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Abstract—Online accurate estimation of supercapacitor
state-of-health (SoH) and state-of-energy (SoE) is essential
to achieve efficient energy management and real-time con-
dition monitoring in electric vehicle (EV) applications. In this
article, for the first time, unscented Kalman filter (UKF) is
used for online parameter and state estimation of the super-
capacitor. In the proposed method, a nonlinear state-space
model of the supercapacitor is developed, which takes the
capacitance variation and self-discharge effects into ac-
count. The observability of the considered model is analyt-
ically confirmed using a graphical approach. The SoH and
SoE are then estimated based on the supercapacitor on-
line identified model with the designed UKF. The proposed
method provides better estimation accuracy over Kalman
filter (KF) and extended KF algorithms since the lineariza-
tion errors during the filtering process are avoided. The
effectiveness of the proposed approach is demonstrated
through several experiments on a laboratory testbed. An
overall estimation error below 0.5% is achieved with the
proposed method. In addition, hardware-in-the-loop exper-
iments are conducted and real-time feasibility of the pro-
posed method is guaranteed.

Index Terms—Electric vehicles (EVs), state-of-energy
(SoE), state-of-health (SoH), supercapacitor, unscented
Kalman filter (UKF).

I. INTRODUCTION

E
LECTRIC double-layer capacitors, also known as super-

capacitors or ultracapacitors, have gained increasing atten-

tion from the transportation sector due to their appealing features
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such as high power density, long cycle life, etc. In vehicular ap-

plications, the supercapacitor can be used as a complementary

energy storage system (ESS) in conjunction with the chemical

batteries to improve the vehicle performance during transient

states such as acceleration and regenerative braking conditions

[1]. For example, ENEA (Italian National Agency for New Tech-

nologies, Energy and Sustainable Economic Development) has

recently developed an electric bus that actively combines the

supercapacitors and batteries in a hybrid ESS, which shows

the industrial importance of such systems [2]. However, the

performance of the supercapacitor heavily depends on its state-

of-health (SoH) and state-of-energy (SoE). The SoH and SoE

are critical metrics that determine how much energy the super-

capacitor can absorb or release during a particular vehicle state

[3]. Therefore, online accurate estimation of the foregoing vari-

ables is essential. The estimation accuracy of the SoH and SoE

relies on the supercapacitor model fidelity and the estimation

algorithm. In fact, an effective estimation method is needed for

updating the model parameters in real-time to account for aging

effects [4]. Different methods have been proposed for estima-

tion of the supercapacitor SoH and SoE. In the following, a brief

review of the state-of-the-art is presented.

The basic approach for the estimation of supercapacitor SoH

is electrochemical impedance spectroscopy (EIS) [5], [6]. The

EIS is a frequency-based characterization approach, which pro-

vides a very accurate estimation of SoH. However, the EIS

requires costly instrumentation. More importantly, the EIS is

an offline method and is not suitable for vehicular applications,

where the estimation algorithm must run online. In [7], the SoH

is estimated in an offline manner based on the bias voltage,

current, and temperature during cycling tests. Artificial neural

network has been used for SoH estimation in [8]. A frequency

spectrometer has been used to obtain some training data in the

frequency domain. The main drawback of this approach is that a

sufficiently rich dataset is needed for the training phase, which

makes its implementation difficult and time-consuming. In [9],

the least-squares (LS) algorithm has been used for the estima-

tion of supercapacitor states. However, the ordinary LS method

is not suitable for online execution as its computational burden

exponentially increases with the size of the measurement vector.

To resolve the foregoing problem, recursive LS (RLS) algorithm

has been used in [10]–[12] for state estimation in the superca-

pacitors. In [13], an online approach based on the extended RLS
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algorithm has been used to account for the undesirable effect of

the measurement noises. However, all the foregoing LS-based

approaches are designed based on the simple RC model of the

supercapacitor, which neglects the self-discharging and charge

redistribution effects.

