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Newton-type inertial algorithms for solving monotone equations
governed by sums of potential and nonpotential operators

Samir Adly∗ Hedy Attouch† Van Nam Vo‡

June 14, 2021

Abstract. In a Hilbert space setting, we study a class of first-order algorithms which aim to solve struc-
tured monotone equations governed by sums of potential and nonpotential operators. Precisely, we are
looking for the zeros of an operator A = ∇f + B where ∇f is the gradient of a differentiable convex
function f , and B is a nonpotential monotone and cocoercive operator. Our study is based on the inertial
autonomous dynamic previously studied by the authors to solve this type of problem, and which involves
dampings which are respectively controlled by the Hessian of f , and by a Newton-type correction term
attached to B. These geometric dampings attenuate the oscillations which occur with the inertial methods
with viscous damping. Using Lyapunov analysis, we study the convergence properties of the proximal-
gradient algorithms obtained by temporal discretization of this dynamic. These results open the door to
the design of first-order accelerated algorithms in numerical optimization taking into account the specific
properties of potential and nonpotential terms.

Mathematics Subject Classifications: 37N40, 46N10, 49M30, 65B99, 65K05, 65K10, 90B50, 90C25.

Key words and phrases: proximal-gradient algorithms; inertial methods; Hessian driven damping; non-
potential terms; cocoercive operators.

1 Introduction and preliminary results

Let H be a real Hilbert space with the scalar product 〈·, ·〉 and the associated norm ‖ · ‖. Many situations
coming from physics, biology, human sciences involve equations containing both potential and nonpo-
tential terms. In human sciences, this comes from the presence of both cooperative and noncooperative
aspects. In physics, this happens when the phenomena of diffusion and convection are both present. To
describe such situations we will focus on solving the additively structured monotone problem

Find x ∈ H : ∇f(x) +B(x) = 0, (1.1)

where ∇f is the gradient of a convex differentiable function f : H → R (that’s the potential part), and
B : H → H is an operator which is supposed to be monotone and cocoercive (that’s the nonpotential part).
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1.1 General presentation

Our study is based on the continuous inertial dynamic

ẍ(t) + γẋ(t) +∇f(x(t)) +B(x(t)) + βf∇2f(x(t))ẋ(t) + βbB
′(x(t))ẋ(t) = 0, t ≥ t0 (DINAM)

previously studied by the authors in [3]. (DINAM) stands shortly for Dynamical Inertial Newton method
for Additively structured Monotone problems. It involves geometric dampings which are respectively
controlled by the Hessian of the potential f , and by a Newton-type correction term attached to B. In
[3], it has been proved the existence and the uniqueness of the solution of the Cauchy problem, as well
as the weak convergence of the generated trajectories towards the zeros of ∇f + B. The introduction
of geometric damping makes it possible to attenuate notably the oscillations which occur naturally with
the inertial methods. Our objective is to analyze the convergence properties of the algorithms obtained
by temporal discretization of this dynamic, and thus solve numerically the structured monotone equation
(1.1). We will pay particular attention to the minimal assumptions which guarantee convergence of the
algorithm, and which highlight the asymmetric role played by the two operators involved in the dynamic.
Throughout the paper we make the following standing assumptions:

(A1) f : H → R is convex, of class C1, ∇f is Lipschitz continuous on the bounded sets;

(A2) B : H → H is a λ-cocoercive operator for some λ > 0;

(A3) γ > 0, βf > 0, βb ≥ 0 are given real damping parameters;

(A4) the solution set S := {p ∈ H : ∇f(p) +B(p) = 0} is nonempty.

Unless specified, we do not assume the gradient of f to be globally Lipschitz continuous. The cocoercivity
assumption on the operator B plays a central role in our analysis. Recall that the operator B : H → H is
said to be λ-cocoercive for some λ > 0 if

〈By −Bx, y − x〉 ≥ λ‖By −Bx‖2, ∀x, y ∈ H.

It is easy to check that B is λ-cocoercive implies that B is 1/λ-Lipschitz continuous. The reverse im-
plication holds true in the case where the operator is the gradient of a convex and differentiable function.
Indeed, according to Baillon-Haddad’s Theorem [19], ∇f is L-Lipschitz continuous implies that ∇f is a
1/L-cocoercive operator (see [20, Corollary 18.16] for more details).

The following (DINAAM-split) algorithm is a model example of the splitting algorithms obtained by
temporal discretization of the continuous dynamic (DINAM). The positive parameter h is the step size of
the discretization.

(DINAAM-split):

Initialize: x0 ∈ H, x1 ∈ H

α =
1

1 + γh
, s =

h

1 + γh
,

yk = xk + α(xk − xk−1) + sβbB(xk)− s(h+ βf )∇f(xk) + sβf∇f(xk−1),

xk+1 =
(

Id +s(h+ βb)B
)−1

(yk).

Its convergence properties are analyzed in section 4, Theorem 4.1. Compared to the classical accelerated
proximal gradient algorithms, it contains corrective terms where the potential and non-potential operators
appear asymmetrically, and which make it possible to attenuate the oscillations. In section 5, Theorem 5.1,
we consider a variant of this algorithm, where the role of the operators is reversed.
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1.2 Historical aspects: the potential case

Let us first recall some classical results concerning the potential case (B = 0). The following inertial
system with Hessian-driven damping

ẍ(t) + γẋ(t) + β∇2f(x(t))ẋ(t) +∇f(x(t)) = 0,

was considered by Alvarez-Attouch-Peypouquet-Redont in [6]. Then, according to the continuous inter-
pretation by Su-Boyd-Candès [29] of the accelerated gradient method of Nesterov [27], Attouch-Peypouquet-
Redont [16] replaced the fixed viscous damping parameter γ by an asymptotic vanishing damping param-
eter

α

t
, with α > 0. At first glance, the presence of the Hessian may seem to entail numerical difficulties.

However, this is not the case as the Hessian intervenes in the above ODE in the form ∇2f(x(t))ẋ(t),
which is nothing but the derivative with respect to time of ∇f(x(t)). So, the temporal discretization of
these dynamics provides first-order algorithms of the form{

yk = xk + αk(xk − xk−1)− βk (∇f(xk)−∇f(xk−1))

xk+1 = yk − s∇f(yk).

As a specific feature, and by comparison with the classical accelerated gradient methods, these algorithms
contain a correction term which is equal to the difference of the gradients at two consecutive steps. While
preserving the convergence properties of the accelerated gradient method, they provide fast convergence
to zero of the gradients, and reduce the oscillatory aspects. Several recent studies have been devoted to
this subject, see Attouch-Chbani-Fadili-Riahi [8], Boţ-Csetnek-László [22], Kim [24], Lin-Jordan [25],
Shi-Du-Jordan-Su [28], and Alesca-Lazlo-Pinta [4] for an implicit version of the Hessian driven damping.
Application to deep learning has been recently developed by Castera-Bolte-Févotte-Pauwels [23]. In [2],
Adly-Attouch studied the finite convergence (finite number of iterations) of proximal-gradient inertial
algorithms combining Coulomb-type dry friction with Hessian-driven damping.

1.3 Historical aspects: the non potential case

Let’s come to the transposition of these techniques to the case of maximally monotone operators. Álvarez-
Attouch [5] and Attouch-Maingé [12] studied the equation

ẍ(t) + γẋ(t) +A(x(t)) = 0, (1.2)

when A : H → H is a cocoercive (and hence maximally monotone) operator, (see also [21]). The coco-
ercivity assumption plays a crucial role in the study of (1.2), not only to ensure the existence of solutions,
but also to analyze their long-term behavior. Assuming that the cocoercivity parameter λ and the damping
coefficient γ satisfy the inequality λγ2 > 1, Attouch-Maingé [12] showed that each trajectory of (1.2)
converges weakly to a zero of A, as t→ +∞.
For general maximally monotone operators this property has been exploited by Attouch-Peypouquet [15],
Attouch-Cabot [7] and by Attouch-Laszlo [10, 11]. The key property is that for λ > 0, the Yosida approx-
imation operator Aλ associated with A is λ-cocoercive and A−1λ (0) = A−1(0). So the idea is to replace
the operator A by its Yosida approximation Aλ, and to adjust the Yosida regularization parameter λ > 0.
Another related work has been done by Attouch-Maingé [12] who first consider the asymptotic behavior
of the second-order dissipative evolution equation with f : H → R convex and B : H → H cocoercive

ẍ(t) + γẋ(t) +∇f(x(t)) +B(x(t)) = 0, (1.3)

by combining potential (f convex) with nonpotential effects (B cocoercive). The novelty in (DINAM),
compared to the previous works, is the introduction of the Hessian-driven term and the Newton-type cor-
recting term into this dynamic. The convergence analysis of the associated algorithms will require some
adjustments and new proofs.
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1.4 Link with Newton-like methods for solving monotone inclusions

To overcome the ill-posed character of the continuous Newton method for a general maximally monotone
operator A, the following first order evolution system was studied by Attouch-Svaiter [18],{

v(t) ∈ A(x(t))

γ(t)ẋ(t) + βv̇(t) + v(t) = 0.

This system can be considered as a continuous version of the Levenberg-Marquardt method, which acts as
a regularization of the Newton method. Under a fairly general assumption on the regularization parameter
γ(t), this system is well posed and generates trajectories that converge weakly to equilibria (zeros of A).
Parallel results have been obtained for the associated proximal algorithms obtained by implicit temporal
discretization, see [1], [14], [17]. Formally, this system is written as

γ(t)ẋ(t) + β
d

dt
(A(x(t))) +A(x(t)) = 0.

Thus (DINAM) can be considered as an inertial version of this dynamical system for the structured mono-
tone operator A = ∇f + B, see also [13], [26]. Our study is also linked to the recent works by Attouch-
László [10, 11] who considered the general case of monotone equations. By contrast with [10, 11], ac-
cording to the cocoercivity of B, we don’t use the Yosida regularization, and exhibit minimal assumptions
involving only the nonpotential component.

