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Abstract

For several years, Model Predictive Control (MPC) is depicted in the literature as a promising way to increase

buildings’ energy efficiency during operation. This model-based control technique uses the optimal control

theory to provide a constraint compliant, anticipative control, maximizing performance criteria. However,10

building and calibrating a reliable model for a real application is difficult, costly and time-consuming.

Indeed, it requires hard expert work to retrieve all the building’s data and tune the corresponding model.

This prevents MPC to be widespread in Building Management Systems.

In this paper, we propose a MPC formulation where all the optimization problems included in a MPC

strategy (calibration, estimation, optimal control) are performed efficiently using gradient-based techniques

and adjoint-based gradient computations. This formulation relies on an automated “white-box” modeling

technique (with partial-differential equations) using Building Information Model (BIM - using gbXML

standard here) files parsing. We also show that making extensive use of adjoint models in MPC opens

opportunities for fast sensitivity analysis, which can, for instance, help to choose which parameters to

calibrate.
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Nomenclature

Building model notations

θ Vector of temperature nodes

ϑ Subset vector of temperature nodes

A, B Building’s state space matrices20

p Vector of constant parameters

u Vector of thermal inputs (time dependant)

Mathematical Notations

∫
t∈T x.dt Integration of x over time interval T

∑
Sum symbol (of all vector elements if provided without indices)25

A Matrices in bold italic upper case

AT Transposition of matrix A

v Vectors in bold italic lower case

v∗ Adjoint of vector v

vT Transposition of vector v30

vi ith element of vector v

argmin Argument of the minimum of a given function

Jpurpose Cost function (scalar) with optimization purpose in subscript

Vector spaces

P = Rj Space of model scalar parameters (thermal coefficients...)35

S =
[
L2 (T )

]k Space of model states (k temperatures as square integrable functions over time interval T )

U =
[
L2 (T )

]i Space of model inputs (i square integrable time functions)

V =
[
L2 (T )

]l Space of time dependant parameters (l square integrable time functions)
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1. Introduction

1.1. MPC in buildings40

Model Predictive Control is an advanced control technique initiated by Richalet [1], and generalized by

Clarke [2], to implement the optimal control theory to real-time control of dynamic systems. It was first

applied to industrial applications (petroleum industry), and then in many other fields (robotics, avionics...).

Classical optimal control is an open-loop control. It consists in optimizing a command law over a

prediction horizon, according to a dynamic model of the controlled system, and supposed initial conditions45

and solicitations predictions. Unfortunately, these elements are often subject to errors and uncertainties. A

MPC strategy consists in adding some feedback to optimal control to reduce the impact of such uncertainties

and perturbations.

A full MPC strategy can be divided in four steps (figure 1):

Model Definition Model Calibration Optimal control

Estimation

MPC
Control

Measurements

Measurements

Offline Process Online Process

Figure 1: MPC strategy

Offline steps50

• Model definition: There are many ways to build up the model representing the behavior of the

controlled system. This model can be physical, using differential equations deduced from an analysis

of the building structure, or purely numerical (“black-box model”) such as ARX statistical models

or neural networks. Physical models can come with different levels of definition, according to the

simplifying hypothesis. Detailed zonal-nodal models [3, 4] are used intensively in well-known building55

simulation software (EnergyPlus, TRNSYS...) under the denomination of “white-box models”. Low

order physical models, also called “grey box models”, use a more simplifying hypothesis (for example,

the electrical RC network analogy [5]), and are often easier to handle for control purposes.

• Model calibration: The calibration phase consists in finding a set of model parameters values such

as the model response matches with in situ measurements. For black-box models, parameters are60

always unknown and a calibration phase is mandatory. The calibration of such models takes generally

advantage from their structure (backpropagation for neural networks, subspace methods for linear

systems...). Physical models are often subject to modeling errors and parameter uncertainty, and a

calibration step helps to reduce output errors.
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Online steps65

Since we have a model with a response close to reality, we can use it sequentially in optimal control

steps, and state estimation phases giving feedback in the control process.

• Optimal control: The optimal control phase consists in computing a control law maximizing a per-

formance criterion over a prediction horizon. In the case of constrained optimization, the user can

define constraints on system inputs and outputs, that will be taken into account during the optimiza-70

tion process. Unlike standard regulation control techniques, this kind of formulation can directly take

into account control constraints, consumed energy and comfort criterion. Several mathematical frame-

works were developed to solve optimal control problems, like Pontryagin’s principle [6], the theory of

dynamic programming [7] or the optimal control theory of systems governed by partial differential

equations [8].75

• Estimation: To deal with the open-loop nature of optimal control, computed control laws are re-

peatedly updated with an initial state and corrected parameters provided by a state estimation step.

Indeed, if the number of model states is high (e.g. the number of temperature points simulated by a

thermal model), providing a sensor for each state can be difficult and costly. State estimation tech-

niques can use the control model to estimate states and parameters complying the best with local80

measurements.

