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Abstract

Traditional deep learning algorithms often fail to gen-
eralize when they are tested outside of the domain of the
training data. The issue can be mitigated by using unla-
beled data from the target domain at training time, but be-
cause data distributions can change dynamically in real-life
applications once a learned model is deployed, it is critical
to create networks robust to unknown and unforeseen do-
main shifts. In this paper we focus on one of the reasons
behind the inability of neural networks to be so: deep net-
works focus only on the most obvious, potentially spurious,
clues to make their predictions and are blind to useful but
slightly less efficient or more complex patterns. This be-
haviour has been identified and several methods partially
addressed the issue. To investigate their effectiveness and
limits, we first design a publicly available MNIST-based
benchmark to precisely measure the ability of an algorithm
to find the ”hidden” patterns. Then, we evaluate state-of-
the-art algorithms through our benchmark and show that
the issue is largely unsolved. Finally, we propose a partially
reversed contrastive loss to encourage intra-class diversity
and find less strongly correlated patterns, whose efficiency
is demonstrated by our experiments.

1. Introduction

While deep neural networks reach or even surpass
human-level performance on an increasing number of
computer vision tasks, e.g., classification, object detection
or semantic segmentation [18, 17], it is found that their
performance could drop sharply [22] when mismatch
between training and testing data distributions occurs.
This is an issue of critical importance for real-world
application, where test-time domain shift is common:
the data distribution can change over time because of
varying factors as diverse as lighting, view angle, sensor,

etc., ending up being significantly different from the one
used during training. For embedded networks deployed
in the wild, that can’t be easily retrained (autonomous
cars, for instance), geographical distribution change
are an issue too. It is impossible to gather enough data to
cover all possible shifts, so another solution has to be found.

Figure 1. Samples of our benchmark. First row is training data,
second row is testing data. For the training data, all digits are
colorized with their class color, without exception. For the testing
data, all digits have the same color, which is the average of the
colors used in training.

To generalize without having access to any kind of
information regarding the target domain is the goal of
the research field known as domain generalization (DG)
(or out-of-distribution generalization). Most of the works
in this field assume to have access to data coming from
several identified domains during training and aim to
make the network’s internal representations invariant on
the domains, by finding patterns common to all domains.
The idea behind is that patterns shared among several
domains are more likely to be found in a new, unseen,
domain [31, 32]. This multi-source domain generalization
(MDG) setting is not realistic for all tasks and all kind of
data: health-related data, for instance, cannot be easily
shared and the gathering of data from different sources
(such as country) may prove difficult. In this paper, we are
concerned with a situation, coined as single-source domain
generalization (SDG), where only one source domain is
available during training, either that all data come from a
same distribution, or that the data come from several distri-



Figure 2. An illustration of our reverse contrastive approach on 3
anchors. Anchor 1 in the latent space is sufficiently far from its
closest negative neighbor (full line) for it to be pushed away from
its closest positive neighbor (dotted line). So is anchor 3. Anchor
2, however, is too close to a negative point to be pushed. The
arrows show the moving direction of each anchor.

butions which are not identified differently. Both settings
(single and multi-source) are still largely unsolved in the
general case: on several complex and realistic datasets,
e.g., DomainNet [37], PACS [30], methods designed to
improve the out-of-distribution generalization capability of
networks were found to perform as badly as the standard
training procedure [16].

The reasons behind the failure of deep networks to gen-
eralize outside of their training distribution are numerous
and complex [33, 39, 19]. Among them is the inability
of networks to use several semantically different clues, or
patterns, to make their predictions and to instead rely only
on the simplest most predictive patterns [40, 20]. If the
learned obvious class-specific patterns are spurious and
therefore missing (or worse: anti-correlated or uncorrelated
with the training class) at test time, the performance of the
network will suffer. Furthermore, due to the nature of the
data acquisition process, it is fairly common to observe
such spurious correlations between patterns and labels
in the data [44, 11]. Examples of such biases could be
background and context, as in [4], or even inconspicuous
hospital specific clues, as in [10]. This behaviour, and its
consequences on a network’s ability to generalize outside
of its training domain, have been previously identified
and partially mitigated in [24, 38]. However, using our
benchmark specifically crafted to evaluate the ability of
a model to find other patterns than the most strongly
correlated ones, we show the inability of existing methods,
e.g., Jigsaw [5], Spectral Decoupling [38], RSC [24], to

correctly handle this issue. None of the existing works
reach satisfying performance and some of them can record
a performance drop as high as 56 accuracy points when
the correlated pattern identified in training data, i.e., color,
is missing in the test data. Note that we should not expect
the discovery of ”hidden” patterns to completely solve
the SDG issue on real-life benchmarks, such as on PACS
mentionned earlier: a pattern can be missing in the test-time
distribution, but also uncorrelated or anti-correlated with
its training class. Real-life situations are a complex blend
of missing and uncorrelated (or anti-correlated) patterns. In
such situations, it is not sufficient to learn the less strongly
correlated patterns, some of them have to be ignored for the
network to make a proper decision. Similarly, the perfor-
mance of a DG method on a real-life benchmark is not an
assessment of its ability to find the ”hidden” patterns. Our
benchmark, illustrated in Figure 1 is specifically crafted to
avoid this issue.