1.5 Contents

After the introductory Section 1, we recall in Section 2 some of the results obtained in [3] concerning
the continuous dynamics (DINAM). In Section 3, we analyze the convergence properties of the sequences
generated by an inertial proximal algorithm obtained by implicit discretization of the continuous dynam-
ics (DINAM). We highlight the interplay between the damping parameters βf , βb, γ and the cocoercivity
parameter λ, which plays a significant role in our Lyapunov analysis. In Section 4, we analyze an inertial
proximal-gradient splitting algorithm which makes use of the gradient of f and the resolvent of B. We
also analyze the effect of errors, perturbations in the algorithm. In Section 5, we examine a variant of this
proximal-gradient algorithm, where the role of the operators is reversed. In Section 6, we perform numer-
ical experiments which show that the well-known oscillations for the heavy ball with friction are damped
with the introduction of the geometric damping terms, and we compare numerically the algorithms. Ap-
plications to structured monotone equations involving a nonpotential operator are considered.

2 The continuous dynamic (DINAM)

In this section, we recall the main results obtained in [3] concerning the second-order differential equation
(DINAM) that we recall below

ẍ(t) + γẋ(t) +∇f(x(t)) +B(x(t)) + βf∇2f(x(t))ẋ(t) + βbB
′(x(t))ẋ(t) = 0, t ≥ 0. (DINAM)

The following existence and uniqueness result for the Cauchy problem is proved in [3, Theorem 2.1].

Theorem 2.1 Suppose that βf > 0 and βb ≥ 0. Then, for any (x0, x1) ∈ H × H, there exists a unique
strong global solution x : [0,+∞[→ H of the continuous dynamic (DINAM) which satisfies the Cauchy
data x(0) = x0, ẋ(0) = x1.

Before stating the asymptotic behavior of the solution trajectories of (DINAM), note that B(p) is uniquely
defined for p ∈ S := {p ∈ H : ∇f(p) +B(p) = 0}.
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Lemma 2.1 B(p) is uniquely defined for p ∈ S, i.e. p1 ∈ S, p2 ∈ S =⇒ B(p1) = B(p2).

The following Theorem establishes the asymptotic convergence properties of (DINAM), see [3].

Theorem 2.2 Let B : H → H be a λ-cocoercive operator and f : H → R be a C1 convex function whose
gradient is Lipschitz continuous on the bounded sets. Suppose that the parameters involved in (DINAM)
satisfy βf > 0 and

λγ >
(βb − βf )2

4βf
+

1

2

(
βb +

1

γ

)
+

1

2

√(
βb +

1

γ

)2

+
(βb − βf )2

γβf
.

Then, for any solution trajectory x : [0,+∞[→ H of (DINAM) the following properties are satisfied:

(i) x(t) converges weakly, as t→ +∞, to an element of S.

(ii) Set A := ∇f +B and p ∈ S. Then,∫ +∞

0
‖ẋ(t)‖2dt < +∞,

∫ +∞

0
‖ẍ(t)‖2dt < +∞,∫ +∞

0
‖B(x(t))−B(p)‖2dt < +∞,

∫ +∞

0

∥∥∥∥ ddtB(x(t))

∥∥∥∥2 dt < +∞,∫ +∞

0
‖A(x(t))‖2dt < +∞, and

∫ +∞

0

∥∥∥∥ ddtA(x(t))

∥∥∥∥2 dt < +∞.

(iii) lim
t→+∞

‖ẋ(t)‖ = 0, lim
t→+∞

‖B(x(t))−B(p)‖ = 0, lim
t→+∞

‖A(x(t))‖ = 0,

where B(p) is uniquely defined for p ∈ S.

The following lemmas will be useful, for a proof we refer to [3].

Lemma 2.2 Let T1, T2 : H → H be two cocoercive operators with respective cocoercivity coefficients
λ1, λ2 > 0. Then, T := T1 + T2 : H → H is λ−cocoercive with λ = λ1λ2

λ1+λ2
.

Lemma 2.3 Let a, b, c be three real numbers. The quadratic form q : H×H → R

q(X,Y ) := a‖X‖2 + 2b〈X,Y 〉+ c‖Y ‖2

is positive definite if and only if ac− b2 > 0 and a > 0. Moreover

q(X,Y ) ≥ µ(‖X‖2 + ‖Y ‖2) for all X,Y ∈ H

where the positive real number µ :=
1

2

(
a+ c−

√
(a− c)2 + 4b2

)
is the smallest eigenvalue of the

positive symetric matrix associated with q.
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3 Inertial proximal algorithms associated with (DINAM)

Set A := ∇f +B and Aβ := βf∇f + βbB. Consider the implicit finite-difference scheme for (DINAM):

1

h2
(xk+1 − 2xk + xk−1) +

γ

h
(xk+1 − xk) +

1

h
(Aβ(xk+1)−Aβ(xk)) +A(xk+1) = 0, (3.1)

where h > 0 is a fixed time step. After expanding (3.1), we obtain

xk+1 +
h2

1 + γh
A(xk+1) +

h

1 + γh
Aβ(xk+1) = xk +

1

1 + γh
(xk − xk−1) +

h

1 + γh
Aβ(xk). (3.2)

Set s :=
h

1 + γh
and α :=

1

1 + γh
. So we have

xk+1 + sAh(xk+1) = yk, (3.3)

where

Ah = (h+ βf )∇f + (h+ βb)B, (3.4)

yk = xk + α(xk − xk−1) + sAβ(xk). (3.5)

We get xk+1 = (Id +sAh)−1(yk). Thus, we obtain the following algorithm, where (DINAAM) stands for
Dynamical Inertial Newton Algorithm for Additively structured Monotone problems.

(DINAAM):

Initialize: x0 ∈ H, x1 ∈ H

α =
1

1 + γh
, s =

h

1 + γh
,

yk = xk + α(xk − xk−1) + sAβ(xk),

xk+1 = (Id +sAh)−1(yk).

Note that (DINAAM) is not a splitting algorithm, since the computation of the resolvent of Ah = (h +
βf )∇f + (h+ βb)B is needed. Corresponding splitting algorithms will be examined in Sections 4 and 5.

3.1 Lyapunov analysis

Let us state the convergence properties of (DINAAM).

Theorem 3.1 Let B : H → H be a λ-cocoercive operator and f : H → R be a convex differentiable
function whose gradient is Lipschitz continuous on the bounded sets. Suppose that the positive parameters
λ, γ, βb, βf satisfy

βf > 0, and λγ >
(βb − βf )2

4βf
+

1

2

(
βb +

1

γ

)
+

1

2

√(
βb +

1

γ

)2

+
(βb − βf )2

γβf
. (3.6)

Then, there exists h∗ such that for all 0 < h < h∗, the sequence (xk) generated by the algorithm (DI-
NAAM) has the following properties:

(i) (xk) converges weakly to an element in S;
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(ii)
+∞∑
k=1

‖xk − xk−1‖2 < +∞,
+∞∑
k=1

‖A(xk)‖2 < +∞,

+∞∑
k=1

‖∇f(xk)−∇f(xk−1)‖2 < +∞, and
+∞∑
k=1

‖B(xk)−B(xk−1)‖2 < +∞;

(iii) lim
k→∞

‖xk+1 − xk‖ = 0, lim
k→+∞

‖B(xk)−B(p)‖ = 0, and lim
k→+∞

‖∇f(xk)−∇f(p)‖ = 0.

Proof. The discrete energy. Recall that A := ∇f +B and Aβ := βf∇f + βbB. Take p ∈ S.
Consider the sequence (Vk) defined for all k ≥ 1 by the formula

Vk :=
1

2
‖(xk − p) + c

(
1

h
(xk − xk−1) +Aβ(xk)−Aβ(p)

)
‖2 +

δ

2
‖xk − p‖2,

where c and δ are positive coefficients to adjust. For each k ≥ 1, let us briefly write Vk as follows:

Vk =
1

2
‖vk‖2 +

δ

2
‖xk − p‖2, with vk = (xk − p) + c

(
1

h
(xk − xk−1) +Aβ(xk)−Aβ(p)

)
.

By definition of vk, we have vk+1 = (xk+1 − p) + c

(
1

h
(xk+1 − xk) +Aβ(xk+1)−Aβ(p)

)
.

Moreover, by using the formulation (3.1) of the algorithm (DINAAM), we have

vk = (xk+1 − p) + c

(
1

h
(xk+1 − xk) + γ(xk+1 − xk) +Aβ(xk+1)−Aβ(p) + hA(xk+1)

)
− (xk+1 − xk)
= vk+1 + (cγ − 1)(xk+1 − xk) + chA(xk+1).

Therefore, for k ≥ 1, we have

1

2
‖vk+1‖2 −

1

2
‖vk‖2

= −1

2
(cγ − 1)2‖xk+1 − xk‖2 −

1

2
c2h2‖A(xk+1)‖2 − hc(cγ − 1)〈xk+1 − xk, A(xk+1)〉

−
〈

(xk+1 − p) + c(
1

h
(xk+1 − xk) +Aβ(xk+1)−Aβ(p)), (cγ − 1)(xk+1 − xk) + chA(xk+1)

〉
= −1

2
(cγ − 1)2‖xk+1 − xk‖2 −

1

2
c2h2‖A(xk+1)‖2 − hc(cγ − 1)〈xk+1 − xk, A(xk+1)〉

− (cγ − 1)〈xk+1 − p, xk+1 − xk〉 − ch〈xk+1 − p,A(xk+1)〉 −
c(cγ − 1)

h
‖xk+1 − xk‖2

− c2〈xk+1 − xk, A(xk+1)〉 − c(cγ − 1)〈Aβ(xk+1)−Aβ(p), xk+1 − xk〉
− c2h〈Aβ(xk+1)−Aβ(p), A(xk+1)〉. (3.7)

To write the above relation in a recursive form, we use the elementary identity

1

2
‖xk+1 − p‖2 −

1

2
‖xk − p‖2 = −1

2
‖xk+1 − xk‖2 + 〈xk+1 − xk, xk+1 − p〉. (3.8)

Write shortly Xk := xk+1 − xk, Yk := B(xk+1)−B(p), Zk := ∇f(xk+1)−∇f(p) for k ≥ 0.

Since p ∈ S, i.e.,∇f(p) +B(p) = 0, we have A(xk+1) = Yk + Zk for k ≥ 0.
In the definition of (Vk), take δ = cγ − 1, which is assumed to be nonnegative, i.e., cγ ≥ 1.
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According to (3.7), (3.8) and the definition of (Vk), we obtain after simplification

Vk+1 − Vk =− 1

2
(cγ − 1)2‖Xk‖2 −

1

2
c2h2‖Yk + Zk‖2 − hc(cγ − 1)〈Xk, Yk + Zk〉

− 1

2
(cγ − 1)‖Xk‖2 − ch〈xk+1 − p,A(xk+1)〉 −

c(cγ − 1)

h
‖Xk‖2

− c2〈Xk, Yk + Zk〉 − c(cγ − 1)〈βbYk + βfZk, Xk〉 − c2h〈βbYk + βfZk, Yk + Zk〉.