The imbrication of these two sequential steps is summarized in figure 2. At each time tk, one can perform

a state estimation from past measurements and applied inputs. Then one computes an optimal command

law over the prediction horizon [tk, tk + tf ] with the estimated state as initial condition. This command is

applied until the next update step at the time tk+1 < tk + tf . As the prediction horizon is always pushed85

forward, it is also called the “receding horizon”.

Estimation Optimal control

Figure 2: MPC: online steps and receding (prediction) horizon

Many studies advocate the potential of MPC to generate energy savings in buildings during operation.
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The study [9], for instance, implements a MPC strategy generating 20% more energy savings than a weather-

compensated feedforward control strategy. Ph.D. investigations of [10] indicate energy gains between a range

of 5% to 20% for Distributed MPC strategies towards standard regulation techniques while preserving90

thermal comfort. Such ranges are commonly found in literature ([11, 12]). However, deploying MPC in

buildings is not straightforward, and one can often struggle with two major obstacles :

• Building and tuning a precise dynamic model is a complex task. Standard building simulation soft-

ware (EnergyPlus, Comfie Pléiades, TRNSYS...) can help to build deterministic physical models,

but assume one perfectly knows the building’s structure and physical parameters, often subject to95

important uncertainties [13, 14, 15, 16]. Such uncertainties usually lead to a bad evaluation of energy

performance [17, 18]

• It is also difficult to predict the building’s thermal solicitations. Weather forecasts present an increasing

bias with time and are subject to microclimate variations. Predictions of use can also lack reliability,

and can lead to erroneous anticipation of setpoints and internal gains.100

1.2. Model calibration for MPC

To face uncertainties in MPC, model calibration is often mandatory. Many model calibration techniques

exist in the literature, and they are highly dependent on model choices (one can refer to the review [19]

for application in buildings energy simulation). For example, neural network models are calibrated by

dedicated back-propagation techniques. “Subspace” methods are applied on specific stochastic linear models105

and ARIMA models are specific polynomial models often used for time series prediction. A more generic

and theoretical background, applicable to physical models, can be found in the inverse problems’ literature.

All these techniques imply at some point to choose specific measurements that one wants to minimize

the error with. For some of them (particularly in the case of physical models), one also has to choose

parameters to calibrate. Since a model is used for MPC, it must provide the best prediction performance110

of the outputs used in the control cost function. Calibration and estimation steps aim to reduce prediction

errors along with the control procedure. This implies the use of a good calibration technique properly used

and associated with appropriate in situ measurements.

In practice, applying a calibration strategy with good results is challenging and leads to several issues:

• For black-box models, one generally needs a huge amount of data for calibration, since there is no115

physical meaning in parameters that could lead to preconditioning. Besides, they are often prone to

overfitting.
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• For white-box models, the parameter number can be high, which can increase computation time, per-

formance, and even compromise the convergence of the calibration problem. Besides, most well known

white-box modelers encapsulate models in a simulation engine that doesn’t provide any gradient, pre-120

venting the use of efficient gradient-based techniques. Tools like GenOpt [20] provide solutions when

derivatives are not available, but having access to derivatives alongside simulations can lead to signific-

ant improvements in convergence speed. The reader can refer to [21] for a review on simulation-based

calibration techniques applied to buildings.

• In many cases, the choice of sensors is induced by common sense and technical limitations. However,125

this choice can have quite important effect on control performance, as one will see further in this

study.

1.3. Objectives and structure of the paper

We have two main objectives in this work:

• First, we show that there are powerful mathematical frameworks to efficiently include gradient com-130

putation in building simulation models. Such a gradient can be of great interest in MPC.

• Then, in the case of simulation-based calibration, we highlight the impact that parameters and sensors

choice can have, and how we can use gradient-based techniques to help this choice.

To do so, we present here a theoretical framework for MPC and calibration in buildings using zonal-nodal

modelization and the adjoint method for fast gradient computations. Then, using this approach, we show135

on a test case how choosing identified parameters and sensors for each step of the MPC process can impact

final performance. From these observations, we propose a method taking advantage of the adjoint method

to compute sensitivity indices and select the most influential parameters for MPC.

2. Theory: MPC using zonal-nodal models and the adjoint method

In this theoretical section, we remind the theory of zonal-nodal modeling for buildings. Then, we140

introduce a general MPC formulation based on successive optimization problems and show how an adjoint-

based gradient method can solve them efficiently.

2.1. Building modelization

A building and its environment can be modeled using a standard zonal-nodal model, quite common in the

state-of-the-art of building simulation software [3, 4]. This modelization technique consists in representing145
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each building part by a set of interconnected temperature “nodes”, and is a particular discretization of heat

transfer equations with simplifying hypotheses:

• Environment: all meteorological parameters (temperature, cloud coverage, solar irradiance) are in-

volved in model boundaries equations.