Given these findings, we posit that, when training for
a classification task, naturally learned patterns are learned
because they tend to maximize inter-class specificity, while
ignoring intra-class variability. These learned patterns are
the most effective when it comes to discriminate different
classes. As a result, we hypothesize that, to find less
efficient patterns, we need to look for class-discriminant
patterns with a higher intra-class variability than those
learned naturally. That is, patterns enabling the network
to better discriminate samples of the same class. Because
we don’t have access to additional auxiliary labels to
discriminate elements within a class, the idea is to expand
the class-wise internal representations of a deep network.
We do so by using a partially reversed contrastive loss:
in a traditional contrastive approach, same class samples
are brought together in the latent space while different
class samples are pushed away from each other. In our
approach, same class samples are pushed away from each
others until they reach a different class sample (see Figure
2 for an illustration of our method). Our strategy yields
state-of-the-art performance on our MNIST-based dataset.

Our contributions are threefold:

• We design an MNIST-based benchmark, named
MNIST-MP (Missing Patterns), to study the ability of
an algorithm to find other useful patterns than the nat-
urally learned ones. It is available on github 1.

• We show that several state-of-the-art domain general-
ization algorithms especially designed to find ”hidden”
patterns fail to do so on a simple MNIST-based bench-
mark.

1https://github.com/liris-tduboudin/
Look-Beyond-Bias

https://github.com/liris-tduboudin/Look-Beyond-Bias
https://github.com/liris-tduboudin/Look-Beyond-Bias


• We propose a reverse contrastive loss (RCL) to find
less strongly correlated patterns by encouraging intra-
class diversity.

The remaining of the paper is organized as follows.
Sec.2 discusses related works. Sec.3 introduces the pro-
posed MNIST-based benchmark. Sec.4 presents our pro-
posed RCL algorithm. Sec.5 benchmarks our proposed al-
gorithm along with state-of-the-art algorithms for compar-
ison. Sec.6 concludes the paper and draws some future
works.

2. Related Works
2.1. Domain Generalization (DG)

2.1.1 Robustness through multi source training

Most settings in DG assume to have data coming from
several different source domains, which are identified.
By learning domain invariant features, through a great
diversity of practical approaches, the model is supposedly
able to generalize to a new domain. Most recent works
use adversarial strategies: in the work of Tzeng et al. [45]
the features extracted by a feature extractor are fed to a
discriminator tasked to find the original domain of the
image. The discriminator is trained to minimize the domain
classification error, while the feature extractor is trained to
maximize it, hence making the features indistinguishable
between domains. This family of works were initially
developed in the context of domain adaptation (DA) but
can be adapted in the multi-source domain generalization
setting by employing all the domains at disposal during
training, e.g., [6] and [31]. The work of Krueger et al.
[28] is enforcing invariance at loss level by minimizing the
variance of the loss over all training domains alongside
with the usual average of the loss per batch. Self-supervised
strategies have also emerged to solve the problem of multi-
source domain generalization. Carlucci et al. [5] used a
self-supervised strategy based on solving jigsaw puzzles:
the images are divided into tiles, which are shuffled before
being given to the classifier. The classifier has two goals:
classify the samples and find the shuffling permutation. By
having a supplementary objective, not related in any way to
the classification, the network will learn other patterns than
those strictly sufficient to the classification task and hence
generalize better to a new distribution. So far, it is unclear
why features learned with self-supervised tasks are more
robust to domain shifts.

In 2019, Gulrajani and Lopez-Par [16] analysed a lot
of DG algorithms and benchmarks ”in search of lost do-
main generalization”. They detailed ways to carefully and
realistically evaluate multi-source DG methods, by using
larger models, stronger data augmentation, correct model

and hyper-parameters selection (without any use of the tar-
get domain), and doing all on more datasets. Their conclu-
sion was that no methods were significantly above the basic
expected risk minimization procedure (ERM), where data
from all domains is merged into one single dataset with the
network trained on it. Their findings are corroborated by
Cha et al. [7] who look into the latent spaces from differ-
ently trained networks, one with DANN [12] and another
with the basic ERM. They have shown that ERM naturally
tends to yield domain invariant features.

