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In this paper, a gradient boosting tree model is proposed to detect, identify and localize single-phase-to-ground and three-phase faults in low voltage (LV) smart distribution grids. The proposed method is based on gradient boosting trees and considers branch-independent input features to be generalizable and applicable to different grid topologies. Particularly, as it is shown, the method can be estimated in a specific grid topology and be employed in a different one. To test the algorithm, the method is evaluated in a simulated real LV distribution grid of Portugal. In this case study, different fault resistances, fault locations and hours of the day are considered. In detail, the algorithm is evaluated at eighteen fault resistance values between 0.1 -1000 Ω; similarly, nine fault locations are considered within each one of the thirty two sectors of the grid and the faults are simulated across different hours of a day. The developed algorithm showed promising results in both out-of-sample branch and fault resistance data especially for fault detection, demonstrating a maximum fault detection error of 0.72 %.

Introduction

In order to tackle the climate change threat, more and more forms of renewable energy sources are being installed in the grid. The integration of those distributed sources comes with many challenges that increase the complexity of the grid and introduce a lot of uncertainty. On the other hand, advances in the rapidly evolving field of smart grids and the increased functionalities they bring, e.g. installation of smart meters, enhance the monitoring capabilities of the system operators. In this context, fault diagnosis processes are needed in order to pave the way towards a self-healing electrical network.

Faults at the distribution level account for eight out of ten cases of customer electricity interruptions [START_REF] Gönen | Electric Power Distribution Engineering[END_REF]. While their societal and economical impact is huge, it is very difficult to calculate the cost of a power outage as it is a multivariant equation with many factors that are difficult to estimate, e.g. customer behaviour or company reliability loss [START_REF] Bjørnebye | Investing in EU Energy Security: Exploring the Regulatory Approach to Tomorrow's Electricity Production[END_REF]. The famous blackout of 2003 in the USA and Canada resulted in an estimated cost of $ 6 billion. Another outage event the same year in Italy was reported to have caused a damage of e 120 million to the local economy [START_REF] Bjørnebye | Investing in EU Energy Security: Exploring the Regulatory Approach to Tomorrow's Electricity Production[END_REF]. In an attempt to measure the impact of the faults on the customers, the value of lost load (VoLL) is used. The VoLL (e/kW h) is defined as the ratio of the economic value of leisure in households over the total household consumption. An annual average of 8.37 e/kW h was measured in Europe in 2013 [START_REF] Shivakumar | Valuing blackouts and lost leisure: Estimating electricity interruption costs for households across the European Union[END_REF]. Despite the grave effects of electricity interruptions described above, even today, many utilities are relying on customer phone calls to detect or localize a fault [START_REF] Bahmanyar | A comparison framework for distribution system outage and fault location methods[END_REF].

In the literature, several attempts have been made to automatize the fault detection and location process and minimize human interference [START_REF] Zidan | Fault Detection, Isolation, and Service Restoration in Distribution Systems: State-of-the-Art and Future Trends[END_REF]. The two most widely used fault location methods are the impedance-based and traveling wave methods; these methods are thorough analyzed by the IEEE standard C37.114-2014 [START_REF]IEEE Guide for Determining Fault Location on AC Transmission and Distribution Lines[END_REF]. A study reviewing the different available impedance-based methods is also provided in [START_REF] Mora-Flòrez | Comparison of impedance based fault location methods for power distribution systems[END_REF]. Besides impedance-based and traveling wave methods, other methods also exist: sparse measurements [START_REF] Majidi | A Novel Method for Single and Simultaneous Fault Location in Distribution Networks[END_REF][START_REF] Teninge | Voltage profile analysis for fault distance estimation in distribution network[END_REF][START_REF] Jamali | A new fault location method for distribution networks using sparse measurements[END_REF][START_REF] Grajales-Espinal | Advanced fault location strategy for modern power distribution systems based on phase and sequence components and the minimum fault reactance concept[END_REF], artificial intelligence [START_REF] Thukaram | Artificial neural network and support vector Machine approach for locating faults in radial distribution systems[END_REF][START_REF] Darwish | A precise fault locator algorithm with a novel realization for MV distribution feeders[END_REF][START_REF] Zayandehroodi | A novel neural network and backtracking based protection coordination scheme for distribution system with distributed generation[END_REF][START_REF] Farias | Nonlinear high impedance fault distance estimation in power distribution systems: A continually online-trained neural network approach[END_REF], as well as hybrid methods [START_REF] Mora-Florez | Fault Location in Power Distribution Systems Using a Learning Algorithm for Multivariable Data Analysis[END_REF][START_REF] Salim | Hybrid Fault Diagnosis Scheme Implementation for Power Distribution Systems Automation[END_REF] that have attracted the researchers' attention over the last years.