Using the fact that p ∈ S, ∇f is monotone, and B is λ-cocoercive, we have

−ch〈xk+1 − p,A(xk+1) = −ch〈xk+1 − p,B(xk+1)−B(p)〉
− ch〈xk+1 − p,∇f(xk+1)−∇f(p)〉
≤ −chλ‖B(xk+1)−B(p)‖2.

So, by combining the previous results, we get

Vk+1 − Vk +

[
1

2
(cγ − 1)2 +

1

2
(cγ − 1) +

c(cγ − 1)

h

]
‖Xk‖2

+
[
c(cγ − 1)h+ c2 + c(cγ − 1)βf

]
〈Xk, Zk〉

+
[
c(cγ − 1)h+ c2 + c(cγ − 1)βb

]
〈Xk, Yk〉+

[
chλ+ c2hβb +

1

2
c2h2

]
‖Yk‖2

+

[
c2hβf +

1

2
c2h2

]
‖Zk‖2 +

[
c2h(βb + βf ) + c2h2

]
〈Zk, Yk〉 ≤ 0. (3.9)

Let (Γk) be the sequence defined by

Γk = f(xk)− f(p)− 〈∇f(p), xk − p〉, for k ≥ 0.

Since f is convex, we have Γk ≥ 0, for all k ≥ 0. Moreover,

〈Xk, Zk〉 = 〈xk+1 − xk,∇f(xk+1)〉 − 〈xk+1 − xk,∇f(p)〉
≥ f(xk+1)− f(xk) + Γk+1 − Γk + f(xk)− f(xk+1)

= Γk+1 − Γk. (3.10)

For each k ≥ 1, let us define

Ek = Vk +
[
c(cγ − 1)h+ c2 + c(cγ − 1)βf

]
Γk.

(Ek) will serve us as a discrete energy function. Indeed, it is clear that (Ek) is a sequence of nonnegative
numbers. From (3.9), (3.10) and the definition of (Ek), we obtain

Ek+1 − Ek +

[
1

2
(cγ − 1)2 +

1

2
(cγ − 1) +

c(cγ − 1)

h

]
‖Xk‖2

+
[
c(cγ − 1)h+ c2 + c(cγ − 1)βb

]
〈Xk, Yk〉+

[
chλ+ c2hβb +

1

2
c2h2

]
‖Yk‖2

+

[
c2hβf +

1

2
c2h2

]
‖Zk‖2 +

[
c2h(βb + βf ) + c2h2

]
〈Zk, Yk〉 ≤ 0. (3.11)

Let us eliminate Zk from this relation by using the elementary algebraic inequality[
c2hβf +

1

2
c2h2

]
‖Zk‖2 +

[
c2h(βb + βf ) + c2h2

]
〈Zk, Yk〉 ≥ −

c2h(βb + βf + h)2

4βf + 2h
‖Yk‖2.
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Then, from (3.11), we deduce that

Ek+1 − Ek +

[
1

2
(cγ − 1)2 +

1

2
(cγ − 1) +

c(cγ − 1)

h

]
‖Xk‖2

+
[
c(cγ − 1)h+ c2 + c(cγ − 1)βb

]
〈Xk, Yk〉

+

[
chλ+ c2hβb +

1

2
c2h2 −

c2h(βb + βf + h)2

4βf + 2h

]
‖Yk‖2 ≤ 0. (3.12)

Equivalently,

Ek+1 − Ek + Sk ≤ 0, (3.13)

where

Sk =

[
1

2
(cγ − 1)2 +

1

2
(cγ − 1) +

c(cγ − 1)

h

]
‖Xk‖2

+
[
c(cγ − 1)h+ c2 + c(cγ − 1)βb

]
〈Xk, Yk〉

+

[
chλ+ c2hβb +

1

2
c2h2 −

c2h(βb + βf + h)2

4βf + 2h

]
‖Yk‖2.

We have Sk = q(Xk, Yk) where q : H×H → R is the quadratic form

q(Xk, Yk) := a‖Xk‖2 + b〈Xk, Yk〉+ g‖Yk‖2,

with

a =
1

2
(cγ − 1)2 +

1

2
(cγ − 1) +

c(cγ − 1)

h
b = c(cγ − 1)h+ c2 + c(cγ − 1)βb

g = chλ+ c2hβb +
1

2
c2h2 −

c2h(βb + βf + h)2

4βf + 2h
.

According to Lemma 2.3, since a > 0, q is positive definite if and only if 4ag − b2 > 0. Equivalently

4

[
1

2
(cγ − 1)2 +

1

2
(cγ − 1) +

c(cγ − 1)

h

] [
chλ+ c2hβb +

1

2
c2h2 −

c2h(βb + βf + h)2

4βf + 2h

]
−
[
c(cγ − 1)h+ c2 + c(cγ − 1)βb

]2
> 0. (3.14)

Our aim is to find c such that cγ − 1 > 0, and (3.14) is satisfied.
After development and simplification we obtain

4

[
1

2
(cγ − 1)2h+

1

2
(cγ − 1)h+ c(cγ − 1)

] [
cλ+ c2βb +

1

2
c2h−

c2(βb + βf + h)2

4βf + 2h

]
−
[
c(cγ − 1)h+ c2 + c(cγ − 1)βb

]2
> 0. (3.15)

Let us denote by L(h) the left handside of (3.15). We have

lim
h→0+

L(h) = 4c(cγ − 1)

[
cλ+ c2βb −

c2(βb + βf )2

4βf

]
−
[
c2 + c(cγ − 1)βb

]2
.
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So, to guarantee the existence of h > 0 such that the quadratic form q is positive definite, it suffices to
assume that

4c(cγ − 1)

[
cλ+ c2βb −

c2(βb + βf )2

4βf

]
−
[
c2 + c(cγ − 1)βb

]2
> 0.

The above inequality can be written equivalently as

4λ >

[
c2 + c(cγ − 1)βb

]2
c2(cγ − 1)

− 4cβb +
(βb + βf )2

βf
c =

[c+ (cγ − 1)βb]
2

cγ − 1
+

(βb − βf )2

βf
c.

Let us formulate this inequation with the help of δ = cγ − 1 > 0. Our aim is to find δ > 0 such that

4λ >

[
δ+1
γ + δβb

]2
δ

+
δ + 1

γ

(βb − βf )2

βf
.

After a few steps of algebraic calculation, we get

4λ >
2

γ

(
βb +

1

γ

)
+

1

γ

(βb − βf )2

βf
+

1

γ2δ
+

[(
βb +

1

γ

)2

+
(βb − βf )2

γβf

]
δ.

Therefore, in order to ensure the existence of such δ, it is sufficient to assume that

4λ >
2

γ

(
βb +

1

γ

)
+

1

γ

(βb − βf )2

βf
+ inf
δ>0

( 1

γ2δ
+

[(
βb +

1

γ

)2

+
(βb − βf )2

γβf

]
δ
)
. (3.16)

Elementary optimization argument gives that

inf
δ>0

(C
δ

+Dδ
)

= 2
√
CD, (3.17)

with C,D are positive constants. Combining (3.16) and (3.17), we end up with the condition

4λ >
2

γ

(
βb +

1

γ

)
+

1

γ

(βb − βf )2

βf
+

2

γ

√(
βb +

1

γ

)2

+
(βb − βf )2

γβf
.

When βb = βf := β, we recover the condition λγ > β+
1

γ
. Therefore, under the above condition, and by

taking h sufficiently small, there exists a positive real number µ such that for any k ≥ 1,

Ek+1 − Ek + µ‖Xk‖2 + µ‖Yk‖2 ≤ 0. (3.18)

Estimates. According to (3.18), the sequence of non-negative numbers (Ek) is non-increasing and there-
fore converges. In particular, it is bounded. From this, we immediately deduce that

sup
k
‖(xk − p) + c

(
1

h
(xk − xk−1) +Aβ(xk)−Aβ(p)

)
‖2 < +∞ (3.19)

sup
k
‖xk − p‖2 < +∞. (3.20)

Moreover, by summing the inequalities (3.18), we deduce that

+∞∑
k=0

‖Xk‖2 < +∞,
+∞∑
k=0

‖Yk‖2 < +∞.
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Let us return to (3.11). Recall that

Ek+1 − Ek +

[
1

2
(cγ − 1)2 +

1

2
(cγ − 1) +

c(cγ − 1)

h

]
‖Xk‖2

+
[
c(cγ − 1)h+ c2 + c(cγ − 1)βb

]
〈Xk, Yk〉+

[
chλ+ c2hβb +

1

2
c2h2

]
‖Yk‖2

+

[
c2hβf +

1

2
c2h2

]
‖Zk‖2 +

[
c2h(βb + βf ) + c2h2

]
〈Zk, Yk〉 ≤ 0. (3.21)

By using the estimates
+∞∑
k=0

‖Xk‖2 < +∞ and
+∞∑
k=0

‖Yk‖2 < +∞, we obtain the existence of a constant

C > 0 such that[
c2hβf +

1

2
c2h2

] +∞∑
k=0

‖Zk‖2 ≤ C +
[
c2h(βb + βf ) + c2h2

] +∞∑
k=0

‖Zk‖‖Yk‖.

Therefore, for any ε > 0, we have[
c2hβf +

1

2
c2h2

] +∞∑
k=0

‖Zk‖2 ≤ C +
[
c2h(βb + βf ) + c2h2

] (
ε
+∞∑
k=0

‖Zk‖2 +
1

4ε

+∞∑
k=0

‖Yk‖2
)
.

By taking ε > 0 such that c2hβf +
1

2
c2h2 > ε

[
c2h(βb + βf ) + c2h2

]
which is always possible since

c2hβf +
1

2
c2h2 > 0, we conclude that

+∞∑
k=0

‖Zk‖2 < +∞.

Since A(xk+1) = Yk + Zk, we immediately obtain

+∞∑
k=1

‖A(xk)‖2 < +∞.

Furthermore, according to (3.20) the trajectory (xk) is bounded. Set R := sup
k≥0
‖xk‖. By assumption, ∇f

is Lipschitz continuous on the bounded sets. Let LR < +∞ be the Lipschitz constant of ∇f on B(0, R).