2.1.2 Robustness through stylization

In situations where only one domain is available during
training (SDG), style transfer as a mean of data augmen-
tation has been recently introduced independently by sev-
eral authors [34, 48, 27, 41] as a way to promote invariance
to texture changes. The images are simply stylized differ-
ently, with AdaIN based [23] or GAN-based [15, 50] archi-
tectures, before being fed to the main task model. It has
been hypothesized that the low ability of deep networks to
transfer to unseen domains was related to their texture bias:
deep networks grant more importance to the texture than the
shape in image recognition tasks [13]. As such, correcting
this texture bias is expected to improve out-of-distribution
generalization, provided that the distribution shift is mainly
due to a texture shift. The stylization as data augmentation
exists in different flavors: Nam et al. [34] use intra-domain
extra-class stylization: the styles used to transfer are com-
ing from the images of the training distribution but from
different class samples than the image being stylized. Yue
et al. [48] use several auxiliary style datasets. Jackson et
al. [25] approximated the style codes distribution of paint-
ings with a multivariate normal, and completely discard the
painting dataset once the transfer network is trained. The
stylization is a strong baseline in single-source domain gen-
eralization (SDG) [48] when the domain shift encountered
is a texture shift, such as a synthetic to real transfer, which,
unfortunately, does not always hold in the general case.

2.1.3 Robustness by overcoming biases

Deep neural networks learn correlations between patterns
and labels no matter how spurious they seem to a human be-
ing and therefore sometimes need to be explicitly told not to
use certain patterns for the recognition task at hand [35, 26].
In a domain shift situation, the patterns naturally learned
by a network are precisely the biases we need to overcome
to find other and semantically different patterns. A line of
work, e.g., Kim et al. [26], is able to create bias invariant
features, but requires the bias to be given as an auxiliary la-
bel, and are therefore not suitable to the SDG setting where
no information on testing data, e.g., bias shift, is assumed
available. Another line of work, e.g., [35, 9, 1], focuses on



finding counter-examples i.e., samples that do not share the
majority biases of their classes, and increase their impor-
tance during training. Assuming the necessary existence of
counter-examples is an optimistic hypothesis in certain situ-
ations, such as with synthetic data where only a few number
of synthetic models of interest may be available. Besides,
it could lead to overstate the importance of what could be
an aberrant outlier, such as an annotation error. As such,
there also exists approaches which do not need counter-
examples. Representation Self-Challenging [24] (RSC) in-
troduces a dropout-based strategy, where the feature map
coefficients most responsible for the prediction are muted,
instead of random ones, therefore leading the network to fo-
cus on other less correlated patterns. Spectral Decoupling
[38], a method introduced by Pezeshki et al., proposes an
L2 regularization on the output logits of the network, with
a theoretical motivation, to push the network to learn other
patterns than the obvious and spurious ones.

2.2. Supervised Contrastive Learning

Contrastive learning [43, 21] has been introduced in deep
learning to enable class-wise manipulation of a network’s
latent space with a simple idea: elements of the same class
should be close to each other in the latent space, elements
of different classes should be away from each other in the
latent space. Our approach is to loosen the latent space to
identify less correlated patterns in a recognition task. While
this idea has been previously studied in [49] and [47], it was
applied with a different goal. Zhang et al. [49] proposes to
take all the space available on the unit sphere evenly, but the
regularization only impacts negative pairs. Xuan et al. [47]
aims to create a latent space with better generalization to
unseen classes using a modified triplet loss that also pushes
together elements of different classes.

3. MNIST ”Missing-Patterns”
3.1. Training Set

We introduce a new toy dataset based on the MNIST
dataset [29] to benchmark the ability of an algorithm to find
less efficient but still useful patterns in the data. For the
training data, each digit, coming from the original MNIST
training data, is colorized with a color depending on its
class. There are no counter-examples (digit colorized dif-
ferently than the majority of the other digits in its class), as
in [1] or label noise (digit colorized with their correct class
color, but with an assigned label different from the original
one), as in [38]. We do so to study the ability of a network to
find more semantically different patterns than what is done
naturally, without having any kind of data signals that could
help it find those patterns. The validation data is colorized
the same way as the training data but come from the origi-
nal MNIST test split. A sample of the dataset can be found

Figure 1. A summary of the synthetic MNIST-based DG
datasets published so far is available in Table 1.

Method SDG/MDG UP/MP LN/CE Classes
IRM [2] MDG (2) UP LN 2
SD [38] SDG UP LN 2
GIP [1] SDG UP & MP CE 10
Ours SDG MP None 10

Table 1. Comparison of MNIST-datasets introduced to study do-
main generalization strategies. SDG/MDG refers to single or mul-
tiple training domains, UP/MP is uncorrelated (or anti-correlated)
or missing patterns, LN is label noise, CE is counter-examples,
Classes is the number of classes.