While several methods have been proposed in the literature, they all have several underlying problems. Impedance-based methods, although being the most widely used method for fault location applications, they have a big problem: when using them, there is an underlying risk of identifying multiple fault locations belonging to different branches but of the same distance from the beginning of the feeder [START_REF] Bahmanyar | A comparison framework for distribution system outage and fault location methods[END_REF][START_REF] Gururajapathy | Fault location and detection techniques in power distribution systems with distributed generation: A review[END_REF]. The latter, can be quite misleading in reality when a crew is sent to restore the power. While traveling wave methods have a higher accuracy, they also present several disadvantages: a) they rely on the detection of the wavehead, which sometimes can be quite challenging, b) they depend on the line parameters, which on distribution systems vary a lot since the speed of the wave is based on the inductance and capacitance of the lines, and c) they are vulnerable to external signal interference [START_REF] Bahmanyar | A comparison framework for distribution system outage and fault location methods[END_REF][START_REF] Gururajapathy | Fault location and detection techniques in power distribution systems with distributed generation: A review[END_REF][START_REF] Andrade | Travelling Wave Based Fault Location Analysis for Transmission Lines[END_REF]. Similarly, other methods like sparse measurements or hybrid methods can be very demanding in terms of equipment and quite costly [START_REF] Bahmanyar | A comparison framework for distribution system outage and fault location methods[END_REF]. Finally, knowledge-based methods face the danger of not identifying the fault in the case where it has not been part of the training scenarios [START_REF] Bahmanyar | A comparison framework for distribution system outage and fault location methods[END_REF][START_REF] Gururajapathy | Fault location and detection techniques in power distribution systems with distributed generation: A review[END_REF].

A second problem with the existing work in the literature is that it has been limited to medium voltage (MV) distribution grids and low-impedance faults. In particular, a very limited amount of studies examined fault cases of a fault resistance higher than 100 Ω [START_REF] Farias | Nonlinear high impedance fault distance estimation in power distribution systems: A continually online-trained neural network approach[END_REF][START_REF] Milioudis | Enhanced Protection Scheme for Smart Grids Using Power Line Communications Techniques-Part II: Location of High Impedance Fault Position[END_REF][START_REF] Pignati | Fault Detection and Faulted Line Identification in Active Distribution Networks Using Synchrophasors-Based Real-Time State Estimation[END_REF][START_REF] Mortazavi | A Searching Based Method for Locating High Impedance Arcing Fault in Distribution Networks[END_REF]. Similarly, to the best of the authors' knowledge, only a few methods were applied to low voltage (LV) grids [START_REF] Alamuti | Developed single end low voltage fault location using distributed parameter approach[END_REF][START_REF] Alamuti | Intermittent Fault Location in Distribution Feeders[END_REF][START_REF] Orcajo | Diagnosis of Electrical Distribution Network Short Circuits Based on Voltage Park's Vector[END_REF][START_REF] Silva | Fault detection and location in Low Voltage grids based on distributed monitoring[END_REF] of which the maximum studied fault resistance was 6 Ω [START_REF] Alamuti | Developed single end low voltage fault location using distributed parameter approach[END_REF]. Considering that a large amount of faults appear in LV distribution grids and that the fault resistance range is in practice between 1 to 1000 Ω, it becomes clear that the existing literature is very limited. Moreover, as the larger the fault resistances are the harder it becomes to detect and identify the fault, there is a pressing need for LV fault diagnosis methods that can detect and identify high resistance faults.

The aim of this work is to address the issues raised above and explore aspects of fault detection, identification and location in a LV distribution grid under both low and high resistance faults with fault resistances ranging from 0.1 Ω to 1000 Ω. In particular, to overcome the disadvantages of the traditional methods, a new artificial intelligence method is proposed in this paper based on gradient boosting trees (GBT). The proposed method can detect, identify and locate both single-phase-to-ground faults, the most frequent ones, and three-phase faults, the most severe ones. The main advantage of GBT is its very fast estimation, which in turn makes it implementable in real-time applications. The contribution of this paper is fourfold and is summarized below: a) A method for fault detection and faulty feeder identification: the occurrence of the fault is detected with a simultaneous identification of the feeder under fault.

b) A method for fault type identification: a distinction of the faulty and non-faulty phases is achieved thus identifying the fault type, single-phase-to-ground (AG, BG or CG) or three-phase fault. c) A method for faulty branch identification: following the feeder and phase identification, the faulty branch within a faulty feeder is also identified. d) A method that is topology-independent: unlike literature methods, the proposed approach is generalizable and applicable to different grid topologies. Particularly, the method can be estimated in a specific grid topology and be employed in a different one.

The paper is organized as follows. In the following section, an explication of the developed method is provided. In the third section, the LV distribution grid case study is analyzed. Furthermore, the obtained results are presented in the fourth section. Finally, the conclusions are drawn in the last section.

Method

Model definition

The GBT algorithm [START_REF] Chen | XGBoost: A Scalable Tree Boosting System[END_REF] is a prediction model based on the principle of combining several regression trees. In particular, regression trees are models characterized by either having high bias and low variance errors if the tree is shallow, or low bias and high variance errors if the tree is deep. To solve this issue, there are two families of algorithms that combine several regression trees to reduce high errors.

The first family is random forests and it is based on the principle of bagging [START_REF] Hastie | The Elements of Statistical Learning[END_REF], i.e. combining models with low bias and high variance error in order to reduce the variance while keeping a low bias. In particular, the original training dataset is first sampled with replacement to create different bagged samples. Then, for each of the samples, a deep tree is trained, i.e. a model with high variance and low bias error; as the bagged samples are all different from each other, the prediction of each tree is different. Finally, the final prediction is built using the majority voting rule of all the decision trees. Figure 1 depicts an example of a random forest algorithm.

