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Spectral graph analysis of the geometry of power
flows in transmission networks

Nicolas Retière, Dinh Truc Ha, and Jean-Guy Caputo

Abstract—Power flows in transmission networks are driven
by the structure of the network and the spatial distribution
of generators and loads. Understanding the interplay between
grid, generators and loads is crucial for efficient and robust
planning and management of electrical networks. Using the
spectral properties of the graph Laplacian, we show that we
can express power flows on the basis of Laplacian eigenvectors
and reveal the dominant modes for nodal voltages and branch
powers. The bus voltages are dominated by low rank modes.
The power in the lines depends on the nodal distribution of
generators/loads, the line impedances and the gradient of the
eigenvectors across the branches. The most loaded lines and their
associated dominant mode are then identified. A modification
of the bus powers is finally proposed to better share the load
between the lines and hence to decrease the system vulnerability.
Results provided for several IEEE transmission test systems prove
the relevance of the approach and suggest practical guidelines to
improve the operation of power systems.

Index Terms—Spectral graph theory, Laplacian, nodal domain,
power system, power flow, vulnerability.

I. INTRODUCTION

POWER grids cope with extreme stress due to the in-
creasing demand, the financial pressure from electricity

market, the growth of interconnections between regions or
countries, the rise of distributed energy resources and the
spread of digital technologies [?], [?], [?]. Hence, a single
failure may lead to a major collapse and the disconnection
of millions of customers. Since the 2000s, more than ten
blackouts have impacted more than one billion people around
the world [?]. They have not only cost millions of US
dollars but have also affected other important infrastructure
that deliver essential services such as communication, internet,
transport, water and emergency services [?]. The analysis and
evaluation of vulnerability of power systems have therefore
become a key issue for power engineers and researchers
[?]. To prevent major system security issue, it is required
to reveal vulnerabilities in power grids. But, because of the
system’s increasing complexity, new methods are necessary to
investigate their structural vulnerabilities [?]. These methods
are required to localize and rank the elements less susceptible
to absorb hazards, due to their high level of stress in normal
operation. The factors and inputs potentially dangerous for
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structural vulnerabilities are also expected to be explained by
these approaches.

Power flow calculation is a fundamental tool for the security
analysis of power systems. It can be of use to predict security
boundaries, to locate weakest elements, to assess loading
of lines, transformers or generators, to verify that voltage
values respect the autorized limits [?], Since power system-
s are networks composed of many interacting components,
predicting, interpreting, understanding the vulnerabilities are
difficult tasks that require many numerical simulations [?]. The
coupling of power flow simulations with complex science has
been of great benefit for the engineering community to analyze
the results and figure out how power flows distribution and
vulnerabilities are driven by the complex structure of electrical
networks [?], [?]. A number of studies in the literature have
already linked the graph topology of a network to its power
flows [?]. Many are based on centrality: which nodes or links
are most prominent for the flow of the electrical power in the
grid. These geometric approaches evaluate the node degree,
the betweenness, the clustering coefficient, to characterize
a given topology [?], [?], [?], [?]. Unfortunately, in most
cases, these approaches fail to predict with accuracy the power
distribution in the network and in particular the most loaded
lines. Actually, a central vertex for the geometry may not be
central for the power flow. The absence in the centrality-based
approaches of the distribution of generators and loads is the
main reason of their failure to identify the weakest elements.
Alternative approaches use spectral graph theory i.e. the study
of the spectral properties of the characteristic matrices of the
network. An application of spectral graph theory is clustering:
the identification of sets of nodes that present similarities.
This method is based on the computation of the eigenvector
related to the second smallest eigenvalue of the Laplacian
or adjacency matrix of the graph [?]. An extension of this
procedure was applied to power systems where the network
was partitioned into hierarchical clusters, using the k-th first
eigenvectors of a graph matrix [?]. Graph partitioning is
strongly connected to the dynamic coherency because it allows
to identify groups of generators having similar dynamics. The
fundamental work [?] draws theoretical links between dynamic
coherency and the confinement of eigenvectors to some sets
of nodes. Beyond clustering, spectral analysis of the graph
Laplacian was applied to understand the links between the
grid structure and its synchronization and stability properties
[?], [?], [?], [?], [?]. The identification of the key nodes that
drive the network’s function can also be performed by spectral
analysis of the adjacency matrix [?], [?]. Spectral graph theory
was also applied to system security. For example, in [?], the
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nodal domains related to Laplacian eigenvectors provided the
localization of potentially dangerous inputs for the system
stability. To improve grid robustness, a lowering of the voltage
drops was seeked in [?] by maximizing the second lowest
eigenvalue of the Laplacian matrix. The second eigenvalue and
its related eigenvector was also used to determine the critical
edges of a transmission network [?]. Spectral approaches were
finally used in some articles to compute the pseudo-inverse of
the network’s admittance matrix and thus solve the power flow
equations. This allowed to easily compute the redistribution of
currents when generators, loads or topology change [?], [?].

