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Abstract

Traditional deep learning algorithms often fail to gener-
alize when they are tested outside of the domain of training
data. Because data distributions can change dynamically
in real-life applications once a learned model is deployed,
in this paper we are interested in single-source domain gen-
eralization (SDG) which aims to develop deep learning al-
gorithms able to generalize from a single training domain
where no information about the test domain is available
at training time. Firstly, we design two simple MNIST-
based SDG benchmarks, namely MNIST Color SDG-MP
and MNIST Color SDG-UP, which highlight the two differ-
ent fundamental SDG issues of increasing difficulties: 1)
a class-correlated pattern in the training domain is miss-
ing (SDG-MP), or 2) uncorrelated with the class (SDG-
UP), in the testing data domain. This is in sharp contrast
with the current domain generalization (DG) benchmarks
which mix up different correlation and variation factors and
thereby make hard to disentangle success or failure factors
when benchmarking DG algorithms. We further evaluate
several state-of-the-art SDG algorithms through our simple
benchmark, namely MNIST Color SDG-MP, and show that
the issue SDG-MP is largely unsolved despite of a decade
of efforts in developing DG algorithms. Finally, we also
propose a partially reversed contrastive loss to encourage
intra-class diversity and find less strongly correlated pat-
terns, to deal with SDG-MP and show that the proposed
approach is very effective on our MNIST Color SDG-MP
benchmark.

1. Introduction
While deep neural networks reach or even surpass

human-level performance on an increasing number of
computer vision tasks, e.g., classification, object detection
or semantic segmentation [15, 14], it is found that their
performance could drop sharply [17] when mismatch
between training and testing data distributions occurs.
This is an issue of critical importance for real-world
application, where test-time domain shift is common:
the data distribution can change over time because of
varying factors as diverse as lighting, view angle, sensor,
etc., ending up being significantly different from the one
used during training. For embedded networks deployed
in the wild, that can’t be easily retrained (autonomous
cars, for instance), geographical distribution change
are an issue too. It is impossible to gather enough data to
cover all possible shifts, so another solution has to be found.

Figure 1. Samples of the MNIST Color SDG-MP & UP datasets.
First row is training data, second row is testing data for SDG-MP,
third row is testing data for SDG-UP. All digits have their class
color, without exception.

To generalize without having access to any kind of
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Figure 2. An illustration of our reverse contrastive approach on 3
anchors. Anchor 1 in the latent space is sufficiently far from its
closest negative neighbor (full line) for it to be pushed away from
its closest positive neighbor (dotted line). So is anchor 3. Anchor
2, however, is too close to a negative point to be pushed. The
arrows show the moving direction of each anchor.

information regarding the target domain is the goal of the
research field known as domain generalization (DG) (or
out-of-distribution generalization). Most of the works in
this field assume to have access to data coming from several
identified domains during training and aim to make the
network’s internal representations invariant on the domains,
by finding patterns common to all domains. The idea
behind is that patterns shared among several domains are
more likely to be found in a new, unseen, domain [26, 27].
This multi-source domain generalization (MDG) setting is
not realistic for all tasks and all kind of data: health-related
data, for instance, cannot be easily shared and the gathering
of data from different sources (such as country) may prove
difficult. In this paper, we are concerned with a situation,
coined as single-source domain generalization (SDG),
where only one single source domain is available during
training, either that all data come from a same distribution,
or that the data come from several distributions which
are not identified differently. Both settings (single and
multi-source) are still largely unsolved in the general case:
on several complex and realistic datasets, e.g., Domain-
Net [31], PACS [25], methods designed to improve the
out-of-distribution generalization capability of networks
were found to perform as badly as the standard training
procedure [13].