Since B is λ-cocoercive, it is
1

λ
-Lipschitz continuous. Therefore, A is L-Lipschitz continuous on the

trajectory with L := LR +
1

λ
. Thus,

‖A(xk+1)−A(xk)‖ ≤ L‖xk+1 − xk‖ for all k ≥ 0.

Therefore,
+∞∑
k=1

‖A(xk+1)−A(xk)‖2 ≤
+∞∑
k=1

L2‖xk+1 − xk‖2 < +∞. Using the same argument, we get

+∞∑
k=1

‖B(xk+1)−B(xk)‖2 < +∞, and
+∞∑
k=1

‖∇f(xk+1)−∇f(xk)‖2 < +∞.
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Since the general term of a convergent series goes to zero, we deduce that

lim
k→+∞

‖xk+1 − xk‖ = 0, lim
k→+∞

‖A(xk)‖ = 0, and lim
k→+∞

‖A(xk+1)−A(xk)‖ = 0,

lim
k→+∞

‖B(xk+1)−B(xk)‖ = 0, lim
k→+∞

‖∇(xk+1)−∇(xk)‖ = 0. (3.22)

Likewise, we also have

lim
k→+∞

‖B(xk)−B(p)‖ = 0, and lim
k→+∞

‖∇f(xk)−∇f(p)‖ = 0. (3.23)

Convergence of (xk). Let us first show that every weak cluster point of the sequence (xk) belongs to S.
Let x∗ be a weak cluster point of (xk) and consider a subsequence (xkn) of (xk), such that xkn ⇀ x∗, as
n→ +∞. We have

A(xkn)→ 0 strongly inH and xkn ⇀ x∗ weakly inH.

From the closedness property of the graph of the maximally monotone operator A in w −H× s−H, we
deduce thatA(x∗) = 0, that is x∗ ∈ S. Since lim

k
Ek exists, and according to the above strong convergence

results, we deduce that there exists a constant r such that for any p ∈ S

lim
k→∞

[
‖xk − p‖2 + r (f(xk)− 〈∇f(p), xk − p〉)

]
exists.

Suppose that the bounded sequence (xk) has two weak limit points, let p and p′. By the above ar-
gument we have that p and p′ belong to S. Therefore the following limits exist: lim

k→∞

[
‖xk − p‖2 +

r (f(xk)− 〈∇f(p), xk − p〉)
]

and lim
k→∞

[
‖xk − p′‖2 + r

(
f(xk)− 〈∇f(p′), xk − p′〉

) ]
. By taking the

difference, we deduce that lim
k→∞

‖xk − p‖2 − ‖xk − p′‖2 exists. Equivalently lim
k→∞

〈
xk, p− p′

〉
exists. By

specializing this result to the subsequences defining p and p′ we get〈
p, p− p′

〉
=
〈
p′, p− p′

〉
,

that is ‖p−p′‖2 = 0, which gives p = p′. Therefore the bounded sequence (xk) has a unique weak cluster
point, and hence converges weakly.

3.2 Estimating the time step h

The preceding results are valid when h is taken small enough. For numerical reasons, it is important to
specify this result, and find h∗ > 0 such that the convergence results hold true for all h ∈ [0, h∗]. So let’s
come back to (3.14), which is the key property for our Lyapunov analysis. After elementary calculation, it
can be written as follows

2(cγ − 1)(2 + γh)

[
λ+ cβb +

1

2
ch−

c(βb + βf + h)2

4βf + 2h

]
− [(cγ − 1)h+ c+ (cγ − 1)βb]

2 > 0.

(3.24)

After dividing by cγ − 1 > 0 and elementary calculation, we get

(2 + γh)
(
(λ+ cβb +

1

2
ch)(4βf + 2h)− c(βb +βf +h)2

)
− (cγ− 1)(2βf +h)

[
h+

c

cγ − 1
+ βb

]2
> 0.
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Let us develop the above expression. We obtain a third-order polynomial with respect to h, namely
Pc(h) = a0 + a1h+ a2h

2 + a3h
3 with

a0 = 2
(

4λβf − c(βb − βf )2 − βf
(c+ βb(cγ − 1))2

cγ − 1

)
,

a1 = 4λ(1 + γβf )− cγ(βb − βf )2 − 4βf (c+ βb(cγ − 1))− 1

cγ − 1
(c+ βb(cγ − 1))2 ,

a2 = 2λγ − 2c− 2(cγ − 1)(βb + βf ),

a3 = −(cγ − 1).

We have observed that choosing adequately c > 0 with cγ − 1 > 0 gives that a0 > 0 under the growth

condition 3.6. Precisely we can take c = c∗ where c∗γ − 1 =
1

γ

((
βb +

1

γ

)2

+
(βb − βf )2

γβf

)− 1
2

.

Let us check that Pc∗(0) > 0. In fact, we consider

1

2
γa0(c) = 4λγβf − cγ(βb − βf )2 − βf

(cγ + βbγ(cγ − 1))2

γ(cγ − 1)
.

According to the growth condition

λγ >
(βb − βf )2

4βf
+

1

2

(
βb +

1

γ

)
+

1

2

√(
βb +

1

γ

)2

+
(βb − βf )2

γβf
,

we have

1

2
γa0(c) > (βb − βf )2 + 2βf

(
βb +

1

γ

)
+ 2βf

√(
βb +

1

γ

)2

+
(βb − βf )2

γβf

− cγ(βb − βf )2 − βf
(cγ + βbγ(cγ − 1))2

γ(cγ − 1)
.

For short, we set

y =

√(
βb +

1

γ

)2

+
(βb − βf )2

γβf
.

Now, take c = c∗ where c∗γ − 1 =
1

γ

((
βb +

1

γ

)2

+
(βb − βf )2

γβf

)− 1
2

. Then,

1

2
γa0(c

∗) > − 1

γy
(βb − βf )2 + 2βf

(
βb +

1

γ

)
+ 2βfy − βfy(1 +

1

γy
+
βb
y

)2

= − 1

γy
(βb − βf )2 + 2βfy − βfy −

βf
y

(
1

γ
+ βb)

2

=
βf
y

[
− 1

γβf
(βb − βf )2 + 2y2 − y2 − (

1

γ
+ βb)

2

]
= 0.

Hence, Pc∗(0) = a0(c
∗) > 0. Note that for large h, Pc∗(h) ∼ −(cγ − 1)h3, and so Pc∗(h) is nega-

tive. Therefore, h∗ > 0 is the smallest positive zero (which exists) of Pc∗ . Its explicit determination is
quite technical in our general setting. In practical situations, it is elementary numerical analysis. Let us
emphasize the fact that h∗ depends only on the parameters that enter (DINAAM) (not on f ).
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3.3 Case βb = βf

In the special and important case where the two coefficients βb and βf are equal, we have the following
result. Set βb = βf := β > 0, and A := ∇f +B. We thus consider the evolution system

(DINAM) ẍ(t) + γẋ(t) +A(x(t)) + β
d

dt
(A(x(t))) = 0, t ≥ 0.

By following the same lines as in the general case, we have the following algorithm

(DINAAM): βb = βf = β

Initialize: x0 ∈ H, x1 ∈ H

α =
1

1 + γh
, s =

h(h+ β)

1 + γh
,

yk = xk + α(xk − xk−1) + hαβA(xk),

xk+1 = (Id +sA)−1(yk).

The following result is a particular case of Theorem 3.1.

Corollary 3.1 Let B : H → H be a λ-cocoercive operator and f : H → R be a C1 convex function
whose gradient is Lipschitz continuous on the bounded sets. Suppose that βb = βf := β > 0 and that the
parameters γ, λ, β satisfy the following conditions

γ > 0, β > 0 and λγ > β +
1

γ
.

Then, there exists h∗ such that for all 0 < h < h∗, the sequence (xk) generated by the algorithm (DI-
NAAM) has the following properties:

(i) (xk) converges weakly to an element in S;

(ii)
+∞∑
k=1

‖xk − xk−1‖2 < +∞,
+∞∑
k=1

‖A(xk)‖2 < +∞;

(iii) lim
k→+∞

‖xk+1 − xk‖ = 0, lim
k→+∞

‖A(xk)‖ = 0.

4 An inertial proximal-gradient algorithm

In this section, we assume that f is a C1 function whose gradient is L-Lipschitz on the bounded sets. Set
A := ∇f + B and Aβ := βf∇f + βbB. We take a fixed time step h > 0, and consider the following
finite-difference scheme for (DINAM):

1

h2
(xk+1 − 2xk + xk−1) +

γ

h
(xk+1 − xk) +

βb
h

(B(xk+1)−B(xk))

+
βf
h

(∇f(xk)−∇f(xk−1)) +B(xk+1) +∇f(xk) = 0. (4.1)

This scheme is implicit with respect to the nonpotentialB and explicit with respect to the potential operator
∇f . Furthermore, the temporal discretization of the Hessian driven damping βf∇2f(x(t))ẋ(t) is taken
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equal to
βf
h

(∇f(xk)−∇f(xk−1)) instead of
βf
h

(∇f(xk+1)−∇f(xk)).
After expanding (4.1), we obtain

xk+1 +
h2

1 + γh
B(xk+1) +

hβb
1 + γh

B(xk+1) = xk +
1

1 + γh
(xk − xk−1) +

hβb
1 + γh

B(xk)

−
hβf

1 + hγ
(∇f(xk)−∇f(xk−1))−

h2

1 + hγ
∇f(xk). (4.2)

Set s :=
h

1 + γh
and α :=

1

1 + γh
. So we have

xk+1 + sBh(xk+1) = yk, (4.3)

where Bh = (h+ βb)B, and

yk = xk + α(xk − xk−1) + sβbB(xk)− s(h+ βf )∇f(xk) + sβf∇f(xk−1). (4.4)

From (4.3) we get
xk+1 = (Id +sBh)−1(yk). (4.5)

Combining (4.4) and (4.5), we obtain the following algorithm, called (DINAAM-split).

(DINAAM-split):

Initialize: x0 ∈ H, x1 ∈ H

α =
1

1 + γh
, s =

h

1 + γh
,

yk = xk + α(xk − xk−1) + sβbB(xk)− s(h+ βf )∇f(xk) + sβf∇f(xk−1),
xk+1 = (Id +sBh)−1(yk).

