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Charles R. Sullivan, Fellow, IEEE, Jean-Luc Schanen, Senior Member, IEEE and Cécile Rigaud

Abstract—Design optimization of magnetic components which
considers both electrical and thermal performance can help in
designing power converters with a high power density. This paper
proposes an approximate analytical model for thermal resistance
of inductor and transformer windings, including litz wire, which
only requires knowledge of thermal properties of constituent
materials and geometric dimensions. The model is based on
regular square and hexagonal packing of insulated wires, and
is derived by integration of infinitesimal thermal resistances
along specified heat flow path. The model closely agrees with
finite element analysis (FEA) and can be used in place of time-
consuming FEA as part of larger thermal network models for
magnetic components. The model is also experimentally validated
using a toroidal inductor with a litz-wire winding; the model has
less than 12% error compared to the experimental measurement.
Application of the model for practical windings, including litz-
wire windings, is also discussed. The model can be used during
the design process of magnetic components of a switching power
converter to evaluate the temperature and potential hot spots.
The model provides closed-form results, hence fast computation
times, and so can be used in design optimization procedures.

Index Terms—temperature measurement, windings, inductors,
transformers

I. INTRODUCTION

Nowadays, with the emergence of electric vehicles and

aircraft, static power converter designers face the challenge of

volume or weight reduction. Recent advances in wide bandgap

semiconductors allow for efficient high-frequency switching,

and magnetics such as inductors and transformers increasingly

dominate the size and loss of switching power converters [1],

[2]. Magnetic components are usually custom designed for

minimum loss under application specific efficiency or size

constraints.

For designing magnetics, optimization procedures which

consider both losses and thermal performance, such as that

in [3] for a buck converter, are desirable since losses in

magnetic cores and windings are temperature dependent. Such

optimization procedures require analytical models with fast

computation times for losses and heat flow inside the compo-

nent. Thermal modeling of windings is usually challenging
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because of the round-wire shape and the combination of

different materials such as copper, insulator, and air or resin

between each wire. Modeling the thermal performance of

windings made of litz wire is especially important because

litz wire has poor effective thermal conductivity as a result of

its individually insulated fine wire strands.

It is possible to find in the literature, analytical thermal

models of inductor and transformer windings. A 2D thermal

equivalent model is proposed in [4] for a toroidal transformer

made of several layers of round wire but is not applicable to

litz-wire strands that are randomly distributed. The analytical

model in [5] provides a formula for thermal conductivity of

impregnated litz wire with different strand shapes, but requires

tuning and calibration using experimental data to correctly

predict the thermal transfer. The model in [6] only requires

physical and geometrical description, but has an error of

around 50% for litz wire. The thermal conductivity of litz

wire can be experimentally identified as discussed in [7], but

the measured results are only applicable for the specific litz

wire used in the experiment.

This paper presents an approximate analytical thermal

model for windings made of solid magnet wire or litz wire [8],

and is verified experimentally using the method presented

in [7]. Application of the model for practical windings and as

part of larger thermal network models for magnetic compo-

nents is also discussed in details. Section II describes thermal

network modeling of magnetic components using a toroidal

inductor as an example. An approximate analytical formula

for effective thermal resistance of individually insulated wire

strands is proposed in Section III. The proposed model is

verified in Section IV by comparing it with finite element anal-

ysis. Section V discusses application of the proposed analytical

model in practical windings and litz wire. Section VI describes

experimental verification of the proposed model in toroidal

inductor samples. The experiment shows that the effective

thermal conductivity across litz wire can be calculated with

an error less than 12% using the proposed model.

II. THERMAL NETWORK MODELING OF MAGNETICS

Thermal modeling of magnetics involves calculating the

temperature at various locations inside inductors or transform-

ers, and is usually performed to verify that the component

remains below a specified maximum temperature and to de-

termine adequate cooling systems. For simple cases such as a

single loop of wire, temperatures can be calculated by solving

the heat equation. For typical inductors and transformers in

power converters, which usually comprise multiple materials

and in which heat generation is distributed, finite element
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Fig. 1. The studied toroidal inductor. (a) Inductor without resin, (b) molded
inductor, and (c) cross-section showing the inside of the molded inductor.

analysis (FEA) can be used to obtain temperatures at various

locations inside the component. However, FEA is usually time-

consuming and not useful for design optimization.

A. Thermal Network Modeling Principle

Thermal network modeling is a first order method for

calculating temperatures at certain points inside a component.

The heat generated and thermal capacitance of different parts

of the component are nodalized with respect to geometry and

internal hot spots, and different nodes are connected with

thermal resistors. Thermal network modeling is approximately

similar to FEA, but with orders-of-magnitude fewer nodes,

resulting in faster computation times. The thermal network

can be solved using typical circuit analysis techniques. The

minimum number of nodes required depends on the symmetry,

homogeneity and isotropy of the component, and the number

of nodes can be chosen based on the trade-off between

accuracy and computation time.

B. Toroidal Inductor Example

A sample toroidal inductor (Fig. 1) used for thermal mod-

eling in this paper is described in Table I. The inductor is

designed to be used in an interleaved buck converter which

will be placed in the stratosphere. The air pressure at this

altitude is about 7% of the atmospheric pressure at the sea

level, and so the power electronics components can only be

cooled using a cold plate. The winding is made of litz wire

to limit ac copper losses. The inductor is molded into a resin

for safety reasons in order to withstand 3 kV between the litz

wire and the converter case, and for better thermal conduction

of heat generated inside the inductor core to the cold plate.

Due to the azimuthal symmetry of the toroidal inductor, a

2D thermal network model (Fig. 2) is sufficient for accurate

modeling. The level of discretization depends on the designer’s

choice and application specifications. In Fig. 2, the core loss

is split into 4 different nodes, as is the winding loss. The

winding, made of litz wire, is considered to be orthotropic

whereas the other materials (magnetic core, epoxy, resin) are

considered to be isotropic.

C. Requirements for the Thermal Network Model

Calculating the temperatures at various nodes in the thermal

network model (Fig. 2) for a particular heat sink temperature

Theatsink requires knowledge of the values of all thermal

resistors. This requires the thermal conductivity of all materials

of the sample inductor as well as various dimensions. For

the magnetic core, the epoxy resin coated on the core and

the resin molding the inductor, the thermal properties are

Fig. 2. Two-dimensional thermal network model of the sample inductor.

independent of the design parameters and dimensions, and

can be obtained from the manufacturer or from experimental

measurements [7]. The effective thermal properties of the litz-

wire winding, which comprises copper, insulator and enamel

insulation coating, as well as inductor molding resin and some

air confined between the strands, depend on the particular

inductor designs.

An analytical model for the effective thermal conductivity of

litz-wire windings, which can be calculated from the thermal

properties of the constituent materials is required for the

thermal network model. In this paper, we presents an analytical

model for calculating the effective thermal resistance and

conductivity of inductor and transformer windings and litz

wire which only requires the knowledge of thermal properties

of the constituent materials and various dimensions. The

accuracy of this model for regularly packed wires is tested

using finite element analysis and its applicability for practical

inductor windings is also experimentally verified.

III. THERMAL MODEL FOR INSULATED ROUND WIRES

This section presents an approximate analytical thermal

model for calculating the effective thermal conductivity and

resistance of a group of insulated round wire strands. The

model is to be used in a thermal network model as described

in Section II, which accounts for the directions of heat flow.