In order to shed light into factors leading to success
or failure of DG algorithms, we argue that it is important
to disentangle issues of different nature often mixed up
in the state-of-the-art DG benchmarks to enable isolation
of success or failure factors when dealing with each of

these DG issues of increasing difficulties. Specifically,
as illustrated in Figure 1, we design two simple MNIST-
based benchmarks, namely MNIST Color SDG-MP and
MNIST Color SDG-UP, to enable benchmarking of SDG
algorithms upon the two different SDG issues of increasing
difficulties: when a domain shift occurs, the patterns used
by the network to correctly classify an image in the source
domain may be either 1) - missing (SDG-MP) or 2) -
uncorrelated or anti-correlated (SDG-UP) with the image
label in the target domain. By missing, we mean a pattern
whose corresponding filter does not activate above its
training mean at test-time.

In this paper we focus our attention on the issue of
missing patterns at test-time, i.e., the SDG-MP issue. Intu-
itively, this problem could be solved by having the network
focus on the maximum amount of discriminant patterns,
which is unfortunately not its natural behavior. Indeed,
by learning more patterns in training for its decisions,
the network could still make a sound prediction with the
remaining ones, in case one particular pattern identified
in the learning phase is missing at test-time. This, and its
consequences on a network’s ability to generalize outside
of its training domain, have been previously identified and
partially mitigated in [19, 32]. However, using our MNIST
Color SDG-MP benchmark specifically crafted to evaluate
the ability of a model to focus on other patterns than the
most strongly correlated ones, we show the inability of
existing methods, e.g., Jigsaw [4], Spectral Decoupling
[32], RSC [19], to correctly handle this issue, even in
our simple benchmark: none of the existing works reach
satisfying performance on our dataset and some of them
can record a performance drop as high as 56 accuracy
points when the correlated pattern identified in training
data, i.e., color, is missing in the test data.

Given these findings, we posit that, when training for
a classification task, naturally learned patterns are learned
because they tend to maximize inter-class specificity, while
ignoring intra-class variability. These learned patterns are
the most effective when it comes to discriminate different
classes. As a result, we hypothesize that, to find less
efficient patterns, we need to look for class-discriminant
patterns with a higher intra-class variability than those
learned naturally. That is, patterns enabling the network
to better discriminate samples of the same class. Because
we don’t have access to additional auxiliary labels to
discriminate elements within a class, the idea is to expand
the class-wise internal representations of a deep network.
We do so by using a partially reversed contrastive loss: in
a traditional contrastive approach, same class samples are
brought together in the latent space while different class
samples are pushed away from each other. In our approach,
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same class samples are pushed away from each others until
they reach a different class sample (see Figure 2 for an
illustration of our method). Our strategy yields state-of-
the-art performance on our MNIST Color SDG-MP dataset.

Our contributions are threefold:

• We design two MNIST-based SDG benchmarks,
namely MNIST Color SDG-MP and MNIST Color
SDG-UP, specifically crafted to highlight the behav-
ior of Single Domain Generalization (SDG) algorithms
with respect to two different SDG issues, respectively,
i.e., when a class correlated pattern in training is miss-
ing (SDG-MP) or even uncorrelated with the class
(SDG-UP) in the testing domain;

• We show that several state-of-the-art SDG algorithms
fail to handle the SDG-MP issue using our MNIST
Color SDG-MP benchmark;

• We propose a reverse contrastive loss (RCL-SDG) to
find less strongly correlated patterns by encouraging
intra-class diversity to a certain extent.

The remaining of the paper is organized as follows.
Sec.2 discusses related works. Sec.3 introduces the pro-
posed MNIST Color SDG benchmarks. Sec.4 presents our
proposed RCL-based SDG algorithm. Sec.5 benchmarks
our proposed SDG algorithm along with several state-of-
the-art algorithms for comparison. Sec.6 concludes the pa-
per and draws some future works.