4.1 Lyapunov analysis

Theorem 4.1 Let B : H → H be a λ-cocoercive operator and f : H → R a C1 convex function whose
gradient is L−Lipschitz continuous. Suppose that the positive parameters λ, γ, βb, βf satisfy

βf > 0, and λγ >
(βb − βf )2

4βf
+

1

2

(
βb +

1

γ

)
+

1

2

√(
βb +

1

γ

)2

+
(βb − βf )2

γβf
.

Then, there exists h∗ (depending on L) such that for all 0 < h < h∗, the sequence (xk) generated by the
algorithm (DINAAM-split) has the following properties:

(i) (xk) converges weakly to an element in S;

(ii)
+∞∑
k=1

‖xk − xk−1‖2 < +∞,
+∞∑
k=1

‖A(xk)‖2 < +∞,

+∞∑
k=1

‖∇f(xk)−∇f(xk−1)‖2 < +∞, and
+∞∑
k=1

‖B(xk)−B(xk−1)‖2 < +∞;

(iii) lim
k→+∞

‖xk+1 − xk‖ = 0, lim
k→+∞

‖B(xk)−B(p)‖ = 0, and lim
k→+∞

‖∇f(xk)−∇f(p)‖ = 0.
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Proof. The structure of the proof is similar to that of Theorem 3.1. We therefore mainly focus on the
Lyapunov analysis. Take p ∈ S. Let us consider the sequence (Vk) defined by, for each k ≥ 1

Vk =
1

2
‖(xk − p) + c

(1

h
(xk − xk−1) + βbB(xk) + βf∇f(xk−1)−Aβ(p)

)
‖2 +

δ

2
‖xk − p‖2,

where c, δ are positive coefficients to adjust. For k ≥ 1, let us briefly write Vk as follows

Vk =
1

2
‖vk‖2 +

δ

2
‖xk − p‖2,

with vk = (xk − p) + c

(
1

h
(xk − xk−1) + βbB(xk) + βf∇f(xk−1)−Aβ(p)

)
.

By definition of (vk), we have

vk+1 = (xk+1 − p) + c

(
1

h
(xk+1 − xk) + βbB(xk+1) + βf∇f(xk)−Aβ(p)

)
.

Moreover, according to the formulation of the algorithm (DINAAM-split), we have

vk = c

(
1

h
(xk+1 − xk) + γ(xk+1 − xk) + βbB(xk+1) + βf∇f(xk)−Aβ(p) + hB(xk+1) + h∇f(xk)

)
+ (xk+1 − p)− (xk+1 − xk)
= vk+1 + (cγ − 1)(xk+1 − xk) + chB(xk+1) + ch∇f(xk).

Set Xk = xk+1 − xk, Yk = B(xk+1)−B(p), Zk = ∇f(xk)−∇f(p). Taking δ := cγ − 1, we obtain

Vk+1 − Vk =− 1

2
(cγ − 1)2‖Xk‖2 −

1

2
c2h2‖Yk + Zk‖2 − c(cγ − 1)h〈Xk, Yk + Zk〉

− 1

2
(cγ − 1)‖Xk‖2 − ch〈xk+1 − p,B(xk+1) +∇f(xk)〉 −

c(cγ − 1)

h
‖Xk‖2

− c2〈Xk, Yk + Zk〉 − c(cγ − 1)〈βbYk + βfZk, Xk〉 − c2h〈βbYk + βfZk, Yk + Zk〉.

Using the fact that p ∈ S, ∇f is monotone, and B is λ-cocoercive, we have

−ch〈xk+1 − p,B(xk+1) +∇f(xk)〉
= −ch〈xk+1 − p,B(xk+1)−B(p)〉 − ch〈xk+1 − p,∇f(xk)−∇f(p)〉
≤ −chλ‖B(xk+1)−B(p)‖2 − ch〈xk+1 − xk,∇f(xk)−∇f(p)〉.

By combining the previous results, we get

Vk+1 − Vk +

[
1

2
(cγ − 1)2 +

1

2
(cγ − 1) +

c(cγ − 1)

h

]
‖Xk‖2

+
[
c(cγ − 1)h+ c2 + c(cγ − 1)βf + ch

]
〈Xk, Zk〉

+
[
c(cγ − 1)h+ c2 + c(cγ − 1)βb

]
〈Xk, Yk〉+

[
chλ+ c2hβb +

1

2
c2h2

]
‖Yk‖2

+

[
c2hβf +

1

2
c2h2

]
‖Zk‖2 +

[
c2h(βb + βf ) + c2h2

]
〈Zk, Yk〉 ≤ 0. (4.6)

Let (Γk) be the sequence defined by

Γk = f(xk)− f(p)− 〈∇f(p), xk − p〉, for k ≥ 0.
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Since f is convex, we have Γk ≥ 0, for all k ≥ 0. According to the gradient descent lemma, and since∇f
is L-Lipschitz, we have

〈Xk, Zk〉 = 〈xk+1 − xk,∇f(xk)〉 − 〈xk+1 − xk,∇f(p)〉

≥ f(xk+1)− f(xk)−
L

2
‖xk+1 − xk‖2 + Γk+1 − Γk + f(xk)− f(xk+1)

= Γk+1 − Γk −
L

2
‖Xk‖2. (4.7)

Let us define
Ek = Vk +

[
c(cγ − 1)h+ c2 + c(cγ − 1)βf + ch

]
Γk,

for k ≥ 1. Indeed, (Ek) will serve us as a discrete energy function. Indeed, it is clear that (Ek) is a
sequence of nonnegative numbers. From (4.6), (4.7) and the definition of (Ek), we obtain

Ek+1 − Ek +

[
1

2
(cγ − 1)2 +

1

2
(cγ − 1) +

c(cγ − 1)

h
− L

2

(
c(cγ − 1)h+ c2 + c(cγ − 1)βf + ch

)]
‖Xk‖2

+
[
c(cγ − 1)h+ c2 + c(cγ − 1)βb

]
〈Xk, Yk〉+

[
chλ+ c2hβb +

1

2
c2h2

]
‖Yk‖2

+

[
c2hβf +

1

2
c2h2

]
‖Zk‖2 +

[
c2h(βb + βf ) + c2h2

]
〈Zk, Yk〉 ≤ 0. (4.8)

Let us eliminate Zk from this relation by using the elementary algebraic inequality[
c2hβf +

1

2
c2h2

]
‖Zk‖2 +

[
c2h(βb + βf ) + c2h2

]
〈Zk, Yk〉 ≥ −

c2h2(βb + βf + h)2

4hβf + 2h2
‖Yk‖2.

Then, from (4.8) we deduce that

Ek+1 − Ek +

[
1

2
(cγ − 1)2 +

1

2
(cγ − 1) +

c(cγ − 1)

h
− L

2

(
c(cγ − 1)h+ c2 + c(cγ − 1)βf + ch

)]
‖Xk‖2

+
[
c(cγ − 1)h+ c2 + c(cγ − 1)βb

]
〈Xk, Yk〉

+

[
chλ+ c2hβb +

1

2
c2h2 −

c2h2(βb + βf + h)2

4hβf + 2h2

]
‖Yk‖2 ≤ 0.

Equivalently

Ek+1 − Ek + Sk ≤ 0,

where

Sk =

[
1

2
(cγ − 1)2 +

1

2
(cγ − 1) +

c(cγ − 1)

h
− L

2

(
c(cγ − 1)h+ c2 + c(cγ − 1)βf + ch

)]
‖Xk‖2

+
[
c(cγ − 1)h+ c2 + c(cγ − 1)βb

]
〈Xk, Yk〉

+

[
chλ+ c2hβb +

1

2
c2h2 −

c2h2(βb + βf + h)2

4hβf + 2h2

]
‖Yk‖2.

We have Sk = q(Xk, Yk) where q : H×H → R is the quadratic form

q(Xk, Yk) := a‖Xk‖2 + b〈Xk, Yk〉+ g‖Yk‖2,
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with

a =
1

2
(cγ − 1)2 +

1

2
(cγ − 1) +

c(cγ − 1)

h
− L

2

(
c(cγ − 1)h+ c2 + c(cγ − 1)βf + ch

)
b = c(cγ − 1)h+ c2 + c(cγ − 1)βb

g = chλ+ c2hβb +
1

2
c2h2 −

c2h2(βb + βf + h)2

4hβf + 2h2
.

The above coefficients differ from those involved in the Lyapunov analysis of Theorem 3.1 only by a,

where L enters. Since, for h small, a ∼ c(cγ − 1)

h
it is immediate to verify that a > 0 for h sufficiently

small (depending now on L). Moreover the term with coefficient L induces a negligable perturbation. So,
by using the same argument as the proof of Theorem 3.1, under the condition

4λ >
2

γ

(
βb +

1

γ

)
+

1

γ

(βb − βf )2

βf
+

2

γ

√(
βb +

1

γ

)2

+
(βb − βf )2

γβf
.

there exists c such that cγ − 1 > 0, and 4ag − b2 > 0 is satisfied for h sufficiently small. Therefore, there
exists a positive real number µ such that for any k ≥ 1,

Ek+1 − Ek + µ‖Xk‖2 + µ‖Yk‖2 ≤ 0. (4.9)

The rest of the proof is similar to that of Theorem 3.1, so we omit it.

4.2 Errors, perturbations

Let us examine the effect of the introduction of perturbations, errors in the algorithm (DINAAM-split).
Let us start from the perturbed version of (DINAM)

ẍ(t) + γẋ(t) +∇f(x(t)) +B(x(t)) + βf∇2f(x(t))ẋ(t) + βbB
′(x(t))ẋ(t) = e(t), (DINAM-pert)

where the right-handside e(·) takes into account perturbations, errors. A similar discretization as before
gives

1

h2
(xk+1 − 2xk + xk−1) +

γ

h
(xk+1 − xk) +

βb
h

(B(xk+1)−B(xk))

+
βf
h

(∇f(xk)−∇f(xk−1)) +B(xk+1) +∇f(xk) = ek. (4.10)

After expanding (4.10), we obtain

xk+1 +
h(βb + h)

1 + γh
B(xk+1) = xk +

1

1 + γh
(xk − xk−1) +

hβb
1 + γh

B(xk) (4.11)

−
hβf

1 + γh
(∇f(xk)−∇f(xk−1))−

h2

1 + γh
∇f(xk) +

h2

1 + γh
ek.