It can also be used in other thermal models or finite element

analysis which model the winding region as a single material

omitting the detailed strand structure.

The group of insulated wires can represent either inductor

and transformer windings or litz wire. The combination of



3

TABLE I
INDUCTOR SPECIFICATIONS

Data Parameters

Geometry Toroidal. (dout: 62.91 mm, din: 31.69 mm, h: 25.91 mm)

Core material powder (KoolMu), kcore = 3.95 W/(m ·K), kepoxy = 0.34 W/(m ·K)

Molding material Epoxy Resin 50-3100, kresin = 2.16 W/(m ·K)

Winding litz wire, modified polyurethane enamel coating kins = 0.028 W/(m ·K), no outer insulation

the wire conductor material, the insulation layer around it

and the gap between the wires is defined in this paper as

one level of insulation. By this definition, litz-wire windings

have two levels of insulation: the first (strand) level consists of

the individual strands with the enamel insulation coating and

the gap between the strands; and the second (winding) level

comprises the twisted bundles with the outer insulation layer

and the gap between the winding turns.

Anisotropy of thermal properties requires that the model

provides the effective thermal conductivity and resistance for

two distinct directions: along the length of the wire (longitu-

dinal) and across the diameter of the wire (transverse). This

paper focuses on the transverse conduction since the longitu-

dinal thermal resistance is a simple parallel combination of

the thermal resistance of various constituent materials.

In the following equations, R represents thermal resistance,

dR infinitesimal thermal resistance, k thermal conductivity,

l length and t thickness. For the subscripts, c refers to the

conductor, ins the wire insulation, hl the horizontal insulation

layer (Fig. 3), vl the vertical insulation layer (Fig. 3), g the gap

between wires, l the longitudinal direction along the length of

the wire, t the transverse direction across the diameter of the

wire and int integration.

A. Longitudinal Thermal Resistance

The effective longitudinal thermal resistance Rl, along the

length of the wire, for one level of insulation, can be modeled

as a parallel combination of thermal resistance of various

materials in the wire:

Rl =

(

∑

mat

1

Rmat,l

)

−1

, (1)

where the subscript mat refers to various materials, such as

the conductor, insulation coating on each wire, gap between

the wires and the horizontal and vertical insulation layers, and

Rmat,l is the longitudinal thermal resistance of these materials.

Substituting l/(kA) for thermal resistance, where k is thermal

conductivity, l length and A cross-sectional area gives the

effective longitudinal thermal conductivity

kl =
1

Al

∑

mat

kmat,lAmat,l, (2)

where Al is the total cross-sectional area of all materials in

the group of insulated wires, and kmat,l and Amat,l are re-

spectively the thermal conductivity and cross-sectional area of

each material. The effective longitudinal thermal conductivity

kl is simply an area-weighted combination of the thermal

conductivities of various materials in the wire, regardless of

the particular packing structure of the wires.

Fig. 3. Cross-section of (a) square-packed, (b) hexagonal-packed wires with
one level of insulation, showing conductive material (c), insulation coating
(ins) and gap (g). The horizontal insulation layer (hl) and the vertical insulation
layer (vl) represent insulation tape often used in windings, and both are
displayed for the purpose of developing the thermal model for square-packed
wires; wires in practice will include none or only one type of layer. The figure
is not drawn to scale; in practice, the insulation is usually much thinner than
the conductor diameter and separation between wires is also relatively much
smaller. The black dashed boxes represent unit cells of the wires. It is assumed
that heat flows from left to right in each packing.

B. Transverse Thermal Resistance: Model Overview

The transverse thermal resistance, for heat flow across

the diameter of the wire, however, is not a simple series

combination of thermal resistance of various materials. The

most accurate method to calculate the transverse thermal

resistance is to perform a finite element analysis (FEA) which

can be time-consuming. Various analytical models exist for

calculating the transverse thermal resistance, and one of the

more accurate models draw an analogy between heat flow and

electrostatic field [6], which will be refered to in this paper as

the Thermal-Electrostatic Field Analogy (TEFA) model.

Because of the similarity between direction of heat flow

and electric field lines between two insulated round wires, an

analogy can be drawn between the two phenomena. Heat flow

is analogous to charge, thermal conductance to capacitance,

temperature difference to voltage and thermal conductivity

to permittivity. Thus, the thermal resistance between two

insulated round wires can be calculated using the equations

for the capacitance between two insulated round wires. The

TEFA model assumes that the wires are arranged in square or

hexagonal packing (Fig. 3) and the capacitance is calculated

assuming particular configuration for electric field within each

material in the winding. This TEFA model has an error of

around 20% for solid wire windings and 50% for litz-wire

windings [6].

This paper proposes a more general analytical approach to

the TEFA model in [6]. It can be shown that the proposed

model and the TEFA model provide similar results if the

wires are touching one another with the exception of a vertical

insulation layer in square-packed wires; if the gap material

between wires is air (kg = kair); and if the conductor thermal
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conductivity kc is infinite [8]. First, the impacts of finite kc,

separation between wires along the direction of heat flow (blue

strips labeled 3a in Fig. 3 (a) and 3 in Fig. 3 (b)) and the

horizontal insulation layer are added to the TEFA model using

R = l/(kA) for different materials. This extended version

of the TEFA model provides the thermal resistance for heat

flowing through the wires (red arrows labeled 2a in Fig. 3).

The proposed model combines the extended TEFA model

with a thermal resistance model for heat flow in the gap around

the wires (purple arrows labeled 2b in Fig. 3). If the gap

thermal conductivity kg is very low, the thermal resistance

for heat flowing around the wires will be high; in this case,

heat will mainly flow through the wires (red arrows labeled

2a in Fig. 3) and the extended TEFA model approximates the

effective thermal resistance Reff . For very high kg , however,

heat will mainly flow around the wires (purple arrows labeled

2b in Fig. 3) and the gap thermal resistance model for heat

flow around the wires approximates Reff . Thus, we propose

that Reff can be modeled as a parallel combination of these

two thermal resistance models.

The parallel combination, however, is only approximate

based on the asymptotic behavior of Reff for very low and

very high kc. For intermediate values of kc, heat flows both

through and around the wires. Because there is an overlap in

the regions of the gap modeled by the two thermal resistance

models (2a and 2b in Fig. 3), the parallel combination results

in double counting of thermal conductance of some portion

of the gap. However, as will be discussed below, this double-

counting effect only introduces less than 15% error, and so

Reff is approximated as a parallel combination of the extended

TEFA model and the gap thermal resistance model.

The proposed model considers square-packed and

hexagonal-packed wires as shown in Fig. 3, similar to the

TEFA model. An arbitrary random packing in practical

windings and litz wire can be considered as some weighted

combination of local square and hexagonal packing. The

effective thermal resistance is derived by assuming particular

heat flow directions (red enclosed areas in Figs. 4 and 5)

and integrating infinitesimal thermal resistance along these

directions; this is similar to the assumption for electric field

lines in the TEFA model [6].