2. Related Works
2.1. Domain Generalization (DG)

2.1.1 Domain shift robustness through multi source
training

Most settings in DG assume to have data coming from
several different source domains, which are identified.
By learning domain invariant features, through a great
diversity of practical approaches, the model is supposedly
able to generalize to a new domain. Most recent works
use adversarial strategies: in the work of Tzeng et al. [36]
the features extracted by a feature extractor are fed to a
discriminator tasked to find the original domain of the
image. The discriminator is trained to minimize the domain
classification error, while the feature extractor is trained to
maximize it, hence making the features indistinguishable
between domains. This family of works were initially
developed in the context of domain adaptation (DA) but
can be adapted in the multi-source domain generalization
setting by employing all the domains at disposal during
training, e.g., [5] and [26]. The work of Krueger et al.
[23] is enforcing invariance at loss level by minimizing the

variance of the loss over all training domains alongside
with the usual average of the loss per batch. Self-supervised
strategies have also emerged to solve the problem of multi-
source domain generalization. Carlucci et al. [4] used a
self-supervised strategy based on solving jigsaw puzzles:
the images are divided into tiles, which are shuffled before
being given to the classifier. The classifier has two goals:
classify the samples and find the shuffling permutation. By
having a supplementary objective, not related in any way to
the classification, the network will learn other patterns than
those strictly sufficient to the classification task and hence
generalize better to a new distribution. So far, it is unclear
why features learned with self-supervised tasks are more
robust to domain shifts.

In 2019, Gulrajani and Lopez-Par [13] analysed a lot
of DG algorithms and benchmarks ”in search of lost do-
main generalization”. They detailed ways to carefully and
realistically evaluate multi-source DG methods, by using
larger models, stronger data augmentation, correct model
and hyper-parameters selection (without any use of the tar-
get domain), and doing all on more datasets. Their con-
clusion was that no methods were significantly above the
basic expected risk minimization procedure (ERM), where
data from all domains is merged into one single dataset with
the network trained on it. Their findings are corroborated
by Cha et al. [6] who look into the latent spaces from dif-
ferently trained networks, one with DANN [9] and another
with the basic ERM. They have shown that ERM naturally
tends to yield domain invariant features. These findings lead
us to study DG settings of increasing difficulties where dif-
ferent factors for DG are disentangled, and to subdivide the
complicated out-of-distribution generalization problem.

2.1.2 Domain shift robustness through stylization

Style transfer as a mean of data augmentation has been re-
cently introduced independently by several authors [28, 39,
22, 33] as a way to promote invariance to texture changes.
The images are simply stylized differently, with AdaIN
based [18] or GAN-based [12, 41] architectures, before be-
ing fed to the main task model. It has been hypothesized
that the low ability of deep networks to transfer to unseen
domains was related to their texture bias: deep networks
grant more importance to the texture than the shape in im-
age recognition tasks [10]. As such, correcting this texture
bias is expected to improve out-of-distribution generaliza-
tion, provided that the distribution shift is mainly due to
a texture shift. The stylization as data augmentation ex-
ists in different flavors: Nam et al. [28] use intra-domain
extra-class stylization: the styles used to transfer are com-
ing from the images of the training distribution but from
different class samples than the image being stylized. Yue
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et al. [39] use several auxiliary style datasets. Jackson et
al. [20] approximated the style codes distribution of paint-
ings with a multivariate normal, and completely discard the
painting dataset once the transfer network is trained. The
stylization is a strong baseline in single-source domain gen-
eralization (SDG) [39] when the domain shift encountered
is a texture shift, such as a synthetic to real transfer, which,
unfortunately, does not always hold in the general case.