Set s :=
h

1 + γh
and α :=

1

1 + γh
. So we have

xk+1 + sBh(xk+1) = yk, (4.12)

where Bh = (h+ βb)B, and

yk = xk + α(xk − xk−1) + sβbB(xk)− s(h+ βf )∇f(xk) + sβf∇f(xk−1) + shek. (4.13)
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From (4.12) we get xk+1 = (Id +sBh)−1(yk). Combining the above results, we obtain the algorithm

(DINAAM-split-pert):

Initialize: x0 ∈ H, x1 ∈ H

α =
1

1 + γh
, s =

h

1 + γh
,

yk = xk +α(xk−xk−1) + sβbB(xk)− s(h+βf )∇f(xk) + sβf∇f(xk−1) + shek,

xk+1 = (Id +sBh)−1(yk).

Theorem 4.2 Let us make the assumptions of Theorem 4.1, and suppose that the sequence (ek) of pertur-
bations, errors satisfies:

+∞∑
k=1

‖ek‖ < +∞.

Then, there exists h∗ such that for all 0 < h < h∗, the sequence (xk) generated by the algorithm
(DINAAM-split-pert) has the following properties:

(i) (xk) converges weakly to an element in S;

(ii)
+∞∑
k=1

‖xk − xk−1‖2 < +∞,
+∞∑
k=1

‖A(xk)‖2 < +∞,

+∞∑
k=1

‖∇f(xk)−∇f(xk−1)‖2 < +∞, and
+∞∑
k=1

‖B(xk)−B(xk−1)‖2 < +∞;

(iii) lim
k→+∞

‖xk+1 − xk‖ = 0, lim
k→+∞

‖B(xk)−B(p)‖ = 0, and lim
k→+∞

‖∇f(xk)−∇f(p)‖ = 0.

Passing from the Lyapunov analysis in the unperturbed case to the perturbed case is classical procedure,
see [9] for example. It is based on a similar Lyapunov analysis and the use of the following discrete version
of the Gronwall Lemma, see [9, Lemma A.9.].

Lemma 4.1 Let a be a positive real number and (yk), (gk) be nonnegative sequences such that for all
k ≥ 0, we have

1

2
y2k ≤

1

2
a2 +

∑
0≤i<k

giyi.

Then, the following inequality holds for all k ≥ 0

yk ≤ a+
∑

0≤i<k
gi.

Proof. (of Lemma 4.1) For any ε > 0, let us define the sequence (zk(ε)) given by

zk(ε) =
1

2
(a+ ε)2 +

∑
0≤i<k

giyi.

We have zk+1(ε)− zk(ε) = gkyk and
1

2
y2k ≤ zk(ε) for k ≥ 0. Thus,

zk+1(ε)− zk(ε) ≤
√

2gk
√
zk(ε). (4.14)
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Moreover, by the definition of (zk(ε)), we deduce that (zk(ε)) is a nondecreasing sequence as well.
Hence, √

zk+1(ε)−
√
zk(ε) =

zk+1(ε)− zk(ε)√
zk+1(ε) +

√
zk(ε)

≤ zk+1(ε)− zk(ε)
2
√
zk(ε)

. (4.15)

From (4.14) and (4.15), we obtain √
zk+1(ε)−

√
zk(ε) ≤

1√
2
gk. (4.16)

That implies √
zk(ε) ≤

√
z0(ε) +

1√
2

∑
0≤i<k

gi,

for all k ≥ 0. Then,

yk ≤
√

2zk(ε) ≤
√

2z0(ε) +
∑

0≤i<k
gi = a+ ε+

∑
0≤i<k

gi.

Taking ε→ 0, we obtain
yk ≤ a+

∑
0≤i<k

gi.

This completes the proof.
Proof. (of Theorem 4.2) The proof is similar to that of Theorem 4.1. It uses the following sequence

(Ek) as a discrete energy function

Ek = Vk +
[
c(cγ − 1)h+ c2 + c(cγ − 1)βf

]
Γk,

where c > 1
γ is coefficient to adjust, and

Vk =
1

2
‖(xk − p) + c(

1

h
(xk − xk−1) +Aβ(xk)−Aβ(p))‖2 +

cγ − 1

2
‖xk − p‖2,

Γk = f(xk)− f(p)− 〈∇f(p), xk − p〉.

By setting Xk = xk+1 − xk, Yk = B(xk+1)−B(p), Zk = ∇f(xk)−∇f(p) for k ≥ 0 and following the
same argument as in the proof of Theorem 4.1, we have

Ek+1 − Ek +

[
1

2
(cγ − 1)2 +

1

2
(cγ − 1) +

c(cγ − 1)

h

]
‖Xk‖2

+
[
c(cγ − 1)h+ c2 + c(cγ − 1)βb

]
〈Xk, Yk〉+

[
chλ+ c2hβb +

1

2
c2h2

]
‖Yk‖2

+

[
c2hβf +

1

2
c2h2

]
‖Zk‖2 +

[
c2h(βb + βf ) + c2h2

]
〈Zk, Yk〉 ≤ εk. (4.17)

Here,

εk =− 1

2
c2h2‖ek‖2 + c2h2〈Yk + Zk, ek〉+

[
c(cγ − 1)h+ c2

]
〈Xk, ek〉

+ ch〈xk+1 − p, ek〉+ c2h〈βbYk + βfZk, ek〉. (4.18)

According to an elementary inequality, we have that

〈Xk, ek〉 ≤
1

2η
‖Xk‖2 +

η

2
‖ek‖2, (4.19)
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holds for any η > 0. Moreover, by using Cauchy-Schwarz inequality, and the fact thatB,∇f are Lipschitz,
we have

〈Yk, ek〉 ≤ ‖Yk‖.‖ek‖ ≤
1

λ
‖xk+1 − p‖.‖ek‖, (4.20)

〈Zk, ek〉 ≤ ‖Zk‖.‖ek‖ ≤ L‖xk+1 − p‖.‖ek‖. (4.21)

Combining (4.18)-(4.21), we obtain

εk ≤−
1

2
c2h2‖ek‖2 +

c(cγ − 1)h+ c2

2η
‖Xk‖2 +

η

2
[c(cγ − 1)h+ c2]‖ek‖2

+

[
ch+

c2h2 + c2hβb
λ

+ (c2h2 + c2hβf )L

]
‖xk+1 − p‖‖ek‖. (4.22)

From (4.17) and (4.22), we deduce that

Ek+1 − Ek +

[
1

2
(cγ − 1)2 +

1

2
(cγ − 1) +

c(cγ − 1)

h
− c(cγ − 1)h+ c2

2η

]
‖Xk‖2

+
[
c(cγ − 1)h+ c2 + c(cγ − 1)βb

]
〈Xk, Yk〉

+

[
chλ+ c2hβb +

1

2
c2h2

]
‖Yk‖2

+

[
c2hβf +

1

2
c2h2

]
‖Zk‖2

+
[
c2h(βb + βf ) + c2h2

]
〈Zk, Yk〉 ≤ ε′k, (4.23)

with

ε′k =
η

2
[c(cγ − 1)h+ c2]‖ek‖2 +

[
ch+

c2h2 + c2hβb
λ

+ (c2h2 + c2hβf )L

]
‖xk+1 − p‖‖ek‖.

Let us eliminate Zk from this relation by using the elementary algebraic inequality[
c2hβf +

1

2
c2h2

]
‖Zk‖2 +

[
c2h(βb + βf ) + c2h2

]
〈Zk, Yk〉

≥ −
c2h2 (βb + βf + h)2

4
(
hβf + 1

2h
2
) ‖Yk‖2.

Therefore,

Ek+1 − Ek +

[
1

2
(cγ − 1)2 +

1

2
(cγ − 1) +

c(cγ − 1)

h
− c(cγ − 1)h+ c2

2η

]
‖Xk‖2

+
[
c(cγ − 1)h+ c2 + c(cγ − 1)βb

]
〈Xk, Yk〉

+

[
chλ+ c2hβb +

1

2
c2h2 −

c2h2 (βb + βf + h)2

4
(
hβf + 1

2h
2
) ]

‖Yk‖2 ≤ ε′k. (4.24)

Equivalently

Ek+1 − Ek + S ≤ ε′k, (4.25)
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where

S =

[
1

2
(cγ − 1)2 +

1

2
(cγ − 1) +

c(cγ − 1)

h
− c(cγ − 1)h+ c2

2η

]
‖Xk‖2

+
[
c(cγ − 1)h+ c2 + c(cγ − 1)βb

]
〈Xk, Yk〉

+

[
chλ+ c2hβb +

1

2
c2h2 −

c2h2 (βb + βf + h)2

4
(
hβf + 1

2h
2
) ]

‖Yk‖2.

Similarly, we have Sk = q(Xk, Yk) where q : H×H → R is the quadratic form

q(Xk, Yk) := a‖Xk‖2 + b〈Xk, Yk〉+ g‖Yk‖2,

with

a =
1

2
(cγ − 1)2 +

1

2
(cγ − 1) +

c(cγ − 1)

h
− c(cγ − 1)h+ c2

2η
,

b = c(cγ − 1)h+ c2 + c(cγ − 1)βb,

g = chλ+ c2hβb +
1

2
c2h2 −

c2h2 (βb + βf + h)2

4
(
hβf + 1

2h
2
) .

We choose η > 0 such that a > 0. That means

η >
c(cγ − 1)h2 + c2h

(cγ − 1)2h+ (cγ − 1)h+ c(cγ − 1)
.

Since the time step h will be taken small, there exists η0 > 0 such that η < η0.
Again, thanks to Lemma 2.3, we have that q is positive definite if and only if 4ag − b2 > 0.
By using the same argument as in the proof of Theorem 3.1, we have the existence of c such that S > 0.
To ensure the existence of such c, we need

4λ >
2

γ

(
βb +

1

γ

)
+

1

γ

(βb − βf )2

βf
+

2

γ

√(
βb +

1

γ

)2

+
(βb − βf )2

γβf
.

Therefore, there exists positive real number µ such that for any k ≥ 1,

Ek+1 − Ek + µ‖Xk‖2 + µ‖Yk‖2 ≤ ε′k. (4.26)

From (4.26) we deduce that
Ek+1 ≤ E1 +

∑
1≤i<k+1

ε′i.