• Zones: Volumes where all physical properties (pressure, humidity, temperature...) are considered150

homogeneous. Consequently, zones have a unique temperature node. Generally, a zone includes the

air and the furniture of a room. A zone can include several rooms and walls if thermal exchanges

between them are sufficient. A large room with heterogeneous temperatures can also be subdivided

into several zones.

• Walls and surfaces: Building envelope parts where heat conduction is supposed unidirectional. Walls155

equations are obtained by applying finite elements discretization of the heat transfer equation along

with wall depth.

• HVAC Systems: Heating, Ventilation, and Air-Conditioning systems are modeled by a state-space

equation where the state vector contains some temperatures of the system.

 Wall

Node

Heater

Zone

Figure 3: Zonal-Nodal modelization

Due to heat transfers (radiation, conduction and convection), the equation of each part is more or less160

connected with the others. Consequently, all equations can be compiled in a global state equation, where

the state vector contains all the node temperatures of the system :

dθ

dt
= Aθ +Bu (1)

where θ is the vector of temperature nodes, u the thermal inputs vector of the system (boundary

temperatures and heat flows), A and B the matrices of coefficients due to thermal mass and thermal
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transfers.165

If one considers the general spaces defined in the nomenclature, then θ ∈ S, u ∈ U . Besides, A and B

are build up from elements of vectors in P and V and therefore can be time-dependant.

2.2. MPC as a set of optimization sub-problems

As seen in 1.1 on page 3, a MPC strategy can be decomposed in several sub-problems: model definition,

model calibration, estimation, and optimal control. The first one is an expert task and invokes the use170

of specific modeling knowledge. However, calibration, estimation, and optimal control can all be seen as

optimization problems, and consequently be solved similarly. The following examples show how we can

formulate these three steps and the next section generalizes this approach.

2.2.1. Calibration

For each built model, there is error induced by modelling hypothesis and parameters bias. Calibration175

techniques are often used to estimate exact parameter values for uncertain, missing parameters, or for

thermal property assessment. In our case, the model is preconditioned by the knowledge one have on the

building, but our goal here is to fit simulation results with corresponding measurements. Besides, one wants

parameters to keep a physical meaning, but there may be some flexibility on their values. With these

assumptions, one can choose a set of parameters to calibrate in order to fit the simulation results with a180

set of measurements, and can consequently represent the calibration problem by the following optimization

problem:


p◦ = argmin

p∈P
Jcal (p)

Jcal = 1
2

∑∫
t∈Tcal

(ϑ (t)− ϑmes (t))
2
dt+ R

R = ε
2

∑
(p− p̊)

2

(2)

Here, one wants to find the vector of parameter values p ∈ P minimizing Jcal, the quadratic cost (scalar)

associated with the discrepancy between temperature measurements vector ϑmes and the corresponding

simulated temperatures ϑ during the calibration time interval Tcal. Jcal contains a Tikhonov regularization185

term R to help problem solving. This term implies that unknown parameters are not too far from their

initial guess p̊.

This approach was successfully experimented in inverse heat transfer problems [22, 23] and also used by

our team on building thermal audit for retrofit [24, 25].

One major difficulty in this approach consists in finding sets of measurements and parameters providing190

the best performance for the considered application. This issue will be discussed further in this paper.
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2.2.2. Estimation

Most of the time, the calibration phase is not enough to compensate for all modeling errors. If we

suppose we have the correct model inputs and initial states, one will observe an increasing deviation of the

simulation results against reality. To compensate for this deviation, we have to re-estimate some well-chosen195

parameters regularly. Then, the estimation phase is also a calibration problem but with a reduced number

of parameters and measurements.



θ◦ (t) = θ (t, q◦)

q◦ = arg min
q∈Ugains

(Jestim + T )

Jestim = 1
2Σ
∫
t∈Te

(ϑ (q, t)− ϑmzone (t))
2
dt

T = ε
2

∑∫
t∈Te

q2dt

(3)

In this case, we choose to compensate for the deviation with “corrective” internal heat gains q◦ ∈ Ugains ⊂

U , minimizing Jestim the quadratic error against zone temperature measurements vector ϑmzone over the

estimation time interval Te. Since internal gains are time-dependant parameters, the regularisation term200

T features integration over time. Then, temperatures estimation θ◦ is the simulation result of our building

model with internal gains substituted by computed corrective gains q◦.

The choice of estimating q is motivated by the high uncertainty on this input (it is almost impossible

to measure in a “standard” environment (ie. not an extensively monitored lab experiment). Besides, we

observed on various simulations that ϑmzone is very sensitive to q, so these temperatures seemed to be the205

minimal measurements necessary for such estimation. Correction of internal gains can also have a corrective

effect on system states.