2.2. Overcoming Biases

The issue of missing patterns is related to both out-of-
distribution generalization and bias avoidance in deep net-
works. Deep neural networks learn correlations between
patterns and labels no matter how spurious they seem to a
human being and therefore sometimes need to be explic-
itly told not to use certain patterns for the recognition task
at hand [29, 21]. In a domain shift situation, the patterns
naturally learned by a network are precisely the ”biases”
we need to overcome to find other and semantically differ-
ent patterns. A line of work, e.g., Kim et al. [21], is able
to create bias invariant features, but requires the bias to be
given as an auxiliary label, and are therefore not suitable to
the SDG setting where no information on testing data, e.g.,
bias shift, is assumed available. Another line of work, e.g.,
[29, 8, 1], focuses on finding counter-examples i.e., sam-
ples that do not share the majority biases of their classes,
and increase their importance during training. Assuming
the necessary existence of counter-examples is an optimistic
hypothesis in certain situations, such as with synthetic data
where only a few number of synthetic models of interest
may be available. Besides, it could lead to overstate the
importance of what could be an aberrant outlier, such as
an annotation error. As such, there also exists approaches
which do not need counter-examples. Representation Self-
Challenging [19] (RSC) introduces a dropout-based strat-
egy, where the feature map coefficients most responsible for
the prediction are muted, instead of random ones, therefore
leading the network to focus on other less correlated pat-
terns. Spectral Decoupling [32], a method introduced by
Pezeshki et al., proposes an L2 regularization on the out-
put logits of the network, with a theoretical motivation, to
push the network to learn other patterns than the obvious
and spurious ones. Both these methods can work without
counter-examples.

2.3. Supervised Contrastive Learning

Contrastive learning [35, 16] has been introduced in deep
learning to enable class-wise manipulation of a network’s
latent space with a simple idea: elements of the same class
should be close to each other in the latent space, elements
of different classes should be away from each other in the
latent space. Our approach is to loosen the latent space to
identify less correlated patterns in a recognition task. While

this idea has been previously studied in [40] and [38], it was
applied with a different goal. Zhang et al. [40] proposes to
take all the space available on the unit sphere evenly, but the
regularization only impacts negative pairs. Xuan et al. [38]
aims to create a latent space with better generalization to
unseen classes using a modified triplet loss that also pushes
together elements of different classes.

3. MNIST Color SDG Dataset
We introduce a new toy dataset based on the MNIST

dataset [24] for benchmarking single-source domain gen-
eralization (SDG) algorithms. For the training data, each
digit, coming from the original MNIST training data, is col-
orized with a color depending on its class. There are no
counter-examples (digit colorized differently than the ma-
jority of the other digits in its class), as in [1] or label noise
(digit colorized with their correct class color, but with an as-
signed label different from the original one), as in [32]. We
do so to study the ability of a network to find more semanti-
cally different patterns than what is done naturally, without
having any kind of data signals that could help it find those
patterns. The validation data is the same for both SDG-MP
and SDG-UP and is colorized the same way as the training
data but come from the original MNIST test split. A sam-
ple of the dataset can be found Figure 1. A summary of the
synthetic MNIST-based DG datasets is available in Table 1.

Method SDG/MDG UP/MP LN/CE Classes
IRM [2] MDG (2) UP LN 2
SD [32] SDG UP LN 2
GIP [1] SDG UP+MP CE 10
Ours SDG UP+MP None 10

Table 1. Comparison of MNIST-datasets introduced to study do-
main generalization strategies. SDG/MDG refers to single or mul-
tiple training domains, UP/MP is uncorrelated (or anti-correlated)
or missing patterns, LN is label noise, CE is counter-examples,
Classes is the number of classes.

3.1. SDG-MP

The SDG-MP dataset aims to benchmark SDG algo-
rithms in presence of missing patterns, i.e., when a class
correlated pattern in training, e.g., color, is missing in test-
ing. It is made by coloring each digit with the same color,
no matter their class. The images come from the original
MNIST test data. The test color and the training colors are
not chosen randomly. To precisely confront a deep network
with a situation where useful training patterns are missing
at test-time, the test color has to produce an activation that
is roughly the same for all color specific filters in the net-
work. This way, the network is unable to use color related
information to predict the class of a digit and has to make
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use of other class correlated patterns, e.g., shape. Because
we can’t directly abide by this constraint we propose to use
the average training color as the test color, provided that
no specific training color is closer to the average than any
other one and that all training colors are sufficiently differ-
ent from each other. If the training color of class C is closer
to the average color than the other colors, the network will
wrongfully believe that test samples are all of class C. If two
training colors are close to each other, the network won’t be
able to easily differentiate samples of the two classes us-
ing only the color and will be driven to learn other class
related patterns, e.g., shape, at least partially. The colors (a
triplet of value in range [0, 1]) are therefore chosen to be on
a sphere centered in the average (6 of them) and on the ver-
tices of a cube centered in the average (the 4 left). This way
no particular color is closer to the average than at least three
others. All colors are not on the sphere to avoid colors that
are too similar to one another.