In addition to the SoH, the supercapacitor SoE should also

be accurately estimated. The basic approach for estimation of

SoE is ampere–hour counting. However, the accuracy of this

method is relatively low due to the accumulation of measure-

ment errors over time. To rectify the foregoing problem, an ef-

fective SoE estimation approach based on the Luenberger style

observer has been proposed in [14]. In this method, based on

the difference between the actual and predicted supercapaci-

tor voltages, a feedback loop is employed to compensate for

the measurement errors, modeling uncertainties, and numerical

computation errors. Another effective observer-based approach

based on the generalized extended state observer (GESO) has

been proposed for SoH and SoE estimation in [15]. The three-

branch equivalent circuit model of the supercapacitor has been

used together with the GESO. However, the effect of the leak-

age current is omitted in the estimation of SoE. It is noteworthy

that the foregoing observer-based methods have relatively low

computational burden since they fulfill the state estimation by

only using the supercapacitor model. However, the observers

are deterministic and thus, they cannot suitably deal with un-

desirable effects of the measurement noises with stochastic na-

ture. Thus, in vehicular applications where the supercapacitor

model parameters experience frequent variations and measure-

ments are subjected to error and noise sources, a state estimation

algorithm that has an inherent capability to deal with such mod-

eling uncertainties, measurement errors, and stochastic noises

is needed.

To tackle the foregoing problems, Kalman filter (KF) and

extended KF (EKF)-based algorithms have been used for esti-

mation of the supercapacitor states [16]–[18]. In [16] and [18],

a three-branch equivalent circuit model of the supercapacitor is

considered and KF has been used for estimation of the super-

capacitor SoE. The model parameters and SoH are estimated

with least mean square error (LMSE) fitting approach and KF

is only used for estimation of the voltages across the capacitive

branches. The main disadvantage of this approach is that the

effect of the leakage current is ignored. Furthermore, the LMSE

algorithm used for parameter estimation is not computationally

efficient due to the involvement of a heavy matrix inversion pro-

cess. In addition, the effects of measurement errors and noises

cannot be suitably handled during parameter estimation with

the LMSE algorithm. In [17], EKF has been used for estima-

tion of the supercapacitor SoH. The EKF is used for estimation

of the aging indicators using an RC equivalent circuit model,

which takes into account the capacitance variation effect. At

each iteration, the EKF considers a first-order linearization of

the supercapacitor nonlinear model, which might lead to sub-

optimal performance and sometimes divergence of the filter. In

addition, the considered model in [17] does not account for the

self-discharging phenomenon of the supercapacitor.

Although there have been various studies for the estimation

of supercapacitor SoH and SoE, there are still some points that

remain to be addressed. In vehicular applications, where the

real-time state estimation is must, a simplified supercapacitor

model with relatively low computational burden is usually pre-

ferred. For instance, although the three-branch equivalent cir-

cuit model of the supercapacitor exhibits a very good accuracy,

it necessitates the use of a separate algorithm for estimation of

the supercapacitor unobservable internal state variables, which

lowers the computational efficiency. On the other hand, the use

of oversimplified supercapacitor models decreases the accuracy

of the state estimation. Therefore, a supercapacitor model with

moderate complexity can be useful if the state estimator has the

inherent capability of effectively dealing with modeling uncer-

tainties. More importantly, the state estimator should be able to

handle the inherent sensor errors, sensor drift due to a change in

the operating conditions, errors associated with analog to digi-

tal conversion (ADC) units, electromagnetic interference, noise

effects, etc. As discussed before, the KF-based filtering meth-

ods are best suited for dealing with the stochastic nature of the

modeling uncertainties and measurement errors. The filter-based

techniques have also been used for state estimation in other ESS

types such as electrochemical batteries, which indicates the use-

fulness if these estimation tools [19], [20]. However, the KF and

EKF use a linearized supercapacitor model, which decreases the

accuracy of the state estimation. In addition, the EKF algorithm

has high computational burden since a Jacobian matrix needs to

be calculated at each iteration of the algorithm.

To address the mentioned issues, in this article, for the first

time, unscented KF (UKF) algorithm is used for accurate con-

current estimation of the supercapacitor SoH and SoE. An

RC equivalent circuit model of the supercapacitor, which ef-

fectively takes into account the capacitor variation and self-

discharging effects, is considered in the UKF algorithm. Unlike

other approaches that fulfill the parameter and state estimation

in separate steps, the proposed UKF-based approach obtains the

supercapacitor SoH and SoE using only one filtering process.

The foregoing technique increases the estimation accuracy by

taking into account the cross-correlations between the parame-

ters and states. In addition, it has easier implementation since

only one filtering algorithm is needed. The main features of the

proposed approach are highlighted as follows.

1) This article is the first attempt for using UKF in joint

estimation of the supercapacitor SoH and SoE. The UKF

provides better accuracy over existing methods such as

EKF but remarkably, the computational complexity of

the UKF is lower than the EKF, as will be proved later.