3.2. Testing Set

The MNIST-MP dataset aims to benchmark SDG
algorithms in presence of missing patterns, i.e., when a
class correlated pattern in training, e.g., color, is missing
in testing. It is made by coloring each digit with the same
color, no matter their class. The images come from the
original MNIST test data. The test color and the training
colors are not chosen randomly. To precisely confront a
deep network with a situation where useful training patterns
are missing at test-time, the test color has to produce an
activation that is roughly the same for all color specific
filters in the network. This way, the network is unable to
use color related information to predict the class of a digit
and has to make use of other class correlated patterns, e.g.,
shape. Because we can’t directly abide by this constraint
we propose to use the average training color as the test
color, provided that no specific training color is closer to
the average than any other one and that all training colors
are sufficiently different from each other. If the training
color of class C is closer to the average color than the
other colors, the network will wrongfully believe that test
samples are all of class C. If two training colors are close to
each other, the network won’t be able to easily differentiate
samples of the two classes using only the color and will be
driven to learn other class related patterns, e.g., shape, at
least partially. The colors (a triplet of value in range [0, 1])
are therefore chosen to be on a sphere centered in the aver-
age (6 of them) and on the vertices of a cube centered in the
average (the 4 left). This way no particular color is closer to
the average than at least three others. All colors are not on
the sphere to avoid colors that are too similar to one another.

4. Reverse Contrastive Approach
4.1. The proposed method

Our method starts from the observation that patterns that
are learned with a standard training procedure (e.g., stochas-



Method Validation Accuracy Test Accuracy
Standard Training Procedure 99.8 (± 0.006) 26.0 (± 4.7)
Dropout 99.8 (± 0.01) 31.9 (± 3.1)
Dropout & Orthogonality [3] 99.8 (± 0.008) 42.7 (± 2.6)
Dropout & Covariance [8] 99.8 (± 0.002) 42.6 (± 2.0)
Jigsaw Puzzle [5] 99.8 (± 0.01) 43.0 (± 3.0)
(with early stopping @95) 98.5 (± 0.3) 59.9 (± 4.5)
Reconstruction 99.8 (± 0.007) 28.5 (± 4.8)
Spectral Decoupling [38] 99.8 (± 0.004) 47.7 (± 2.9)
(with early stopping @95) 99.4 (± 0.09) 49.8 (± 1.5)
RSC [24] 99.2 (± 0.2) 43.5 (± 5.0)
RCL-SDG (ours)
m = 0.2 99.8 (± 0.007) 12.5 (± 2.6)
m = 0.4 99.8 (± 0.007) 19.9 (± 5.5)
m = 0.6 99.8 (± 0.009) 36.8 (± 5.6)
m = 0.8 99.7 (± 0.03) 55.7 (± 4.7)
m = 0.9 99.4 (± 0.08) 68.2 (± 4.0)
(with early stopping @95) 95.84 (± 0.6) 74.7 (± 8.5)
m = ∞ 96.0 (± 0.3) 89.9 (± 0.9)
Standard Training Procedure 97.8 (± 0.12) 97.8 (± 0.12)
on the original MNIST

Table 2. Results of the methods on the MNIST ”Missing-Patterns” dataset. The results are obtained with a best validation selection strategy.
The first column is the validation accuracy (colored digits), and the second the test (grey digits) accuracy. Accuracies reported are averages
over 10 runs, with the standard deviation between parenthesis. The last line indicates the accuracy reached by our backbone on the original
MNIST dataset without domain shift, it thus gives the highest bound of the accuracy in the test domain for the methods.

tic gradient descent with a cross-entropy loss, for a classifi-
cation task) are learned because they exhibit the maximum
inter-class specificity but they ignore intra-class diversity.
To make the network learn semantically different ways to
do the task, we propose to look for class-discriminant pat-
terns with a higher intra-class variability than those learned
naturally. A higher intra-class variability means that we are
able to discriminate elements inside a single class, some-
thing that is difficult with the standard training procedure
(see Figure 3, a). To find such patterns, we spread the in-
termediate features (the output of the convolutional features
extractor F, before the fully connected classifier layers) of
elements of the same class, to a certain extent. The limit in
the class-wise repulsion is fixed with elements of the other
classes: the intra-class features are repelled from each other
until we reach elements of the other classes, with a margin.
This approach is akin to a partially reversed constrastive
loss where positive and negative pairs are switched, but a
margin must be maintained between samples of different
classes. We train the network with two objectives: the con-
ventional classification objective for both the features ex-
tractor and the classifier, and the following for the features
extractor only:

minF {−d(fa, fp)}
s.t. d(fa, fp) < m× d(fa, fn)