3.2. SDG-UP

SDG-UP aims to benchmark SDG algorithms when a
class related pattern in training data becomes uncorrelated
or anti-correlated in testing data. We make it by permut-
ing the class-color correspondences, on the original MNIST
test set. This means that colors and labels correlated in
the training set are now anti-correlated. Absence of cor-
relation and anti-correlation are in fact the same from the
network’s perspective: prediction on test samples is done
sample-wise, without considering the overall test-time cor-
relations. While for us humans the colors are obviously
spurious and should be ignored, the network should rely on
colors to make its predictions. The correlation color - label
is stronger than the correlation shape - label (because there
is more variability in the shapes of digits) and, as such, it
is natural to expect the network to use primarily the col-
ors for classification. Therefore, a network is not expected
to naturally reach good classification accuracy on SDG-UP
when trained on the colored training set and should instead
have an accuracy close to 0%. This is effectively what hap-
pens for a standard training. A network able to classify anti-
correlated colored samples has to ignore the color informa-
tion and rely only on the shapes. Thus, a supplementary
information is required to obtain this behavior (hypothesis
or test-time data).

4. Reverse Contrastive Approach
4.1. The proposed method

Our method starts from the observation that patterns that
are learned with a standard training procedure (e.g., stochas-
tic gradient descent with a cross-entropy loss, for a classifi-
cation task) are learned because they exhibit the maximum
inter-class specificity but they ignore intra-class diversity.

To make the network learn semantically different ways to
do the task, we propose to look for class-discriminant pat-
terns with a higher intra-class variability than those learned
naturally. A higher intra-class variability means that we are
able to discriminate elements inside a single class, some-
thing that is difficult with the standard training procedure
(see Figure 3, a). To find such patterns, we spread the in-
termediate features (the output of the convolutional features
extractor F, before the fully connected classifier layers) of
elements of the same class, to a certain extent. The limit in
the class-wise repulsion is fixed with elements of the other
classes: the intra-class features are repelled from each other
until we reach elements of the other classes, with a margin.
This approach is akin to a partially reversed constrastive
loss where positive and negative pairs are switched, but a
margin must be maintained between samples of different
classes. We train the network with two objectives: the con-
ventional classification objective for both the features ex-
tractor and the classifier, and the following for the features
extractor only:

minF {−d(xa, xp)}
s.t. d(xa, xp) < m× d(xa, xn)

(1)

xa is the anchor feature map, xp a feature map belong-
ing to a point of the same class as xa i.e. the positive sam-
ple, xn a feature map belonging to a point of a different
class than xa, i.e. the negative sample, and m is the mar-
gin, a scalar to chose between 0 and 1 if we want the inter-
class distance to be larger than the intra-class distance. We
use a multiplicative margin, instead of an additive margin,
contrary to the standard triplet loss [16], to ease the hyper-
parameter search. The distance d used is the L1-distance.
Feature maps are rescaled in the range [0, 1] before distance
calculation, by using the maximum and minimum activa-
tion values computed batch-wise. This is done to avoid di-
vergence as there are otherwise no lower bounds for this
loss. Usually, features are normalized with their L2-norm,
putting them on the unit sphere, but we found better results
with the min/max strategy. Practically, we use the following
reverse contrastive loss (RCL-SDG):

Lrc =

{
−d(xa, xp) if d(xa, xp) < m× d(xa, xn)
0 otherwise (2)

