschwiler, Tiunov, & Scheu, 2005) or more favourable micro-climatic conditions 553 

(e.g. higher soil moisture) (Joly et al., 2017). Here, the higher EcM diversity in mixtures could be 554 

linked to higher EcM colonisation intensity of absorptive fine roots, as a higher diversity of EcM 555 

may also increase the potential of root tip infection (Bzdyk et al., 2019). A higher diversity of 556 

mycorrhizal fungi indicates complementary fungal nutrient exploitation strategies (Agerer, 2001; 557 

Kernaghan, 2005) and thus enhanced nutrient supply to their hosts through positive biotic 558 

feedbacks. Morphological root trait dissimilarity among tree species may also be related to 559 

different EcM associations and EcM hyphal proliferation strategies and hence complementarity in 560 

resource uptake (Cheng et al., 2016). Positive biotic feedbacks from EcM increasing soil resource 561 

uptake by trees may also explain the apparent reduction of C allocated in FRB but do not 562 

necessarily imply a lower overall below-ground C investment, as C transfer to mycorrhizae can 563 

be substantial (Eissenstat, 1992).  564 

The increased EcM colonisation intensity in mixtures found here contradicts two related studies, 565 

reporting the opposite effect (Salahuddin et al., 2018; Yan et al., 2019). The shift towards a more 566 

do-it-yourself strategy in mixtures seems to contrast the higher EcM colonisation rate, as high-567 

SRL roots are assumed to invest less C in mycorrhizal partners (McCormack & Iversen, 2019, 568 

Bergmann et al., 2020). The presence of the fungal sheath surrounding root tips should 569 

theoretically increase RTD (Reich, 2014), further contradicting the shift towards a faster fine-root 570 

resource acquisition.  Yet, a trade-off between mycorrhizal colonisation rate and root diameter (or 571 

SRL) has mainly been observed for AM species, whereas such evidence for EcM species is 572 

scarce (Kong et al., 2014; McCormack & Iversen, 2019). A recent study even reported a negative 573 

relationship between root diameter and mycorrhizal colonisation rate in EcM conifer species 574 

(Ding et al., 2020) and the authors speculated that the higher root branching intensity of thinner 575 

roots led to an increased EcM infection probability. Still, the concomitant increase in mycorrhizal 576 
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colonisation intensity and SRL or decrease in diameter and tissue density are unlikely to occur in 577 

combination on the same tree species and may rather be explained by a substantial increase in 578 

these trait values on distinct tree species (Table S6). 579 

As mentioned in the previous section, the shifts in root EcM colonisation intensity appeared to be 580 

decoupled from shifts in root diameter and SRL but instead are negatively related with RLD (Fig. 581 

1; Fig. S3). It has previously been observed that EcM tree species enhanced their nutrient 582 

foraging by investing in mycorrhizal fungal hyphae production rather than in root length (Chen et 583 

al., 2016). Hence, increasing EcM foraging precision could indicate another response of trees to 584 

changes in soil nutrient availability in mixtures. 585 

Complementary acquisition strategies  586 

The average fine-root trait values varied considerably among tree species and in particular 587 

between angiosperms and gymnosperms (Table 2), which is in agreement with other studies (e.g. 588 

Bauhus & Messier, 1999; Tobner et al., 2013; Salahuddin et al., 2018), and suggests different soil 589 

exploitation strategies. 590 

The decrease in FRB with increasing fine-root trait diversity (Fig. 5) indicates that in addition to 591 

the other mechanisms discussed before, resource partitioning among species in mixtures may also 592 

play a role, corroborating hypothesis 1c.  593 

In general, a higher trait diversity may relate to a greater niche differentiation and thus a more 594 

complete or more efficient resource uptake (Barry et al., 2019). A higher functional diversity of 595 

absorptive fine roots may indicate complementary soil resource acquisition strategies among 596 

different tree species, possibly resulting in competitive reduction. The positive correlation 597 

between fine-root trait diversity and total soil mycorrhizal diversity, as well as EcM Shannon 598 

diversity (Table S4), further indicates that the dissimilarity in fine-root traits may also be related 599 

to diversity in mycorrhizal resource exploitation strategies (Agerer, 2001; Cheng et al., 2016).  600 