(1)

fa is the anchor feature map, fp a feature map belonging
to a point of the same class as fa i.e. the positive sample, fn
a feature map belonging to a point of a different class than
fa, i.e. the negative sample, and m is the margin, a scalar
to chose between 0 and 1 if we want the inter-class distance
to be larger than the intra-class distance. We use a multi-
plicative margin, instead of an additive margin, contrary to
the standard triplet loss [21], to ease the hyper-parameter
search. The distance d used is the L1-distance. Feature
maps are rescaled in the range [0, 1] before distance calcu-
lation, by using the maximum and minimum activation val-
ues computed batch-wise. This is done to avoid divergence
as there are otherwise no lower bounds for this loss. Usu-
ally, features are normalized with their L2-norm, putting
them on the unit sphere, but we found better results with
the min/max strategy. Practically, we use the following re-
verse contrastive loss (RCL):

LRC = { −d(fa, fp) if d(fa, fp) < m× d(fa, fn)
0 otherwise (2)

The triplet of features used is not chosen randomly in
the batch: we follow an easy-positive hard-negative sam-
pling strategy. The anchors are sampled randomly, the pos-
itive is the closest element of the same class, the negative
is also the closest element in a different class. It is useless



to push away elements of the same class that are already far
from each other in the latent space: patterns extracted for
these samples are already different. We compare the clos-
est intra-class distance with the closest inter-class distance
to avoid creating a mixed latent space and define precise
boundaries in the latent space. The positive points used in
the loss are detached from the computation graph so that
only the anchor is moved in the latent space: the distance
check with negative neighbors is only relevant for the an-
chor. This loss cannot work on its own without the classi-
fication loss: at initialization, all features are clustered in
the same area of the latent space and since the inter-class
distances are small, we cannot expand the size of the intra-
class clusters. The cross entropy loss will push away the
features of elements of different classes, allowing the sec-
ond objective to loosen the intra-class clusters. A visualisa-
tion of the proposed method can be found in Figure 2 and
the detailed algorithm in pseudo-code in Algorithm 1. We
found even better results when pushing away features of the
same class without any kind of limitation, that is, minimiz-
ing −d(fa, fp), or having a margin set to infinity. While
counter-intuitive, this might be explained by the influence
of the classification loss, which prevents a complete scatter-
ing of intra-class features and forces the differentiation of
inter-class features.

Algorithm 1: Reverse Contrastive Loss
method specific hyperparameters:
- weight for the RCL α
- margin for the RCL m
while training is not over do

sample batch of data {(xi, yi), i = 0...N}
calculate cross-entropy loss on batch LCE

calculate intermediate features {fi, i = 0...N}
normalize features
for each sample fi in batch do

find closest positive fp,i in the batch
find closest negative fn,i in the batch
detach fp,i from the computation graph
if d(fi, fp,i) < m× d(fi, fn,i) then

LRC,i = −d(fi, fp,i)
else

LRC,i = 0
end

end
LRC = 1

N

∑
i=0...N LRC,i

update model with LCE + α× LRC

end

4.2. State-of-the-art baselines

A first algorithm to find several useful patterns for
classification can simply make use of dropout [42]. By
zeroing activations inside the network, we naively force
it to look for new patterns. A limitation of dropout is

that nothing prevents the network from learning the same
patterns through several filters. To avoid this redundancy
phenomenon, we further implement two straightforward
variants using two different regularizations: orthogonality
of filters, used in [3] (more precisely, we apply the double
soft orthogonality regularization) and constraint over the
covariance matrix of the filters activations, used in [8].
Both regularizations are applied on the same layer as
dropout, but before dropout is applied for the calculation.
An orthogonality constraint for filters is supposed to
prevent a filter to be close to another. The penalisation of
the covariance matrix of the activations is based on the idea
that filters that generally activate together, or don’t activate
together, are probably semantically related, even though
their weights might be different. This constitutes what we
call the naive strategies.

We also implement more elaborated methods inspired by
DG works reviewed in sec.2. First, we compare our ap-
proach with one inspired from the jigsaw puzzle multi-task
strategy used in [5]. Our approach is also compared to a re-
construction multi-task strategy (inspired from [14]), where
the features obtained by the features extractor are used for a
classification task, with a classification head, and for an im-
age reconstruction task, with a decoder. The feature extrac-
tor must extract sufficiently complete patterns to reconstruct
the input, which are more than what is extracted with a sin-
gle classification objective. The two strategies tailored pre-
cisely for the problem at hand are Representation Self Chal-
lenging [24], and Spectral Decoupling [38]. The selected
methods were chosen because they improve out-of-domain
generalization by finding new patterns. We did not compare
ourselves with more general methods, such as these using
style transfer for instance, because our goal is to measure
the ability of an algorithm to find less correlated patterns.