All the previous works describe the network’s structure in
terms of oscillatory modes. These modes are constituted by a
couple of variables λ and Ψ where the eigenvalue λ defines
the wavelength and the eigenvector Ψ gives the shape of the
mode. Our first contribution is the comprehensive modeling of
the power flows on the basis of such modes. Indeed, the DC
approximation of power flow equations yields a linear system
for the electrical variables [?], involving the graph Laplacian
matrix (i.e. bus admittance matrix) and the vector of powers
(generators and loads). The network topology information
is contained in the Laplacian matrix while the power flow
input/output is in the vector of powers. The Laplacian matrix
is symmetric, positive so that its eigenvalues are real and one
can choose a basis of orthonormal eigenvectors to write and
solve the power flow equations. This was partially done in
[?], [?] but we go one step further, developing the spectral
expressions of the power flow equations without requiring
the calculation of the pseudo-inverse of the Laplacian matrix.
In addition, we show the importance of the eigenvalues and
eigenvectors characterizing the network. Eigenvalues provide
length-like scales: the low eigenvalues correspond to large
scales and vice-versa. Eigenvectors give a geometrical global
picture of the network at these different scales. Writing and
solving the DC load flow in the Laplacian spectral basis
allows to separate each wave-length and "hear" the network
on each eigenmode of the graph Laplacian, much like a drum
[?]. We hence provide a geometric picture of the drivers of
the electrical variables. Our second main contribution is the
determination of the modes that dominate the nodal voltages
and branch powers. We also show that localized eigenvectors
can cause a large power flow in some lines. We summarize the
roles of modes on the branch powers by a transfer function
connecting the power in the lines to the spectral distribution
of nodal powers. This transfer function is higher at low wave
numbers corresponding to energy transfers on large distances
in the network. It can however exhibit some local peaks at high
numbers too. Finally, we identify the most loaded lines whose
removal is most susceptible to impact the system and propose
a way to reduce their number. To show the usefulness of the
approach we apply our approach to four IEEE transmission
test cases.

The article is organized as follows. A nomenclature of
the variables and parameters is provided in Section II. Basic
results on spectral graph theory are presented in section III.
Section IV shows the solution of the DC approximated power
flow in the spectral domain of the Laplacian matrix. We obtain
the voltage angles using the eigenvalues and eigenvectors of

the graph Laplacian. These angles are then used to compute the
power in the lines. Sections V details the spectral results for
the nodal voltage angles. Section VI shows how the modes
affect line power flows and Section VII provides a spectral
view of the vulnerabilities of the networks. Conclusions are
given in section VIII.

II. NOMENCLATURE

d Graph diameter
ei i-th vector of the standard basis
f Function defined on the nodes
i, j Nodes indices
k Eigenvalue or mode rank
m Number of edges of the graph
n Number of nodes of the graph
ok k-th coordinate of θ in the eigenbasis
pk k-th coordinate of P in the eigenbasis
r multiplicity of the eigenvalue
A[n× n] Adjacency matrix of the graph
D[n× n] Degree matrix of the graph
E Set of edges of the graph
L[n× n] Laplacian matrix of the graph
Nk k-th nodal domain
P Nodal power vector
Pi[n× 1] Active power of node i
PL[m× 1] Branch power flow vector
V Set of nodes of the graph
YL[m×m] Line admittance matrix
λk k-th eigenvalue of the Laplacian matrix
Λ[n× n] Pseudo-inverse of the eigenvalue matrix
ω Edges weight
∇[m× n] Gradient over the graph edges
Ψk[n× 1] Eigenvector related to λk
Ψk(i) i-th component of Ψk

θ[n× 1] Nodal voltage angle vector

III. BASIC RESULTS ON SPECTRAL GRAPH THEORY

A. Graph Laplacian

A graph G is defined as G = (V,E, ω) where V is the
vertex set of size n, E is the edge set of size m along with
the functions ω : E → R+ for the weights. The weighted
adjacency A and degree matrices D of the graph are given
by:

A(i, j) =

{
ωij if i, j ∈ E,
0 otherwise.