C. Transverse Thermal Resistance: Square-Packed Wires

The transverse thermal resistance of a unit cell of square-

packed wires Rsq is equal to that of the quarter-unit cell

shown in Fig. 4; a unit cell comprises four quarter-unit cells

in a 2× 2 configuration that forms a complete wire as shown

in Fig. 3 (a). Rsq is a parallel combination of three thermal

resistances – 1) across the wire and through the gap towards

the dark pink vertical layer Rθ,int (red arrow labeled 2a in

Fig. 3 (a) and integral of dRθ in Fig. 4 (a)); 2) across the

green horizontal layer Rhl; and 3) across the gap around the

wire Rg (purple arrow labeled 2b in Fig. 3 (a) and integral of

dRg in Fig. 4 (b)) – and can be written as

1

Rsq

≈
1

Rθ,int
+

1

Rhl
+

1

Rg
. (3)

Fig. 4. A quarter-unit cell (black dashed box) of square-packed wires showing
various thermal resistances. Thermal resistance is calculated for unidirectional
heat flow from left to right. The red enclosed areas show path of integration
for the infinitesimal thermal resistances (a) dRθ given by (5) and (b) dRg

given by (12).

As discussed above, the parallel combination is only approxi-

mate based on the asymptotic behavior of the effective thermal

resistance for very high and very low kg; it may underestimate

Rsq for intermediate values of kg .

Rθ,int can be calculated as a parallel combination of thermal

resistance for infinitesimal θ represented by the red enclosed

area and dRθ in Fig. 4 (a):

1

Rθ,int
=

∫ π
2

θ=0

1

dRθ
, (4)

dRθ = dRθ,c + dRθ,ins + dRθ,g + dRθ,vl, (5)

dRθ,c =
rc cos θ

kc rc cos θ dθ ll
=

1

kc dθ ll
, (6)

dRθ,ins =
ln(r0/rc)

kins dθ ll
, (7)

dRθ,g =
r0(1− cos θ) + tgx
kg r0 cos θ dθ ll

, and (8)

dRθ,vl =
tvl/2

kvl r0 cos θ dθ ll
, (9)

where ll is the wire length, and r0 = rc + tins the total wire

radius (Fig. 4 (b)).

Rhl is the thermal resistance across the green horizontal

layer (Fig. 4 (a)) and is given by

Rhl =
lhl

khl (thl/2) ll
=

2lhl
khl thl ll

. (10)

Rg is the thermal resistance across the gap, represented

by the white region in Fig. 4. It is defined specifically for

heat flowing through the gap above the wire insulation and

spreading out inside the gap (purple arrow labeled 2b in

Fig. 3 (a)) and is given by

1

Rg
=

∫ tgy

yi=0

1

dRg
, (11)

where dRg is the infinitesimal thermal resistance, represented

by the red enclosed area in Fig. 4 (b).

It is assumed that heat spreads out from left to right

proportional to the total width of the gap ∆y at any horizontal

position x. In other words, heat at a vertical position yi at

the left end of the quarter-unit cell flows towards a vertical

position y = yi∆y(x)/∆y(0) at a horizontal position x,
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and heat spreads out from an infinitesimal width dyi to

dy = dyi∆y(x)/∆y(0). It can be derived that

dRg =
1

kglldyi







tgxtgy

r0 + tgy
+

∫ π
2

0

dθ r0

√

t2gy sin2 θ + y2i cos2 θ

r0 + tgy − r0 sin θ






,

(12)

where yi refers to the vertical position y at x = 0, dyi the

infinitesimal yi, dRg the infinitesimal thermal resistance across

the red enclosed area in Fig. 4 (b), and tgx and tgy are defined

in Fig. 4 (b). The detailed derivation of (12) is discussed in [8].

Heat flow inside the gap is modeled using two thermal

resistances: Rθ,g and Rg . The former, Rθ,g , models the

resistance for heat flowing across the wire and continuing into

the gap, represented by the portion of the red enclosed area in

the gap in Fig. 4 (a). The latter, Rg , models the gap thermal

resistance for heat flowing through the gap above the wire and

spreading out in the gap, represented by the red enclosed area

in Fig. 4 (b). Because of the intersection between the cross-

sectional area modeled by these two variables, there is some

effect of double counting which can result in underestimating

Rsq; however, both Rθ,g and Rg are necessary. First, for low

kg , most of the heat will flow across the wire rather than

the gap above the wire, and Rθ,g is necessary in order not to

underestimate Rθ,int and Rsq. On the other hand, for large kg ,

most of the heat will flow across the gap above the wire, in

which case Rg is necessary in order not to overestimate Rsq.

The effect of double counting is the most significant when

Rθ,int and Rg are on the same order of magnitude; however,

the error due to this double counting is less than 15%, as will

be discussed in Section IV-A.

D. Transverse Thermal Resistance: Hexagonal-Packed Wires

The thermal resistance of a unit cell of hexagonal-packed

wires, shown in Fig. 5 (a), is a parallel combination of thermal

resistance for heat flow between the centers of two adjacent

conductors Rθ,int (red arrow labeled 2a in Fig. 3 (b), integral

of dRθ in Fig. 5 (a) with respect to θ) and gap thermal

resistance Rg (purple arrow labeled 2b in Fig. 3 (b), integral

of dRg in Fig. 5 (b) with respect to ri):

1

Rhex

≈
1

Rθ,int
+

1

Rg
. (13)

It should be noted that the parallel combination is only an

approximation, as discussed above.

Rθ,int is a parallel combination of infinitesimal thermal

resistance at different values of θ:

1

Rθ,int
= 4

∫ π
3

θ=0

1

dRθ
, (14)

dRθ = dRθ,c1 + dRθ,ins1 + dRθ,g + dRθ,ins2 + dRθ,c2, (15)

where the subscript 1 refers to the first wire, marked by dθ in

Fig. 5 (a) and the subscript 2 the second wire, marked by dϕ.

The integral in (14) is multiplied by 4 since the integration

gives the thermal resistance of a quarter of the unit cell,

represented by the green shaded area in Fig. 5 (a), and a unit

cell contains four such areas in parallel. It should be noted

that as the gap gets larger, ϕ gets smaller and the portion of

Fig. 5. Hexagonal-packed wires showing various thermal resistances. Thermal
resistance is calculated for unidirectional heat flow from left to right. (a) A
unit cell showing the infinitesimal thermal resistance dRθ given by (15) and
(b) a half-unit cell showing the infinitesimal thermal resistance dRg given by
(25). The red enclosed areas show paths of integration.

the second wire covered by the green shaded area in Fig. 5 (a)

gets relatively small. Because the entirety of the second wire is

not accounted for in Rθ,g , this model can overestimate Rθ,int

and hence Rhex.

The resistances dRθ,c1 and dRθ,c2 represent the conductors

of the two wires and are similar to (6):

dRθ,c1 =
1

kc dθ ll
, (16)

dRθ,c2 =
1

kc dϕ ll
. (17)

For each value of θ for the first wire, a corresponding angle

ϕ can be defined for the second wire as shown in Fig. 5 (a);

as θ increases from 0 to π/3, ϕ increases from 0 to around

π/6 depending on the gap width. The infinitesimal angle dϕ
can be written in terms of dθ as

dϕ =
2r20 cos θ + r0tg cos θ − r20

r2ϕ
dθ, (18)

rϕ =
√

r20(5− 4 cos θ) + 2r0tg(2− cos θ) + t2g (19)

where rϕ is the distance from the center of the second wire to

the edge of the first wire at the angle θ, as shown in Fig. 5 (a).

The derivation of dϕ and rϕ is discussed in [8].