2.2.3. Optimal control

In the optimal control problem, we want to find parameters minimizing a cost associated with comfort

and consumption measurements. In our test case, we wanted to optimize thermal comfort towards used210

power. Then we formulated the control problem as the following optimization problem:



u◦heaters = arg min
uheaters∈Uh

Jc (uheaters)

Jc = aJcomf + bJpower

Jpower = 1
2

∑∫
t∈Tc

u2
heatersdt

Jcomf = 1
2Σ
∫
t∈Tc

oc(t) (ϑ (uheaters, t)− ϑset (t))
2
dt

0 ≤ uheaters ≤ uheatersmax

(4)

In this case we want to compute the optimal power of heaters u ∈ Uh ⊂ U minimizing the cost function
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Jc over the control time interval Tc, linear combination of costs Jcomf and Jpower. Jcomf is the quadratic

cost of the zones’ temperature error relatively to temperature setpoints during occupancy periods (oc is a

Boolean vector function representing the presence or absence of inhabitants). Jpower is a quadratic cost on215

the instant power uheaters consumed in zones. One can notice that Jpower does not represent the consumed

energy in a physical sense. However, such quadratic term still penalizes energy consumption and provides

more convexity to the optimization which is convenient for numerical solving. In future studies, one could

use linear costs such as energy with appropriate optimization algorithms.

2.3. Application of the adjoint method for MPC220

Given the equation (1), one can apply the optimal control theory to find the best command for a set-

point or estimate a given set of parameters. Each optimal command or parameter estimation problem can

be formulated as an optimization problem. For an estimation problem, the cost function to minimize will

measure the distance between measurements and simulation results. For an optimal control problem, the

cost function can be the distance between a setpoint and the simulated room temperature. Such optimization225

problems can be formulated generically by the following quadratic optimization problem:


w◦ = argmin

w∈W
J (w)

J = ‖Of (w)−m‖2M + ‖T (w −w0)‖2W
ϕ (Of (w)) ≤ 0, ψ (w) ≤ 0

(5)

Here f is the building model, s ∈ S the model state vector and w ∈ W ⊂ (P ×V) a subset of all model

variables (inputs and parameters, both constant and time dependant), such as:

s = f(w) (6)

For our model, spaces W and S are square-integrable on the time range T = [0, tf ], with their classical

scalar products and norms. For example, ‖s‖2S =< s|s >=
∑∫

t∈T s
2(t).dt is the L2 norm of vector s in S.230

We define similarly the space of setpoints and measurementsM, subspace of S. J is the cost function

to minimize, with constraints ϕ and ψ on model’s response and entries. O , is the observation operator

from S toM which models a measure m on the building. Likewise the vector m can represent a setpoint.

T is a linear operator applied over model parameters and a priori values w0.

Supposing that the problem is well-posed (according to Hadamard’s definition), one can efficiently find235

the solution with the adjoint method coupled with a gradient-based optimization algorithm [8, 26]. Indeed,

with the adjoint method, one can compute the gradient with the numerical cost of approximately two
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simulations: one for the “direct model” (1) and one for the “adjoint model” derived from the optimization

problem. The gradient is then a simple function of both simulation results. Constraints can be ensured

with gradient projection techniques, barrier functions or Uzawa’s method for example [27].240

Application example of the Adjoint Method for optimal control of a linear system. To show the application

and the interest of the adjoint method, one can apply it on a more specific example. One wants, there, to

find an optimal command law over a finite time horizon [0, tf ] for a time-independent linear system. This

case matches with our building model as described previously.

With null initial conditions, the model is represented by the following equation system:245


dθ
dt = Aθ +Bu t ∈ [0, tf ]

θ (0) = 0
(7)

With θ the temperatures vector, u the control vector, A the state matrix and B the command matrix.

One aims to find the command u (t) over [0, tf ] minimizing the following cost function:

J =
1

2

∫ tf

t=0

(
(θ − c)T P (θ − c) + uTQu

)
dt (8)

P and Q are positive symmetric weighting matrices. With such linear model, the Lagrangian associated

with the optimization problem is:

L = J +
∫ tf
0
θ∗T

[
dθ
dt − (Aθ +Bu)

]
dt (9)

The Lagrangian is here the sum between the cost function and the scalar product of the differential equation250

and a Lagrange multiplier θ∗with the same dimension than θ.

A solution of the optimization problem must fulfill the equality:

∂L
∂θ

=
∂L
∂θ∗

=
∂L
∂u

= 0 (10)

Also, ∂L
∂θ∗ = 0 since θ is a solution of the equation (7). If one rewrite(9) with an integration by parts:

L = J +

∫ tf

0

θT
[
−dθ

∗

dt
−ATθ∗

]
dt+

∫ tf

0

θ∗T [−Bu] dt+
[
θ∗Tθ

]tf
0

(11)

Then, with the equality ∂L
∂θ = 0 can lead to the variational form (also called the weak formulation) of
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the adjoint model:255  −
dθ∗

dt = ATθ∗ − P (θ − c) t ∈ [0, tf ]

θ∗ (tf ) = 0
(12)

Since this differential system has final conditions instead of initial conditions, one must solve it numer-

ically backward.