D(i, j) =

{∑n
k=1A(i, k) if j = i,

0 otherwise.

(1)

The Laplacian matrix is defined by L = D −A.
Given a function f defined on the nodes, the Laplacian can

also be defined by the quadratic form [?]:

fTLf =
∑
i,j∈E

ωij(f(i)− f(j))2 (2)
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Fig. 1: Sorted eigenvalues
14-bus (�) - 30-bus (+) - 118-bus (◦) - 300-bus (∗)

B. Eigenvalues and eigenvectors

Ψ is an eigenvector associated to eigenvalue λ of L, then:

LΨ = λΨ (3)

Since the edge weights are all positive, the Laplacian matrix
is a symmetric, positive-semidefinite matrix. Its eigenvalues
are thus real and positive and they can be sorted out such
that:

λ1 = 0 ≤ λ2 ≤ . . . ≤ λn (4)

The first eigenvalue is 0 because L is singular; there is
only one because we assume a connected graph. The smaller
eigenvalues are related to the global connectivity of the net-
work whereas the larger ones quantify the local behavior [?].
The eigenvectors associated to the different eigenvalues can
be chosen to be orthogonal and form an orthonormal basis of
Rn. Using the quadratic form (??) of the Laplacian, it is easy
to see that the eigenvector Ψ1 associated to λ1 = 0 has equal
entries. Then since any eigenvector Ψk (k > 1) is orthogonal
to Ψ1, it verifies:

n∑
i=1

Ψk(i) = 0 (5)

Note that Ψk(i) corresponds to the node i of the network.

C. Nodal domains

A nodal domain Nk associated with Ψk is defined as a
maximal connected subgraph of nodes with value of same sign
[?]:

i, j ∈ Nk ⇔ Ψk(i)Ψk(j) ≥ 0 (6)

The nodal domain is positive (resp. negative) if the value
is positive (resp. negative). It is said to be strong if the
product of eigenvector entries is strictly positive. In the case
of weak domains, the value of some nodes of the domain
may thus be zero. Many works are related to the number
of domains. In a pioneer work, Fiedler gave first results
about the nodal domains related to the second eigenvalue
of nonnegative symmetric matrices [?]. In [?], Davies et al.
provided generalized results for any eigenvector associated to
eigenvalue of a simple (no self-loop) and undirected graph
λk. They show that there are at most k weak nodal domains

and k − r strong domains, r being the multiplicity of the
eigenvalue. One of the most recent result was demonstrated
by Urschel [?]. For any eigenvalue, there exists an eigenvector
that can be decomposed in at most k nodal domains. Basically,
these results mean that the network may be decomposed in two
domains for the second eigenvalue and at most n domains for
the largest eigenvalue. We will see in the next section that
nodal domains plays a major role in the distribution of power
flows.

IV. SPECTRAL SOLUTION OF DC POWER FLOW

A. DC power flow

In steady-state operation, any AC transmission network
made of n nodes and m branches can be described by a set of
n algebraic equations. They link active and reactive powers,
voltage magnitude and angle. They are called power flow
equations [?]. DC approximation is a well known technique
to simplify power flow equations of meshed transmission
systems [?]. Under this approximation, power flow equations
are reduced to a linear matrix equation:

Lθ = P (7)

where P is the vector whose components are the powers
at each bus. θ is a vector giving bus voltage angles and L is
the DC bus admittance matrix. By construction, it is equal to
the Laplacian matrix associated with the underlying weighted
graph of the network. Edge weights are the susceptances of
the lines.