2) The capacitance variation and self-discharging effects are

considered in the supercapacitor model.

3) Both the SoH and SoE are estimated using a single UKF-

based filtering process, which is accomplished by aug-

menting the internal voltage of the supercapacitor as a

new state variable with the main system model.

4) The real-time feasibility of the proposed UKF-based

approach is demonstrated by a series of hardware-in-the-

loop (HIL) experiments.

The rest of the article is structured as follows. In Section II, the

operating principles of the proposed method are presented. In

Section III, the experimental results of the proposed approach on
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an implemented testbed are provided and discussed. To demon-

strate the real-time feasibility of the proposed method, some HIL

experiments are conducted and the results are reported in Sec-

tion IV. In Section V, the proposed approach is compared with

the KF-based and EKF-based algorithms in terms of accuracy

and computational complexity. Finally, Section VI concludes

this article. An Appendix provides some details regarding the

implemented algorithm.

II. OPERATING PRINCIPLES OF THE PROPOSED METHOD

The key step for accurate estimation of the SoH and SoE lies

in the precise parameter estimation and successful observation

of the supercapacitor internal voltage. In this article, both the

parameter and internal state estimation tasks are fulfilled us-

ing the proposed UKF-based approach. Different steps of the

proposed method are explained in the following subsections.

A. Problem Statement

The target of this article is to develop an online, accurate, and

computationally friendly SoH and SoE indicator. It is assumed

that the supercapacitor measurable parameters are its termi-

nal voltage and charge/discharge current. The equivalent series

resistance (ESR) Rs and the internal capacitance C are consid-

ered as the key signatures for indicating the supercapacitor SoH.

According to the estimates of the foregoing parameters, the su-

percapacitor SoH can then be quantified based on an end-of-life

(EoL) criterion. For example, according to IEC-62391, the su-

percapacitor reaches its EoL when the ESR increases by two

times of the rated ESR. Therefore, the SoH can be calculated as

follows:

SoH(%) =
2ESRrated − ESRestimated

ESRrated

× 100 (1)

where ESRrated and ESRestimated are the rated and estimated ESR

values, respectively. In addition, SoE is defined as the remaining

energy, which is shown in percentage. The stored energy of the

supercapacitor can be given by

E =

∫

Qdv̂c =

∫

Cv̂cdv̂c =

∫

C0 v̂cdv̂c +

∫

C1 v̂
2
c dv̂c

=
1

2
C0 v̂

2
c +

1

3
C1 v̂

3
c (2)

where E is the stored energy in Joules, Q is the electric charge,

C is the internal capacitance, and v̂c is the estimated inter-

nal voltage of the supercapacitor. The SoE is calculated as the

ratio of the remaining energy to the maximum energy of the

supercapacitor Emax in percentage:

SoE(%) =
E

Emax
× 100. (3)

The maximum energy Emax is derived when the supercapaci-

tor internal voltage vc equals to the rated supercapacitor voltage

Vrated. Therefore, the accurate estimation of SoH and SoE relies

on the precise estimation of the supercapacitor internal voltage

and its model parameters.

Fig. 1. RC equivalent circuit model of the supercapacitor considering
the self-discharge and capacitance variation effects.

B. Supercapacitor Nonlinear State-Space Model

In this article, a first-order equivalent circuit model of the

supercapacitor is used. In order to effectively mimic the super-

capacitor real behavior, the capacitance variation and charge

redistribution effects are taken into account. The considered

model is shown in Fig. 1, in which Uc , i, and vc are the terminal

voltage, current, and supercapacitor internal voltage, respec-

tively. In addition, Rs is the ESR, Rp is the equivalent parallel

resistance, and C is the supercapacitor voltage-dependent ca-

pacitance, which is described with the following expression

[21], [22]:

C = g(vc) = C0 + C1vc . (4)

In (4), C0 is a constant capacitance. In addition, it can be

assumed that the capacitance C linearly evolves with an almost

constant or a slow time-varying slope and thus, dC1/dt ≈ 0.

The voltage across the supercapacitor internal capacitance can

be written as

vc =
1

C

∫ (

i −
vc

Rp

)

dt. (5)

The supercapacitor internal voltage vc is considered as the

first state variable (x1 = vc). Taking the derivative of (5), one

can write

dvc

dt
=

d

dt

(
1

C

)∫ (

i −
vc

Rp

)

dt +
1

C

(

i −
vc

Rp

)

=
d

dt

(
1

C

)∫

idt −
1

Rp

d

dt

(
1

C

)∫

vcdt +
1

C

(

i−
vc

Rp

)

.