Taking into account the form of the energy sequence (Ek), we obtain

cγ − 1

2
‖xk+1 − p‖2 ≤ E1 +

∑
1≤i<k+1

ε′i. (4.27)

According to the assumption
∞∑
k=1

‖ek‖ < +∞, this implies that
∞∑
k=1

‖ek‖2 < +∞. Therefore, there exists
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C > 0 such that∑
1≤i<k+1

ε′i =

[
ch+

c2h2 + c2hβb
λ

+ (c2h2 + c2hβf )L

] ∑
1≤i<k+1

‖xi+1 − p‖‖ei‖

+
η

2
[c(cγ − 1)h+ c2]

∑
1≤i<k+1

‖ek‖2

≤
[
ch+

c2h2 + c2hβb
λ

+ (c2h2 + c2hβf )L

] ∑
1≤i<k+1

‖xi+1 − p‖‖ei‖+ C. (4.28)

From (4.27) and (4.28), we deduce that

cγ − 1

2
‖xk+1 − p‖2 ≤ E1 + C +

[
ch+

c2h2 + c2hβb
λ

+ (c2h2 + c2hβf )L

] ∑
1≤i<k+1

‖ei‖‖xi+1 − p‖.

More precisely, we have

1

2
‖xk+1 − p‖2 ≤

1

2
C2
0 + c0

∑
1≤i<k+1

‖ei‖‖xi+1 − p‖, (4.29)

where

C0 =

√
2(E1 + C)

cγ − 1
, c0 = ch+

c2h2 + c2hβb
λ

+ (c2h2 + c2hβf )L.

Now, applying Lemma 4.1 to (4.29), we obtain

‖xk+1 − p‖ ≤ C0 + c0
∑

1≤i<k+1

‖ei‖ < +∞. (4.30)

Therefore, (‖xk+1 − p‖) and consequently (‖xk‖) is a bounded sequence.
Returning to (4.28), according to the boundedness of (‖xk+1 − p‖) and the assumption of (ek), we obtain

∞∑
k=1

ε′k < +∞.

The rest of the proof is similar to that of Theorem 4.1, so we omit here. The above inequality allows us to

estimate
∞∑
k=1

‖Xk‖2 and
∞∑
k=1

‖Yk‖2.

5 A variant of the proximal-gradient algorithm

In this section, we consider a variant of the previous proximal-gradient algorithm, where the role of the
operators is reversed. This allows us to weaken the hypothesis on f , i.e., we suppose that f is a C1 convex
function whose gradient is Lipschitz on the bounded sets (instead of globally Lipschitz). We consider the
following implicit finite-difference scheme for (DINAM):

1

h2
(xk+1 − 2xk + xk−1) +

γ

h
(xk+1 − xk) +

βb
h

(B(xk)−B(xk−1))

+
βf
h

(∇f(xk+1)−∇f(xk)) +B(xk) +∇f(xk+1) = 0. (5.1)
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The temporal discretization of the Hessian driven damping term βbB(x(t))ẋ(t) is taken equal to
βb
h

(B(xk)−

B(xk−1)) instead of
βf
h

(B(xk+1)−B(xk)). After expanding (5.1), we obtain

xk+1 +
h2

1 + γh
∇f(xk+1) +

hβf
1 + γh

∇f(xk+1) = xk +
1

1 + γh
(xk − xk−1) +

hβf
1 + γh

∇f(xk)

− hβb
1 + hγ

(B(xk)−B(xk−1))−
h2

1 + hγ
B(xk). (5.2)

Set s :=
h

1 + γh
and α :=

1

1 + γh
. So we have

xk+1 + sFh(xk+1) = yk, (5.3)

where

Fh = (h+ βf )∇f, (5.4)

yk = xk + α(xk − xk−1) + sβf∇f(xk)− s(h+ βb)B(xk) + sβbB(xk−1). (5.5)

From (5.3) we get xk+1 = (Id +sFh)−1(yk), which gives the following algorithm

(DINAAM-split-var):

Initialize: x0 ∈ H, x1 ∈ H

α =
1

1 + γh
, s =

h

1 + γh
,

yk = xk + α(xk − xk−1) + sβf∇f(xk)− s(h+ βb)B(xk) + sβbB(xk−1),

xk+1 = (Id +sFh)−1(yk) = proxs(h+βf )f (yk).

Theorem 5.1 Let B : H → H be a λ-cocoercive operator and f : H → R be a C1 convex function whose
gradient is Lipschitz continuous on the bounded sets. Suppose the positive parameters λ, γ, βb, βf satisfy

βf > 0, and λγ >
(βb − βf )2

4βf
+

1

2

(
βb +

1

γ

)
+

1

2

√(
βb +

1

γ

)2

+
(βb − βf )2

γβf
.

Then, there exists h∗ such that for all 0 < h < h∗, the sequence (xk) generated by the algorithm
(DINAAM-split-var) has the following properties:

(i) (xk) converges weakly to an element in S;

(ii)
+∞∑
k=1

‖xk − xk−1‖2 < +∞,
+∞∑
k=1

‖A(xk)‖2 < +∞,

+∞∑
k=1

‖∇f(xk)−∇f(xk−1)‖2 < +∞, and
+∞∑
k=1

‖B(xk)−B(xk−1)‖2 < +∞;

(iii) (pointwise estimates)

lim
k→+∞

‖xk+1 − xk‖ = 0, lim
k→+∞

‖B(xk)−B(p)‖ = 0, and lim
k→+∞

‖∇f(xk)−∇f(p)‖ = 0.
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Proof. Let us consider the sequence (Vk) given by, for each k ≥ 1

Vk =
1

2
‖(xk − p) + c(

1

h
(xk − xk−1) + βf∇f(xk) + βbB(xk−1)−Aβ(p))‖2 +

δ

2
‖xk − p‖2,

where c, δ are positive coefficients to adjust. For k ≥ 1, let us briefly write Vk as follows

Vk =
1

2
‖vk‖2 +

δ

2
‖xk − p‖2,

with vk = (xk − p) + c

(
1

h
(xk − xk−1) + βf∇f(xk) + βbB(xk−1)−Aβ(p)

)
.

Using successively the definition of (vk), we obtain

vk+1 = (xk+1 − p) + c

(
1

h
(xk+1 − xk) + βf∇f(xk+1) + βbB(xk)−Aβ(p)

)
.

Moreover, by using the formulation of the algorithm, we have that

vk = c
(1

h
(xk+1 − xk) + γ(xk+1 − xk) + βf∇f(xk+1) + βbB(xk)−Aβ(p) + h∇f(xk+1) + hB(xk)

)
+ (xk+1 − p)− (xk+1 − xk) = vk+1 + (cγ − 1)(xk+1 − xk) + ch∇f(xk+1) + chB(xk).

Set Xk = xk+1 − xk, Yk = B(xk)−B(p), Zk = ∇f(xk+1)−∇f(p). Taking δ := cγ − 1, we get

Vk+1 − Vk =− 1

2
(cγ − 1)2‖Xk‖2 −

1

2
c2h2‖Yk + Zk‖2 − c(cγ − 1)h〈Xk, Yk + Zk〉

− 1

2
(cγ − 1)‖Xk‖2 − ch〈xk+1 − p,∇f(xk+1) +B(xk)〉 −

c(cγ − 1)

h
‖Xk‖2

− c2〈Xk, Yk + Zk〉 − c(cγ − 1)〈βbYk + βfZk, Xk〉 − c2h〈βbYk + βfZk, Yk + Zk〉.

Using the fact that p ∈ S, ∇f is monotone, and B is λ-cocoercive, we have

−ch〈xk+1 − p,∇f(xk+1) +B(xk)〉
= −ch〈xk+1 − p,∇f(xk+1)−∇f(p)〉 − ch〈xk+1 − p,B(xk)−B(p)〉
≤ −chλ‖B(xk)−B(p)‖2 − ch〈xk+1 − xk, B(xk)−B(p)〉.

By combining the previous results, we get

Vk+1 − Vk +

[
1

2
(cγ − 1)2 +

1

2
(cγ − 1) +

c(cγ − 1)

h

]
‖Xk‖2

+
[
c(cγ − 1)h+ c2 + c(cγ − 1)βf

]
〈Xk, Zk〉

+
[
c(cγ − 1)h+ c2 + c(cγ − 1)βb + ch

]
〈Xk, Yk〉+

[
chλ+ c2hβb +

1

2
c2h2

]
‖Yk‖2

+

[
c2hβf +

1

2
c2h2

]
‖Zk‖2 +

[
c2h(βb + βf ) + c2h2

]
〈Zk, Yk〉 ≤ 0. (5.6)

Let (Γk) be a sequence defined by

Γk = f(xk)− f(p)− 〈∇f(p), xk − p〉, for k ≥ 0.



Inertial algorithms with geometric damping for structured monotone inclusions 26

Since f is convex, we have Γk ≥ 0, for all k ≥ 0. Moreover,

〈Xk, Zk〉 = 〈xk+1 − xk,∇f(xk+1)〉 − 〈xk+1 − xk,∇f(p)〉
≥ f(xk+1)− f(xk) + Γk+1 − Γk + f(xk)− f(xk+1)

= Γk+1 − Γk. (5.7)

Let us define
Ek = Vk +

[
c(cγ − 1)h+ c2 + c(cγ − 1)βf

]
Γk,

for k ≥ 1. (Ek) will serve us as a discrete energy function. Indeed, it is clear that (Ek) is a sequence of
nonnegative numbers. From (5.6), (5.7) and the definition of (Ek), we obtain

Ek+1 − Ek +

[
1

2
(cγ − 1)2 +

1

2
(cγ − 1) +

c(cγ − 1)

h

]
‖Xk‖2

+
[
c(cγ − 1)h+ c2 + c(cγ − 1)βb + ch

]
〈Xk, Yk〉+

[
chλ+ c2hβb +

1

2
c2h2

]
‖Yk‖2

+

[
c2hβf +

1

2
c2h2

]
‖Zk‖2 +

[
c2h(βb + βf ) + c2h2

]
〈Zk, Yk〉 ≤ 0. (5.8)

Let us eliminate Zk from this relation by using the elementary algebraic inequality[
c2hβf +

1

2
c2h2

]
‖Zk‖2 +

[
c2h(βb + βf ) + c2h2

]
〈Zk, Yk〉 ≥ −

c2h2(βb + βf + h)2

4hβf + 2h2
‖Yk‖2.