The resistances dRθ,ins1 and dRθ,ins2 are represent the

insulation of the two wires and are similar to (7):

dRθ,ins1 =
ln(r0/rc)

kins dθ ll
, (20)

dRθ,ins2 =
ln(r0/rc)

kins dϕ ll
. (21)

The resistance dRθ,g models the thermal resistance of the

gap for heat flowing between the centers of two adjacent wires

(red enclosed area in Fig. 5 (a)), and is given by

dRθ,g =
ln(rϕ/r0)

kg dϕ ll
. (22)

This is distinct from Rg in (13) which models the gap thermal

resistance for heat coming in from the left through the gap

above the wire (red enclosed area in Fig. 5 (b)).

Calculation of the gap thermal resistance Rg is similar to

that for square packing; it is assumed that heat spreads out

proportional to the radial width of the gap ∆r at an arbitrary
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angular position α; the radial position r = ri∆r(α)/∆r(π/3)
and infinitesimal radial width dr = dri∆r(α)/∆r(π/3),
where ri and dri are the radial position and infinitesimal radial

width at α = π/3. The specific path of integration is shown

in red enclosed area in Fig. 5 (b). The gap thermal resistance

Rg can be written as

1

Rg
= 2

∫

tg
2

ri=0

1

dRg
. (23)

dRg =
1

kgll

(

∫ π
6

β=0

(

dl

dr
+

dl′

dr′

)

+

∫ π
3

α=α0

(

dl

dr
+

dl′

dr′

)

)

(24)

=
1

kgll

∫ π
6

β=0

(

r0 + ri
rβ−r0
tg/2

dri
rβ−r0
tg/2

+
rβ − ri

rβ−r0
tg/2

dri
rβ−r0
tg/2

)

2r20 cosβ + r0tg cosβ − r20
r2β

dβ (25)

+
1

kgll

∫ π
3

α=α0

(

r0 + ri
rα−r0
tg/2

dri
rα−r0
tg/2

+
rα − ri

rα−r0
tg/2

dri
rα−r0
tg/2

)

dα,

rβ =
√

r20(5− 4 cosβ) + 2r0tg(2− cosβ) + t2g, (26)

rα =

(

r0 +
tg
2

)

sec
(π

3
− α

)

(27)

α0 = arctan
r0

(4−
√
3)r0 + 2tg

, (28)

Derivation of (25) is similar to that of (12) and is discussed

in [8]. The integration with respect to ri gives the thermal

resistance of half a unit cell, thus requiring the factor of 2

multiplying the integral in (23).

E. Thermal Resistance of a Group of Wires

The proposed model gives the effective thermal resistance

of a unit cell inside a group of wires. Thus, the result from

the proposed model needs to be scaled with respect to the

number of wires in order to calculate the effective resistance

of the entire group of wires Reff . The effective longitudinal

thermal resistance a group of wires is given by

Reff,l =
Rl

N
, (29)

where Rl is the longitudinal resistance of a unit cell given by

(1) and N is the number of wires. For the transverse direction,

the effective thermal resistance is

Reff,t =
Nx

Ny
Rt, (30)

where Rt is the unit-cell transverse thermal resistance of

the packing of choice (Rsq or Rhex), and Nx and Ny are

respectively the number of wires along and perpendicular to

the direction for which the thermal resistance needs to be

calculated. For instance, for heat flow from left to right in

Fig. 3 (a), Nx is the number of wires in the horizontal direction

from left to right (i.e. 3) and Ny is the number of wires in the

vertical direction from top to bottom (i.e. 3).

Fig. 6. Sample finite element simulations for (a) square packing and (b)
hexagonal packing; results for three different values of gap thermal conduc-
tivity kg are included. The black curves are isothermal and the blue curves
represent boundaries between different materials. The boundary conditions are
defined to obtain heat flow from left to right. A known heat source (3 W) is
placed to the left of the group of wires; the heat source is in a high thermal-
conductivity material in order to provide an isothermal boundary. The known
heat source and the temperature difference between the two ends of the group
of wires is used to calculate thermal resistance.

If effective thermal conductivity keff rather than effective

thermal resistance Reff is desired, the unit cell thermal re-

sistances can be scaled by the length of wire ll used in the

winding. The effective transverse thermal conductivity is

keff,t =
Nx

Ny ll Reff,t
=

1

Rtll
. (31)

The effective longitudinal thermal conductivity is given by (2).

IV. ACCURACY ASSESSMENT USING FINITE ELEMENT

ANALYSIS

Finite element analysis (FEA) was used to test the accuracy

of the proposed model for square and hexagonal packings.

Fig. 6 shows the results of sample simulation results with 4

strands of wire (Nx = Ny = 2) for square and hexagonal

packing. It is a 2D simulation which represents the cross-

section of wires, and does not account for twisting of the

wires along the length. It should be noted that Fig. 6 (b) is not

equivalent to 4 unit cells of hexagonal-packed wires, as defined

in Figs. 3 (b) and 5 (a). The wires are arranged to obtain a

rectangular outer shape. A known heat source is placed to the

left of the wires and a constant temperature boundary condition

to the right of the wires. The other boundaries are defined

with no heat flux conditions to obtain a unidirectional heat

flow from left to right. The temperature at the heat source is

extracted to calculate the thermal resistance across the group

of wires.

Fig. 6 shows the result of FEA, using FEMM, for three

different gap thermal conductivity kg: 0.024 representing air,

0.24 representing many plastic materials and 2.4 representing

thermally conductive epoxy resin potting. The simulations

were conducted for wires with 1 mm copper diameter, 0.1 mm
insulation thickness and 0.1 mm separation between wires;

the thermal conductivities of the wire and the wire insulation

coating are respectively 385 W/(m ·K) (representing copper)

and 0.028 W/(m ·K) (modified polyurethane). The particular
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TABLE II
VALUES OF tins , tg AND kg USED FOR ACCURACY ASSESSMENT.

tins tg kg W/(m ·K) Representing material

dc/50 (dc + 2tins)/50 0.024 air

dc/20 (dc + 2tins)/20 0.2 most plastic

dc/10 (dc + 2tins)/10 1 -

dc/5 (dc + 2tins)/5 4 epoxy resin potting

(dc + 2tins)/2 20 -

Note: Each row does not correspond to a combination of tins, tg and kg . 100
different combinations can be formed using the values in the table.

dimensions in Fig. 6 were chosen to show the salient features;

the insulation thickness and the gap in practical windings will

be much smaller. Fig. 6 shows that the heat paths for low and

high values of the gap thermal conductivity are qualitatively

different; for low kg , heat flow is concentrated near the region

where the wires are spatially closest in the horizontal direction

whereas heat mainly flows through the gap between wires for

high kg .

The FEA was performed for various combinations of param-

eters. Because the unit-cell thermal resistance is independent

of the number of wires (N , Nx or Ny), we used N = 1
to simulate a unit cell, as defined in Fig. 3. Moreover, the

thermal resistance does not depend on the absolute value of

the wire diameter dc, but on the relative value of dc with

respect to the insulation thickness tins and gap between wire

tg , defined for square packing as tg = 2tgx = 2tgy . Thus, we

used dc = 127 µm (AWG 36) and vary tins and tg relative to

dc. Four different values were considered for tins, five for tg
and five for kg , as described in Table II. For each of these 100

combinations of tins, tg and kg , the result from the proposed

model is compared to that from FEA. It is assumed that there

are no horizontal or vertical insulation layers.