The second family is gradient boosting trees and it is based on the principle of boosting [START_REF] Hastie | The Elements of Statistical Learning[END_REF], i.e. combining models with high bias and low variance error in order to reduce the bias while keeping a low variance. In detail, instead of using deep trees and different training datasets, boosting trees employ shallow trees that are trained in the same dataset but where each tree is specialized in a specific characteristic of the input-output relation. In particular, successive shallow trees are trained in series, where the n th tree is trained with the goal of reducing the prediction errors of the previous n -1 th trees. Figure 2 illustrates a simplified example of fault detection using boosting trees. In the figure, there are datapoints representing healthy and faulty operation scenarios, together with the voltagecurrent measurements for each scenario. To distinguish between faulty and healthy, a first tree is estimated: the tree draws a decision boundary based on a voltage value. Next, a second tree is estimated to correct the missclassified samples of the first tree; this tree draws a second boundary using a current value. Finally, a third tree is estimated to correct the errors of the first two. At the end, the prediction of the model is based on the serial combination of the three trees.

The reason for selecting this algorithm and not other, e.g. a neural network, was threefold: a) this has been shown to outperform other regression tree methods and has recently become the winner of several challenges in Kaggle, a site that hosts machine learning competitions; b) it has been successfully used in other energy-based applications, e.g. forecasting electricity prices [START_REF] Lago | Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms[END_REF] or solar irradiance forecasting [START_REF] Lago | Short-term forecasting of solar irradiance without local telemetry: A generalized model using satellite data[END_REF]; c) it is a very fast model to train which allows real-time applications.

Algorithm functionality

The proposed algorithm has three distinct functionalities:

1. Fault detection: the first functionality of this algorithm is the detection of a fault occurrence with a simultaneous identification of the feeder under fault.

2.

Fault type identification: an extra element which is often omitted by fault location algorithms is the fault type identification process. In this study, the proposed algorithm can also differentiate faulty from non-faulty phases.

3. Faulty branch identification: the last functionality of this proposed method is the faulty branch identification, which is the faulty branch within a faulty feeder.

Working principle

The main idea of the algorithm is to make use of its prediction capabilities to diagnose the grid faults. In particular, the algorithm uses a training dataset S = {X i , Y i } N i=1 , where X are the inputs of the GBT model and Y are the desired predicted output. For all the identification tasks, the inputs X are the same: specific data corresponding to a specific branch, e.g. voltage on that branch. The outputs Y however depend on the specific task. Particularly, the output Y changes with the task as the algorithm has a slightly different working principle for each of the three tasks:

Fault detection: to identify a faulty feeder, the algorithm considers data from healthy branches in healthy feeders and data from faulty branches. Then, it labels the healthy branches with a 0 and faulty branches with a 1 and the algorithm is trained to predict 0 or 1 to indicate the existence of a fault in a branch. In real time, to identify a faulty feeder, the algorithm is simply tested on all the branches of a feeder.

Fault type identification: to identify the type of fault, the algorithm considers only data from faulty branches. Then, it labels each branch datapoint with 1, 2, or 3 to respectively denote single-phase fault in phase A, B and C, and uses a label 4 to denote threephase faults. In real time, to identify the fault, the algorithm is simply tested on the faulty branch.

Faulty branch identification: to identify the faulty branch within a faulty feeder, the algorithm considers V (p.u.) data from healthy branches in a faulty feeder and data from faulty branches. Then, the algorithm is trained to distinguish between the two cases using two labels, i.e. 0 and 1. In real time, to identify the branch, the algorithm is tested on the branches of a faulty feeder.

A simplified representation of the proposed model for the three diagnosis tasks is depicted in Fig. 3. As can be seen, in all three tasks, sequential shallow trees are trained to identify the correct label in each task, where successive trees are estimated to improve upon the error of previous trees. Independently of the task, the trees take all type of variables into account to correctly identify the labels: voltage threshold, current values, voltage in one node larger than a voltage in another node, etc. The main difference between the tasks is the output of the model: while the fault detection and faulty branch identification tasks output 0 or 1 depending on whether a fault exist, the fault type identification task outputs 1, 2, 3 or 4 to indicate which of the four possible faults has occurred.

Training

Independently of the task, as they are all classification tasks, the algorithm is trained to minimize the crossentropy loss of the training dataset. Moreover, to optimize the structure of the algorithm, all the boosting tree hyperparameters, e.g. number of branches or tree depth, are optimally selected using the Bayesian optimization [START_REF] Bergstra | Algorithms for Hyper-Parameter Optimization[END_REF]. In particular, the dataset is divided in three subsets: a training dataset, a validation dataset and a test dataset.

The training dataset is used to estimate the algorithm parameters, the validation dataset is used to estimate the algorithm hyperparameters and finally the test dataset is used to evaluate the quality of the algorithm.

Input features

In terms of the inputs of the model several design choices were made. In particular, to make the model general enough, i.e. to make the model applicable to different grid topologies with various number of branches and available measurements, two design choices were made: First, the use of branch-specific features was avoided, e.g. the branch length or the branch resistances and reactances.

Second, all branch-specific measurements were substituted with a fixed number of interpolated values so that each branch could have the exact same number of features. For instance, independently of the number of voltage measurements in a branch, five equally spaced points within the branch were selected and the voltage values from the voltage measurements were interpolated to these five locations.