B. Spectral solving

Instead of solving the DC power flow in the standard
basis of the vertex space of the graph, the orthonormal basis
consituted by the eigenvectors associated the eigenvalues of
Laplacian matrix is used. The standard basis is defined as a
set of vectors (e1, e2, . . . en) where ei is a column vector of
size n associated to vertex i. Its components are all equal to
zero except the i-th entry which is equal to 1. P is expressed
in terms of standard basis elements by:

P =

n∑
i=1

Piei (8)

where Pi is the active power injected on node i.
Projecting P onto the orthonormal basis Ψ1,Ψ2, ...Ψn, we

get:

P =

n∑
k=1

pkΨk (9)

where pk is the projection of P on Ψk.
Developing line by line this expression, we obtain:

Pi =

n∑
k=1

pkΨk(i) (10)

The same projection is used for voltage angles such that:

θ =

n∑
k=1

okΨk (11)
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(a) 14-bus (b) 30-bus

(c) 118-bus (d) 300-bus

Fig. 2: λ2-nodal domain - 4: negative nodes - ◦: positive nodes.

Because power systems are balanced in steady-state opera-
tion:

n∑
i=1

Pi = 0 (12)

It comes:
n∑
i=1

n∑
k=1

pkΨk(i) = 0 (13)

This can be rewritten, permutating the sums:

p1

n∑
i=1

Ψ1(i) +

n∑
k=2

pk

n∑
i=1

Ψk(i) = 0 (14)

The second term of the right hand side is zero because of
formula (??). Since all the entries Ψ1(i) are equal and non
zero, we get p1 = 0.

Now, we come back to the DC power flow equation (??)
and express the vectors onto the eigenvector basis. This yields:

n∑
k=1

pkΨk = L

n∑
k=1

okΨk (15)

Due to eigenvector definition, it can be expressed as:

n∑
k=1

pkΨk =

n∑
k=1

okλkΨk (16)

Then, since the eigenvectors are orthogonal, we get:

pk = λkok (17)

The computation of phase angle coefficients is straightfor-
ward. For all k > 1, λk 6= 0 and:

ok =
pk
λk

(18)

The component o1 is undetermined because the system is
balanced (p1 = 0) and the first eigenvalue is zero. Actually,
the term o1 is the reference angle of the network; we choose
it equal to zero for simplicity.

To summarize, we have reduced the solution of the full [n×
n] system described by (??), to the evaluation of n independent
spectral responses (??). This fundamental simplification results
from the orthogonality of the eigenvectors Ψk.
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Fig. 3: 30-bus - Power flow spectral results
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C. Calculation of the flow on lines

The power flow on the transmission lines of the grid can be
expressed as:

PL = YL∇θ (19)

where PL is a vector made of branch power flows, YL is
a diagonal matrix representing the line admittances and ∇ is
the gradient over the edges of the graph. Given a function f
on the vertices, it is defined by:

∇f(e) = f(i)− f(j), e = (i, j) ∈ E (20)

It is worth noting that the gradient can be also defined as
the transpose of the link-node incidence matrix of the graph
[?].

In terms of spectral variables, the power on line i is
expressed by:

PL(i) = YL(i, i)

n∑
k=1

pk
λk
∇Ψk(i) (21)

Apart from the eigenvalue λk, the line admittance YL(i, i)
and the power distribution on modes pk, the gradient of
eigenvector components over the edges is a key variable for
power flow on lines. It is related to the structure of nodal
domains.

Inside a domain, the edges connect vertices that have with
the same sign. Then the gradients over the edges are expected
to be smaller than for edges at the border between two adjacent
domains. To justify this, recall that a nodal domains is the
maximal subgraph that gather all the vertices with values of
same sign. Then, two adjacent domains are of opposite sign
and at their border, the gradient over the edges could be large.

V. SPECTRAL ANALYSIS OF VOLTAGE ANGLES

Four test systems are studied in this section. They are all
meshed and their number of nodes vary from 14 to 300.
Network data and reference results are provided by Matpower
free Matlab package [?].

A. Eigenvalues and eigenvectors of the test cases

The eigenvalues of the four test cases are arranged in the
increasing order and plotted in the log-log diagram of figure
??. Eigenvalues λ1 that are equal to zero are not plotted.

For homogeneous graphs (no weigths on the edges), the
spectral distribution is bounded from above. We have [?]:

λn ≤ max(D(i, i) +D(j, j)), (i, j) ∈ E (22)

where D(i, i) is the degree of node i.
The algebraic connectivity λ2 verifies [?]:

4

nd
≤ λ2 (23)

where d is the diameter of the graph, meaning the number
of edges in the shortest path between the most distant vertices.
For such homogeneous systems, as the number of vertices is
increased, the spectral distribution extends towards zero. It
is bounded from above if the degrees of the nodes do not
vary much. Electrical networks are more complex because of
weights. We see from figure ?? that the spectral distributions
extend towards zero as the number of buses increases. Its upper
bound increases slowly with n, perhaps due to the weights.