Since θ is a solution of (7):

J (u) = L (θ,θ∗,u) (13)

Then one can write the gradient of the cost function J as a partial derivative of the Lagrangian:

∇uJ =
∂L (θ,θ∗,u)

∂u
(14)

this leads to an explicit formulation of the gradient of the cost function as a function of the adjoint state260

vector θ∗:

∇uJ (t) = QTu (t)−BTθ∗ (t) (15)

From a numerical point of view, one can then compute the gradient with only two consecutive simulations

of differential systems, the direct one and the adjoint one, with any temporal horizon and discretization

step. If one wanted to compute the gradient with a finite difference approach, he should perform simulations

of the direct system for a little variation of u along each dimension and discrete-time of u, which is much265

more costly.

2.4. Software implementation

As we can see, the adjoint method eases the computation and can be used at all steps of a MPC strategy.

To test and implement this approach of optimization problems on buildings, our team developed ReTrofiT

(REal Time eneRgy simulation and Optimization soFtware Toolbox), a software toolbox implemented in270

Matlab [28].

With this toolbox, we built a program to perform and evaluate our MPC strategy, both in simulation

and on a real test case. This toolbox presents the following global architecture:
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gbXML
model file

Linearized "sensitivity"
model

Direct model

Parameters

Solver (Euler implicit..)

Optimization problem
Cost function
Constraints

Optimization algorithm

Data
Parameters values
Weather data
Sensors

Adjoint model

Figure 4: ReTrofiT architecture

The toolbox is developed with an Object-Oriented Paradigm. Each box of the diagram (4) is a specific

class.275

Then, several steps can be performed sequentially inside a script:

• Data and BIM (Building Information Model) parsing: the software provides tools to parse measure-

ment and weather data (CSV format) as well as BIM in gbXML standard.

• Direct model building: building model objects can be programmatically created, as well as generated

from BIM data. Discretization rules (in walls and space) can then be declared to generate a numerical280

model and configure the numerical solver.

• Optimization problem definition: an object describing an optimization problem can be defined. This

object contains the cost function, the set of parameters to optimize, the set of constraints and the

chosen optimization algorithm with associated parameters.

• Adjoint model and linearised models generation: when needed, the optimization algorithm can call285

linearised and adjoint models for fast gradient computation.

Simulation implementation details. As seen in 1.1 on page 3, a building thermal model can be written as

a linear state space equation (1). This kind of differential equation can be solved easily. In our case, we

chose a fixed time-step discretization and implemented an implicit Euler solver. Some specific functions were

developed to handle time vectors as well as input and output vectors. The system matrices are automatically290

built from the building model defined in a script or generated from a gbXML file.

Optimization implementation details. The adjoint model required for optimization is very similar to the

simulation model (the reader can refer to [8] for more theoretical information and in section 2.3 on page 10

for mathematical developments). Its matrices and solution are then obtained with almost the same method,

by compiling the building model and the optimization problem accordingly. One important difference lies295
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in performing a backward simulation, which is done by changing appropriate signs and flipping time vectors

after the Euler implicit solving. The cost function object is linked with simulation and adjoint models to

compute gradients efficiently and provide them to the defined optimization algorithm.

3. Results and discussion

Alongside the development of ReTrofiT, we also deployed this work on the Model Predictive Control300

of an experimental building we present in the following section. With this experimental work, on a well

known and heavily instrumented building, we faced many difficulties in choosing good sets of sensors and

parameters for calibration. These integration difficulties led us to investigate further the methodological

need for parameter and sensor selection. Specifically, we present here how sensor and parameter choices

impact prediction performance, then how the adjoint method could be used to help this choice.305

3.1. Test case

The test case used in this study is the INCAS I-MA house 5, an experimental building of the INES

institute, located at Savoie Technolac, Chambery, France [29]. This building is designed like a classic

two-floors domestic dwelling, built with modern construction materials and techniques.

Figure 5: INCAS I-MA house

Walls are made of brick blocks with an outside aerogel plaster and a standard gypsum cover inside. This310

building is provided with numerous temperature sensors: at each material interface within the walls, at the

inner and outer surface of the walls and inside each room. A solar sensor provides diffuse and direct solar
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radiation. Each room has an electric heater and is connected to a centralized AHU (Air Handling Unit)

system.

A specific program based on ReTrofiT was hosted on a server exchanging data with the building inform-315

ation system handling both measurements and controls.