With that motivation, in order to identify if a fault occurs at time t the following input features were considered:

1. Time: the hour of the day corresponding to t. This is important because the load and microgeneration penetration in the grid change along the day.

2. Load : the load in the grid at time t.

3. Generation: the microgeneration in the grid at time t.

4. Current at time t: the current at the beginning of each feeder at time t was considered as shown in Fig. 4. In particular, the current through the three phases and the neutral.

5. Current 5 min before t: the current at the beginning of each feeder five minutes before t was also considered. As before, current through the three phases and the neutral was considered. These features are important to have a comparison between two points close in time so that if a fault occurs at time t, the method can compare the current at time t with the values of the current during normal operation.

6. Voltages at time t: voltage values across each branch at time t were considered. More specifically, as mentioned before, five virtual/interpolated equally spaced measurements that were obtained from the real measurements in the branch were considered. Moreover, the voltages for each phase were considered, i.e. in total fifteen voltage points per branch.

7. Voltage 5 min before t: voltage values across the branch five minutes before t were also considered. The same fifteen voltage points as in time t were used. As with the current, the motivation behind these input features is to provide the method with voltage measurements during normal operation.

Computation time

A key advantage of the current algorithm is that it only needs to be trained periodically. In particular, for real-time fault diagnosis, the method simply evaluates a boosting tree model. As a result, the computational cost of the method is independent of the training dataset and nearly-independent of the grid size. Moreover, its computation cost in real time is in the order of milliseconds, which makes it very suitable for real-time applications.

In terms of training, the algorithm is also very fast: training a boosting tree model is done in less than 1 minute. Therefore, as new data become available, the method is also very suitable for continuous adaption, e.g. hourly or daily, to environmental changes.

These two properties are key as they lead to a simple, yet accurate, fault diagnosis method that does not require complex techniques, e.g. data clustering or data reduction, to decrease the computational cost. 
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Representation

To provide a better understanding of the method, Fig. 5 represents the different components of the proposed methodology and how they relate to each other.

Case Study

Grid structure

In order to apply the developed method to a real case scenario, the semi-rural LV distribution grid of Portugal that was provided by Efacec and is presented in Fig. 4, was used. This grid is a three-phase-four-wire one where the neutral is solidly grounded. Moreover, it incorporates eighteen single-phase photovoltaic installations and forty eight also single-phase loads in different nodes, attributing thus an unbalanced nature to the grid in terms of topology. Heterogeneity is yet another feature of this grid since conductors of various lengths, resistances and reactances are used to connect the nodes.

Figure 4 is also helpful to define the grid sector and branch. A sector is the segment of the grid between two nodes, e.g. the part of the grid connecting nodes three and six would be a sector. In this grid of thirty three nodes, thirty two sectors can be defined. At the same time, a branch is a unique chain of sectors and in this grid topology nine different branches can be identified (Fig. 4).

Finally, the available measurements considered were: a) phase rms voltage measurements in every node of the grid and b) phase rms current measurements in the beginning of each feeder where in theory a sudden increase of the current is expected upon the occurrence of a fault.

Simulation environment

In order to obtain the necessary data, a realistic simulation model of the studied LV grid, designed in the MAT-LAB/Simulink environment, was employed. The simulation model was provided by the company Efacec [START_REF] Marques | Detection and localisation of non-technical losses in low voltage distribution networks[END_REF] . The simulation environment provides as output: a) nodal phase rms voltage measurements and b) phase rms current measurements from the beginning of each feeder. Moreover, the use of phasor mode for the simulations reduces heavily the computational time without compromising the accuracy of the measurements. Additionally, the environment current measurement load is suitable for both normal and faulty operation simulations. Finally, the simulation environment provides several configurable options such as: a) the sampling frequency which in this case was set at 50 ms to further reduce the computation time, b) erroneous measurements and c) different daily generation and load profiles.

Grid effects

To simulate the most realistic conditions, five different effects were identified and considered in this study:

1. Fault resistance: As explained in the motivation, very few studies were reported in the literature that cover high resistance faults in LV grids. In this case, 15 different fault resistances were investigated: 0.1, 0.5, 1, 3, 5, 7.5, 10, 30, 50, 75, 100, 300, 500, 750 and 1000 Ω, covering the full spectrum of faults, both low and high resistance ones. In addition, to test the algorithm under unknown fault scenarios, three extra fault resistances were also considered: 4, 40 and 400 Ω.

2. Fault location: Faults in every sector of the grid were considered (thirty two sectors in total). In every sector, nine possible locations of fault occurrence were considered for distances of 10 %, 20 %, 30 %, 40 %, 50 %, 60 %, 70 %, 80 % and 90 % from the beginning of the sector.

Fault types:

The following fault types were examined: single-phase-to-ground faults and three-phase faults.

For every single-phase-to-ground fault case, all three phases: A, B and C were considered.

Microgeneration penetration and load uncertainty:

The studied microgeneration and load profiles are provided in Table 1. During the simulations, these two variables were sampled assuming a uniform distribution with a 20 % (generation) and 2 % (load) interval length, and mean following the generation/load profiles defined in Table 1.