The nodal domain decomposition for the algebraic con-
nectivity of the four test cases are plotted in figure ??. The
domains are indicated by the color and the shape of the nodes
markers. The size of the edges is also proportional to the
weight (admittance value). As predicted by the theory, we see
two nodal domains for each network. However, their structure
differs significantly due to the geometry and connectivity of
the network. On one hand, for the 118-bus case, the admittance
values are similar for all the lines and the network is separated
into two balanced domains. On the other hand, for the 300-
bus case, the positive domain is confined to a fork which
is connected to the rest of network by a line of very high
admittance.

The graph clustering provided by the second smallest eigen-
value is a first approach to study system vulnerability. It
provides the minimum number of branches that should be
removed to cut the graph in two independent parts [?], [?]

B. Power flow spectral solution

Spectral calculation of power flows is performed by using
equations (??), (??) and (??). The results have been compared
with DC power flow computation performed by Matpower.
Results are very consistent and confirm that this spectral
approach is a way to calculate power flows under DC assump-
tions. The drawback that lies behind its apparent simplicity
is the computation cost of eigenvalues and eigenvectors that
can be expensive for very large systems. And the spectral
solution is only valid for very simple loads and generators
models. Its main advantage is to provide a deep insight on
the links between graph geometry and transmitted powers. It
complements the methods of solving AC and DC power flows,
see the recent advances [?], [?].)
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Fig. 4: 14-bus - Power on lines if nodal power is distributed
on mode 2 only (pk = 0 for k 6= 2) - Line width proportional
to carried power

Fig. 5: 14-bus - Gradient of eigenvector components over the
edges on mode 2 - Line width proportional to gradient

C. Dominant modes

pk and ok are linked by the inverse of the eigenvalue λk (see
equation (??)) and eigenvalues increase rapidly with the rank
as shown in figure ??. So, even if nodal powers are distributed
over a large range of modes, the angles are dominated by
the lower modes. This is shown for the case 30 in figure ??.
The absolute values of the spectral components pk and ok are
plotted along the mode rank k. The power is distributed over
all modes k but modes below 15 dominate the voltages which
appear to be controlled by power transfers at longer distances.
We will see below that the higher modes are determinant for
the loading of the branches.

VI. SPECTRAL ANALYSIS OF THE POWERS ON LINES

Our main purpose is now to understand how the graph
Laplacian modes drive the powers on the lines. Equation (??)
shows that the powers on the lines depend on the eigenvalues
λk, the gradient of eigenvectors over edges ∇Ψk (and so the
structure of nodal domains), the line admittances values YL

Fig. 6: 14-bus - Network line admittances - Line width
proportional to admittance (Ω−1)

and the location of sources and loads which is parametrized
by pk. They are the components of the projection of the nodal
power vector P on the eigenbasis as shown in equation (??).

Two cases are now examined. In this section, the single
mode excitation, meaning that the total load power is only
on one mode, is studied. In the next section, the nominal
excitation, where the power vector is defined in each Matpower
test case, will be detailed.

A. Single mode excitation

We first study the power on lines when the total power of
the network is distributed on a single mode k0. This means
that all the components pk are equal to 0 except pk0 . The
nodal power vector is thus expressed by:

P = pk0Ψk0 (24)

A node i is generating power if Ψk0(i) is positive and is a
load node if Ψk0(i) is negative.

The power on line i is then given by:

PL(i) = YL(i, i)
pk0
λk0
∇Ψk0(i) (25)

The case k0 = 2 is shown in figure ?? for the 14-bus case.
The values of powers flowing through the lines are indicated
near the edges. They are normalized by the total load power
fed into the network. The line width of the edges is also
proportionnal to these values. The values of the power flows
result from the combination of the eigenvector gradient and the
admittance values as shown in figures ?? and ??. The gradient
values drive the power flow on lines 5-6. A high power flow
is also reached on lines 7-9 because of its relatively low
impedance and high gradient. It is worth mentionning that the
vertices 4 and 5 are very well connected (very high admittance
value) but belong to the same domain (very low eigenvector
gradient). The power flow between these two nodes is thus
relatively low.