(6)

The integration of vc is also considered as a second state

variable (x2 =
∫

vcdt). From (4) and (6), dC/dt can be written

as follows:

dC

dt
= C1

dvc

dt

= C1

(
d

dt

(
1

C

) ∫

idt−
1

Rp

d

dt

(
1

C

)

x2 +
1

C

(

i−
x1

Rp

))

.

(7)
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Considering 1/C as a state variable and using (7), the

derivative of 1/C can be obtained as follows:

d

dt

(
1

C

)

=
−1

C2

dC

dt

=
−1

C2
C1

(
d

dt

(
1

C

)∫

idt −
1

Rp

d

dt

(
1

C

)

x2

+
1

C

(

i −
x1

Rp

))

=
−C1

C2

d

dt

(
1

C

) ∫

idt +
C1x2

C2Rp

d

dt

(
1

C

)

−
C1

C3

(

i −
x1

Rp

)

. (8)

With some manipulations, the following state equation can

be derived:

d

dt

(
1

C

) [

1 +
C1

C2

∫

idt −
C1x2

C2Rp

]

︸ ︷︷ ︸

A

= −
C1

C3

(

i −
x1

Rp

)

⇒
d

dt

(
1

C

)

=
1

A

−C1

C3

(

i −
x1

Rp

)

. (9)

The supercapacitor voltage Uc is considered as the system

output y as follows:

y = Uc = Rsi + vc (10)

where the supercapacitor current i is considered as the system

input u. The state vector is then considered as follows:

X = [x1 x2 x3 x4 x5 x6 x7 ]
T =

[

vc

∫

vc Rs Rp C1
1

C
y

]T

.

(11)

In (11), the parameters Rs , Rp , and C1 are also considered

as state variables and since these parameters have a slow time-

varying nature, the following state equations can be deducted:

x3 = Rs → ẋ3 = 0, x4 = Rp → ẋ4 = 0

x5 = C1 → ẋ5 = 0. (12)

Considering (4)–(9), other state-space equations can be

written as follows:

ẋ1 =

(
−1

1 + x5x2
6

∫
udt − (x2

6x5x2)/x4

)

x5x
2
6

(

u −
x1

x4

)

×

(∫

udt −
x2

x4

)

+ x6

(

u −
x1

x4

)

(13)

ẋ2 = x1 (14)

ẋ6 =

(
−1

1 + x5x2
6

∫
udt − (x2

6x5x2)/x4

)

x5x
3
6

(

u −
x1

x4

)

.

(15)

As seen in (11), the system output (y = Uc) is also considered

as a state variable. In the next subsection, it is explained that

x7 = y is considered to ensure the model observability in all

Fig. 2. Inference diagram of the supercapacitor internal states. The
sensory node indicated with blue color is related to the supercapacitor
terminal voltage Uc . Balance equations of x1 –x7 are represented by
(12)–(16).

operating conditions. Hence, the last state-space equation can

be derived as follows:

x7 = y
From(7)
−→ ẋ7 = ẏ = ẋ3u + x3 u̇ + ẋ1

= x3 u̇ + ẋ1 (16)

where ẋ1 should be substituted from (13).

C. Observability of the System

In this article, the system observability is demonstrated us-

ing an innovative graphical approach recently proposed by Liu

et al. [23]. In this approach, the dynamic interdependence be-

tween the system states will be exploited through a so-called

inference diagram. The system inference diagram is obtained

through the following steps:

1) If xj appears in the differential equation of xi , a direct

link xi → xj is drawn, which implies that the information

on xj can be collected by monitoring xi as a function of

time. The inference diagram for the considered system is

shown in Fig. 2.

2) The obtained inference diagram is then decomposed into

a unique set of maximal strongly connected components

(SCCs). The SCCs are the largest subgraphs selected such

that there is a straight path from each node to all other

nodes in that subgraph. The SCCs are surrounded by the

red dashed circles in Fig. 2.

3) The SCCs that have no incoming edges are defined as

root SCCs (RSCCs).