The triplet of features used is not chosen randomly in
the batch: we follow an easy-positive hard-negative sam-
pling strategy. The anchors are sampled randomly, the pos-
itive is the closest element of the same class, the negative
is also the closest element in a different class. It is useless
to push away elements of the same class that are already far
from each other in the latent space: patterns extracted for
these samples are already different. We compare the clos-
est intra-class distance with the closest inter-class distance
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Method Validation Accuracy Test Accuracy
Standard Training Procedure 99.8 (± 0.006) 26.0 (± 4.7)
Dropout 99.8 (± 0.01) 31.9 (± 3.1)
Dropout & Orthogonality [3] 99.8 (± 0.008) 42.7 (± 2.6)
Dropout & Covariance [7] 99.8 (± 0.002) 42.6 (± 2.0)
Jigsaw Puzzle [4] 99.8 (± 0.01) 43.0 (± 3.0)
(with early stopping @95) 98.5 (± 0.3) 59.9 (± 4.5)
Reconstruction 99.8 (± 0.007) 28.5 (± 4.8)
Spectral Decoupling [32] 99.8 (± 0.004) 47.7 (± 2.9)
(with early stopping @95) 99.4 (± 0.09) 49.8 (± 1.5)
RSC [19] 99.2 (± 0.2) 43.5 (± 5.0)
RCL-SDG (ours)
m = 0.2 99.8 (± 0.007) 12.5 (± 2.6)
m = 0.4 99.8 (± 0.007) 19.9 (± 5.5)
m = 0.6 99.8 (± 0.009) 36.8 (± 5.6)
m = 0.8 99.7 (± 0.03) 55.7 (± 4.7)
m = 0.9 99.4 (± 0.08) 68.2 (± 4.0)
(with early stopping @95) 95.84 (± 0.6) 74.7 (± 8.5)
m = ∞ 96.0 (± 0.3) 89.9 (± 0.9)
Standard Training Procedure 97.8 (± 0.12) 97.8 (± 0.12)
on the original MNIST

Table 2. Results of the methods on the MNIST Color SDG-MP dataset. The results are obtained with a best validation selection strategy.
The first column is the validation accuracy (colored digits), and the second the test (grey digits, SDG-MP) accuracy. Accuracies reported
are averages over 10 runs, with the standard deviation between parenthesis. The last line indicates the accuracy reached by our backbone
on the original MNIST dataset without domain shift, it thus gives the highest bound of the accuracy in the test domain for the methods.

to avoid creating a mixed latent space and define precise
boundaries in the latent space. The positive points used in
the loss are detached from the computation graph so that
only the anchor is moved in the latent space: the distance
check with negative neighbors is only relevant for the an-
chor. This loss cannot work on its own without the classi-
fication loss: at initialization, all features are clustered in
the same area of the latent space and since the inter-class
distances are small, we cannot expand the size of the intra-
class clusters. The cross entropy loss will push away the
features of elements of different classes, allowing the sec-
ond objective to loosen the intra-class clusters. A visualisa-
tion of the proposed method can be found in Figure 2. We
found even better results when pushing away features of the
same class without any kind of limitation, that is, minimiz-
ing −d(xa, xp), or having a margin set to infinity. While
counter-intuitive, this might be explained by the influence
of the classification loss, which prevents a complete scatter-
ing of intra-class features and forces the differentiation of
inter-class features.

4.2. State-of-the-art SDG baselines

For comparison without any bias which could be intro-
duced by differences in the backbone network architecture,
we implement using a same backbone several other state-

of-the-art SDG methods. A first SDG algorithm can simply
make use of dropout [34] to find several useful patterns for
classification. By zeroing activations inside the network,
we force it to look for new patterns. A limitation of dropout
is that nothing prevents the network from learning the same
patterns through several filters. To avoid this redundancy
phenomenon, we further implement two straightforward
variants using two different regularizations: orthogonality
of filters, used in [3] (more precisely, we apply the double
soft orthogonality regularization) and constraint over the
covariance matrix of the filters activations, used in [7].
Both regularizations are applied on the same layer as
dropout, but before dropout is applied for the calculation.
An orthogonality constraint for filters is supposed to
prevent a filter to be close to another. The penalisation of
the covariance matrix of the activations is based on the idea
that filters that generally activate together, or don’t activate
together, are probably semantically related, even though
their weights might be different. This constitutes what we
call the naive strategies.