From (5.8) we deduce that Ek+1 − Ek + Sk ≤ 0, where

Sk =

[
1

2
(cγ − 1)2 +

1

2
(cγ − 1) +

c(cγ − 1)

h

]
‖Xk‖2

+
[
c(cγ − 1)h+ c2 + c(cγ − 1)βb + ch

]
〈Xk, Yk〉

+

[
chλ+ c2hβb +

1

2
c2h2 −

c2h2(βb + βf + h)2

4hβf + 2h2

]
‖Yk‖2.

We have Sk = q(Xk, Yk) where q : H×H → R is the quadratic form

q(Xk, Yk) := a‖Xk‖2 + b〈Xk, Yk〉+ g‖Yk‖2,

with

a =
1

2
(cγ − 1)2 +

1

2
(cγ − 1) +

c(cγ − 1)

h
b = c(cγ − 1)h+ c2 + c(cγ − 1)βb + ch

g = chλ+ c2hβb +
1

2
c2h2 −

c2h2(βb + βf + h)2

4hβf + 2h2
.

By using the same argument as the proof of Theorem 4.1, we obtain the existence of c such that Sk > 0.
To ensure the existence of such c, we need

4λ >
2

γ

(
βb +

1

γ

)
+

1

γ

(βb − βf )2

βf
+

2

γ

√(
βb +

1

γ

)2

+
(βb − βf )2

γβf
.

Therefore, there exists positive real number µ such that for any k ≥ 1,

Ek+1 − Ek + µ‖Xk‖2 + µ‖Yk‖2 ≤ 0. (5.9)

The rest of the proof is similar to that of Theorem 4.1, so we omit it.
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6 Numerical illustrations

Remark 6.1 A general method to generate monotone cocoercive operators which are not gradients of con-
vex functions is to start from a linear skew symmetric operator A, and then take its Yosida approximation
Aλ. For example, starting from A equal to the counterclockwise rotation of angle π/2 in the plane, we
obtain that, for any λ > 0, the following operator is λ-cocoercive

Aλ =
1

1 + λ2

(
λ −1
1 λ

)
.

Example 6.1 Take H = R2 equipped with the Euclidean structure. Let us consider the linear operator B
whose matrix in the canonical basis of R2 is defined byB = Aλ for λ = 5. According to Remark 6.1, B is
a nonpotential operator B which is λ-cocoercive with λ = 5. In [3], we observed the classical oscillations,
in the heavy ball with friction, when f : R2 → R is defined by

f(x1, x2) = 50x22.

We set γ = 0.9. It is clear that f is convex but not strongly convex. We study 3 cases: (1) βb = 1, βf = 0.5,
(2) βb = 0.5, βf = 1 and (3) βb = βf = 0.5. As a straight application of Theorem 3.1 and 4.1, we
obtain that the sequences (xk) generated by (DINAAM) and (DINAAM-split) converge to x∞, where
x∞ ∈ S = (B+∇f)−1(0) = {0}. The trajectory obtained by using Matlab is depicted in Figure 1 in [3].
In order to compare the two algorithms, we observe the norm of xk − x∞. In Figure 1, we can see that the
two algorithms give almost the same numerical results. The difference between them is the use or not of
the resolvent operator of the sum of B and ∇f .
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Figure 1: A comparison between (DINAAM) and (DINAAM-split).

In [3], we discuss an application of our model to dynamical games. Now we study another example to see
how our algorithm can be applied to find the zeros of∇f +B.

Example 6.2 Non-potential version of sparse logistic regression. Let us recall the following sparse
logistic regression problem for binary classification:
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min
x∈Rn

1

m

m∑
i=1

log(1 + e−viu
>
i x) + µ‖x‖1,

where (ui, vi)1≤i≤m is the training set with ui ∈ Rn is the feature vector of each data sample, and vi ∈
{−1, 1} is the binary label. Here µ > 0 is a regularization parameter. We set

f(x) =
1

m

m∑
i=1

log(1 + e−viu
>
i x).

The gradient of f is given by ∇f(x) = − 1

m
A>(1m − q(x)), with A> =

(
v1u1 v2u2 . . . vmum

)
∈

Rn×m, 1m =
(
1 1 . . . 1

)
∈ Rm and q(x) = 1m./(1+e−Ax) (./ denotes the componentwise division).

Consider the following problem: Find x ∈ Rn such that Bn(x) +∇f(x) = 0, where

Bn =



2 −1 0 · · · · · · 0

−1 2 −1
. . .

. . .
...

0 −1 2
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . .
. . . −1

0 . . . . . . 0 −1 2


∈ Rn×n.

Let us show that Bn is positive definite for all n ≥ 2. Let us denote by yk the k-th leading principal minor
of a matrix Bn which is the determinant of its upper-left k × k sub-matrix. We have

yk = det(Bk), for 1 ≤ k ≤ n.
For simplify, we define B1 = 2. By the definition of Bn, we have that

det(Bn+1) = 2 det(Bn)− det(Bn−1),

for n ≥ 2. An elementary calculation gives det(Bn+1) = n + 2 for n ≥ 1. Thus, yk = k + 1 > 0 for
all 1 ≤ k ≤ n. Hence, Bn is positive definite. Furthermore, Bn is cocoercive. Indeed, for any x, y ∈ Rn,
there exists λ > 0 such that

〈Bnx−Bny, x− y〉 ≥ λ‖Bnx−Bny‖2. (6.1)

Since Bn, B>n Bn are positive (semi)definite, for any x, y ∈ Rn we have

〈Bnx−Bny, x− y〉 ≥ λmin(Bn)‖x− y‖2, (6.2)

and
λmax(B>n Bn)‖x− y‖2 ≥ ‖Bnx−Bny‖2. (6.3)

Here, λmin(Bn), λmax(B>n Bn) are the smallest eigenvalue of Bn and the greatest eigenvalue of B>n Bn

respectively. For instance, take λ =
λmin(Bn)

λmax(B>n Bn)
, from (6.2) and (6.3), we deduce that (6.1) holds.

Let us check that∇f is Lipschitz continuous. In fact, for any x, y ∈ Rn, we have

m‖∇f(x)−∇f(y)‖ = ‖A>q(x)−A>q(y)‖

=
∥∥∥ m∑
i=1

vi

1 + e−viu
>
i x
ui −

vi

1 + e−viu
>
i y
ui

∥∥∥
≤

m∑
i=1

‖ui‖.|vi|.
∣∣∣ 1

1 + e−viu
>
i x
− 1

1 + e−viu
>
i y

∣∣∣
≤ 1

4

m∑
i=1

‖ui‖.|u>i x− u>i y| ≤
1

4

m∑
i=1

‖ui‖2.‖x− y‖.
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Therefore, ‖∇f(x)−∇f(y)‖ ≤ 1

4m
‖x− y‖

m∑
i=1

‖ui‖2.

For example, we take n = 3,m = 2. Then, B3 is
1

4
-cocoercive. Setting γ = 4, βb = βf = 0.5, and

x0 = 0n, ẋ0 = 1n as initial conditions. According to Theorem 4.1, we can conclude that the sequence
(xk) generated by (DINAAM-split) converges to the zeros of ∇f + B3. Implementing the algorithm
(DINAAM-split) in Matlab, we obtain the plot of k versus the norm of ∇f(xk) + B3(xk), see Figure 2.
Here, the training set is taken randomly for numerical test purposes.
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Figure 2: The plot of k versus the norm of∇f(xk) +B3(xk) obtained by (DINAAM-split).

Remark 6.2 In Example 6.2, since the resolvent operator (Id +sAh)−1 can not be computed easily, we
used the algorithm (DINAAM-split) instead of (DINAAM). Then, our algorithm requires to compute
(Id +sBh)−1 and in this situation it is easier to operate.

Example 6.3 Let us return to Example 6.1 and consider the effect of the introduction of perturbations,

errors. With the same value of the parameters, we just add the errors ek =
1

k2
and ēk =

1√
k

. It is easy

to check that the error e(t) = e1 satisfies Theorem 4.2 while e(t) = e2 does not. Running algorithm
(DINAAM-split-pert) in Matlab, the plot of ‖xk − x∞‖ versus k is depicted in Figure 3. We observe that
if the perturbed term ek satisfies the assumptions of Theorem 4.2, then algorithm (DINAAM-split-pert)
behaves as well as the nonperturbed version.

Figure 3: The effect of perturbations, errors in the algorithm (DINAAM-split).

7 Conclusion, perspectives

The crucial role played by the Hessian-driven damping in the convergence properties of inertial algorithms
in convex optimization has been well documented in a series of recent papers. While keeping the con-
vergence rates attached to the Nesterov accelerated gradient method, it provides fast convergence towards
zeros of the gradients, and notably attenuates the oscillations. The corresponding notion for general mono-
tone inclusions is the so called Newton’s correction term. Our contribution is to bring together these two
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aspects within the same algorithms, in order to design inertial algorithms for structured monotone inclu-
sions involving potential (gradient) terms and nonpotential terms (skew symmetric operators for example).
This is fundamental both for numerical reasons and for modeling in decision sciences and engineering.
Indeed many decision-making processes involve cooperative and noncooperative aspects. Our Lyapunov
analysis highlights the nonsymmetrical role played by the two operators. This is an important step com-
pared to previous studies where the two operators were treated globally. Among perspectives, treating the
case where B is a general maximally monotone operator (for example linear skew symmetric) is a central
issue for dealing with primal-dual methods. In this regard, the approximation of B by its Yosida approxi-
mation (which is a cocoercive operator) allows us to come back to the situation studied in our article. It is
an interesting subject for further studies. A similar technique can also be envisaged to deal with the case
of a vanishing viscous damping, so as to cover the case of the accelerated gradient method of Nesterov.

References

[1] Abbas, B., Attouch, H., Svaiter, B.F.: Newton-like dynamics and forward-backward methods for
structured monotone inclusions in Hilbert spaces. J. Optim. Theory Appl., 161(2), 331–360 (2014).

[2] Adly, S., Attouch, H.: Finite convergence of proximal-gradient inertial algorithms combining dry
friction with Hessian-driven damping, SIAM J. Optim., 30(3), 2134–2162 (2020).

[3] Adly, S., Attouch, H., Vo V.N.: Asymptotic behavior of Newton-like inertial dynamics involving the
sum of potential and nonpotential terms. (2021), https://hal.archives-ouvertes.fr/hal-03213925
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