Definition 1: The necessary and sufficient condition for ob-

servability of all system states is that in the inference diagram,

at least one node from each RSCC is a sensory node [23].
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As seen in Fig. 2, only one RSCC exists in the system infer-

ence diagram. The RSCC includes the state variable x7 , which

is equal to the supercapacitor measured terminal voltage. There-

fore, since RSCC includes a sensory node, based on Definition

1, the observability of the whole system can be guaranteed [23].

In this article, the supercapacitor model consisting of (12)–

(16) are used for supercapacitor SoH and SoE estimation and

sufficiently good results are obtained. However, more compli-

cated supercapacitor models such as the three-branch equivalent

circuit model can also be used with the proposed UKF-based

approach to further improve the estimation accuracy.

D. Proposed UKF-Based SoH and SoE Indicator

The UKF algorithm has been widely used for state estimation.

Unlike the EKF, which involves a linearization stage through the

calculation of a Jacobian matrix (partial derivative matrices),

the UKF has less computational effort as it does not depend

on Jacobians [24]–[26]. In a general case, the discrete-time

state-space representation of the supercapacitor model can be

expressed as follows:

Xk+1 = f (Xk , uk , tk ) + ωk

yk = h (Xk , tk ) + νk

ωk ∼ (0, Qk )

νk ∼ (0, Rk ) (17)

where Xk is the state vector at sample k, u is the system input

(supercapacitor current), ω is the process noise, and ν is the

measurement noise. The process and measurement noises are

considered to be uncorrelated Gaussian white noises, which are

included to account for the modeling uncertainties and measure-

ment errors. In the first two formulas of (17), f(·) and h(·) are

nonlinear functions, which express alternative representations

of the system model (12)–(16). The third and fourth formulas in

(17) show that the process and measurement noises have zero

mean and covariance matrices Q7×7 and R1×1 , respectively.

At the first step, the UKF algorithm is initialized by assign-

ing initial values to the system states (X̂+
0 ) and the covariance

matrix of the estimation error (P+
0 ). The covariance matrix P

exhibits the uncertainty in the estimated system states. The ini-

tializing process is only fulfilled at the first iteration (k = 1).

The UKF algorithm performs a nonlinear transformation (un-

scented transform) on a series of the so-called sigma points in

state space whose probability density function (PDF) suitably

approximates the true PDF of the state vector. In the considered

supercapacitor model, there exist m = 7 state variables and thus,

2m = 14 different sigma points are selected as follows [27]:

X̃(i) =

(√

7P+
k−1

)T

i

, i = 1, 2, . . . , 7

X̃(i+7) = −

(√

7P+
k−1

)T

i

, i = 1, 2, . . . , 7

X̂
(i)
k−1 = X̂+

k−1 + X̃(i) , i = 1, 2, . . . , 14. (18)

Then, the known nonlinear supercapacitor model f(·) is used

to transform the sigma points into X̂
(i)
k vectors as follows:

X̂
(i)
k = f

(

X̂
(i)
k−1 , uk , tk

)

. (19)

The time update phase for obtaining the a priori state es-

timates and the covariance matrix of the estimation error is

fulfilled using the following expressions:

X̂−

k =
1

14

14∑

i=1

X̂
(i)
k

P−

k =
1

14

14∑

i=1

(

X̂
(i)
k − X̂−

k

) (

X̂
(i)
k − X̂−

k

)T

+ Qk−1 (20)

where X̂−

k is the priori estimation up to the sample k. Next, the

measurement update phase is fulfilled considering a new set of

sigma points as follows:

X̃(i) =

(√

7P−1
k

)T

i

, i = 1, 2, . . . , 7

X̃(i+7) = −

(√

7P−1
k

)T

i

, i = 1, 2, . . . , 7

X̂
(i)
k = X̂−

k + X̃(i) , i = 1, 2, . . . , 7. (21)

It should be noted that the same sigma points of (18) (from

the time update phase) can be reused during the measurement

update phase to further save the computational effort, which is

of great importance for real-time vehicular applications [27].