A. Proposed Model

Fig. 7 shows the errors of the proposed model compared to

FEA for both square and hexagonal packing, calculated as

Error (%) =
Reff,t,model −Reff,t,FEA

Reff,t,FEA

× 100%, (32)

where Reff,t,model and Reff,t,FEA are effective transverse ther-

mal resistances predicted by the model and FEA, respectively.

For square packing (Fig. 7 (a)), the error for kg =
0.024 W/(m ·K), representing air, is less than 6%; it is

larger for higher kg but less than 15% for the entire range

of kg and for all the combinations of tins and tg considered.

It should be noted that most of these errors are negative,

indicating that the proposed model underestimates the thermal

resistance. This underestimation error can be attributed to the

double counting of gap thermal resistance as discussed in

Section III-C. Because of this double counting, the proposed

model is less accurate for moderate values of kg; nevertheless,

the error is below 15% even with the effect of double counting.

The results for hexagonal-packed wires for the two models

are shown in Fig. 7 (b). The proposed model has a maximum

error of 18.5% for all the cases considered, and the error

for higher kg is lower than that for lower kg . Unlike square

packing, however, most of the errors are positive, indicating

Fig. 7. Percentage error of the proposed model compared to FEA for (a)
square-packed and (b) hexagonal-packed wires. Each curve corresponds to a
particular combination of tins and tg .

that the proposed model overestimates the thermal resistance.

This overestimation can be attributed to the fact that Rθ,int

only cover the green shaded area of each quarter of the unit

cell in Fig. 5 (a). The overestimation is more significant for

lower kg since more heat will flow through the wire rather

than the gap above the wire, and for larger tg since the green

shaded area in Fig. 5 (a) is smaller. Unlike the square packing

case, the negative errors for the hexagonal packing case are

relatively small; this may be attributed to the overestimation

error discussed above partially canceling the underestimation

error due to double counting.

B. TEFA Model

For comparison, the errors of the TEFA model compared to

the results of the FEA were also calculated using (32), which

are plotted in Fig. 8. It should be noticed that the FEA is a 2D

simulation, conducted for cross-sections of wires as shown in

Fig. 6; it does not model any twisting or change in position of

wire along the length of the wire. From Fig. 8, it can be seen

that the TEFA model cannot accurately predict the effective

thermal resistance for both square and hexagonal packing

for large values of gap thermal conductivity kg . Thus, the

proposed model can provide better prediction for the effective

thermal resistance of a group of insulated round wires.

It should be noted that the errors in Fig. 8 were calculated

using the TEFA model as presented in [6], which assumes

that the wires are touching one another with the exception

of a vertical insulation layer. Thus, the errors are large if heat

flow is significantly impacted by the gap, such as in cases with

a large separation between wires tg and or with a high gap

thermal conductivity kg . Modifications to the TEFA model,

such as using the vertical insulation layer to account for the

gap in the horizontal direction, can reduce the error of the

TEFA model. The proposed model provides such modification

considering how the heat spread out inside the gap.

Moreover, the errors in Figs. 7 and 8 are plotted for a wide

range of parameters as described in Table II. The range of
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Fig. 8. Absolute value of the percentage error of the TEFA model compared
to FEMM simulation for (a) square-packed and (b) hexagonal-packed wires.
Each curve corresponds to a particular combination of tins and tg . The errors
are plotted on the logarithmic scale. Points with very large errors correspond
to cases with high gap thermal conductivity kg and or large gaps (large values
of tg , tgx, tgy).

parameters for practical windings are more limited, which will

result in smaller errors. For example, kg up to 20 W/(m ·K)
are considered in Figs. 7 and 8 whereas windings potted with

epoxy resin have kg . 4 W/(m ·K). Similarly, practical

ranges of wire insulation thickness tins and separation between

wires tg will further narrow the range of errors in Fig. 8.

Nevertheless, the proposed model can provide a smaller error

compared to the TEFA model for a wider range of parameters

or cases. For instance, the proposed model is useful for litz

wire which usually has a low packing factor and for potted

windings which have a high gap thermal conductivity.

V. PRACTICAL APPLICATION OF THE PROPOSED MODEL

The proposed analytical model calculates the thermal re-

sistance of a group of wires regularly arranged in square or

hexagonal packing. The model only requires knowledge of

various parameters, such as geometric dimensions and thermal

conductivities of the constituent materials. Finite element

analysis (Section IV) shows that the analytical model is

accurate, with an error of less than 20% for a wide range

of parameters. However, practical inductor and transformer

windings and litz wire usually have random packing and

some parameters may not be readily available. This section

discusses implementation of the model and how it can be

used to calculate effective thermal resistance or conductivity

of practical inductor and transformer windings and litz wire,

as well as various limitations of the model.

A. Implementation

The proposed model can be implemented using (3)–(28).

For square packing, Rsq is a parallel combination of Rθ,int,

Rhl and Rg as shown in (3). Rθ,int can be calculated by

integration (4) of a combination (5) of four infinitesimal

thermal resistances (6)–(9). Rhl is a simple calculation (10)

and Rg can be found by integrating (11) the infinitesimal

resistance given by (12). For hexagonal packing, Rhex is a

parallel combination of Rθ,int and Rg as shown in (13). Rθ,int

can be found by integrating (14) a combination (15) of five

infinitesimal thermal resistances (16), (17) and (20)–(22). Rg

is found by integrating (23) the infinitesimal resistance given

by (25). Implementing the model for hexagonal packing also

requires (18), (19) and (26)–(28).

B. Random Packing

The packing of strands inside a litz-wire bundle and of

wires in an inductor or transformer winding is usually random,

and so neither square nor hexagonal packing can accurately

describe the effective thermal resistance of practical windings

and litz wire. However, a random packing can be considered

as some combination of local square and hexagonal packing.

Thus, the effective thermal resistance of practical windings

and litz wire can be approximated as a weighted average of

thermal resistances for square and hexagonal packings.

The appropriate weight depends on the particular types of

winding. For windings in which an insulation tape separates

different layers, no weight needs to be given for hexagonal

packing; the square packing model alone is sufficient. For

windings without an insulation tape between layers, a rel-

atively higher weight should be assigned for the hexagonal

packing model. For windings with a large number of turns or

litz wire with many fine strands, a simple average with equal

weight between the two packings (i.e. arithmetic mean) can

be sufficient since the packing becomes more random as the

number of turns or strands increases. It should be noted that

the arithmetic mean is a simple heuristic for modeling random

packing; different types of average, such as the geometric

mean, do not have a significant impact on the result as

will be discussed in Section VI-D. During the design stage

of magnetics when the packing of wire is not known, the

arithmetic mean can also be used as a simple rule of thumb

to approximately calculate the effective thermal resistance or

conductivity. Experimental verification of the results of the

proposed model for a practical inductor with random packed

litz wire is discussed in Section VI.

C. Litz Wire

Typical specifications for litz wire include the number of

strands N , the strand gauge or diameter dc and the overall

diameter of the bundle dtot. The thickness of enamel insulation

coating tins can be found by consulting the wire standard

(e.g., NEMA MW 1000 [9]) or using a curve-fit formula

of data from a wire manufacturer’s catalog, such as that

in [10]. The thermal conductivity of enamel is usually around

0.03 W/(m ·K) [11]. The gap between wire strands, which

is typically not specified, can be calculated from the known

parameters. For square packing, tg = 2tgx = 2tgy can

be calculated by equating the overall area of the bundle

Atot = πd2tot/4 to the total area of N unit cells N(dc +
2tins + tgx)(dc + 2tins + tgy). For hexagonal packing, Atot is

equated to N(dc + 2tins + tg)
2 cos(π/6).
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For the scaling of the unit cell thermal resistance with

respect to the number of wires as given by (30), Nx and Ny

usually cannot be accurately estimated. However, because litz

wire usually comprises a large number of strands, the ratio

Nx/Ny can be approximated as the ratio of linear dimensions

along and perpendicular to the direction for which the thermal

resistance needs to be calculated. For example, for litz wire

with a square outer shape, the overall transverse thermal

resistance Reff,t equals the unit cell effective resistance Rt.