Fine-root trait diversity was further positively related to the gymnosperm proportion in tree 601 

triplets across sites (Fig. 6), where the gymnosperm-dominated mixtures had the highest trait 602 

diversity. Owing to their evolutionary background, trait differences within angiosperms are 603 

usually greater than within gymnosperms. Here, the mixtures with the highest gymnosperm 604 

proportion still included one angiosperm species, positively influencing the dissimilarity in fine-605 

root trait values. Consequently, the gymnosperm-dominated mixtures were characterised by more 606 
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neutral net diversity effects on standing FRB (Wambsganss et al., 2021). In contrast, low trait 607 

diversity in the angiosperm mixtures may indicate similar uptake strategies and more intense 608 

competition for soil resources among species. Our results could suggest that tree species with 609 

similar fine-root resource acquisition strategies adjusted these in mixture (as described above) to 610 

avoid competition (Hodge, 2004), resulting in the negative net diversity effects on standing FRB. 611 

In addition, these adaptations in angiosperm-dominated mixtures may have also been caused by 612 

changes in soil nutrient distributions in these stands, where decomposition rates (Joly et al., 2017) 613 

and earthworm abundance (De Wandeler et al., 2018) increased with deciduous leaf litter 614 

proportion. Yet, it has to be kept in mind that due to the imbalanced study design (i.e. stands with 615 

the highest angiosperm proportion occurring in Italy and the stands with the lowest angiosperm 616 

proportion occurring in Finland) we cannot clearly disentangle site effects from phylogenetic 617 

identity effects in this study. 618 

The influence of phylogeny on the response of fine-root traits to mixing  619 

In accordance with our second hypothesis, thin-rooted angiosperms changed root morphology 620 

more strongly in response to tree mixing (increased SRL, decreased RTD and diameter) than 621 

thick-rooted gymnosperms (Fig. 5). Neither gymnosperm nor angiosperm species deployed 622 

significantly higher root lengths in mixed compared to mono-specific stands. Thus only 623 

qualitative root traits (i.e. how roots are built) changed in response to tree mixing, except for 624 

RLD in the topsoil (Wambsganss et al., 2021). 625 

These responses were also reflected at the community level, where a higher mixture proportion of 626 

gymnosperms was related to a slower root foraging strategy and a higher angiosperm proportion 627 

to a faster root foraging strategy (Table 1).  628 

In contrast to gymnosperms, angiosperms may have adapted their fine-root soil exploitation 629 

strategy in mixtures to optimize resource acquisition (Chen et al., 2016, 2018; Cheng et al., 630 

2016)– a response likely attributable to their evolutionary background (Ma et al., 2018; Wang et 631 

al., 2019). This greater plasticity of angiosperm roots was observed under the relatively small 632 

range of conditions the trees experienced between mixed and mono-specific stands at our study 633 

sites. This pattern may change under a greater range of environmental conditions, as great 634 

morphological plasticity has also been shown for gymnosperm roots along broader environmental 635 

gradients (e.g. Zadworny et al., 2016). 636 
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In contrast to the assumedly lower dependence on mycorrhizae of thin angiosperm roots, our 637 

results indicate that they were characterised by a strong increase in EcM colonisation intensity in 638 

mixtures compared to mono-specific stands (Fig. 7). Yet, gymnosperm FRB was overall 639 

negatively related to total mycorrhizal biomass and diversity, while angiosperm FRB was not 640 

(Table S4). This suggests a trade-off between C investment in FRB vs. investment in 641 

mycorrhizae for gymnosperms, supporting their commonly reported greater dependence on 642 

mycorrhizae for soil exploitation (Ma et al., 2018). In contrast, the less clear balance between 643 

FRB and EcM colonisation intensity of angiosperms may suggest that angiosperms employ more 644 

different ways to increase their nutrient uptake capacity (e.g. specific root uptake rate, Miller & 645 

Cramer, 2004; root hair length and density, Forde & Lorenzo, 2001). 646 

Conclusions 647 

This study demonstrates that in tree species mixtures several potential non-exclusive and partially 648 

contradicting underlying mechanisms may simultaneously contribute to a lower below-ground 649 

biomass. Consequently, an underyielding of fine-root biomass in tree species mixtures does not 650 

necessarily reflect negative below-ground species interactions and a lower performance of 651 

mixtures. Here, integrating the role of mycorrhizal symbionts and further fine-root traits related 652 

to fine-root soil exploitation was key to shed light on these typically overlooked underlying 653 

patterns of biodiversity effects on plant biomass production.  654 

Future tree diversity studies could further disentangle different divers of net diversity effects on 655 

fine-root biomass by considering gradients of abiotic (i.e. soil resource availability) and biotic 656 

properties (i.e. mycorrhizal symbionts).  657 

We conclude that below-ground biomass by itself is not a suitable variable to represent tree 658 

community performance. Hence, we strongly recommend using integrative approaches that 659 

incorporate a range of traits and C costs of above- and below-ground plant compartments to shed 660 

light on the underlying mechanisms of tree diversity effects on ecosystem functioning.  661 
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