The known nonlinear output equation h(·) is subsequently used

to transform the sigma points (21) into ŷ
(i)
k vectors as follows:

ŷ
(i)
k = h(X̂

(i)
k , tk ). (22)

In order to calculate the predicted measurement and its

covariance matrix at time k, the following formulas are used:

ŷk =
1

14

14∑

i=1

ŷ
(i)
k

Py =
1

14

14∑

i=1

(

ŷk − ŷ
(i)
k

)(

ŷk − ŷ
(i)
k

)T

+ Rk . (23)

Note that Rk is added in the second formula of (23) to ac-

count for the effect of measurement noise. The cross-covariance

between ŷk and X̂−

k can also be obtained as follows:

Pxy =
1

14

14∑

i=1

(

X̂
(i)
k − X̂−

k

) (

ŷ
(i)
k − ŷk

)T

. (24)

Finally, the measurement at instant k is taken into account

during the measurement update step as follows:

Kk (Kalman Gain) = PxyP−1
y

X̂+
k = X̂−

k + Kk (yk − ŷk )

P+
k = P−

k − KkPyKT
k . (25)
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Fig. 3. Flowchart of the proposed UKF-based SoE and SoH estimation
approach.

The second formula of (25) gives the final state estimates,

in which x̂+
3k and x̂+

6k are the supercapacitor SoH indicators. In

addition, x̂+
1k can be used to calculate the SoE using (2), (3). The

whole algorithm flow of the proposed approach is illustrated in

Fig. 3.

E. Settings of the Proposed UKF-Based Approach

As explained before, the state estimator must be initialized

at the first iteration (k = 1). In order to demonstrate the merits

of the proposed approach more intuitively, it is herein assumed

that no initial information about the system states is available.

Therefore, the initial values of x1–x7 and the covariance matrix

of the estimation error are set as follows:

X̂+
0 = 07×1

P+
0 = 10 × I7×7

where 0 and I are zero and identity matrices, respectively. How-

ever, in order to increase the filter convergence speed, the initial

values of the state variables can be set to their rated values,

most of which are known from the supercapacitor datasheet or

by a standard offline test. The covariance matrices of the pro-

cess and measurement noises reflect the accuracy levels of the

sensor measurements as well as the considered supercapacitor

model. The covariance matrix of the measurement noise is cho-

sen based on the typical errors of the voltage sensor as well as

the ADC units. In addition, the diagonal covariance matrix of

the process noise is selected with trial and error. These matrices

are assigned as follows:

R = 0.015, Q = diag (0.1, 0.1, 0.1, 0.5, 0.3, 0.1, 0.2) .

More theoretic information about the optimal selection of the

covariance matrices of the measurement noise and process noise

can be found in [27].

Fig. 4. Experimental testbench for testing the proposed UKF-based
approach.

III. EXPERIMENTAL RESULTS

In order to assess the performance of the proposed method,

several experiments are conducted and the results are presented

in this section. In the following, the experimental testbed is

introduced and the results are discussed in details.

A. Description of the Implemented Testbed

The experimental testbench is shown in Fig. 4. A superca-

pacitor cell (from Maxwell Technologies) with rated voltage

and capacitance of 2.7 V and 350 F, respectively, is used in

the experiments. Detailed information about the parameters of

the utilized supercapacitor cell is provided in the Appendix. In

order to generate the desired current profiles and to emulate the

real-life electric vehicle (EV) driving conditions, a closed-loop

buck converter and a dc electronic load are implemented. The

closed-loop buck converter controls the supercapacitor charge

current. Likewise, the dc electronic load controls the discharge

current of the supercapacitor. The dc electronic load is realized

by closed-loop control of the gate-source voltage of a linear

MOSFET (IXTK90N25L2), which is cascaded with a resistive

load. The digital signal processor (DSP) TMS320F28335 is used

for closed-loop control of the converters. The PI controllers for

current regulation and the algorithm of the proposed UKF-based

approach for estimation of the supercapacitor SoH and SoE

are realized in MATLAB/Simulink. The experiments are per-

formed at room temperature (T = 25 °C). The ACS712ELCTR-

20A-T current sensor is used for measuring the supercapacitor

charge/discharge current. In addition, the supercapacitor voltage

is directly read by 12-bits ADC unit of the microprocessor. A

sampling frequency of fs = 1 kHz is selected. A complete list

of the experimental parameters is provided in Table I.

B. Results and Discussions

In order to test the proposed UKF-based method, a number

of scenarios are considered. Based on the charging/discharging

current profiles that may occur in a real EV drive cycle, three

scenarios are examined as follows.
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TABLE I
EXPERIMENTAL PARAMETERS OF THE TEST SYSTEM

Case A: In this case, the initial SoE of the supercapacitor is

set to zero (SoEinitial = 0) and the supercapacitor gets charged

with a constant current i = −2.5 A. This case simulates the

regenerative braking or EV coasting.