Measurement noise:

As stated before, this study considered phase rms voltage measurements at every node and phase rms current measurements (including the neutral) at the beginning of each feeder. In order to approximate real measurement conditions as much as possible, a 2 % underestimation measurement error was introduced.

Data recording and generation

To generate the data for the study, the grid was simulated using a Monte-Carlo sampling (MCS) technique. Particularly, while directly sampling faulty data is not possible (the distribution of that data is unknown), the distribution of the inputs affecting the grid are known and a simulated model of the grid is available. In this context, MCS can be performed for the inputs of the grid, and then the simulation of the grid with those inputs follows, leading to the generation of the desired data. In detail, as defined in Section 3.3, the distribution of the following variables is considered:

1. The noise in voltage measurements: modeled assuming a 2 % underestimation uniform error.

2. The noise in current measurements: modeled assuming a 2 % underestimation uniform error.

3. The location of the fault: modeled assuming nine uniformly distributed locations per sector.

4. The grid load: modeled using a uniform distribution with a 2 % interval length and mean following the load profile defined in Table 1. During simulation, an hour of the day is first uniformly sampled and then the load is sampled using the uniform distribution.

5. The grid PV generation: modeled and sampled similarly to the load, but with a uniform distribution with a 20 % interval length deviation.

Then, for each of the fault resistances, fault types and grid sectors (see Section 3.3), MCS were used to sample these five variables and simulate the grid. This samplingsimulation procedure is repeated multiple times generate the required datasets.

To generate data representing faulty conditions, a total of 72 datapoints are sampled for each fault resistance, fault type and grid sector. That leads to a regular dataset (insample fault resistances) of 165888 datapoints, and an extra dataset of 27648 datapoints representing out-of-sample fault resistances.

To generate data representing healthy conditions (needed for the algorithm to distinguish between faulty and normal operation), a total of 300 datapoints are sampled for each hour of the day and for each grid branch. This leads to a dataset containing 64800 datapoints representing healthy conditions.

It is important to note that faulty operation measurements are taken 150 ms after the fault occurrence. This choice was made for the fault to be as close to the steadystate as possible and to avoid corruption of the data by the activation of any protective element.

Implementation

The algorithm was implemented python using the XGBoost [START_REF] Chen | XGBoost: A Scalable Tree Boosting System[END_REF] library for the GBT model, and the hyperopt [START_REF] Bergstra | Hyperopt: a python library for model selection and hyperparameter optimization[END_REF] library to perform the hyperparameter optimization based on Bayesian optimization.

Model training and evaluation

The algorithm is trained and evaluated using the regular dataset (in-sample fault resistances) and the dataset of healthy data. Both dataset together comprise a total of 230688 datapoints, which are randomly divided into the training, validation and test datasets as defined in Table 2. The model was repeatedly trained with the training dataset and the algorithm was evaluated in the validation dataset for guiding the Bayesian optimization algorithm to find the optimal parameters. Then, after the optimal hyperparameters were found, the algorithm was evaluated in the test dataset.

In addition, to have a model that generalizes to different grid faults, the algorithm was evaluated in out-of-sample fault resistances. In particular, to test the algorithm performance against unknown fault scenarios, an extra test dataset was created comprising out-of-sample 4, 40, and 400 Ω fault resistances. As defined in Section 3.4, this extra test dataset comprises 27648 datapoints.

Similarly, to have a model that generalizes to different grid topologies, the algorithm was also evaluated against out-of-sample branches. Particularly, in order to test the generalizability of the method to other grid topologies, a training and validation datasets were built comprising only data from the first and third feeder, i.e. branches 1-4 and 8-9 respectively. Then, the method was evaluated in a test dataset comprising data from the second feeder, i.e. branches 5-7. This choice is justified as feeder one and three have the maximum and minimum number of branches respectively. In that way, as it will be shown in the next section, the algorithm was able to provide promising results not only on fault resistances and branches that appear in the training dataset, but also in out-of-sample fault resistances and branches.

Comparison with similar works

Due to a lack of available research papers in the LV grid, two methods designed for MV distribution grids were employed to compare the algorithm performance in addition to a conventional method for LV grids. These references were used to compare the faulty branch identification results.

In the first case [START_REF] Brahma | Fault Location in Power Distribution System With Penetration of Distributed Generation[END_REF], the authors developed a general fault location method based on voltage and current measurements at the point of common coupling of distributed generators. They considered all the different types of faults, i.e. single-phase-to-ground, double-phaseto-ground, phase-to-phase and three-phase. Moreover, they studied faults in three possible locations within a sector at distances of 5 %, 50 % and 95 % from the beginning of each sector. However, the maximum fault resistance value for phase-to-phase and three-phase faults was 5 Ω and 50 Ω for the rest.

In the second study that was used as reference [START_REF] Pignati | Fault Detection and Faulted Line Identification in Active Distribution Networks Using Synchrophasors-Based Real-Time State Estimation[END_REF], the authors developed a method based on real time state estimation that detects faults and identifies faulted lines. The authors considered single-phase-to-ground, double-phaseto-ground and three-phase faults. Furthermore, they considered only two possible fault locations within a faulty sector, at the middle of the line and at a distance equal to 25 % of the sector's length. Although they investigated high-impedance faults of up to 1000 Ω, the data they presented for such high fault resistances were applicable only to a single fault case of an unearthed neutral. For the rest of the cases, the maximum fault resistance they tested was that of 100 Ω.