The same analysis can be carried out for the other modes. A
summarized view of the results is presented in figure ?? for the
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Fig. 7: Maximal power on lines.

four test cases. The maximal value reached by powers on lines
in every mode is plotted. The values are again normalized by
the total load power in order to compare the four test networks.
A general trend can be observed. The highest values tend
to be reached in the lower and higher modes. According to
the theory, for lower eigenvalues, the network is decomposed
into very few domains. The loads are concentrated in the
negative nodal domains and the generators are located in
the positive domains. The interconnection lines between these
domains may be very loaded due to this uneven location of
power elements. For higher eigenvalues, the network may be
fragmented into a lot of small-size domains (whose number
is at most equal to the rank of the eigenvalue). Some lines
might be locally sollicitated to transfer a high amount of power
between two neighbouring domains.

An illustration of this phenomenon is given for the 30-bus
case. In figure ??, the power flow distribution is shown for
λ29. The i-th component of the eigenvector related to this
eigenvalue is affected to the i-th node. Most of the eigenvector
entries are zero except for two neighbouring vertices. At the
node 22 with positive value, all the generation is connected
whereas the total load is connected at the node 21. Of course,
the line between these two vertices is very loaded. The power
flow and eigenvector structure is more distributed for the
eigenvalue λ30 as shown in figure ??. This is the reason why
the maximum power flow is not as high as in the 29-th mode.

A summarized view of the eigenvectors entries is given for
the 118- and 300-bus test cases. For the 118-bus case and lower
eigenvalues, the eigenvectors are uniformly distributed over the
vertices (see the right-hand side of figure ??). But for higher

ranks, the eigenvectors appear to be very localized (high values
on few nodes). The structure of the 300-bus eigenvectors is not
similar (cf. figure ??). Lower modes are surprisingly localized.
This result has already been observed for the nodal domain of
λ2 on figure ??. Its negative domain is restricted to a very few
number of vertices. In any case, the "excitation" of localized
modes shall be avoided to not cause a local excess of power
flows on some lines.

B. The network as a transfer function

Coming back to equation (??), the line power flow can be
expressed under a matrix form such as:

PL = YL∇ΨΛ−1p (26)

Where p = [p1, p2..., pn]T and Λ−1 is a diagonal matrix
with diagonal entries equal to the inverse of the non-zero
eigenvalues and zero for the first eigenvalue.

The network is therefore described by a transfer function
given by the matrix YL∇ΨΛ−1. This matrix expresses the
link between the input vector p (the spectral distribution of
generators and loads) and the output response (the power on
lines PL). Each entry of the transfer function describes the
contribution of the mode k on the line i. They are plotted
in figure ??. They exhibit high peaks and deep valleys for
lower rank modes and are more flattened with some localized
peaks or valleys for higher ranks. For lower ranks, the transfer
function of a transmission network is large to facilitate the
transfer of power over the system. For higher ranks, at local
scales, the transfer function is close to zero. This means
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(a) Mode 29 (b) Mode 30

Fig. 8: 30-bus - Line power distribution - Line width proportional to carried power.

(a) 118-bus (b) 300-bus

Fig. 9: Eigenvector components.

that generally small amounts of power are transferred locally
between nodes. But the excitation of the localized peaks and
valleys shall be avoided to limit the loads on lines.

VII. SPECTRAL ANALYSIS OF VULNERABILITIES

A. Determination of the most loaded lines

We now investigate the spectral features of the four nominal
test cases and assess how and why some lines are more loaded
than others. Nominal means that we use the nodal distribution
of generators and loads as defined in the Matpower’s test cases.
The spectra p = (p1, p2, . . . pn) of these nominal distributions
are shown in figure ??. They are the input of the network’s
transfer function shown in figure ??. Notice that these inputs
are more concentrated on the higher than the lower modes.

The absolute values of the resulting line powers are plotted
in figure ??. They are normalized by the total load value.
Of course, the lines are not evenly loaded. However, note
the larger the network, the less loaded are the lines. Indeed,

larger meshed transmission networks offer more paths for the
power flow, therefore increasing the transmission capacity and
limiting the risks of line congestions.