Case B: In this case, the initial SoE of the supercapacitor is

set to 90% (SoEinitial = 90%) and the supercapacitor gets dis-

charged with a constant current i = +2.5 A. This case emulates

the vehicle acceleration mode, in which the supercapacitor gets

discharged to support the main energy storage unit.

Case C: In this case, the initial SoE is set to 50%

(SoEinitial = 50%). The supercapacitor is first discharged with

i = +2.5 A and then, it is charged with i = −2.5 A followed

by a rest condition for ∆t = 50 s. The pattern is repeated twice

during the experimentation time ∆t = 600 s.

The charging/discharging current profiles in Cases A–C are

depicted in Fig. 5. In Case A, the charging process is stopped

when the cell is fully charged to 2.7 V. Likewise, in Case B,

the discharge current is set to zero (the load is disconnected)

when the cell is fully discharged. To assess the robustness of the

proposed approach against the measurement noises and errors,

a fourth case (Case D) is also considered which is similar to

Case A except that band-limited white noise with a signal to

noise ratio (SNR) of 30 dB is added to the current and voltage

measurements. In order to assess the accuracy of the proposed

UKF-based estimator, the EIS method is used as a benchmark.

The obtained parameters of the supercapacitor model are as

follows:

[Rs Rp C1 C0 ]
T = [3.3 mΩ 10 kΩ 0.91 348 F]T

The supercapacitor states Rs and C reflect the SoH. The

estimation accuracy of these parameters is assessed using the

following formula:

SoH indicators errors % =
xestimated − xEIS

xEIS

× 100 (26)

where x is either of the SoH indicators (Rs or C), xestimated is

the estimated value of the state, and xEIS is the real value of the

system state obtained using the EIS. Furthermore, the estimation

accuracy of SoE is calculated using the following formula:

SoE error % =
SoEestimated − SoEreal

SoEreal

× 100

=
Eestimated − Ereal

Ereal

× 100 (27)

Fig. 5. Current and voltage profiles of the supercapacitor in scenarios
A–C. (a) Scenario A. (b) Scenario B. (c) Scenario C.

where SoEestimated and Eestimated are the estimated SoE and

estimated supercapacitor remaining energy, respectively. In ad-

dition, SoEreal and Ereal are the real SoE and remaining energy

of the supercapacitor, respectively. Ereal is obtained as follows:

Ereal = E0 +

∫

(i × Uc)dt

︸ ︷︷ ︸

input energy

−

(∫

Rsi
2dt +

∫
v2

c

Rp
dt

)

︸ ︷︷ ︸

energy loss

(28)

where E0 is the initial stored energy of the supercapacitor. The

state estimation results for Cases A, B, and D are shown in

Fig. 6. Due to the space limit, only the results related to x3−x6

are given. As seen, under no circumstance, the maximum con-

vergence time of the proposed UKF-based estimator exceeds

1.5 s. In addition, the average error [calculated using (26) over

a time period of 5 s after the convergence of the filter] for esti-

mating the SoH indicators Rs and C are ≈ 0.52% and ≈ 0.32%,

respectively. It can be seen that even when the measurements

are contaminated with random noise with SNR of up to 30 dB,

the SoH indicators are accurately estimated. The faster conver-

gence time in Case A is obtained since the selected initial SoE

in Case A is closer to the real initial state vector in the UKF

algorithm. The estimated SoH indicators in Case C are also
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Fig. 6. State estimation results with the proposed UKF-based approach for cases A, B, and D. (a) Estimation results for Rs . (b) Estimation results
for Rp . (c) Estimation results for C1 . (d) Estimation results for C.

Fig. 7. Estimated SoH indicators with the proposed approach in
Case C.

shown in Fig. 7. It can be deduced that the proposed estimator

effectively estimates the supercapacitor parameters in different

charging/discharging modes.

In Fig. 8, the results of the SoE estimation in Cases A, B,

and C are depicted. It can be observed that in all Cases, the

SoE is accurately estimated. At the beginning stages of Cases

B and C, relatively large differences between the estimated and

real SoE are observable, which is due to the fact that the ini-

tial SoE of the supercapacitor in Cases B and C is set to 90%

and 50%, respectively, which is different from the considered

initial SoE of 0% in the UKF algorithm. However, it is seen

that the SoE successfully converges to its reference value in a

very short duration. The results also reveal that during the rest

periods when the supercapacitor charging/discharging is termi-

nated, the SoE gradually decreases due to the self-discharge

effect caused by the parallel resistance in the supercapacitor

model. The state estimation errors of the supercapacitor SoE in

Cases A–D are also calculated using (27) and (28) and are sum-

marized in Table II, which reports the mean error values over the

simulation time. The results show that the error of the SoE esti-

mation does not exceed 1% in the worst case when the measure-

ment data are contaminated with random noise with SNR of up

to 30 dB.