In the third study (the only one from the LV case) [START_REF] Sapountzoglou | Fault Detection and Localization in LV Smart Grids[END_REF], the authors used a conventional criterion for determining the faulty branch within a faulty feeder. The faulty branch was considered to be the one that presented the highest voltage drop. This method was tested against the simulation scenarios that were described above (under the same case study) and the results are presented in the following section. All these information are gathered in Table 3 where the considerably bigger number of fault scenarios that were considered in this study is demonstrated.

Results

As a first step, the algorithm was trained with data from all three feeders of the grid. Then, its performance was tested against out-of-sample fault resistance data. As it was mentioned before, the out-of-sample fault resistances that were chosen were the 4, 40 and 400 Ω. The next step was to expose the algorithm to out-of-sample branches. As explained in the motivation, the purpose of this test was to verify the robustness of the algorithm against changes in the topology of the grid.

For all the results, the following definition of accuracy was used:

acc (%) = (true positives + true negatives) total number of samples • 100 (1)
where true positives are the correctly identified faulty branches and true negatives the correctly identified as nonfaulty.

Fault detection

The first functionality of this algorithm is the detection of a fault occurrence with a simultaneous identification of the feeder under fault. The results are presented in Fig. 6 for the test dataset. An accuracy of 100 % is achieved across all fault resistances. Such a level of accuracy renders the proposed method a completely reliable tool for fault detection and feeder identification problems. 

Fault type identification

An extra element which is often omitted by fault location algorithms is the fault type identification process. In this study, the proposed algorithm was also implemented to differentiate faulty from non-faulty phases. The obtained results for the test dataset are depicted in Fig. 7.

In Fig. 7, the first effect of the increase of fault resistance is noticed. For low-resistance faults (below 10 Ω), the accuracy of faulty phase identification is maintained at a level higher than 98 %. After that, a more and more significant decrease of accuracy is noticed with the increase of the fault resistance down to minimum of 86.7 % for 1000 Ω. This was an expected result as the increase of fault resistance will decrease the voltage drop during a fault and thus bring the voltages across a faulty branch closer to the values of normal operation. The limit of 10 % voltage drop proposed by the EN50160 standard for LV grids, is very likely to be violated making it more difficult for the algorithm to distinguish faulty from normal operating phase for fault resistance values higher than 10 Ω. Moreover, Table 4 shows the accuracy of the method for each of the fault types in the same test dataset. A similar performance was noticed in all four types of faults: singlephase-to-ground (AG, BG, CG) and three-phase faults (ABC) with a maximum deviation of 0.9 % between singlephase-to-ground and three-phase faults. This is an indication that besides the different combinations of generation and load penetration in the grid, the unbalanced nature of the grid, i.e. the topological and per phase asymmetry in the distribution of PVs and loads in the grid, did not affect the proposed method.

Faulty branch identification

The last functionality of this proposed method is the identification of the faulty branch. The results obtained with the proposed algorithm in the test dataset are presented in Fig. 8 and Table 5 for different fault resistance values and fault types respectively. It is shown in Fig. 8, that with an increase of the fault resistance the accuracy of the method decreases. More specifically, as can be seen from Fig. 8, a maximum accuracy of 95.8 % is obtained for 0.1 Ω and a minimum of 84.1 % for 300 Ω. As it was mentioned in the previous subsection, the decrease of the accuracy of the method with an increase of the fault resistance is expected as the circulating fault current in the faulty branch will be less significant and thus the voltage drop smaller.

Furthermore, in Table 5, the accuracy of the faulty branch identification process is presented for each fault type. In all four of the presented cases, the proposed method is not affected by the fault type as the differences are really small. This renders the method immune to the unbalanced nature of the grid, i.e. the per phase unbalanced distribution of loads and PVs.

The above result is a key feature of this method. It was expected that since the loads and PV units are connected to the grid via single-phase connections, that a big difference in the accuracy of the method with regards to the fault type would be observable. However, this is not the case as it is demonstrated in Table 5.

Comparison with literature methods

As mentioned in the previous section, three similar studies were used to compare the algorithm results. Two methods designed for the MV grid and one conventional one for the LV grid. It should be noted that there are two factors that render the comparison with the MV cases not exactly fair: a) the fact that the LV grid presents a more complex structure, highly heterogeneous and unbalanced, and b) the fact that there are differences in the case studies between the available in the literature methods, e.g. studied grid, available measurements, noise in the measurements, fault location scenarios, studied fault resistances, fault types etc. These differences between the case study of this paper and the ones from the literature are presented in Table 3.

The results of this comparative analysis are gathered in Table 6. The results presented in Table 6 concern the fault types considered in this study: the single-phase-toground faults (most frequent) and three-phase faults (most severe). In order to compare the results for similar values of fault resistances, two cases were identified: a) a range from 1 to 50 Ω which was used in [START_REF] Brahma | Fault Location in Power Distribution System With Penetration of Distributed Generation[END_REF] and b) the case of 100 Ω from [START_REF] Pignati | Fault Detection and Faulted Line Identification in Active Distribution Networks Using Synchrophasors-Based Real-Time State Estimation[END_REF]. For the first case, the proposed method of this paper outperforms the one from the literature by an average of 1.7 %. For the second case, the proposed method outperforms the one of the literature in some cases. In general, taking into consideration the enlarged number of scenarios considered in this case study, i.e. the increased number of considered fault locations and the noise in the measurements, and the fact that the LV grid is a more complex case, the results are considered excellent.