Twisting of wire strands in litz wire can impact the trans-

verse thermal resistance because a wire strand at one side of

the bundle will eventually arrive at the other side of the bundle

at some point along the length of the litz wire depending on the

pitch of twisting. However, such effect is negligible because

thermal resistance along a single strand is large compared to

that across the diameter, especially for twisting pitch much

longer than the bundle diameter. For litz wire with a short

twisting pitch, the proposed model can be combined with the

effect of twisting presented in [6] to more accurately model

the litz-wire transverse thermal resistance.

Depending on the application, the litz-wire bundle may be

enclosed in an outer insulation layer. In such cases with two

levels of insulation, the effective thermal conductivity keff
of wire strands, without the outer insulation layer, can be

calculated using the proposed model. This keff can then be

used as kc and the outer insulation layer thickness as tins in a

second iteration of the proposed model to calculate the overall

thermal resistance and effective conductivity.

D. Inductor and Transformer Windings

Inductor and transformer windings can be made of either

solid wire or litz wire. For solid wire windings, with one

level of insulation, the proposed model can simply be used

to calculate the unit cell thermal resistance. The gap between

wires, or turns, can be calculated by equating the overall

winding area to the total area of N turns of wires. For litz-wire

windings, with two levels of insulation, the effective thermal

conductivity of litz wire needs to be calculated as discussed in

Section V-C, which can then be used to calculate the overall

thermal resistance.

E. Parameter Values

Knowledge of material properties and geometric dimensions

of winding and litz wire is necessary for accurate modeling.

Some of these parameters can change during the winding

process. For example, litz-wire bundle diameter dtot inside a

winding may be different from the nominal diameter provided

in the specifications. In such cases, the nominal diameter

should be corrected with an estimated winding factor. Some

parameters are difficult to estimate. For instance, in practical

inductors and transformers with potted windings, although the

potting resin can seep through the wires, it may not entirely

fill the gaps between the wires depending on the gap width

and the potting viscosity. In such cases, the gap thermal

conductivity can be approximated as an average of the thermal

conductivities of air and potting resin, weighted by the degree

of potting fill. The difficulty and uncertainty in estimating

the degree of potting fill can lead to errors in calculating the

effective thermal resistance using the proposed model.

It should be noted that these challenges regarding parameter

values are not specific to the proposed model; models, in

general, have to use nominal or estimated parameter values

since the actual values are usually not known during the design

process or are hard to measure.

F. Application in a Thermal Network Model

The proposed model provides discrete thermal resistance

across a unit cell, which is then scaled to obtain the winding

thermal resistance along a particular direction. However, heat

is often generated uniformly inside inductor and transformer

windings, so the discrete thermal resistance of the proposed

model may overestimate the overall thermal resistance from

one side of the winding to the other. The generated heat

also spreads in three dimensions rather than the unidirectional

heat flow assumed in the proposed model. Thus, accurate

modeling of the entirety of an inductor or a transformer

requires calculating the anisotropic thermal resistance along

three orthogonal directions. These thermal resistances are then

to be used as a component in a thermal network model,

as discussed in Section II, in which the effective thermal

resistance from the proposed model is a component among

other. The effective thermal conductivity can also be used as

part of finite element analysis which models the winding area

as a single material omitting the detailed strand structures. The

application of the analytical thermal model of litz wire in a

thermal network model for a practical inductor is discussed in

the following section.

VI. EXPERIMENTAL VERIFICATION

The analytical thermal model in Section III provides a way

to calculate the effective thermal resistance and conductivity of

a group of wires regularly arranged in a square or hexagonal

packing, and the accuracy of the model was verified using

finite element analysis as discussed in Section IV. This section

discusses experimental verification of the proposed model in

practical inductor windings, with random-packed wires.

A preliminary check of the proposed model was performed

by applying the proposed model to the litz wire samples

TSL,air,1 and TSL,air,2 in Table II of [6]. For the TSL,air,2

sample with measured effective thermal resistance Rw,x =
2.1 K/W, the proposed model gives Rw,x = 2.38 K/W
(13.33% error). This error is larger than the -0.5% error of

the TEFA model with twisting, but smaller than the 38.57%

error of the TEFA model without twisting. It should, however,

be noted that the higher error of the proposed model compared

to the TEFA model with twisting can partly be attributed

to inexact knowledge of the geometrical parameters provided

in [6]. For example, the proposed model cannot be applied to

the TSL,air,1 sample since the tabulated characteristics of the

sample result in a packing factor of 0.924, which is higher

than the theoretical maximum packing factor. In other words,

these samples are compressed to fit into a tight space, causing

the wire radii in the experimental setup to be smaller than the

nominal radii. Better knowledge of these litz wire samples as
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Fig. 9. Experimental test setup. (a) Test bench schematic, (b) test bench
picture, and (c) instrumentations.

they are in the experimental setup of [6] is required for a fair

comparison of the proposed model and the TEFA model.

The experimental verification for this paper was conducted

using the toroidal inductor in Fig. 1. An optimization algo-

rithm [7] was used to obtain the effective thermal conductivity

of litz wire in the inductor from experimental temperature

measurement and the thermal network model of the toroidal

inductor.

A. Experimental Set Up

The thermal resistance of the toroidal inductor was mea-

sured using the thermal test bench shown in Fig. 9. The

inductor, or device under test (DUT), was placed on a cooling

base plate with a set temperature. Heater resistors placed on

a copper plate on top of the DUT generate a fixed amount

of heat, hence a temperature gradient across the DUT. The

measured temperature gradient ∆T and the generated heat Q
can be used to calculate the thermal resistance across the DUT:

RDUT =
∆T

Q
. (33)

Another thermocouple was placed between the magnetic core

and litz wire at the bottom of the DUT (Fig. 10) for direct

measurement of thermal resistance between the hot plate and

the bottom of the core R1 and that between the bottom of the

core and the cooling plate R2.

Accurate determination of the thermal conductivity of dif-

ferent constituent materials requires negligible convection

and radiation from the DUT, and good thermal contact

from the DUT to the heater resistors and the cooling plate.

Thus, the DUT was placed inside a closed cork box with

kcork = 0.04 W/(m ·K) in a oven with regulated temperature.

The oven temperature is regulated at the mean value of cold

Fig. 10. Schematic of the samples showing measurements for thermal
resistances R1, R2 and RDUT.

TABLE III
LITZ-WIRE SAMPLES

Litz sample #1 #2 #3 #4

Number of strands 81 320 210 855

Strand diameter (mm) 0.2 0.1 0.2 0.1

Strand insulator thickness (µm) 12.5 8 12.5 8

Number of bundles 9 10 10 5

Strand pitch length (mm) 11.8 18.9 29.3 23.3

Measured external diameter (mm) 2.56 2.74 4.92 5

plate and hot plate temperatures to limit convection. Thermal

paste (kpaste = 10 W/(m ·K)) [12] with a supposed thickness

of 500 µm is applied to the DUT and a pressure of 78 N
is applied through a wooden plate to ensure a good thermal

contact between the DUT and the heating and the cooling

plates.