IV. REAL-TIME FEASIBILITY DEMONSTRATION WITH HIL

EXPERIMENTS

In order to demonstrate the real-time feasibility of the pro-

posed UKF-based approach, a series of HIL experiments are

conducted. The photo of the HL test is shown in Fig. 9. The pro-

posed UKF-based method is completely implemented in MAT-

LAB/Simulink environment. Therefore, the C code of the al-

gorithm is first generated with MATLAB CODER option. The

generated C code of the UKF algorithm is then downloaded

to the 150-MHz DSP TMS320F28335 from Texas Instruments
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Fig. 8. Estimated SoE with the proposed UKF-based approach.
(a) Case A. (b) Case B. (c) Case C.

using Code Composer Studio 6.2.0 software. A pre-recorded

dataset, which includes the supercapacitor voltage and current

signals, is imported to MATLAB in a host computer. The current

and voltage waveforms are contaminated with random Gaussian

White noise with SNR of 30 dB to effectively mimic the real-

life conditions. The obtained voltage and current data are then

sent from the host computer to the DSP in an online manner

using the PCI-1712 data-acquisition card. In the meanwhile,

analog low-pass antialiasing filters of order two with a cut-off

frequency of 2 kHz are used. Upon receiving each data sample

by DSP, the supercapacitor SoH and SoE are estimated with

the proposed algorithm. The results are finally sent back to the

host computer for monitoring and controlling purposes (to syn-

chronize the whole HIL process). The required memory for the

proposed UKF-based estimator is about 27kbytes, which is far

lower than the memory of TMS320F28335 (256 K × 16 flash

memory). Furthermore, the maximum run-time of the algorithm

for the estimation is about 0.091 ms. A sampling frequency of 1

kHz is selected for the algorithm (which is sufficiently good for

state estimation in vehicular applications) and thus, each itera-

tion must be accomplished within 1 ms. Therefore, only 9.1% of

the processor resources will be used by the proposed algorithm

TABLE II
STATE ESTIMATION ERRORS OF SOE FOR DIFFERENT SCENARIOS

Fig. 9. Photo of the testbench for HIL tests.

TABLE III
COMPARISON BETWEEN THE PROPOSED METHOD

AND KF-BASED ALGORITHMS

×denotes that the estimation is not considered. All algorithms are tested using

TMS320F28335 with a sampling frequency of 1 kHz.

and there will be no bottleneck for real-time implementation of

the algorithm.

V. COMPARISON WITH SIMILAR METHODS

In this section, a comparison between the proposed method

with other KF-based approaches in terms of accuracy and com-

putational complexity is presented. The results are summarized

in Table III. The comparison reveals that the proposed UKF-

based approach provides better accuracy for supercapacitor SoH

and SoE estimation in comparison with KF-based and EKF-

based methods. In addition, the computational burden of the

proposed approach is lower than the EKF method, though the

KF-based method still has the lowest computational complexity.

VI. CONCLUSION

A state estimation approach based on the UKF algorithm

for joint estimation of the supercapacitor SoH and SoE was

proposed in this article. A first-order equivalent circuit model

that takes into account the self-discharge and capacitance vari-

ation effects was developed. The supercapacitor model param-

eters and its internal voltage were augmented in one state-space

model for concurrent estimation of SoH and SoE using the UKF

algorithm. Unlike the KF and EKF algorithms which involve us-

ing a linearized supercapacitor model, the proposed UKF-based
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TABLE IV
RATED VALUES OF THE UNDER-STUDY SUPERCAPACITOR CELL

method achieved higher accuracy due to the use of nonlinear

supercapacitor dynamics. Moreover, it effectively dealt with the

issues relevant to the measurement errors and modeling un-

certainties with the involvement of covariance matrices of the

measurement and process noise. While the proposed approach

achieved higher accuracy than the state-of-the-art, its compu-

tational burden was remarkably low, which maked it a good

candidate for real-time vehicular applications.

APPENDIX

The supercapacitor cell used for the study is a Maxwell

350F radial D-Cell. The rated values of the cell are provided in

Table IV.
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