3.2. Importance of parameters choice and sensors for the calibration phase

As we saw previously, the calibration problem can be formalized by the equation 2 on page 8. For a

given calibration case, we have to choose the set ui of parameters to calibrate, and the appropriate set of

temperature sensors Tmi. The selection of both sets is a combinatorial problem that suffers from the curse320

of dimensionality. For example, if we limit ourselves to 5 temperature sensors on wall surfaces and zones (55

positions available in our test case), and we fix the set of parameters to estimate, we got 3478761 possible

combinations. Since at present the optimization algorithm is quite long to converge (order of magnitude:

1h), it could take more than the impractical time of 397 years to find the best set by brute force on a regular

computer.325

One could argue that we can only choose the most unknown parameters, and select the most reliable

sensors with the most responsiveness to the building’s thermal dynamics (intuitively, where the temperature

is the most likely to change, to best capture the dynamic properties during calibration). We tried this

approach on our test case, but it revealed itself cumbersome and with poor results. We had to tune some

parameters manually and empirically to achieve an “acceptable” result. By the way, if some studies were330

led to evaluate the global uncertainties we can have on each part properties [14, 13, 16], this approach stays

quite empirical and hard to adapt on each particular case. Besides, one could say that the more sensors

we use, the better the calibration is since we retrieve more information. However, we performed several

calibration tests refuting this assertion. Each of those tests is performed according to the diagram figure 6.

Between each test, we modify sets of sensors, calibrated parameters and their first guess error, and compute335

the calibration quality (quadratic error on parameter estimates and model prediction over a finite horizon).

Reference	
Model

Bias	on	selected	parameters

Biased	Model	
response

Exact	Model	
response

Calibration
algorithm

temperature
sensors

sensors	selection calibrated	parameters	selection

Parameters	estimates

Prediction	error

temperature
sensors

Measured	error	between

exact	and	biased	models

Figure 6: Experimental process of virtual calibration tests

With this experiment scheme, we define three test cases:
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Test 1 We impose here an error of −30% on the parietal conductivities. We seek to identify only the

conductivity coefficients.

Test 2 The error of −30% is this time imposed on the conductivities and the coefficients h of convective340

coupling. These are also the parameters we seek to estimate.

Test 3 This test is identical to the previous one, except that only the conductivities are identified. This

corresponds to the current case where one seeks to calibrate only a subset of the parameters

whose a priori is false.

For each test case, we vary the set of temperature sensors used for the calibration:345

Set ZP Sensors positioned on all areas and surfaces of each wall (indoor and outdoor), for a total of 55

sensors.

Set Z Sensors measuring the temperature of the 5 zones of the building.

Set Z1,2 Sensors measuring only the temperature of the two controlled parts.

Each calibration is performed by a Levenberg-Marquardt algorithm, with 300 successive linearisations. On350

all 300 iterations, only the best value is kept (the convergence can stop before reaching the 300th iteration).

Each calibration is performed on 7 days of data. It is then tested in prediction over an interval of 7 additional

days consecutive to the calibration period.

For each calibration, we can notice the following errors:

ei Response error on the calibration interval, before calibration.355

ec Error on the calibration interval, after calibration.

ep1 Consecutive prediction error: The calibrated model response is computed over 14 days (the

calibration and prediction interval consecutively). The error is computed on the prediction

interval.

 Biased model response

Exact model response Calibrated model response

Calibration Interval Prediction Interval (validation) time

Same initialisation

Figure 7: Calibration and prediction intervals (example)
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In our case, we calibrate the model to decrease the prediction error of temperatures θi involved in the360

MPC cost function, corresponding with sensors Z1,2 for instance.We can compute the quadratic prediction

error with the following equation(16):

ep =

√√√√√∫t∈Te

((
θ1 − θ̃1

)2
+
(
θ2 − θ̃2

)2)
dt∫

t∈Te
θ21 + θ22dt

(16)

Each column of this table corresponds to one of the three test cases and each row to the sensors used for

calibration. In each box of the table is represented the evolution of the cost function used for the calibration

during the iterations of the optimization algorithm. For each test, we also present the convergence results365

in table Convergence for each test case / sensor set .

All test results are summarized in the following tables. Each row correspond to a test case and each

column to a sensor set used for calibration.

Sensor set for calibration => ZP Z Z1,2

Test case 1 Conductivities 9.28 12.18 25.51

Test case 2
Conductivities 18.69 24.05 28.19

hext 5.18 15.48 29.39
hint 7.03 18.84 29.63

Test case 3 Conductivities 95.92 44.76 31.98

Table 2: Test 1 - Quadratic parameters estimation errors (in precents)

Sensor set for calibration => ZP Z Z1,2

Test case 1 0.0062 0.18 0.32
Test case 2 0.0477 0.25 0.62
Test case 3 2.55 1.94 1.71

Table 3: Test 1 - Quadratic prediction errors ep on sensors Z1,2 (in precents)

For the two first tests, the most complete sensor set provided the best calibration results, but increasing

the set of parameters to calibrate reduced the calibration performance. However, for the third case, the370

best calibration result is obtained for the minimal sensor set Z1,2. This leads to the following conjectures:

• For test cases where parametric errors are only present on calibrated parameters, increasing the number

of sensors increases calibration performance.