A brass sample with a known thermal conductivity was

used to validate the thermal test bench. This sample has the

same internal and external diameters as the sample toroidal

inductor, but is 3.44 times thicker to obtain a measurable

gradient of temperatures along this sample with relatively high

conductivity. A high-conductivity material was chosen for this

validation setup in order to determine the upper bound for

measurement uncertainty; the same uncertainty in temperature

measurement will result in a much lower error for estimating

the thermal conductivity of litz wire, which is typically about

two orders of magnitude smaller than that of brass. The error

between the measured and the estimated thermal resistance

of this brass sample is 10.7%, attributable to measurement

uncertainty, ignored convection and impurities in the sample.

The measurement on the sample is also reproducible, with only

0.5% difference in results between different measurements.

B. Samples and Measurement Results

In order to ensure that the analytical model (Section III) is

applicable for a variety of cases, the thermal measurement is

performed on various samples of litz wire and inductor.

1) Litz-Wire Samples: Four different samples of litz wire,

described in Table III, were used. Two of the litz samples (#1

and #2) have similar copper section as well as the other two

litz samples (#3 and #4). Two samples (#1 and #3) have the

same strand diameter to address the same switching frequency,

and so do the other two samples (#2 and #4).

2) Inductor Samples: The molding of the inductor and the

number of turns in the winding were also varied. In order
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TABLE IV
MEASUREMENT RESULTS OF THE DIFFERENT SAMPLES. FOR SAMPLE 4, R1 AND R2 ARE EXCLUDED BECAUSE OF A FAILED THERMOCOUPLE.

Sample 1 2 3 4 5 6 7

Litz #1 #2 #3 #4 #4 #4 #4

Molding height Bottom Bottom Top Bottom Top Bottom Top

Layer fill rate 100% 100% 100% 100% 100% 66% 66%

R1 (K/W) 3.17 3.04 2.15 - 1.71 3.10 1.72

R2 (K/W) 0.82 0.76 0.92 - 0.57 0.74 0.76

RDUT (K/W) 4.00 3.80 3.07 3.50 2.28 3.85 2.49

Fig. 11. Sample pictures. Top: before the litz wire cutting, bottom: after the
litz wire cutting (used for measurements). (a) molded only at the bottom and
100% layer fill rate, (b) molded to the top and 100% layer fill rate, (c) molded
only at the bottom and 66% layer fill rate.

to test the impact of the litz wire on the side, four inductor

samples (1, 2, 4 and 6) were molded only at the bottom of the

inductor as shown in Fig. 11 (a) whereas three samples (3, 5

and 7) were molded up to the top of the inductor (Fig. 11 (b).

Samples 1, 2, 4 and 6, in which the inductor is molded only at

the bottom, effectively provides a setup for direct measurement

of the litz wire transverse thermal conductivity whereas the

other samples are also influenced by the longitudinal thermal

conductivity. All the samples have a single-layer winding but

some samples (6 and 7) have fewer turns such that the winding

covers only 66% of the core in order to check the impact

of layer fill rate. Fig. 11 (c) shows an inductor with partial

winding filling which is molded only at the bottom. The impact

of the number of strands within a litz wire is also analyzed

on the samples. These different samples are summarized in

Table IV.

3) Measurement Results: The thermal resistances R1 (from

the hot plate to the bottom of the core), R2 (from the bottom

of the core to the cooling plate) and RDUT (R1 + R2) as

shown in Fig. 10 were calculated from the known generated

heat and the measured temperature gradient, and the results are

summarized in Table IV. These results can be used to obtain

the effective thermal resistances of litz wire since the thermal

properties of all other materials (epoxy, resin, core) as well

as the contact thermal resistances (thermal paste) are known.

Comparison of RDUT of samples 4 and 5 to that of samples

6 and 7 shows that higher layer fill rate reduces the thermal

resistance of the DUT. Thus, litz wire along the side of the

core improves thermal conduction compared to the molding

resin.

Fig. 12. Definition of litz-wire thermal conductivities. (a) Path of different
heat sources, (b) transverse and longitudinal resistances, as a thermal network
inside the litz wire, (c) definition of the longitudinal equivalent thermal
resistance with conductivity kleq substituting the thermal network in (b).

C. Identification of Litz-Wire Conductivities

The effective thermal conductivities of litz-wire samples

were determined using an optimization strategy based on

the experimental data. Because of the anisotropic behavior

of litz wire, two effective thermal conductivities need to be

determined, namely transverse (kt) and longitudinal (kl) as

shown in Fig. 12. A thermal network model, similar to the

2D model in Fig. 2, was developed for each sample and

the unknown parameters (kt and kl) were adjusted by the

optimization algorithm to minimize the difference between the

temperatures measured in experiment and those estimated by

the thermal network model.

In order to limit the meshing level of litz-wire material in

the inductor thermal network model, an equivalent longitudinal

conductivity kleq is defined (Fig. 12). This kleq is a represen-

tation of the faculty for heat to spread longitudinally in the

litz wire when the heat comes from its transverse direction.

If only transverse and pure longitudinal conductivities (kt and

kl) are used, a thinner meshing will be required.

There are altogether four different thermal network models,

one for each combination of molding height (top and bottom)

and layer fill rate (100% and 66%). Fig. 13 shows the thermal

network model for samples 1, 2 and 4, which are molded only

at the bottom and have 100% layer fill rate. Fig. 14 shows the

model for samples 3 and 5, molded to the top with 100%

layer fill rate. Thermal network models for samples 6 and 7

are similar to those in Figs. 13 and 14 respectively, but with

an additional thermal resistance representing resin in parallel

with Rlitz ∗ to account for the fact that the layer is not full [7].

For each litz-wire sample (#1 to #4), an optimization routine

is used to solve the inverse problem of finding the thermal

conductivity of the litz wire which minimizes the squared error

between the model estimations and the measurements. Fig. 15
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Fig. 13. Thermal network model for samples 1, 2 and 4, showing thermal resistances corresponding to the core material (light grey), epoxy (dark grey), grease
(light blue), resin (dark blue) and litz wire (orange). Litz-wire thermal resistances calculated using the equivalent longitudinal conductivity are surrounded by
dashed rectangle; the other litz-wire thermal resistances are calculated using the transverse conductivity.

Fig. 14. Thermal network model for samples 3 and 5, showing thermal resistances corresponding to the core material (light grey), epoxy (dark grey), grease
(light blue), resin (dark blue) and litz wire (orange). Litz-wire thermal resistances calculated using the equivalent longitudinal conductivity are surrounded by
dashed rectangle; the other litz-wire thermal resistances are calculated using the transverse conductivity.
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Fig. 15. Inverse problem for calculating the thermal properties of litz wire.

Fig. 16. Hot plate (top) and thermocouple temperatures (bottom) as a function
of the transverse thermal conductivity of the litz wire. The temperatures are
estimated using the thermal network models shown in Figs. 13 and 14, and
similar models for inductor samples 6 and 7.

shows the inverse problem to solve for estimating the litz-wire

thermal conductivity. For litz #4, the inverse problem is solved

simultaneously for inductor samples 4 to 7. Sensitivity analysis

for identifying the litz-wire effective thermal conductivity on

various parameters is discussed in [7].