To further test the performance of the proposed method, a conventional method for the LV grid case [START_REF] Sapountzoglou | Fault Detection and Localization in LV Smart Grids[END_REF] was tested on the same dataset/case study of this paper. The results are presented in Fig. 9. The superiority of the proposed method is evident. An important remark is that although the accuracy of the conventional method decreases severely with the increase of the fault resistance, down to a minimum of 43.8 % for 1000 Ω, the proposed method maintains high levels of accuracy as it was mentioned before.

Generalization to different fault cases

As a first step to test the robustness and generalization capabilities of the method, the algorithm was exposed to different fault cases, i.e. out-of-sample fault resistances. The values of these fault resistances were 4, 40 and 400 Ω. Then, to analyze the robustness of the method, its performance when exposed to out-of-sample fault resistances was compared with the one of the regular test dataset. In particular, the average accuracy in the test dataset between 3 Ω and 500 Ω was compared with the average accuracy of the three out-of-sample fault resistances. The results of this comparison are presented in Fig. 10. It is shown that for the fault detection, the accuracy is identical in both cases (100 %). For the fault type identification task, the difference in the accuracy is negligible (0.25 % less accurate in the out-of-sample case). For the faulty branch identification accuracy, while the accuracy drops from 91.3 % to 81.9 %, this level of accuracy is still considered excellent. Therefore, based on these results, it can be concluded that the method can generalize to unknown fault cases as its performance in out-of-sample fault resistances is either identical, negligible or very similar to the one of in-sample fault resistances. 

Generalization to different grid topologies

As explained in the introduction, a key property of the proposed method is that it is generalizable and independent of the grid topology. Particularly, the method can be trained in a specific grid topology and then be used in a different one.

In this section, to study this specific property, the accuracy the is analyzed when it is trained a specific grid topology and then employed in a different one. For that, the method is trained using feeders one and three of the considered grid, and then evaluated using data from the second feeder. Feeder one and three are selected as a training basis since they contain the maximum and minimum amount of branches (see Fig. 4). The results of all three method tasks when exposed to out-of-sample branches are depicted in Fig. 11. For the fault detection task, a reduction of the accuracy from 100 % to 99.15 % can be noticed. Since the maximum error is 0.85 % for both single-phase-to-ground and three-phase faults, it is safe to assume that the algorithm will also detect out-of-sample double-phase-to-ground and phase-to-phase faults. Therefore, it can be stated that the fault detection results even under unpredictable circumstances are considered excellent. For the following two tasks however, the method is not as successful as before.

For the fault identification task, the accuracy decreases from 96.1 % to 76.4 %. At the same time, for the faulty branch identification task, the average accuracy drops from 90.15% to 62.76 %; however, although not depicted in Fig. 11, the decrease of the accuracy is bigger for high fault resistance faults. Particularly, for faults up to 10 Ω an accuracy higher than 70 % is achieved for the faulty branch identification task. In this case, to further improve the attained results, a retraining of the method is advised. The same is also advised in the case of a microgrid that needs to operate in isolated mode. The rapid training time of the algorithm facilitates that process and makes it ideal for real-time applications.

Overfitting

A standard issue with computational intelligence methods is overfitting [START_REF] Lago | Forecasting day-ahead electricity prices in europe: the importance of considering market integration[END_REF]. Particularly, unless regularization techniques are used, computational intelligence methods can easily overfit the training dataset and perform poorly in out-of-sample data.

In the proposed method, to prevent that, the GBT model is evaluated during training using a validation dataset so that the hyperparameters and model structure do not become too complex. In this section, to show that the proposed method does not overfit, the performance of the method is compared with the training, validation and test datasets.

Figure 12 displays this comparison for the three tasks. As can be clearly seen, the method does not overfit for fault detection, i.e. the accuracy is exactly the same across the three datasets. Similarly, the method does not overfit either for fault type identification: while a minor decrease in accuracy can be observed between the training and validation test, and validation and test dataset, this behavior is expected. Particularly, while the accuracy of three methods should ideally be the same, this is not possible since the number of datapoints in each dataset is finite. In practice, since the data distribution in each dataset is slightly different, the method always performs slightly better in the datasets used during training, and minor differences between the datasets are expected. A similar reasoning can be applied to the branch identification task: while the accuracy in the training dataset is slightly better, the method does not overfit. 

Conclusions

In this paper, a gradient boosting tree model was proposed to detect, identify and locate faults in low voltage (LV) smart grids. To estimate the model, a set of non branch-specific input features was employed to ensure the robustness of the algorithm against different grid topologies and available number of voltage measurements per branch. The proposed method was evaluated in a case study of a real case semi-rural LV distribution grid of Portugal. In detail, the case study comprised: a) fault resistances between 0.1 to 1000 Ω, b) different fault locations inside each sector c) single-phase and three-phase faults, and d) a 2 % of underestimation error in the phase rms current and voltage measurements.