• When parameters with a bias are not calibrated and when parameters have similar effects on the

calibration cost function, increasing the number of sensors decreases the calibration performance.375

In a real case, we do not know where are parametric errors, and parametric assumptions errors can com-

promise calibration results. Plus, we can’t calibrate all parameters at once since the problem can become
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ill-posed and impossible to solve even with regularization techniques (several parameters have similar influ-

ences). Besides, selecting parameters to calibrate using uncertainties on each specific case is not practical.

However, sensitivity studies could be used to help to point out the most influential parameters in MPC380

and calibration processes. Since the adjoint method provides an efficient way to compute gradients and

gradients are often used in sensitivity computation techniques, we explored its use in specific sensitivity

studies for MPC.

3.3. A sensitivity study for selecting parameters

To select a good set of parameters, we have to remind the main objective of model calibration. Here,385

we want to calibrate the model to get the best predictive performance for MPC. Therefore, the precision

in parameter estimation is not mandatory. As we seek here to guarantee optimal control performance, it

seems logical to try to select the parameters that have the greatest influence on the latter.

Besides, many sensitivity studies where conducted on buildings’ thermal performance or comfort. Tree

main kind of sensitivity indexes can be identified:390

• Local sensitivity indices (gradient): Local indices are based on a direct differentiation of the

model at a given point. With a gradient calculated by the adjoint method, it is possible to quickly evaluate

the local sensitivity of model outputs (eg temperatures) [30]. However, local indices do not take into account

model non-linearities and interactions between parameters.

• Qualitative indices based on screening: This type of index provides an initial (approximate)395

evaluation of the most influential parameters. The screening method uses a more or less gross discretization

of the parameter space. In the Morris [31] method, the individual (finite difference type) effects of each

parameter are evaluated on different points of the space by respecting the probability distributions of the

parameters (OAT method: One-At-a-Time). The Morris indices are then constructed by evaluating the

mean and variance of the individual effects. For the "experimental design" method, we try to approximate400

the model response by a polynomial function whose coefficients can be seen as sensitivity indices. The

identification of the coefficients is done for realizations of the experiment (or simulation of the model)

according to well-chosen factorial plans (often a combination of the min and max values of the parameters).

These methods are often subject to combinatorial explosion problems. The reader can refer to [32] for a

comparison of the screening methods applied to thermal models of the building.405

• Indexes based on an analysis of variance: Sobol’s global sensitivity indices are based on a

probabilistic definition of the inputs and outputs of the model and a variance decomposition method (de-

composition ANOVA - ANalysis Of VAriance) explaining the impact of each combination of parameters on

the output [33]. Their evaluation is generally based on Monte Carlo or quasi-Monte Carlo methods, which
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is often very computationally expensive.410

As the problem of optimal control takes few minutes to be solved here, and we have in our case 750

non-null scalar parameters (more than 1500 parameters in the model), it is unthinkable to use conventional

techniques of global sensitivity (computation of Sobol indices, or Morris method).

However, it is possible to quickly compute the gradient of the minimum of the cost function in order to

deduce sensitivity indices related to optimal control [34]. In fact, let Jc be the cost function of the optimal415

control, p ∈ P the parameters vector of the building model, c the control law and c◦ the optimal control

law. c◦ included in the control space C ⊂ U is a function dependent on p:

c◦ = argmin
c∈C

Jc (p, c) (17)

The minimum of Jc is:

Jcmin = Jc (p, c◦ (p)) (18)

After derivation, the gradient ∇pJcmin in a point p0 is:

∇pJcmin (p0) =
dJcmin

dp
(p0) =

∂Jc
∂p

(p0, c
◦ (p0)) +

∂Jc
∂c◦

(p0, c
◦) .

∂c◦

∂p
(p0) (19)

We can then simplify the previous expression:420

∇pJcmin (p0) =
∂Jc
∂p

(p0, c
◦ (p0)) (20)

Indeed, ∂Jc

∂c◦ (p0, c
◦) = ∂Jcmin

∂c◦ (p0) is null if the cost function is convex and continuously differentiable

on the C control space for all p. In practice, we only have an approximate value of the optimal control:

∂Jc

∂c (p0) tends to 0 over the iterations of the optimization algorithm. c being continuous and bounded,

∂c
∂p (p0) is also and the term ∂Jc

∂c (p0) . ∂c∂p (p0) tend to 0. In the presence of constraints on parameters and

states, the gradient must be equal to the partial derivative of the augmented Lagrangian taking into account425

the terms related to the constraints (see Uzawa method [27]), otherwise the cancellation of ∂Jcmin

∂c◦ (p0) is

not guaranteed (when we take into account the constraints by projection techniques for example).