Fig. 16 presents the sensitivity to the litz wire transverse

thermal conductivity kt of the temperature at the hot plate

TheaterPlate and the temperature measured between the bottom

of the core and the litz wire Tthermocouple. The temperatures

were estimated using the thermal network models in Figs. 13

and 14, and similar models for the inductor samples 6 and

7. It shows significant sensitivity of the temperatures to kt
for inductor samples 1–5, all of which have a 100% layer fill

rate. The sensitivities of samples 6 and 7, which have a 66%

layer fill rate, are poor because of the relatively high thermal

conductivity of the epoxy resin potting compared to the litz

wire transverse thermal conductivity. Thus, the samples 1 to

5 are more suitable for identification of the transverse thermal

conductivity with a low uncertainty.

D. Analytical Model vs. Experimental Identification

The effective transverse thermal conductivities calculated

using the proposed analytical model (Section III) are compared

to those obtained by optimization from the experimental tem-

perature measurements (Section VI-C). Table V summarizes

the values of effective transverse thermal conductivities for

each litz wire. The comparison shows that the analytical model

and the experimental measurement closely agree with each

other, with a maximum error of 12%.

The table also includes both arithmetic and geometric means

of the transverse conductivities for square and hexagonal pack-

ing. Because the predicted transverse thermal conductivities

for the two packings kt are only different by about 10%,

the choice of the particular type of mean does not have a

significant impact on the predicted kt.
The error of the proposed model is less than 2% for litz #1

and #2, and higher for litz #3 and #4. It can be appreciated

that litz #1 and #2 are used in inductor samples 1 and 2

respectively, in which the winding is cut and molded only

at the bottom of the inductor as shown in Fig. 11 (a); in

these samples, the longitudinal thermal conductivity has a

negligible impact on the inductor temperatures and the error of

the proposed model is very low. Litz #3 is used in the inductor

sample 3, which has a molded winding to the top of the

inductor core as shown in Fig. 11 (b); the error of the proposed

model is larger in this case because the longitudinal thermal

conductivity has a larger impact on the inductor temperatures,

thereby resulting in a larger uncertainty in the measured

thermal conductivity. Litz #4 is used in inductor samples 4–7,

with two different layer fill rates and two different molding

heights. However, the thermocouple of sample 4 broke during

the experiment, sample 5 is molded to the top, and samples

6 and 7 have a 66% layer fill rate. Thus, there is a higher

uncertainty in identifying the transverse thermal conductivity

from the measured temperatures, which results in a higher

error for the proposed model for litz #4.

It should be noted that the error of the proposed model for

litz #1 and #2 in Table V are negligible compared to the 10.7%

error in the measurement of a brass sample for validating the

thermal test bench discussed in Section VI-A. This lower error

compared to the test bench validation can be attributed to the

low effective thermal conductivity of litz wire, which is about

two orders of magnitude lower than that of the brass sample.

Thus, similar errors in temperature measurement will result in

a much higher error in estimating the thermal conductivity of

the brass sample compared to that of litz wire.

For comparison, the transverse thermal conductivity kt of

the four litz wire samples were also calculated using two

versions of the TEFA model from [6]. One of the version

accounts for the twisting of the litz wire strands (the extended

numerical model proposed in [6]), which the other version

does not consider (as used in Section IV-B). The results are

also included in Table V.

The error of the TEFA model without consideration of

the twisting pitch, compared to the experimentally identified

litz conductivity, is higher than 50% for each litz wire. This

large error can be attributed to the fact that the samples have

been molded into a resin having a good thermal conductivity

(2.16 W/(m ·K)). This is similar to the result in Fig. 8, which

demonstrates that the TEFA model has a larger error for high

values of gap thermal conductivity.

The extended version of TEFA model which considers the

twisting pitch provides an error less than 18% for litz #2,

#3 and #4, compared to less than 12% for the proposed

model. This extended version of the TEFA model has a much
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TABLE V
TRANSVERSE THERMAL CONDUCTIVITIES, kt (W/(m ·K)). THE PERCENTAGE ERRORS ARE SHOWN IN PARENTHESES.

Litz #1 #2 #3 #4

Experimental 0.79 0.85 1.11 1.225

Square 0.769 0.813 1.151 1.048

Proposed Hexagonal 0.845 0.891 1.220 1.127

Model Arithmetic Mean (Error (%)) 0.807 (2.11) 0.852 (0.27) 1.185 (6.79) 1.088 (-11.19)

Geometric Mean (Error (%)) 0.806 (1.99) 0.851 (0.16) 1.185 (6.75) 1.087 (-11.24)

TEFA Without Twisting (Error (%)) 0.345 (-56.37) 0.254 (-70.18) 0.327 (-70.56) 0.244 (-80.09)

Model With Twisting (Error (%)) 1.505 (90.52) 0.899 (5.78) 1.120 (0.89) 1.439 (17.45)

smaller error than the proposed model for litz #3; however, the

uncertainty in identifying kt from the measured temperatures

is not negligible due to the impact of longitudinal conductivity.

The extended version results in a large error, as much as 90.5%

in predicting kt for litz #1. This large error may be attributed

to the short pitch length of litz #1, the small number of strands

in each bundle, and the discrete nature of the numerical model

of the extended verion of the TEFA model. As the pitch length

increases from litz #1 to to #3, the error decreases; the larger

error for litz #4 may be attributed to the large uncertainty

in identifying the transverse thermal conductivity from the

measured temperatures of Samples 5–7.

Thus, it can be concluded that the proposed model can

accurately predict the transverse thermal conductivity kt with

an error less than 12%. The error is even smaller if kt can be

more directly identified from the temperature measurements

as in the cases of litz #1 and #2. It also provides a smaller

range of error compared to the TEFA model of [6].

VII. CONCLUSION

With the growing constraints of integration of power sup-

plies, magnetic components need to be sized considering their

environment and available cooling methods. For this purpose, a

first-order thermal network model of magnetics is required, in

which the main challenge is modeling the thermal properties

of the anisotropic litz-wire material; existing models in the

literature are not applicable to litz wire, have a large error or

require experimental data [4]–[6].

This paper proposed an accurate analytical model of the

effective thermal conductivity and resistance of a group of

insulated wire strands assuming regular square or hexagonal

packing. Comparison of the proposed thermal model to finite

element analysis shows a maximum error of 18% for a

wide range of parameters. Implementation and application

of the proposed model for practical windings and litz-wire

strands were also discussed. Experimental identification of

litz-wire effective conductivities using some sample inductors

also shows that the proposed model agrees closely with the

measured results, with an error less than 12%; this error range

is less than the error of the benchmark approach.

The proposed model overcomes the limitation of the models

found in the literature. The model can be easily implemented

to determine effective thermal conductivity of windings or

litz wire and can provide insights for improving their thermal

performance. The model can also be used by manufacturers

for providing data on the effective thermal conductivity of litz

wire. Because the model provides a closed-form solution, the

computation times are very fast; it takes less than 100 ms to

run a thermal network model of the toroidal inductor, together

with the proposed model of the winding thermal resistance,

on a typical personal computer. It can be used by power

electronics designers to fairly and quantitatively compare the

performance of many different litz wire designs and potting

materials. In other words, the proposed model can be used

in an optimization process for magnetics design considering

thermal performance.
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