5. Results and Discussion

5.1. Experimental setup

Our experiments are conducted on our benchmark using
a small neural network. The architecture we use was
introduced in [5] to study MNIST to SVHN [36] transfer.
It is composed of two convolutional layers and three fully
connected layers. Max pooling operations are inserted
between each convolutional. The non-linearity used is
ReLU for all the layers. The convolutional layers define the
feature extractor (128 channels), and the fully connected
layers the classifier. For all experiments, we use stochastic
gradient descent, with a batch size of 128, with nesterov
momentum at 0.9, a fixed learning rate of 1e-3 and an L2
weight decay at 1e-5. Models are trained for 10 epochs.
There is no data augmentation. The jigsaw puzzle strategy
uses an additional fully connected layer to the network,



(a) (b) (c)

(d) (e) (f)

Figure 3. Visualisation of different latent spaces through a 2-dimensional T-SNE [46]. The two axis are the dimensions obtained by the
T-SNE. (a) shows the validation (colored digits) latent space, for a model trained normally. (b) shows the test (grey digits) latent space for
the same model. (c) shows the validation latent space for a model trained normally, on the original MNIST. (d) shows the validation latent
space for a model trained with the RCL and a margin of 0.9. (e) shows the validation latent space for a model trained with the RCL without
limitation. (f) shows the test latent space for the same model. The color of a dot is its ground truth class (not the same as the colors used
for the digits) and its shape represents whether or not the network successfully predicted the correct class: circle if so, cross if not. Best
viewed in color.

as in [5], alongside another fully connected layer used
for the classification. The images are divided into 2x2
squared tiles, which are then shuffled, yielding 24 possible
permutations. Each batch is used for both labels: class with
the original batch sent through the network, permutation
with the shuffled batch. The decoder in the reconstruction
method is composed of 4 transposed convolution layers,
with an hyperbolic tangent as the last activation function.
When dropout is used, the dropout rate is chosen at
random between 0 and 1 for each iteration: a fixed dropout
rate helps the network introduce redundancy in a simple
fashion: it only has to create more redundancies than there
are dropped channels. Likewise, only full channel dropout
is used because of the correlation between spatially close
activations in the same channel, which enable the network
to recover the color all the time. For RSC, we reuse these
dropout hyper-parameters and the batch percentage (the
proportion of samples per patch for which RSC is used) is
fixed at 100% as we want the network to look beyond the
color for every image.

Most strategies use two objectives during training: the
classification cross-entropy and another objective (jigsaw
puzzle, reverse contrastive loss, reconstruction) or regular-
ization (orthogonality, spectral decoupling). The weight for
the classification loss is always set to 1. The weightings for
the supplementary losses (or regularizations) were selected
in the list (0.001, 0.01, 0.1, 1, 5, 10) with the following
principle: the value selected is the largest value that does
not lead to a collapse of the validation accuracy. The idea
is that the regularization weighting should have a positive
slope for out-of-distribution accuracy, i.e. the larger the
weight, the better the out-of-distribution accuracy, up
until a certain point. It is grounded in the fact that most
additional objectives tend to counter the natural behaviour
of the network. The weight is 1.0 for the orthogonality
constraint, 0.01 for the covariance constraint, 10.0 for the
Jigsaw Puzzle, 1.0 for the reconstruction, 5.0 for Spectral
Decoupling and 1.0 for our reverse contrastive constraint.



During training, we select the model with the highest
validation accuracy, and evaluate this model on the testing
data. It has been noted that domain generalization is a set-
ting where the initialization of the network is more impor-
tant than usual and that results may vary in a greater fash-
ion than with a training and testing dataset coming from the
same distribution [28]. Therefore, we average the results
over 10 runs, and report the standard deviation alongside
the average.

5.2. Results and analysis

Table 2 synthesizes the overall results. As can be
seen, our reverse contrastive method yields a significant
improvement over the previous works and the naive
strategies on our dataset. Dropout compares favorably to
normal training, but yields far better results when used
together with a regularization to prevent redundancy. This
redundancy issue might explain why RSC yields results
only marginally above dropout and regularization. During
training, we monitored the test accuracy over the epochs
and noticed that jigsaw puzzle and spectral decoupling
succeed to some extent but suffers from an over-fitting
issue: the best test accuracy does not happen for the model
with the best validation accuracy. Early stopping is useful
in this situation. We employ a simple yet realistic early
stopping strategy that does not use the test set: training
is stopped as soon as the validation accuracy reaches a
satisfying threshold, fixed here at 95%. This only enables
us to recover a closer accuracy than the best test accuracy
but not go higher. Most methods specifically designed to
prevent the network to focus only on a subset of useful
features are not effective enough to consider the problem
solved on our simple dataset.