With a given pi(element of the parameters vector p), we can then use ∇pJcmin to build the local

sensitivity index:

Υi = ∇piJcmin.pi (21)
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The higher Υi, the more the relative variation of pi will affect the theoretical performance of the optimal430

control. This index does not give the gradient for a parametric error on the model used for the computation

of the optimal command but already makes it possible to build a first approximation of the classification of

the influential parameters on the control performance. Such an index would also be of great interest in the

design of buildings, by making it possible to locate the walls to better insulate for example. In our case,

this index can be evaluated very quickly (computational cost of about two simulations) after an optimal435

control calculation thanks to the adjoint method, which is a significant advantage.

3.4. Sensitivity study results

After the implementation of this sensitivity computing technique in ReTrofiT, we were able to perform

first sensitivity comparisons on our test case model.
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Figure 8: Local sensitivity indexes

The figures 8 a and b correspond to the sensitivity indices calculated according to the equations (20) and440

(21) for the scalar parameters of our model. On the histogram a, only the 200 most influential parameters
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are displayed: we note that only 50 parameters stand out from the 735 others. Figure c corresponds to the

computation of indices by finite differences. We calculate here the variation of Jcmin for a small variation

of each parameter (ie. Jc (p+ δp, c◦ (p+ δp)) − Jc (p, c◦ (p))). This involves recalculating an optimal

command for each of them. Despite the errors of approximation, we find the same orders of magnitude for445

the indices of sensitivity. This finite-difference computation is also much longer, it took indeed more than

15 minutes to calculate the indices of only 20 parameters, against a few seconds for all the parameters of

the model with the gradient calculation by adjoint method.

For the 20 most influential parameters according to the histogram b:

• The radiator efficiencies of the two zones are by far the most influential parameters, which is logical450

because they are directly related to the power injected into the zones.

• Next are the airflow ratios extracted by the AHU (OutletAirFlowRatios). Inbound air ratios are less

influential as the air blown in is warmed by the dual flow AHU exchanger.

• Finally, we find the conduction coefficients of the walls (surfCond), indoor and outdoor convection

(HconvS and HbarS) window transmittance (SurfTransmittance), relative to or near zones 1 and 2. These455

coefficients correspond to the insulation of areas and the amount of incoming solar gains.

We have also computed the variation of Jc for a parameter error δp on the optimal command (ie.

Jc (p, c◦ (p+ δp)) − Jc (p, c◦ (p))) to compare it to the variation of Jcmin. In this case, the difference

between the two variations is not noticeable, but it can also be obscured by the approximation errors, or

even be more present on another model or another cost function.460

To evaluate the exact impact of a parameter pi on the optimal command, it is necessary to compute

∂c◦

∂pi
, ie. the sensitivity of the optimal control to a given parameter. It is possible to evaluate such gradient

by writing the linearised optimality system at the optimal point. This type of approach has for example

been tested on the optimal control of a chemical reaction-diffusion system in a 3D domain [35]. An example

using a building model has been tested in [24], but at the moment requires additional developments to be465

implemented in our simulation tool.

It should also be noted that the sensitivity index (21) is built considering the same percentage of

uncertainty on each parameter. The gradient could also be used in an uncertainty propagation calculation

(via a sensitivity model), taking into account the real uncertainties of all parameters, including those

dependent on time. This would locally quantify the uncertainty of optimal control over the entire prediction470

interval.

Eventually, the gradients of the minimum of the cost function of the control could be used in the

computation of DGSM sensitivity indices (Derivative Global Sensitivity Measure). These global sensitivity

indices (in fact, the upper bounds of some Sobol indices) are obtained by applying a Monte-Carlo integration
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on the gradients calculated according to the probability densities of the parameters and makes it possible475

to converge more quickly and efficiently than methods of Sobol or Morris [36, 37, 38]. This kind of index

could help to better take into account the non-linearities and the uncertainties of the parameters in their

classification by order of influence.

4. Conclusion

In this paper, we presented a generic strategy for Model Predictive Control in buildings based on standard480

simulation models and the adjoint method for efficient gradient computations. This approach can use

detailed models of buildings and is very flexible concerning choices on parameters to calibrate and estimate

(any parameter, constant or time-dependent, can be chosen), as well as control objectives and constraints.

A wide variety of gradient-based algorithms can be used since we efficiently compute gradients with the

adjoint method. It was also experimented on virtual and a real test case with quite promising results.485

Then we used the developed tools to investigate further the case of parameter and sensor selection for

MPC problems:

• On numerical calibration experiments using our methodology, we showed on a specific test case that

parametric uncertainties can significantly reduce calibration performance and impact sensor choices.

• Consequently, we investigated a way to select parameters to calibrate using sensitivity indexes and490

the adjoint approach. This method is based on the gradient computed at the point of optimal control,

giving local sensitivity indices for optimal control performance. To complete this work, practical use

of the selection methodology must be led on several test cases.

As a general conclusion, the use of adjoint models alongside white-box building models is in our opinion a

very promising approach by the methods it brings for MPC and model analysis. Such integration in building495

simulation software could foster the level of insight and the development of MPC strategies using building

energy models.
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