In the nominal cases, all the modes are excited and interplay
in the power line calculation as expressed by equations (??)
or (??). For example, the most loaded transmission element of
the 30-bus nominal test case is the line 22 as shown in figure
??. Its spectral decomposition is given in figure ??. The most
dominant mode is associated with λ10. This results from the
combination of the level of excitation of the 10-th mode (figure
??), the gradient value across the line 22 between the nodes
12 and 13 (figure ??) and the admittance of the line (its value
is closed to the mean value of the line admittances of the test
case). None of these values are very high but their combination
give way to an overloading of line 22 when compared to the
other lines.

The previous detailed analysis can be carried out for every
test cases. The five most loaded lines and their associated
dominant mode are given in table ??. These lines are the
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(a) 14-bus (b) 30-bus

(c) 118-bus (d) 300-bus

Fig. 10: Network transfer function - x-axis: k ; y-axis: i ; z-axis: YL(i, i) 1
λk
∇Ψk(i).

least susceptible to absorb hazards due to their high level of
stress in normal operation. The results clearly show that they
are dominated by high rank modes, i.e. controlled by power
transfers at shorter distances. These modes may also control
more than one overloaded line. For a given graph structure,
the choice of the spectral distribution of generators and loads
parametrized by pk is therefore a crucial variable. It should be
adjusted to better share the loads between lines and increase
the system robustness.

B. Reduction of the vulnerabilities

An example of reduction of vulnerability is given for
the 300-bus test case. As previously depicted, the spectral
distribution of nodal powers in the nominal case produces very
stressed lines. We have then decided to choose another input
vector p in order to offer a more uniform sharing between

TABLE I: Most loaded lines (sorted by descending order) and
associated dominant mode

300-bus 118-bus 30-bus 14-bus
Line Mode Line Mode Line Mode Line Mode
216 166 13 15 22 10 1 7
12 218 15 15 22 14 2 7
296 173 9 18 22 14 3 7

8 7 147 100 32 29 7 7
221 218 81 71 5 14 4 7

modes and thus avoid over-excitation of localized modes. The
histograms of both nominal and new input vectors are shown
in figure ??. This clearly indicates that the modified vector is
more homogeneously distributed over the modes. This yields
a better distribution of the powers on lines as shown in table
??. The mean value of the lines loading is lower than in the
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Fig. 11: Spectra p = (p1, p2, . . . pn) of nodal powers for the nominal cases.
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Fig. 12: Power on lines for the nominal cases.



11

2 5 10 15 20 25 30

Mode rank

-0.02

0

0.02

0.04

0.06
S

pe
ct

ra
l c

om
po

ne
nt

Fig. 13: 30-bus - Spectra of power on line 22

Fig. 14: 30-bus - Nodal domains for λ10 - Line width propor-
tional to carried power

TABLE II: Statistics on the power on lines (values in MW)

Mean Standard deviation Maximum
Nominal case 135 187 1292
Modified case 84 34 173

nominal case and the standard deviation is reduced meaning
a more homogeneous sharing. Finally, the maximal load has
been divided by more than 6 showing that the over-excitation
of unwanted localized modes has been avoided.

VIII. CONCLUSION

We introduced a spectral approach to decompose and solve
the DC power flow equations on the basis of the Laplacian
eigenmodes whose characteristic length is given by the eigen-
values and geometrical shape is determined by the eigenvec-
tors. This provides a geometric picture of the drivers of the
electrical variables.

We find that bus voltages are mainly dominated by large
scale modes corresponding to the low ranking eigenvalues.
Line flows are affected by the nodal domains associated with
the signed structure of the components of the eigenvectors.
Another important parameter is the series admittance of the
lines, for example low impedance lines may magnify some

Fig. 15: 300-bus - Histograms of nominal (blue) and modified
(yellow) input vectors p

power transfer as shown in equation (??). Unfortunately most
known theoretical results in spectral graph theory assume equal
admittances. To extend these results to unequal values is a
challenging problem for graph theorists.

Finally, we introduce a transfer function connecting the
power in the lines PL to the generator/load distribution p. This
transfer function is large for low wave numbers corresponding
to energy transfers on large length scales of the network. High
numbers exhibit some localized peaks.

A practical consequence is that electrical engineers design-
ing power systems should avoid high ranking eigenmodes
that are very localized because these can cause overloaded
lines (table ??). An example of the modification of the power
distribution was suggested to better share the loads between
the lines and therefore to reduce the system vulnerability.

The challenge open now for power engineers is to select the
optimal power input taking into account the spectral structure
of the network and the operational constraints.
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