We also implement more elaborated SDG models in-
spired by DG works reviewed in sec.2. First, we com-
pare our approach with one inspired from the jigsaw puzzle
multi-task strategy used in [4]. Our approach is also com-
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pared to a reconstruction multi-task strategy (inspired from
[11]), where the features obtained by the features extrac-
tor are used for a classification task, with a classification
head, and for an image reconstruction task, with a decoder.
The feature extractor must extract sufficiently complete pat-
terns to reconstruct the input, which are more than what
is extracted with a single classification objective. The two
strategies tailored precisely for the SDG problem at hand
are Representation Self Challenging [19], and Spectral De-
coupling [32].

5. Results and Discussion

5.1. Experimental setup

Our experiments are conducted on MNIST Color
SDG-MP using a small neural network. The architecture
we use was introduced in [4] to study MNIST to SVHN
[30] transfer. It is composed of two convolutional layers
and three fully connected layers. Max pooling operations
are inserted between each convolutional. The non-linearity
used is ReLU for all the layers. The convolutional layers
define the feature extractor (128 channels), and the fully
connected layers the classifier. For all experiments, we use
stochastic gradient descent, with a batch size of 128, with
nesterov momentum at 0.9, a fixed learning rate of 1e-3
and an L2 weight decay at 1e-5. Models are trained for 10
epochs. There is no data augmentation. The jigsaw puzzle
strategy uses an additional fully connected layer to the
network, as in [4], alongside another fully connected layer
used for the classification. The images are divided into 2x2
squared tiles, which are then shuffled, yielding 24 possible
permutations. Each batch is used for both labels: class with
the original batch sent through the network, permutation
with the shuffled batch. The decoder in the reconstruction
method is composed of 4 transposed convolution layers,
with an hyperbolic tangent as the last activation function.
When dropout is used, the dropout rate is chosen at
random between 0 and 1 for each iteration: a fixed dropout
rate helps the network introduce redundancy in a simple
fashion: it only has to create more redundancies than there
are dropped channels. Likewise, only full channel dropout
is used because of the correlation between spatially close
activations in the same channel, which enable the network
to recover the color all the time. For RSC, we reuse these
dropout hyper-parameters and the batch percentage (the
proportion of samples per patch for which RSC is used) is
fixed at 100% as we want the network to look beyond the
color for every image.

Most strategies use two objectives during training: the
classification cross-entropy and another objective (jigsaw
puzzle, reverse contrastive loss, reconstruction) or regular-
ization (orthogonality, spectral decoupling). The weight for

the classification loss is always set to 1. The weightings for
the supplementary losses (or regularizations) were selected
in the list (0.001, 0.01, 0.1, 1, 5, 10) with the following
principle: the value selected is the largest value that does
not lead to a collapse of the validation accuracy. The idea
is that the regularization weighting should have a positive
slope for out-of-distribution accuracy, i.e. the larger the
weight, the better the out-of-distribution accuracy, up
until a certain point. It is grounded in the fact that most
additional objectives tend to counter the natural behavior
of the network. The weight is 1.0 for the orthogonality
constraint, 0.01 for the covariance constraint, 10.0 for the
Jigsaw Puzzle, 1.0 for the reconstruction, 5.0 for Spectral
Decoupling and 1.0 for our reverse contrastive constraint.

During training, we select the model with the highest
validation accuracy, and evaluate this model on the testing
data (SDG-MP). It has been noted that domain generaliza-
tion is a setting where the initialization of the network is
more important than usual and that results may vary in a
greater fashion than with a training and testing dataset com-
ing from the same distribution [23]. Therefore, we average
the results over 10 runs, and report the standard deviation
alongside the average.