Beside the accuracy table, we also illustrate the impact
of our reverse contrastive loss in Figure 3 by looking at
the latent space extracted from models trained differently,
through the T-SNE dimensionality reduction method [46]
applied on the features. With a margin of 0.9, the class
clusters are still separated but we can see their expansions
(d), compared to the standard training situation (a). Without
limitation, the clusters are mixed together, and can only be
discriminated one another only roughly (e). This explains
why the performance in the training domain is lower: the
classifier can’t perfectly separate the classes, however the
performance in the testing domain is higher. This illustrates
an underlying trade-off in our method: the more the
intra-class clusters are expanded, the more the network will
find ”hidden” useful patterns but the more it will also learn
useless patterns, that are not inter-class discriminant. By
comparing with the latent space of the same model trained
on the original MNIST (c), we see an inefficiency of the
method to find useful patterns. The cluster’s sizes needed

to obtain an accuracy around 90% are larger than the size
of the clusters on the original MNIST, indicating that noise
and instance specific patterns have been learned by the
network. We hypothesize that on more complex datasets,
the RCL without limitation might not yield good results
due to the images specificities being more prevalent than in
MNIST. To tackle this issue is a future work direction.

Our approach tends to qualify the common principle in
the deep learning research community that a good latent
space, one able to generalize well, is supposed to have
tight intra-class clusters with large margins between clus-
ters. While this is true when there is no domain shift, it
might not always hold true when so. This can be seen
in Figure 3 where a testing latent space corresponding to
a large-margin tight-clusters training latent space is com-
pletely misunderstood by the network (b). On the opposite,
the blurred boundaries training latent space (e) stays similar
in the testing domain (f).

6. Conclusion
In this paper we carefully created a benchmark to study

one of the reasons deep networks fail to generalize outside
of their training domain: the reliance of a model on only
the most obvious discriminant patterns has dramatic con-
sequences if, in the test domain, such patterns are miss-
ing. We showed that existing methods only mitigate the
damage. Therefore, we proposed a counter-intuitive strat-
egy: instead of aiming for a tight-cluster large-margin latent
space, it is beneficial to try to expand the class-wise clus-
ters, as the cluster-size is linked to the diversity of patterns
learned. Experiments have shown that our approach per-
forms significantly better than state-of-the-art approaches
on our benchmark. The goal was not to compete directly
against other SDG methods on realistic benchmarks, but
to provide a building block for a future general SDG al-
gorithm. The future works will be dedicated to the study
of more real-life-like situations, and to the decorrelation (or
anti-correlation) issue. Our benchmark MNIST-MP is pub-
licly available on github, together with an MNIST-UP also
proposed for the anti-correlation studies.
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[2] Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David
Lopez-Paz. Invariant risk minimization. arXiv preprint
arXiv:1907.02893, 2020.

[3] Nitin Bansal, Xiaohan Chen, and Zhangyang Wang. Can
we gain more from orthogonality regularizations in training
deep networks? In Advances in Neural Information Process-
ing Systems, 2018.

[4] Sara Beery, Grant Van Horn, and Pietro Perona. Recognition
in terra incognita. In IEEE/CVF European conference on
computer vision, 2018.

[5] Fabio M Carlucci, Antonio D’Innocente, Silvia Bucci, Bar-
bara Caputo, and Tatiana Tommasi. Domain generalization
by solving jigsaw puzzles. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019.

[6] Fabio Maria Carlucci, Paolo Russo, Tatiana Tommasi, and
Barbara Caputo. Hallucinating agnostic images to generalize
across domains. In IEEE/CVF International Conference on
Computer Vision Workshop, 2019.

[7] Junbum Cha, Hancheol Cho, Kyungjae Lee, Seunghyun
Park, Yunsung Lee, and Sungrae Park. Domain generaliza-
tion needs stochastic weight averaging for robustness on do-
main shifts. arXiv preprint arXiv:2102.08604, 2021.

[8] Michael Cogswell, Faruk Ahmed, Ross Girshick, Larry Zit-
nick, and Dhruv Batra. Reducing overfitting in deep net-
works by decorrelating representations. Internation Confer-
ence on Learning Representations, 2016.

[9] Nikolay Dagaev, Brett D Roads, Xiaoliang Luo, Daniel N
Barry, Kaustubh R Patil, and Bradley C Love. A too-good-
to-be-true prior to reduce shortcut reliance. arXiv preprint
arXiv:2102.06406, 2021.

[10] Alex J DeGrave, Joseph D Janizek, and Su-In Lee. Ai for
radiographic covid-19 detection selects shortcuts over signal.
Nature Machine Intelligence, 2021.

[11] Simone Fabbrizzi, Symeon Papadopoulos, Eirini Ntoutsi,
and Ioannis Kompatsiaris. A survey on bias in visual
datasets, 2021.