To test the accuracy of the proposed algorithm, the method was tested in an out-of-sample dataset. In addition, to analyze the robustness and generalization capabilities of the algorithm, the method was also tested against out-of-sample fault resistances and branches (resistance values and grid branches not included in the training dataset).

An excellent accuracy for fault detection and fault type identification were achieved. Faulty branch identification showed very promising results. In comparison with other studies in the literature, the algorithm accuracy for identifying a faulty branch, was found to be superior to a conventional method for the LV grid but also better than two methods from the medium voltage case. A great feature of the algorithm was that, as can be seen in the symmetrical performance in all the phases, the asymmetrical distribution of loads and photovoltaics across the phases and branches does not really affect the algorithm performance. In addition, as it could be expected, the increase of the fault resistance decreased the accuracy of fault type and branch identification tasks.

In detail, the algorithm obtained an accuracy of 100 % when identifying the faulty feeder, an accuracy between 99.7-86.7 % (the higher the fault resistance the lower the accuracy) when identifying the fault type, and an accuracy between 95.8-86.2 % when identifying the faulty branch. These results show a clear superiority of the proposed method with regards to the other methods of the literature.

In future work, the omitted fault types will be included: double-phase-to-ground faults and phase-to-phase faults as well as the extension of the method to an exact fault location estimation. In addition, the algorithm will be applied in different grids and/or experimental setups.

Figure 1 :

 1 Figure 1: Example of a random forest.

Figure 2 :

 2 Figure 2: Gradient boosting tree working principle for a simplified detection task. Healthy data are marked with circles while data under faulty operation (characterised mainly by a current increase) with an x. Missclassified datapoints are marked with red.

Task 1 : 3 :

 13 Fault detection ex.: has a fault occurred ? Faulty branch identification ex.: is branch 1 under fault ?

Figure 3 :

 3 Figure 3: Gradient boosting tree examples per task where 0 and 1 label a healthy and faulty state respectively for tasks 1 and 3. For the fault type identification task the number 1 to 4 correspond the faulty phase (1 for AG fault, 2 for BG, 3 for CG and 4 for ABC).

Figure 4 :

 4 Figure 4: distribution grid of Portugal.
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 5 Figure 5: Conceptual representation of the method implementation.
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 6 Figure 6: Fault detection accuracy for different fault resistance values in the test dataset.
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 7 Figure 7: Faulty phase identification accuracy for different fault resistance values in the test dataset.
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 8 Figure 8: Faulty branch identification accuracy in the test dataset for different fault resistance values.

Figure 10 :

 10 Figure 10: Comparison of the average accuracy of the three tasks between all studied fault resistances between 3 Ω and 500 Ω and the out-of-sample fault resistances.
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 11 Figure 11: Comparison of the average accuracy of the three tasks between all branches being part of the training and out-of-sample branches.

Figure 12 :

 12 Figure 12: Average accuracy for the three fault identification tasks for the training, validation and test datasets.

Table 1 :

 1 Default microgeneration and load profiles from a typical day in Portugal expressed in percentages (%).

	Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
	µgen	0	0	0	2	9 30 54 60 86 88 73 60 100 83 49 44 14 16 3	0	0	0	0	0
	Load 30 28 25 23 20 20 23 30 40 43 46 50 50 55 60 60 55 50 65 85 90 90 75 55

Table 2 :

 2 Dataset sizes.

	Dataset type	Size
	Train	115344 (50 %)
	Validation	46138 (20 %)
	Test	69206 (30 %)

Table 3 :

 3 Comparison of different case studies of similar works.

	Parameters	Brahma [34]	Pignati et al. [21]	This paper
	Grid	12.4 kV (MV), U.S.A.	10 kV (MV), The	400 V (LV), Portugal
			Netherlands	
	Fault types	1ph-G, 2ph-G, ph-ph, 3ph	1ph-G, 2ph-G, 3ph	1ph-G, 3ph
	Fault resistance	1-5 (ph-ph, 3ph), 1-50	1, 100, 1000 a	0.1, 0.5, 1, 3, 5, 7.5, 10, 30,
		(1ph-G, 2ph-G)		50, 75, 100, 300, 500, 750,
				1000
	Fault location within	0.05, 0.5, 0.95	0.25, 0.5	0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
	the sector			0.7, 0.8, 0.9
	Noise in measurements	-	0.016 % for V, 1.2 % for I	2 %

a 1000 Ω only for one case.

Table 4 :

 4 Faulty phase identification accuracy for each fault type in the test dataset.

	Fault type	Phase identification
		accuracy ( %)
	AG	95.6
	BG	96.0
	CG	96.1
	ABC	96.5

Table 5 :

 5 Faulty branch identification accuracy in the same test dataset for each fault type.

	Fault type	Phase identification
		accuracy ( %)
	AG	93.1
	BG	89.2
	CG	91.2
	ABC	91.7

Table 6 :

 6 Comparison of faulty branch identification accuracy of different MV methods to the performance of the proposed method for single-phase-to-ground and three-phase faults and specific fault resistance values/ranges.

	Paper	Fault Resistance (Ω)
		1-50	100
	Brahma [34]	92.1 %	-
	Pignati et al. [21]	-	83.78-100 %
	Proposed method	93.8 %	91.7 %
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