5.2. Results and analysis

Table 2 synthesizes the overall results. As can be
seen, our reverse contrastive method yields a significant
improvement over the previous works and the naive
strategies on our dataset. Dropout compares favorably to
normal training, but yields far better results when used
together with a regularization to prevent redundancy. This
redundancy issue might explain why RSC yields results
only marginally above dropout and regularization. During
training, we monitored the test accuracy over the epochs
and noticed that jigsaw puzzle and spectral decoupling
succeed to some extent but suffers from an over-fitting
issue: the best test accuracy does not happen for the model
with the best validation accuracy. Early stopping is useful
in this situation. We employ a simple yet realistic early
stopping strategy that does not use the test set: training
is stopped as soon as the validation accuracy reaches a
satisfying threshold, fixed here at 95%. This only enables
us to recover a closer accuracy than the best test accuracy
but not go higher. Most methods specifically designed to
prevent the network to focus only on a subset of useful
features are not effective enough to consider the problem
solved on our simple dataset.

Beside the accuracy table, we also illustrate the impact
of our reverse contrastive loss in Figure 3 by looking at
the latent space extracted from models trained differently,
through the T-SNE dimensionality reduction method [37]
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(a) (b) (c)

(d) (e) (f)

Figure 3. Visualisation of different latent spaces through a 2-dimensional T-SNE [37]. The two axis are the dimensions obtained by the
T-SNE. (a) shows the validation (colored digits) latent space, for a model trained normally. (b) shows the test (grey digits) latent space
for the same model. (c) shows the validation latent space for a model trained normally, on the original MNIST. (d) shows the validation
latent space for a model trained with the RCL-SDG and a margin of 0.9. (e) shows the validation latent space for a model trained with the
RCL-SDG without limitation. (f) shows the test latent space for the same model. The color of a dot is its ground truth class (not the same
as the colors used for the digits) and its shape represents whether or not the network successfully predicted the correct class: circle if so,
cross if not. Best viewed in color.

applied on the features. With a margin of 0.9, the class
clusters are still separated but we can see their expansions
(d), compared to the standard training situation (a). Without
limitation, the clusters are mixed together, and can only be
discriminated one another only roughly (e). This explains
why the performance in the training domain is lower: the
classifier can’t perfectly separate the classes, however
the performance in the testing domain is higher. This
illustrates an underlying trade-off in our method: the more
the intra-class clusters are expanded, the more the network
will find ”hidden” useful patterns but the more it will also
learn useless patterns, that are not inter-class discriminant.
By comparing with the latent space of the same model
trained on the original MNIST (c), we see an inefficiency
of the method to find useful patterns. The cluster’s sizes
needed to obtain an accuracy around 90% are larger than
the size of the clusters on the original MNIST, indicating
that noise and instance specific patterns have been learned
by the network. We hypothesize that on more complex
datasets, the RCL-SDG without limitation might not yield

good results due to the images specificities being more
prevalent than in MNIST. To tackle this issue is a future
work direction.

Our approach tends to qualify the common principle in
the deep learning research community that a good latent
space, one able to generalize well, is supposed to have
tight intra-class clusters with large margins between clus-
ters. While this is true when there is no domain shift, it
might not always hold true when so. This can be seen
in Figure 3 where a testing latent space corresponding to
a large-margin tight-clusters training latent space is com-
pletely misunderstood by the network (b). On the opposite,
the blurred boundaries training latent space (e) stays similar
in the testing domain (f).

6. Conclusion

In this paper we carefully created a benchmark to study
one of the reasons deep networks fail to generalize outside
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of their training domain: the reliance of a model on only
the most obvious discriminant patterns has dramatic con-
sequences if, in the test domain, such patterns are missing.
We showed that existing methods only mitigate the damage.
Therefore, we proposed a counter-intuitive strategy: instead
of aiming for a tight-cluster large-margin latent space, it is
beneficial to try to expand the class-wise clusters, as the
cluster-size is linked to the diversity of patterns learned. Ex-
periments have shown that our approach performs signifi-
cantly better than state-of-the-art approaches on our MNIST
SDG-MP benchmark. The future work will be dedicated to
the study of more real life situations and to the problem of
remaining but uncorrelated patterns at test-time.
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