[12] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain
adaptation by backpropagation. In International Conference
on Machine Learning, 2015.

[13] Robert Geirhos, Patricia Rubisch, Claudio Michaelis,
Matthias Bethge, Felix A. Wichmann, and Wieland Brendel.
Imagenet-trained CNNs are biased towards texture; increas-
ing shape bias improves accuracy and robustness. In Inter-
national Conference on Learning Representations, 2019.

[14] Muhammad Ghifary, W Bastiaan Kleijn, Mengjie Zhang,
and David Balduzzi. Domain generalization for object recog-
nition with multi-task autoencoders. In IEEE/CVF Interna-
tional Conference on Computer Vision, 2015.

[15] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In Advances in
Neural Information Processing Systems, 2014.

[16] Ishaan Gulrajani and David Lopez-Paz. In search of lost do-
main generalization. In International Conference on Learn-
ing Representations, 2021.

[17] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In IEEE/CVF International Conference
on Computer Vision, 2017.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
2016.

[19] Katherine Hermann, Ting Chen, and Simon Kornblith. The
origins and prevalence of texture bias in convolutional neu-
ral networks. Advances in Neural Information Processing
Systems, 2020.

[20] Katherine Hermann and Andrew Lampinen. What shapes
feature representations? exploring datasets, architectures,
and training. Advances in Neural Information Processing
Systems, 2020.

[21] Elad Hoffer and Nir Ailon. Deep metric learning using triplet
network. In International Workshop on Similarity-Based
Pattern Recognition, 2015.

[22] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu,
Phillip Isola, Kate Saenko, Alexei Efros, and Trevor Darrell.
Cycada: Cycle-consistent adversarial domain adaptation. In
International Conference on Machine Learning, 2018.

[23] Xun Huang and Serge Belongie. Arbitrary style trans-
fer in real-time with adaptive instance normalization. In
IEEE/CVF International Conference on Computer Vision,
2017.

[24] Zeyi Huang, Haohan Wang, Eric P. Xing, and Dong Huang.
Self-challenging improves cross-domain generalization. In
IEEE/CVF European Conference on Computer Vision, 2020.

[25] Philip TG Jackson, Amir Atapour Abarghouei, Stephen Bon-
ner, Toby P Breckon, and Boguslaw Obara. Style aug-
mentation: data augmentation via style randomization. In
IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, 2019.

[26] Byungju Kim, Hyunwoo Kim, Kyungsu Kim, Sungjin Kim,
and Junmo Kim. Learning not to learn: Training deep neu-
ral networks with biased data. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, June 2019.

[27] Myeongjin Kim and Hyeran Byun. Learning texture invari-
ant representation for domain adaptation of semantic seg-
mentation. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2020.

[28] David Krueger, Ethan Caballero, Joern-Henrik Jacobsen,
Amy Zhang, Jonathan Binas, Remi Le Priol, and Aaron
Courville. Out-of-distribution generalization via risk extrap-
olation (rex). arXiv preprint arXiv:2003.00688, 2020.

[29] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist
handwritten digit database. ATT Labs. Available:
http://yann.lecun.com/exdb/mnist, 2010.

[30] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M.
Hospedales. Deeper, broader and artier domain generaliza-
tion. In IEEE/CVF International Conference on Computer
Vision, 2017.



[31] Haoliang Li, Sinno Jialin Pan, Shiqi Wang, and Alex C
Kot. Domain generalization with adversarial feature learn-
ing. In IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, 2018.

[32] Daniel Moyer, Shuyang Gao, Rob Brekelmans, Aram Gal-
styan, and Greg Ver Steeg. Invariant representations without
adversarial training. In Advances in Neural Information Pro-
cessing Systems, 2018.

[33] Vaishnavh Nagarajan, Anders Andreassen, and Behnam
Neyshabur. Understanding the failure modes of out-of-
distribution generalization. In International Conference on
Learning Representations, 2020.

[34] Hyeonseob Nam, HyunJae Lee, Jongchan Park, Wonjun
Yoon, and Donggeun Yoo. Reducing domain gap via style-
agnostic networks. arXiv preprint arXiv:1910.11645, 2019.

[35] Junhyun Nam, Hyuntak Cha, Sungsoo Ahn, Jaeho Lee, and
Jinwoo Shin. Learning from failure: Training debiased clas-
sifier from biased classifier. In Advances in Neural Informa-
tion Processing Systems, 2020.

[36] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bis-
sacco, Bo Wu, and Andrew Y. Ng. Reading digits in natural
images with unsupervised feature learning. In Advances in
Neural Information Processing Systems Workshop, 2011.

[37] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate
Saenko, and Bo Wang. Moment matching for multi-source
domain adaptation. In IEEE/CVF International Conference
on Computer Vision, 2019.
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